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Abstract

The brain is thought to generate internal predictions to optimize behaviour. However, it is

unclear whether predictions signalling is an automatic brain function or depends on task

demands. Here, we manipulated the spatial/temporal predictability of visual targets, and the

relevance of spatial/temporal information provided by auditory cues. We used magnetoen-

cephalography (MEG) to measure participants’ brain activity during task performance. Task

relevance modulated the influence of predictions on behaviour: spatial/temporal predictabil-

ity improved spatial/temporal discrimination accuracy, but not vice versa. To explain these

effects, we used behavioural responses to estimate subjective predictions under an ideal-

observer model. Model-based time-series of predictions and prediction errors (PEs) were

associated with dissociable neural responses: predictions correlated with cue-induced beta-

band activity in auditory regions and alpha-band activity in visual regions, while stimulus-

bound PEs correlated with gamma-band activity in posterior regions. Crucially, task rele-

vance modulated these spectral correlates, suggesting that current goals influence PE and

prediction signalling.

Author summary

As natural environments change, animals need to continuously learn and update predic-

tions about their current context to optimize behaviour. According to predictive coding, a

general principle of brain function is the propagation of both neural predictions from

hierarchically higher to lower brain regions and of the ensuing prediction-errors back up

the cortical hierarchy. We show that the neural activity that signals internal predictions

and prediction-errors depends on the current task or goals. We applied magnetoencepha-

lography and computational modelling of behavioural data to a study in which human

participants could generate spatial and temporal predictions about upcoming stimuli,

while performing spatial or temporal tasks. We found that current context (task relevance)

modulated the influence of predictions on behavioural and neural responses. At the level

of behavioural responses, only the task-relevant predictions led to improvement in task

performance. At the level of neural responses, we found that predictions and prediction-

errors correlated with activity in different brain regions and in dissociable frequency
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bands—reflecting synchronized neural activity. Crucially, these specific neural signatures

of prediction and prediction-error signalling were strongly modulated by their contextual

relevance. Thus, our results show that current goals influence prediction and prediction-

error signalling in the brain.

Introduction

The notion that the brain generates internal predictions to optimize behaviour is now well

established [1–3]. Within the predictive-coding framework, predictions ground perceptual

inference and are thought to be conveyed by descending connections in cortical hierarchies

[4,5], which may be mediated by synchronized activity in the alpha- and beta-bands [6]. Con-

versely, incoming sensory or neural inputs—that are unexplained by predictions—translate

into sensory prediction error (PE) signals. These “newsworthy” signals induce neural

responses [4], which are thought to be propagated up sensory hierarchies in higher frequency

bands such as gamma [5,6]. Accordingly, the modulation of alpha- and beta-band activity due

to anticipatory predictions has been demonstrated in several modalities (visual: [7,8], auditory:

[9,10], somatosensory: [11], motor: [12], see also [13]). Similarly, gamma-band PE signalling

has been shown in visual [14] and auditory cortices [9,15].

Predictions can be generated about multiple attributes of stimuli, including their constitu-

ent features and their location and time of onset. Indeed, spatial and temporal predictions

have been shown to act synergistically to improve visual discrimination in cued orienting

tasks [3,16,17,18,19]. However, in natural cases, predictions are typically not cued but evolve

dynamically (i.e., predicting the implications of hearing a car’s horn depends on the current

context [e.g. location, traffic conditions, driving culture]). While some previous studies have

shown that stimulus predictions can be generated and employed even when they are not beha-

viourally relevant [20–22], other findings suggest that the difference in neural activity triggered

by predicted versus unpredicted targets is amplified by attention [23], and predictions about

upcoming targets are learned and exploited more efficiently than predictions about nontargets

[24]. However, it is not known whether predictions of multiple stimulus attributes are learned

independently, or if the task relevance of specific predictions modulates their encoding and

updating. Thus, while predictability and task relevance could constitute 2 independent sources

of top-down control [25], relevance could also affect the deployment of predictions, precluding

redundant or wasteful processing of task-irrelevant sensory information. In other words,

predictability and task relevance may interact in selecting the most informative and relevant

PEs for belief updating.

Here, to test whether the effect of predictability depends upon task relevance, we designed a

task in which participants could use fluctuating spatial and temporal predictions to report

either the location (left/right hemifield) or the latency (early/late relative to the cue) of visual

targets. Predictions guiding task responses could be formed at different hierarchical levels of

processing; at the lower level, participants could use a cue predicting the location/latency of

the target in a given trial. At the higher level, they could learn the validity of the cue over sev-

eral trials. We inferred the participants’ trial-by-trial predictions and PEs using an ideal-

observer model based upon a hierarchical Bayesian inference [26–31]. The resulting predic-

tions and PEs, as well as their interactions with task relevance, were used to explain time-fre-

quency (TF) responses (measured with magnetoencephalography [MEG]) to test whether the

neural correlates of predictions and PEs are modulated by task relevance.
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Results

Behavioural results

Participants performed 2 tasks—location and latency discrimination of visual targets—in alter-

nating blocks (Fig 1A). Each trial contained an auditory cue (a tone pair) and a visual target (a

near-threshold square embedded in noise and presented peripherally). The auditory cue had

Fig 1. Task design and performance. (A) Participants performed location and latency discrimination of visual targets. An auditory cue consisted of an

ascending (orange) or a descending (blue) pair of tones (cue composition), presented at a high or low pitch. The pitch of the cue could predict the

location (left versus right) of the visual target, while the composition of the cue could predict the latency (early versus late) of the target, followed by a

speeded discrimination response. Participants performed location or latency discrimination in separate blocks. (B) Cue validity varied unbeknownst to

the participants over the course of the experiment. Spatial (blue) and temporal (red) validity levels were uncorrelated and changed implicitly. Alternating

tasks (black) were prompted by explicit instructions. (C) Predictability interacted with task relevance in both tasks, improving accuracy when the

predictions were relevant. The main effect of relevance reflected the differences in accuracy between tasks. N = 17; error bars: SEM; post-hoc t tests

* p < 0.05; ~ p < 0.1. Data pertaining to this figure are available on Figshare https://figshare.com/s/2d2755bfdeea1cbb415f. ISI, inter-stimulus interval;

ITI, inter-trial interval; n.s., not significant; RT, reaction time.

https://doi.org/10.1371/journal.pbio.2003143.g001
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the following 2 features: pitch (high versus low) and composition (ascending or descending

pair). Similarly, the visual target had the following 2 features: location (right versus left hemi-

field) and latency (approximately 730 or approximately 1,270 ms after the cue). The following

2 cue-target contingencies were introduced in the task: cue pitch could predict target location

and cue composition could predict target latency, with a varying degree of validity (Fig 1B).

Participants were not informed of the cue-target contingencies or cue-validity manipulations.

Thus, in certain (predictive) trials during each task block, the cue could be used to implicitly

predict target location and/or latency, whereas in other trials, the cue was uninformative with

respect to 1 or both target features. However, the task relevance manipulation was introduced

explicitly, i.e., at the beginning of each block participants were informed whether they should

discriminate the location or the latency of the target. Because cue validity varied along spatial

and/or temporal dimensions, this design enabled us to orthogonalize predictability and task

relevance, i.e., a stimulus could be predictable or not in the relevant or irrelevant context

(determined by the current task).

In both tasks, cue validity led to improvements in discrimination accuracy depending on

task relevance (Fig 1C). Thus, the interaction between predictability (a parametric factor

encoding 90, 70, or 50% cue validity) and relevance (e.g., relevant: spatial predictability in a

spatial task; irrelevant: spatial predictability in a temporal task) was significant for both

tasks (spatial: F1,50 = 5.23, partial η2 = 0.09, p = 0.02; temporal: F1,50 = 5.10, partial η2 = 0.09,

p = 0.02). In both tasks, the main parametric effect of predictability was not significant

(p> 0.05, F< 2). However, there was a significant main effect of relevance (spatial: F1,50 =

34.61, partial η2 = 0.46, p< 0.001; temporal: F1,50 = 7.03, partial η2 = 0.15, p = 0.01), reflecting

better overall performance in the spatial task (spatial: mean 87.2%, SEM 2.2%; temporal: mean

68.7%, SEM 2.2%) in the analyzed trials. No effect of the foreperiod on accuracy was observed

in either task (paired t tests: short versus long intervals; both p’s> 0.2).

Behavioural modelling

To explain the interaction between predictability and relevance on accuracy, we modelled

individual participants’ responses using a Hierarchical Gaussian Filter (HGF) [26]. This Bayes-

ian observer model allowed us to infer, on a trial-by-trial basis, the participants’ beliefs in

terms of predictions and PEs about targets and cue validity levels. The HGF comprises an

observer model, describing how the participants’ beliefs about various hierarchical aspects of

the task are updated given trial outcome, and a response model, linking these beliefs to beha-

vioural responses (Fig 2A). The observer model assumes that participants can form beliefs

about 3 hierarchical aspects of uncertainty entailed by the task: (1) target location and/or

latency in a particular trial (given the cue), (2) the current cue validity level, and (3) the current

volatility (i.e., how fast cue validity changes over trials). Because task relevance was introduced

in a deterministic (rather than probabilistic) way, we modelled relevance as a set of weights

quantifying the contribution of predictions to the response in a given trial. By fitting the model

to behavioural data, one can estimate the evidence for a particular model (quantifying how

well the model explains the data, while penalizing for model complexity) and the model

parameters. These parameters describe individual differences in learning and trial-by-trial

expectations that generate predictions and PEs at various hierarchical levels.

We compared 5 alternative observation models: first, we specified 3-level HGFs (HGF3; in

which participants’ beliefs at all levels are updated and can influence behaviour) in which the

learning parameters could be either context-specific (i.e., the contribution of PEs to prediction

updates could vary between task-relevant and task-irrelevant context) or nonspecific; in the

same way, we specified 2-level HGFs (HGF2; in which changes in volatility are not inferred),
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again with context-specific or nonspecific learning parameters; finally, for a comparison with

the Bayesian models we added a standard reinforcement-learning model (with a fixed learning

rate). We also specified 2 alternative response models: task-specific (in which spatial/temporal

predictions are used only to model responses in the spatial/temporal task) and task-general (in

which both types of predictions contribute to responses in both tasks). Thus, our model space

contained 10 models.

A random-effects Bayesian model comparison revealed that the winning model was HGF2,

with context-specific learning parameters and observation parameters (Fig 2B; protected

exceedance probability >95%, Bayesian omnibus risk p< 0.001, indicating very strong evi-

dence for the winning model; cf. [32]). This suggests that our participants did not infer

changes in volatility [33] and that their beliefs about target outcomes influenced learning and

behaviour in task-relevant contexts only. The prior and posterior model parameters are pro-

vided in the Materials and methods section. Across tasks, the posterior learning parameter ωrel

of the observation model (denoting the weight of context-relevant PEs in updating subsequent

predictions; see Eqs 14 and 15 in Materials and methods) was the only significant predictor of

individual participants’ mean accuracy out of the 4 free model parameters considered (step-

wise regression: β = 0.25, p = 0.04; see Materials and methods and Fig 2E). This between-

Fig 2. Behavioural modelling. (A) The HGF comprises an observer part, describing the beliefs inferred at 3

levels (low: predictions about target location/latency; middle: cue-target validity level; high: volatility of cue

validity), and the response part, linking these beliefs to predicted responses. The full model assumes all 3

levels and a weighted influence of relevant (saturated blue/red) and irrelevant (unsaturated) predictions on

participants’ responses. Grey: model states; orange: model parameters. (B) Three alternative observer

models (HGF3, HGF2, RW) and 2 alternative response models (task-general: weighted influence of relevant

and irrelevant predictions; task-specific: exclusive influence of relevant predictions) were subject to Bayesian

model selection. Plot shows log-model evidence relative to the weakest model and indicates task-specific

HGF2 as winning. (C) HGF-derived trial-by-trial time-series (representative participant) of predictions about

target location/latency (m̂1; upper panels) and cue validity (jm̂2j; middle panels) and PEs about target location/

latency (|ε2|; lower panels). (D) Mean correlations between HGF regressors. (E) Correlation between the prior

variance of validity level updates and mean accuracy across participants. Data pertaining this figure are

available on Figshare https://figshare.com/s/2d2755bfdeea1cbb415f. HGF, Hierarchical Gaussian Filter;

HGF2, 2-level HGF; HGF3, 3-level HGF; PE, prediction error; RW, Rescorla-Wagner.

https://doi.org/10.1371/journal.pbio.2003143.g002
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subject correlation provides an important validation of the within-subject model of behaviour,

and suggests that the degree to which individuals learn predictions in task-relevant contexts is

relevant for adaptive behaviour. Furthermore, the learning parameters ωrel and ωirrel were sig-

nificantly different within participants (repeated-measures ANOVA with factors Relevance

and Task; Relevance: F1,16 = 5.11, partial η2 = 0.15, p = 0.037; Task and Interaction: p> .25),

providing further evidence that the learning parameters were sensitive to the observed beha-

vioural effects of contextual relevance.

Example time-series of predictions and PEs (from one participant) are shown in Fig 2C.

Beliefs about the most likely location and latency in a given trial (m̂1) track the evolving contin-

gencies (pitch–location and composition–latency), suggesting that participants learn the objec-

tively defined cue-validity level (although it is not an input to the model). Accordingly,

predictions about cue validity m̂2 are highest for strongly predictable trials. Furthermore, PEs

about target locations/latencies (δ1) increase when the outcome in a given trial does not match

the prediction, and gradually decrease as the participant learns a new validity level and the

respective precision ψ2 ramps up. This precision term is in turn used to weight the influence

of the PEs on prediction updates. To relate predictions and PEs to neural activity, we used

(unsigned) precision-weighted PEs εi = ψiδi-1 (see Eq 8), in addition to predictions about cue

validity m̂2, as regressors to explain TF power of the MEG responses. The mean correlation

between the regressors did not exceed r = 0.25, consistent with previous studies using the HGF

([27,29]; Fig 2D), and warranting their use as independent regressors in the analysis of neural

activity.

TF responses

To reduce MEG data dimensionality, analysis was performed in source space after localizing

the principal sources involved in cue and target processing (Fig 3A; Table 1). Source recon-

struction showed that (auditory) cues evoked activity in bilateral primary auditory cortex (A1)

and middle temporal gyrus (MTG), whereas (visual) targets evoked activity in the region of

calcarine cortex (V1). Additionally, cues induced more activity in the bilateral temporoparietal

junction (TPJ) than targets. Source-level time-series were extracted from each source and

transformed into TF estimates for the entire experimental session, averaging across hemi-

spheres to avoid a multiple comparisons problem across unilateral regions in analysing the TF

responses and in subsequent modelling. Thus, the main analysis focused on the modulation of

the neural correlates of prediction and PE signalling independent of their possible lateraliza-

tion. Participant-specific model-based sequences of predictions and PEs were used as regres-

sors in a convolution general linear model (GLM) of TF responses [34]. The convolution

model enabled us to detect significant parametric effects of predictions (|m̂2|) and PEs (|ε2|) on

responses in each region. To test for modulatory effects of contextual relevance on prediction

and PE signalling, regressors were entered separately for task-relevant and task-irrelevant con-

texts (thereby modelling an interaction).

As for the behavioural data, neural effects of predictions depended on task relevance. In the

analysis of the simple main effects of predictions and PEs (i.e., ignoring their task relevance),

no effect survived statistical significance testing (TF clusters thresholded at p< 0.05, uncor-

rected across TF points and Bonferroni-corrected across brain regions). However, testing

for the effect of relevance on the TF correlates of predictions and PEs yielded several signifi-

cant clusters of activity in cue- and target-processing regions (Table 2). Specifically, relevant

predictions increased post-cue beta power in MTG and TPJ and decreased post-cue alpha

power in A1 and V1 (Fig 3B), while PEs increased post-target gamma power in TPJ and V1

and decreased beta-band power in V1 (Fig 3C).
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Fig 3. Neural correlates of predictions and PEs. (A) Source reconstruction. Auditory cortex (slices centred

at MNI 50, −22, 18) and MTG (MNI 62, −40, −8) were identified as main sources of cue-evoked activity. TPJ

(MNI 52, −48, 30) differentiated between cue- and target-induced responses. V1 (MNI −2, −100, 2) was the

main source of target-evoked activity. (B) Cue-induced prediction correlates are modulated by task relevance.

Plots show TF maps of (far left) cue-induced activity independent of any modulation by prediction type or

relevance; (mid left) F-contrast across 4 conditions (spatial relevant; spatial irrelevant; temporal relevant;

temporal irrelevant), indicating clusters of activity showing significant differences between the conditions; (mid

right) T-statistic map of the main effect of relevance, indicating significant differences between relevant versus

irrelevant predictions; (far right) parameter estimates per condition for the significant cluster (error bars: SEM).

Dashed line marks cue onset. Outlines show F-contrast clusters significant at pFWE < 0.05. (C) Target-induced

PE correlates are modulated by task relevance. Plots show TF maps of (far left) target-induced activity

independent of any modulation by PE type or relevance; (mid right) T-statistic map of the main effect of

relevance, indicating significant differences between relevant versus irrelevant PEs. Dashed line marks target

onset. Cluster outlines, mid-left and far-right panels as in (B). Data pertaining this figure are available on

Figshare https://figshare.com/s/2d2755bfdeea1cbb415f. A1, primary auditory cortex; MNI, Montreal

Neurological Institute; MTG, middle temporal gyrus; PE, prediction error; TF, time-frequency; TPJ,

temporoparietal junction; V1, calcarine cortex.

https://doi.org/10.1371/journal.pbio.2003143.g003
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Beyond the modulation of prediction and PE signalling by relevance, cue-induced alpha-

band responses in V1 differentiated between the spatial and temporal prediction estimates

(Table 2 and Fig 3B). Furthermore, beta-band prediction signalling in MTG and PE signalling

in V1 were modulated by task relevance and cue-target contingency, such that spatial predic-

tions showed a stronger modulation by relevance than temporal predictions in MTG, whereas

spatial PEs showed a weaker modulation by relevance than temporal PEs in V1 (Table 1 and

Fig 3B and 3C). The latter finding might reflect a lateralization effect, whereby PE signalling

in the temporal task is likely nonlateralized and as a result its modulation might be easier to

detect in source activity averaged across hemispheres. Thus, we performed an additional con-

trol analysis to assess whether PE signalling is indeed more lateralized in the spatial task. To

Table 1. Source reconstruction results.

Contrast Region MNI Tpeak Voxel Extent pFWE (Cluster)

Cue versus baseline R MTG 44, −34, 4 7.68 584 < 0.001

L MTG −50, −48, −2 7.14 936 < 0.001

R AC/PT 50, −22, 18 5.88 221 < 0.001

L AC/PT −50, −28, 16 5.44 389 < 0.001

R MTG 50, −62, 20 6.68 373 < 0.001

Target versus baseline L V1 −2, −100, 2 7.22 572 < 0.001

Cue versus target L SMG/TPJ −52, −38, 26 7.40 579 < 0.001

R SMG/TPJ 52, −48, 30 6.98 165 < 0.001

R AC/PT 48, −22, 18 6.75 28 < 0.001

L MTG −56, −38, 0 5.90 15 0.001

L MTG −50, −66, 20 5.89 53 < 0.001

R AC/PT 56, −16, 14 5.62 12 0.002

R MTG 52, −62, 14 5.57 13 0.001

L SMG/TPJ −42, −34, 44 5.33 19 0.001

Statistical parametric maps of source activity estimates were thresholded and corrected at pFWE < 0.05 (cluster-level; minimum cluster extent: 10 voxels).

AC, auditory cortex; L, left; MTG, middle temporal gyrus; PT: planum temporale; R, right; SMG, supramarginal gyrus; TPJ, temporoparietal junction; V1,

calcarine cortex.

https://doi.org/10.1371/journal.pbio.2003143.t001

Table 2. Effects of trial-by-trial predictions and PEs on TF responses.

Regressor Source TF Cluster pFWEclust Fpeak Zpeak ANOVA Effect F1,16 p t16

Predictions (cue-locked) A1 9 Hz, 430 ms 0.024 9.26 3.84 Rel-Irrel 8.93 0.009 −2.99

MTG 27 Hz, 310–430 ms 0.047 8.05 3.55 Rel-Irrel 7.54 0.014 2.75

Interaction 11.51 0.004 3.39

38 Hz, 370–430 ms 0.039 8.21 3.59 Interaction 11.13 0.004 3.34

TPJ 21–27 Hz, 90–450 ms < 0.001 16.38 5.09 Rel-Irrel 5.27 0.035 2.29

V1 11–12 Hz, 330–430 ms 0.01 8.29 4.12 Rel-Irrel 4.96 0.04 −2.24

Spatial-Temporal 6.4 0.022 2.52

PEs (target-locked) TPJ 48 Hz, 270 ms 0.023 17.65 5.26 Rel-Irrel 10.95 0.004 3.31

V1 34–36 Hz, 130–350 ms < 0.001 12.40 4.47 Rel-Irrel 4.99 0.04 −2.23

Interaction 12.77 0.002 3.57

45 Hz, 90 ms 0.028 7.31 3.36 Interaction 14.84 0.001 3.85

Interaction effects correspond to a contrast of spatial (relevant > irrelevant) > temporal (irrelevant > relevant). A1, primary auditory cortex; MTG, middle

temporal gyrus; PE, prediction error; Rel-Irrel, relevant-irrelevant; TF, time-frequency; TPJ, temporoparietal junction; V1, calcarine cortex.

https://doi.org/10.1371/journal.pbio.2003143.t002
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this end, we re-ran convolution modelling using a signed PE regressor, as opposed to the

unsigned PE regressor used in the main analysis; thus, the signed PE regressors had positive

values for unexpected targets on the left (or at early latencies), and negative values for unex-

pected targets on the right (or at late latencies). We reasoned that by using the signed PE

regressor, in the spatial task source-level activity linked to PE signalling in different hemi-

spheres in V1 should have the opposite sign (due to hemifield-specific PE signalling), whereas

in the temporal task they should have the same sign (because PEs regarding target latency will

be processed in both hemifields to a similar extent). We used a region-of-interest approach,

focusing on the significant clusters identified in the main analysis (Fig 3C), whereby the mean

spectral power was extracted from these clusters per hemisphere (left/right), task (spatial/tem-

poral), context (relevant/irrelevant), and participant, and entered into an ANOVA with 3 fac-

tors (hemisphere, task, and context). As hypothesised, we did observe a significant hemisphere

effect for spatial PEs in V1 (F1,64 = 8.29, p = 0.01), in addition to a main effect of relevance

(F1,64 = 4.74, p = 0.04). In the temporal task, however, the main effect of hemisphere was not

significant (F1,64 = 0.55, p = 0.46), although the effect of relevance was preserved (F1,64 = 4.33,

p = 0.04). The remaining main or interaction effects were not significant.

To control for the possibility that the effects of predictions on neural responses might be

contaminated by a differential processing of specific auditory cues (e.g., either their pitch or

composition being more salient and therefore easier to process), we ran an additional control

analysis testing whether source-level activity showed differential effects of pitch and/or compo-

sition. To this end, we repeated the analysis of cue-induced (i.e., prediction-related) responses

with additional regressors coding for cue pitch (high versus low) and composition (ascending

versus descending). Our rationale was that, in addition to treating pitch and composition as

possible confounding factors on their own, any difference in variance explained by the 2

features respectively would be accounted for by these confound regressors and effectively

removed from prediction-related activity. The inclusion of these regressors did not change

the results in TF space: all the significant clusters identified before showed the same patterns

of condition-specific differences as reported in Fig 3B, using identical significance criteria as

in the original analysis (i.e., correcting for multiple comparisons across regions using Bonfer-

roni correction, and for TF points using family-wise error ratio under random field theory

assumptions).

Effective connectivity

To test the directionality of the effects identified above, we used dynamic causal modelling

(DCM) for TF responses [35]. This phenomenological Bayesian modelling approach allows a

quantification of the effective (directional) connectivity between different regions and fre-

quency bands. Within- and cross-frequency amplitude–amplitude coupling was analysed in 2

time windows: 0–500 ms relative to the cue onset (in which TF activity was found to be modu-

lated by prediction relevance; Fig 3B), and 0–500 ms relative to the target onset (in which TF

activity was modulated by PE relevance; Fig 3C). In the analysis of the cue-processing period,

we modelled connectivity in a network of 4 sources sensitive to prediction relevance: A1,

MTG, TPJ, and V1. Similarly, when analysing target-induced activity, effective connectivity

was modelled in a network of 2 sources: V1 and TPJ.

Fig 4 provides frequency-frequency coupling maps mediating (Fig 4A and 4B) the modula-

tion of prediction and PE signalling by relevance, and (Fig 4C–4H) the significant modulatory

parameter estimates quantifying the effects of relevance on cross-frequency coupling within

and between regions. Regions involved in prediction (Fig 4A) and PE (Fig 4B) signalling

showed the spectral asymmetry between ascending and descending connections, as suggested
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previously [5]. Specifically, in prediction signalling, ascending connections from A1 to TPJ,

from V1 to MTG, and from V1 to TPJ showed strong excitatory effects in higher frequency

ranges, whereas the respective descending connections showed net inhibitory effects in low-

frequency ranges (Fig 4A). Similarly, in PE signalling, the ascending connection from V1 to

Fig 4. DCM. (A) Frequency-by-frequency maps of modulatory effects of contextual relevance on prediction

processing. Effects were modelled in a network of 4 interconnected areas, corresponding to the 4 regions in

which significant effects of relevance on prediction-related responses were identified (cf. Fig 3B). (B) The

corresponding maps of modulatory effects of contextual relevance on PE processing, modelled in a network of

2 areas in which significant effects were identified (cf. Fig 3C). (C) Principal frequency modes estimated for

prediction-related responses across the modelled areas. (D) Significant modulatory parameters

corresponding to the effects of contextual relevance on prediction-related responses. Each bar represents a

significant modulation (by contextual relevance) of the influence of a particular frequency mode in 1 region on

another frequency mode in another region. (E) Modulatory spectra of the relevance-related effects of A1

activity (left panel, corresponding to Mode 1) on prediction-induced activity in all regions (right panel,

corresponding to an average across frequency modes weighted by the respective modulatory parameters).

(F-H) Same as (C-E) but for PE processing (H, left panel: an average of Modes 2 and 3). Data pertaining this

figure are available on Figshare https://figshare.com/s/2d2755bfdeea1cbb415f. A1, primary auditory cortex;

DCM, dynamic causal modelling; MTG, middle temporal gyrus; PE, prediction error; TPJ, temporoparietal

junction; V1, calcarine cortex.

https://doi.org/10.1371/journal.pbio.2003143.g004
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TPJ mediated primarily excitatory effects (in both high and low frequency bands), whereas the

descending connection mediated primarily inhibitory effects [5]. Upon closer inspection of

the significant modulatory parameters of contextual relevance on prediction processing (Fig

4C–4E), task relevance primarily modulated the influence of low-frequency (alpha-beta) activ-

ity in A1 on low-frequency activity throughout the network, having a negative net effect on

alpha-beta power in all regions. Additionally, contextual relevance modulated the influence of

TPJ on MTG activity (frequency mode 1; Fig 4C), reflecting a further inhibition of alpha-beta

activity in MTG. In contrast, PE relevance (Fig 4F–4H) primarily modulated the influence of

V1 activity on the network, leading to a shift from lower to higher frequencies in V1, as well as

to increased propagation of both high- and low-frequency activity to TPJ. Taken together, our

DCM findings expand the previous results on low-frequency prediction signalling and high-

frequency PE signalling by characterising the network-wide effective connectivity mediating

these spectrally distinct effects.

Discussion

The present study used a model-based MEG approach, assuming an ideal-observer model

of behavioural data acquired in a task that orthogonally manipulated stimulus predictability

and relevance. By fitting an HGF model [26] to each participant’s behaviour, we estimated the

trial-by-trial predictions and PEs that best explained their performance. These estimates of

subjective beliefs were then used as regressors in the analysis of the power of MEG responses.

Crucially, we demonstrate an interaction between stimulus predictability and task relevance

at the following 2 levels: task performance (accuracy) and neural activity. These converging

results suggest that prediction and PE signalling are contextualized by current task goals.

Predictability improves accuracy but only in relevant contexts

The effects on accuracy extend previous findings, suggesting that stimulus predictability

improves performance only when predictions pertain to task-relevant targets [24,36,37].

Accordingly, the validity of cues predictive of the target location (latency) improved accuracy

in the spatial (temporal) task (Fig 1C), but not vice versa. The effects of irrelevant predictions

were either abolished (in the spatial task; see [23], in which sensory predictions failed to affect

processing of irrelevant stimuli) or nominally (but not significantly) reversed (in the temporal

task) [38]. Finally, despite prior stimulus titration to 70% accuracy in both tasks, we observed

differences in performance between the tasks, most likely due to an asymmetry between spatial

and temporal discrimination; namely, successful temporal discrimination was necessarily asso-

ciated with successful spatial discrimination, but inferring target location did not depend on

inferring its latency. Nevertheless, the interaction of relevance and predictability was signifi-

cant in both tasks and had similar effect sizes, suggesting robustness with respect to perfor-

mance levels. Taken together, although previous studies suggest that the validity of task-

irrelevant cues can be learned [20–22,39; but see 40] and spatiotemporal cues can work syner-

gistically [3,16,17,18,19], we show that the effects of predictable cues on accuracy are strongly

modulated by task set.

To explain this context sensitivity, we modelled behavioural data using HGF—an ideal

Bayesian observer model of learning under uncertainty—allowing us to reconstruct subjective

beliefs about experimental contingencies [26]. Hierarchical Bayesian models, such as the HGF,

have been proven powerful in explaining behaviour in volatile and probabilistic tasks, by quan-

tifying trial-by-trial inference. In previous work, the HGF has been applied to probabilistic

attentional cueing paradigms [28,29] and used to delineate the functional anatomy [27] and

neuromodulatory mechanisms [31] of encoding uncertainty at different hierarchical levels. In

Relevance modulates neural effects of sensory predictions

PLOS Biology | https://doi.org/10.1371/journal.pbio.2003143 December 4, 2017 11 / 27

https://doi.org/10.1371/journal.pbio.2003143


our task, uncertainty pertained to (1) target location/latency in a given trial, (2) cue validity

level governing several trials, and (3) its volatility over multiple trials. In previous applications

of HGF to cueing tasks (with a single cue-target contingency), the HGF3 (under which partici-

pants’ estimates at all levels influence behaviour) has typically been selected by Bayesian model

comparison [27–30]. In our study, however, a comparison of several alternative observation

models indicated a reduced HGF2 was the winning model, suggesting that performance of our

participants was Bayes-optimal but not sensitive to changes in volatility [33]. Furthermore, the

winning response model allowed only for a task-specific influence of relevant predictions on

performance, consistent with the effects on accuracy—and establishing the construct validity

of our modelling approach. Interestingly, the winning model implemented predictability and

contextual relevance at hierarchically different levels: although predictability (cue validity) cor-

responds to the hidden state μ1 that the model successfully recovers from behaviour (Fig 2C,

upper panels), contextual relevance is implemented at the level of weights zrel and zirrel that

link these predictions to the simulated responses. Finally, the winning model included con-

text-specific learning rates (separate for relevant and irrelevant contexts), optimised to each

individual’s behavioural performance. At the group level, there was a significant difference

between context-relevant and context-irrelevant learning rates. Furthermore, at the between-

subject level, the context-relevant learning parameter quantifying the learning rates of spatial

predictions in the spatial task, and of temporal predictions in the temporal task, correlated

with individual participants’ mean accuracy, providing a further validation of the model.

Our model-based finding suggesting that learning rates depend on contextual relevance

might explain the discrepancy between our results and several previous studies that reported

the effects of predictability even in task-irrelevant contexts [20–22,39]. In these studies,

predictability levels were fixed, unlike in our paradigm, in which cue validity varied over the

course of the experiment with participants continuously updating their cue-based predictions

of target features. In contrast, our results are fully consistent with previous work suggesting

that task relevance facilitates learning of cue-target contingencies [24].

Relevant predictions and PEs induce distinct neural responses

Further evidence for the interaction between predictability and relevance was seen at the level

of neural responses. Here, we used the model-based trial-by-trial estimates of predictions and

PEs as regressors in the analysis of MEG responses. This analysis revealed no main effect of

predictions or PEs on cue- or target-induced responses. However, there was a significant inter-

action between task relevance and prediction (following cue onset) or PE estimates (following

target onset). Thus, the neuronal responses were in line with the behavioural results and Bayes-

ian model comparison described above, and suggested that the neuronal correlates of predic-

tions and PEs are context sensitive and show an effect of task relevance.

Specifically, relevant predictions were associated with postcue beta-band synchronization

and alpha-band desynchronization in auditory regions; most likely involved in the processing

of the acoustic cues used in this paradigm. Here, although alpha-band activity was similar

across tasks, beta-band modulation was seen predominantly in the spatial task (Fig 3B), possi-

bly reflecting baseline performance differences between the 2 tasks. Both beta-band and alpha-

band effects have previously been linked to the processing of predictive auditory stimuli (beta-

band synchronization: [41]; alpha-band desynchronization: [42]), and interactive effects of

expectation and attention have been identified in auditory beta-band activity [10]. Here,

beyond the auditory regions, relevant predictions decreased cue-induced alpha-power in early

visual cortex, consistent with previously reported alpha-band modulation due to anticipatory

predictions in the visual [7,8,43,44] and other domains [11,12,45]. Although these findings
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suggest that prediction signalling in low-frequency bands might be a modality-general phe-

nomenon [5], we show for the first time that this effect is modulated by contextual relevance.

Context-sensitive signatures of prediction signalling were seen following auditory cues but

were not observed at any fixed latency before target onset, consistent with a recent study show-

ing that the latency of beta-band synchronization is not predictive of the anticipated target

latency, but instead locked to the cue onset [45]. Furthermore, prediction signalling was asso-

ciated with activity in auditory (cue-processing) regions as well as in visual (target-processing)

regions, and our DCM-based effective connectivity analysis suggested that the network-wide

effects of contextual relevance on prediction processing are predominantly due to the influ-

ence of A1 activity on the neural responses throughout the network. Although studies on

cross-modal orienting have shown that the effects of cue validity are primarily expressed in tar-

get-processing regions [46], previous work on cross-modal expectations suggests that predic-

tions might be generated in 1 modality, but their effects manifest as PEs in another modality

[47]. Because PEs are thought to be scaled by expected precision [48,49], our results suggest

that predictions might be encoded shortly after the cue onset, but their effects on target pro-

cessing will entail a modulation of target-induced PE activity.

In contrast to the neural correlates of prediction, relevant precision-weighted PEs were

linked to target-induced, gamma-band modulation in posterior regions, which is in line with

previous empirical work [9,14,15,50] and theoretical proposals [5]. Specifically, relevant PEs

along both spatial and temporal dimensions were associated with increased target-induced,

gamma-band responses in the posterior supramodal region TPJ/supramarginal gyrus (SMG),

consistent with previous functional MRI (fMRI) correlates of HGF-based PE signalling [27].

Furthermore, relevant PEs decreased high beta-band power (approximately 34–35 Hz, below

the range of typical visual gamma MEG responses [5]) in early visual regions, predominantly

in the temporal task (Fig 3C) in which PE signalling was not as lateralized as in the spatial task,

and thus its modulation easier to detect in source activity averaged across hemispheres (as

identified in a control analysis; see TF responses in Results). A boost of gamma oscillations at

the expense of lower frequencies [51,52] has often been reported as a correlate of predictability

of targets [9,15,50,53,54]. In the effective connectivity analysis, we have identified that the

observed modulatory effects of contextual relevance are explained by self-reinforcing alpha-

band desynchronisation and gamma-band synchronization in V1. Such spectral shifts of neu-

ral responses towards higher frequencies are plausibly explained as a result of modulation of

the excitability of principal cells and neuronal time constants that underwrite synaptic gain

control [5,55]. The augmented high-frequency responses can then be propagated to higher

regions, as suggested by stronger within-frequency coupling between V1 and TPJ identified in

our DCM analysis.

The link between precision-weighted PEs and high-frequency responses is consistent with

predictive coding, under which stimulus predictability (expected precision) is thought to

increase postsynaptic gain of principal cells in superficial layers, typically associated with

ascending output in high-frequency bands [5,56]. Previous work trying to disentangle the

oscillatory signatures of predictions and PEs yielded evidence converging with our results. In a

passive listening paradigm, in which the acoustic stimuli changed according to specific rules,

sensory prediction violations (putative PEs) were linked to induced gamma activity, while pre-

diction updates were manifest in the beta-band [9]. Similar results have been reported in an

active attentional cueing paradigm, where anticipatory alpha/beta activity scaled with target

predictability, while post-target gamma activity increased following sensory mismatch [50].

More generally, the spectral asymmetries between TF activity underlying prediction and PE

signalling are consistent with previous postulates that predictions are propagated as descend-

ing signals from hierarchically higher to lower regions and mediated by low-frequency (e.g.,
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beta-band) synchronization, while PEs are propagated as ascending signals from lower to

higher regions and mediated by high-frequency (e.g., gamma-band) synchronization [5,13].

Here, because increased gamma-band power in the associative TPJ/SMG region preceded

decreased lower frequency power in visual regions, our findings raise the possibility that the

latter effect reflects a descending prediction update [9] following PE signalling in regions inte-

grating cue and target processing.

Beyond showing spectrally and regionally specific responses corresponding to predictions

and PEs, our results indicate that these responses are strongly modulated by their task rele-

vance. Although this context sensitivity of prediction and PE signalling could be explained by

an active inhibition of irrelevant features [57], recent evidence suggests that distractor suppres-

sion is less flexible than target facilitation [58], making it an unlikely explanation of the effects

found in our relatively dynamic task. Alternatively, enhanced signalling of predictions and PEs

relevant for the current context might reflect attentional prioritization (increased precision; cf.

[48]) of the relevant (i.e., salient, uncertainty reducing) cue features and corresponding target

features. This interpretation is consistent with recent evidence suggesting that relevant predic-

tive cues attract gaze ([59]; but see [60] for evidence that stimulus regularity itself does not

have to be salient), show enhanced working memory maintenance [61] and are judged more

positively by viewers [62]. It is worth noting that, to ensure that the neural signalling of predic-

tions and PEs (and its modulation by task relevance) is not mediated by nonspecific effects of

attentional capture such as pupil size [38,63], we treated pupil size as a nuisance regressor in

the analysis of TF responses. Thus, the observed neural effects were specifically related to the

magnitude of predictions and PEs.

Although the interactive effects of cue validity and task relevance on behavioural and neural

responses likely reflect that our participants deployed cue-based predictions to prioritize the

contextually relevant visual target features, the same cues could have arguably been used to

predict the most likely correct motor response. Although our task was not designed to specifi-

cally dissociate cue-target and cue-response mappings, we think that this is an unlikely sce-

nario. First, because in both tasks feedback was given only at a block level and not at a single-

trial level, it is unlikely that participants would show an effect of cue validity (interactive with

contextual relevance) by learning the cue-response mapping alone. In other words, highly pre-

dictive and nonpredictive segments of the experiment could not be differentiated without the

participants responding to the visual targets. Thus, our behavioural findings are unlikely to be

due to participants dynamically updating their cue-to-response mapping on a trial-by-trial

basis. Furthermore, in analysing the neural responses, possible confounds due to motor prepa-

ration were controlled for by using convolution modelling instead of more conventional TF

analyses of epoched data. Specifically, a parametric regressor coding for which button was

pressed in a given trial was included in each participant’s convolution model design matrix,

effectively removing the effect of lateralised button press preparation up to 250 ms prior to

motor response (i.e., overlapping with the latency of the observed neural correlates of PE

processing).

Although several previous studies have used the terms “prediction” (or “expectation”) and

“attention” interchangeably, here we followed previous conceptual distinctions [64] in treating

expectation as the effect of likelihood of a given stimulus or event on its perceptual and neural

processing, and attention as stimulus prioritisation based on its relevance. Although the com-

mon interchangeable use of the 2 terms in previous literature can to some extend be attributed

to the popularity of classical paradigms (e.g., the Posner paradigm) confounding the 2 factors

(i.e., the probability of a stimulus occurring and the probability of the required behavioural

report), here we made sure to orthogonalise the probability and behavioural relevance of stim-

ulus features (location and latency). However, besides this well-established distinction, there is
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a more subtle distinction to be made about expectations of particular stimulus features (e.g., of

a particular target occurring on the left and late in a given trial) and the level of its predictabil-

ity (manipulated here as cue validity). The latter distinction has been discussed more recently

in the context of predictive coding [49], in which expectations of specific stimulus contents

form first-order predictions, while the degree to which these expectations can be formed form

second-order predictions (or predictions of precision). It is worth noting that this dissociation

is captured by the HGF, in which both first-order predictions (at the lower level) and second-

order predictions (precision ratio at the higher level) can influence behaviour. In the context

of predictive coding, first-order predictions are thought to be mediated by descending (inhibi-

tory) connections, silencing the ensuing PEs; second-order predictions, on the other hand, are

thought to be mediated by modulatory connections increasing or decreasing the precision

(gain) of PEs. As such, however, second-order predictions are akin to attention [16], which

has also been linked to precision modulation under predictive coding [48]. At the level of TF

responses, increased gain is typically associated with a shift from lower to higher frequency

bands [5], as observed in our study. Thus, our findings can be interpreted as reflecting co-

modulation of gain by predictability of specific stimulus features and the attentional prioritisa-

tion of these features.

Summary

We show that task relevance of cue and target features modulates performance accuracy, the

influence of predictions on behavioural responses (as evidenced by Bayesian modelling), and

the neural activity induced by both cues and targets. These findings are in line with the notion

that the brain performs hierarchical perceptual inference by comparing sensory inputs with

the predictions it generates about its own environment at multiple temporal scales. Crucially,

we provide evidence that both the predictions and the ensuing PEs can flexibly adapt to

dynamically changing goals.

Materials and methods

Ethics statement

This study was approved by the local ethics committee (Inter-divisional Research Ethics Com-

mittee, Medical Sciences, University of Oxford, approval ref. no. R48540/RE001) and all inves-

tigation has been conducted according to the principles expressed in the Declaration of

Helsinki. Written informed consent has been obtained for each participant.

Participant sample

Healthy volunteers (N = 20, 12 females, 8 males; median age 22, range 18–49; all right-handed)

were invited to participate in the experiment. All participants had normal hearing, no history

of neurological or psychiatric diseases, and normal or corrected-to-normal vision.

Experimental paradigm

Participants were asked to perform a speeded location (left versus right hemifield) or latency

(approximately 0.75 s or approximately 1.25 s relative to an auditory cue) discrimination

of visual targets. At the block level, an instruction screen specified which task (location or

latency discrimination) should be performed next. Each block consisted of, on average, 48 tri-

als (range 38–58). Participants received feedback about their average accuracy and RT after

each block. Each participant completed 20 alternating blocks (10 per task), resulting in 960

trials in total. The duration of the whole experimental session was approximately 1 hour.
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All visual stimulation was delivered using a projector (60-Hz refresh rate) in the experi-

menter room and transmitted to the MEG suite using a system of mirrors onto a screen

located approximately 90 cm from the participants. Auditory stimulation was delivered by

using MEG-compatible stereo ear tubes.

Each trial started with a display of 2 peripherally located placeholders on either side of a

centrally presented fixation cross against a grey background. The placeholders were circles

(radius 1.5˚ of the visual angle) consisting of random white dot patches (30% of the pixels

within each circle; refreshed with every screen flip at 60-Hz refresh rate). The circles were

located on a horizontal axis, with the centre of each placeholder 4˚ laterally from the fixation

cross. After 500 ms (± 10 ms jitter) of placeholder presentation, an auditory cue was played.

The cue consisted of 2 short (66 ms) gapless tone pips with carrier frequencies drawn from 4

possible values (400, 500, 800, and 1000 Hz). The cue was administered in a 2 x 2 factorial

manner (factors: pitch and composition), and could therefore consist of pips that were either

high (800 and 1000 Hz) or low (400 and 500 Hz) in pitch, forming either an ascending (400–

500 Hz; 800–1000 Hz) or a descending pair (500–400 Hz; 1000–800Hz). After a variable

delay, the cue was followed by a visual target—a white cardinally or diagonally oriented square

(side length equals the radius of the placeholder; 50-ms display duration). The target was also

administered in a 2 x 2 factorial manner (factors: location and latency), and could therefore be

presented either within the left or the right placeholder, and either early (approximately 0.75 s)

or late (approximately 1.25 s) relative to cue onset. The orientation of the target was a task-

irrelevant feature introduced so that participants could not form a unique target template. The

response buttons were counterbalanced across participants. Consecutive trials were separated

by a jittered interval (1500–2500 ms).

Unbeknownst to the participants, cue features (pitch and composition) could predict 1 or

both target features (location and latency) with varying validity (90, 70, 50, 30, or 10%) form-

ing 2 contingency time-series: cue pitch could predict target location, while cue composition

could predict target latency. The 2 contingency time-series were uncorrelated (r< .0001) and

based on a predetermined arbitrary association. For instance, 90% spatial cue validity corre-

sponded to 90% right (left) targets following high (low) pitched cues and 10% left (right)

targets following high (low) pitched cues; in the 10% validity level, these proportions were

reversed. Validity in each contingency time-series changed on average every 32 trials (range

8–54) and the consecutive validity levels varied pseudorandomly with no repetitions. Addi-

tionally, over the course of the experiment, validity could change in a more or less volatile way

(on average every 16, 32, or 48 trials—with volatility updated after each 5 validity changes). To

facilitate subsequent modelling, the validity time-series were precalculated for 2 runs of 480 tri-

als each and fixed for all participants. The order of the 2 runs was counterbalanced across par-

ticipants. In the behavioural and MEG analyses of both spatial and temporal predictability we

a priori collapsed the 2 strongly predictable (90 and 10%) and the weakly predictable (70 and

30%) validity levels (cf. [33]). Thus, the main factors of interest in our experimental design and

analysis were: spatial predictability, temporal predictability (each with 3 levels: strongly pre-

dictable, weakly predictable, and unpredictable), and task relevance (2 levels: spatial versus

temporal task).

Prior to the main experimental session, we ran a short cue training session in which

participants discriminated the pitch or composition of the cue until they reached >95% per-

formance. We then trained them on the main experimental tasks (spatial and temporal dis-

crimination of visual targets presented after the auditory cue, with cue validity changing

dynamically just as in the main experiment; min. 50 trials per task). During this training, we

administered a target stair-casing procedure; in which we adjusted the contrast of the visual

targets to approximately 70% performance (1 up, 2 down procedure with an adaptive step
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size) in the spatial task, and the relative onset of the early versus late targets to approximately

70% performance in the temporal task. As a result, the mean target contrast was 0.28 relative

to the placeholder (SD 0.08, range 0.18–0.53), and the mean asynchrony between early and

late targets was 541.6 ms (SD 184 ms; mean early and late latencies 729.2 ms and 1270.8 ms

postcue respectively; range of early latencies 600–877.6 ms postcue; range of late latencies

1122.4–1400 ms postcue). Prior to analyzing the behavioral and neural effects of stimulus

predictability and task relevance, we excluded data from 1 participant who could not main-

tain central fixation, and 2 further participants whose mean accuracy in either task was

below 55% or above 95%.

Behavioural analysis and modelling

We analysed accuracy in two 3 x 2 repeated-measures ANOVAs, separately for each predict-

ability manipulation (spatial versus temporal), with the main factors predictability (3 paramet-

rically defined levels: strongly predictable, weakly predictable, and unpredictable) and task

relevance (2 levels: relevant and irrelevant). The task-relevant trials corresponded to the spatial

(temporal) task when analysing spatial (temporal) predictability; the remaining trials were

treated as task-irrelevant. Because cue validity changed unbeknownst to the participants, and

thus predictability effects could be offset by the initial trials in each validity level in which the

previously learned contingency could be used, mean accuracy scores were calculated based on

the second half of trials within each run with stable cue validity. Although synergistic effects

between spatial and temporal predictability might have contributed to task performance

[3,16,17], a 3 x 3 x 2 repeated-measures ANOVA was not conducted due to a low number of

trials (<20) in some cells. Furthermore, trials with RTs longer than median +2 SD were dis-

carded from behavioural and neural analyses.

Beyond testing for the behavioural effects of predictability and relevance, we used individ-

ual participants’ behavioural data to infer their beliefs about the targets and validity levels

on a trial-by-trial level. Specifically, we modeled individual time-series of responses using

a HGF (implemented in a Matlab toolbox available as an open source code: http://www.

translationalneuromodeling.org/tapas) that models evidence accumulation or learning at

multiple levels, and reconstructs an agent’s beliefs about the causes of their sensory inputs

[26]. The model uses a variational approximation to an ideal hierarchical Bayesian observer.

By fitting the model to behavioural data, one obtains participant-specific parameters of the

model (determining the coupling of hierarchical levels, and thus individual learning time-

series) and single-trial predictions and precision-weighted PEs at each level of the model

hierarchy.

By design, our task introduced uncertainty at 3 levels: (1) where and when the target will

appear in a particular trial; (2) which cue-validity level governs the given trial; and (3) how

quickly the cue-validity level changes over time. Accordingly, the model estimates the par-

ticipants’ beliefs at 3 different levels, corresponding to (1) the location xs1 and latency xt1 of

the target, (2) the pitch-location contingency xs2 and the composition-latency contingency

xt2, and (3) the volatility of these contingencies xs3 and xt3, respectively. These inferred

beliefs are hidden states of the observation model, evolving as a Gaussian random walk,

with the hidden states at a given level determining the variance of the random walk at the

level below:

pðxs1;t1jxs2;t2Þ ¼ sðxs2;t2Þ
xs1;t1ð1 � sðxs2;t2ÞÞ

1� xs1;t1 ¼ Bernoulliðxs1;t1; sðxs2;t2ÞÞ; ð1Þ

pðxðkÞs2;t2jx
ðk� 1Þ

s2;t2 ; x
ðkÞ
s3;t3Þ ¼ NðxðkÞs2;t2; xðk� 1Þ

s2;t2 ; expðkxðkÞs3;t3 þ oÞÞ; ð2Þ
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pðxðkÞs3;t3jx
ðk� 1Þ

s3;t3 ; WÞ ¼ NðxðkÞs3;t3; xðk� 1Þ

s3;t3 ; WÞ: ð3Þ

At the lowest level (Eq 1), the prediction of the target location xs1 (or latency xt1) in a partic-

ular trial takes possible values {0; 1} arbitrarily defined in contingency space: i.e., left targets

following high-pitch cues and right targets following low-pitch cues are defined as 1, while the

opposite locations are defined as 0; similarly, early targets following ascending cues and late

targets following descending cues are defined as 1, while the opposite latencies are defined as

0. These low-level predictions are described as a logistic sigmoid function of the respective

inferred contingency between the cue and the target xs2 (xt2), such that if the inferred contin-

gency xs2,t2 = 0, both targets (xs1,t1 = 1 and xs1,t1 = 0) are equiprobable. At the middle level (Eq

2), the inferred cue validity level in a given trial xðkÞs2;t2 is normally distributed around the validity

level from the previous trial xðk� 1Þ

s2;t2 , with the variance of this distribution depending on the

inferred volatility xðkÞs3;t3. Here, the free parameter κ describes how strongly the estimated volatil-

ity will influence validity level learning, and ω is a constant component of the learning step

size. Finally, at the highest level (Eq 3), the inferred volatility xs3,t3 is normally distributed

around the inferred volatility from the previous trial, with the variance of this distribution (i.e.,

the speed of learning about the volatility) described by a free parameter ϑ.

During the fitting of the model to the data, one can estimate the trial-by-trial time-series (at

each level i) of the participants’ beliefs m
ðkÞ
i (i.e., posterior means of states xðkÞi ) and the updates

on these beliefs εðkÞi (precision-weighted PEs) after observing a target. The variational approxi-

mation in the HGF provides analytic update equations describing these time-series:

m
ðkþ1Þ

i � m
ðkÞ
i � c

ðkÞ
i d

ðkÞ
i� 1
¼ εðkÞi ; ð4Þ

c
ðkÞ
i ¼

bp
ðkÞ
i� 1

p
ðkÞ
i

; ð5Þ

p
ðkÞ
i ¼

1

s
ðkÞ
i

: ð6Þ

As shown in Eqs 4–6, in each trial, a belief update m
ðkþ1Þ

i � m
ðkÞ
i is proportional to the PE at

the level below d
ðkÞ
i� 1

, weighted by a precision ratio c
ðkÞ
i . This precision ratio depends on the pre-

cision (inverse variance) of the prediction at the level below p̂
ðkÞ
i� 1 and at the current level p

ðkÞ
i .

The superscript ^ denotes “prediction”: m̂
ðkÞ
1 is the prediction on trial k before observing the

trial outcome, and p̂
ðkÞ
i is the precision of this prediction. After applying these update equations

to specific hierarchical levels, we obtain:

m
ðkþ1Þ

3 � m
ðkÞ
3 � c

ðkÞ
3

d
ðkÞ
2
¼ εðkÞ3 ; ð7Þ

d
ðkÞ
2
¼

s
ðkÞ
2 þ ðm

ðkÞ
2 � m

ðk� 1Þ

2 Þ
2

s
ðk� 1Þ

2 þ eκm
ðk� 1Þ

3
þω

� 1; ð8Þ

m
ðkþ1Þ

2 � m
ðkÞ
2 ec

ðkÞ
2

d
ðkÞ
1
¼ εðkÞ2 ; ð9Þ
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d
ðkÞ
1
¼ m

ðkÞ
1 � m̂

ðkÞ
1 ; ð10Þ

m̂
ðkÞ
1 ¼ sðmðk� 1Þ

2 Þ: ð11Þ

At the lower level, the PE about the observed target d
ðkÞ
1

is simply the difference between the

actual and the predicted target (Eq 10), in which the prediction is a sigmoid function of the

previous trial’s prediction about the validity level (Eq 11). This PE, weighted by the corre-

sponding precision ratio, is used to update the predictions about the validity level in the next

trial (Eq 9). At the higher level, the PE about the validity level (Eq 8; cf. [23] for a detailed

explanation) is used to update the prediction of volatility in the next trial (Eq 7). These HGF-

derived time-series (specifically, |m̂
ðkÞ
2 j and jεðkÞ2 j)–fitted to each participant’s behavioural data—

were used as regressors in subsequent analysis of MEG data. Prior variance logðsð0Þ2 Þ was

treated as a free parameter.

Finally, to map the agent’s beliefs onto the observed behavioural data, we specified a

response model for categorical outcomes (a binary softmax function of the agent’s predic-

tions), where the probability of a particular outcome y = {0; 1} is described by the logistic sig-

moid:

pðyjm̂1; zÞ ¼ sð� zð2m̂1 � 1Þð2y � 1ÞÞ: ð12Þ

The free parameter z encodes the decision noise. Here, because we had 2 time-series of pre-

dictions corresponding to the target location and latency (m̂1s and m̂1t), and they could be either

relevant (e.g., m̂1s in trials corresponding to the spatial task) or irrelevant (e.g., m̂1s in trials cor-

responding to the temporal task), we parameterized the response model such that both rele-

vant and irrelevant predictions could explain behaviour with different weights:

pðys;tjm̂1s;t; zÞ ¼ sð� z
rel
s;tð2m̂1s;t � 1Þð2ys;t � 1Þ � z

irrel
s;t ð2m̂1t;s � 1Þð2ys;t � 1ÞÞ: ð13Þ

Thus, in a spatial task, both spatial predictions m̂1s (via z
rel
s ) and temporal predictions m̂1t

(via z
irrel
t ) may have been used to model the observed response. Responses y were coded in con-

tingency space, thus the mapping of y onto its possible values {0; 1} was identical to the map-

ping of xs1,t1 onto {0; 1}.

To select a model that best describes our observed data, we designed 5 alternative observa-

tion models (HGF3s with context-specific or nonspecific learning parameters ω; HGF2s,

where changes in volatility are not inferred as κ = 0, again with context-specific or nonspecific

learning parameters ω; and a standard reinforcement-learning model with a fixed learning

rate) and 2 response models (Eq 13) in a factorial manner. Thus, our HGF observation model

could consist of 3 levels (with a free parameter κ) or 2 levels (with κ = 0). As a result, in the

reduced HGF2, the volatility estimates were decoupled from the lower levels and did not influ-

ence behaviour. Furthermore, the HGF learning parameters ω were either context-specific

(i.e., with free parameters ωrel and ωirrel estimated for relevant and irrelevant contexts respec-

tively, see Eqs 14 and 15 below) or nonspecific (whereby a single free parameter ω was
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estimated for both contexts, as in Eq 8).

d
ðkÞ
2s ¼

s
ðkÞ
2s þ ðm

ðkÞ
2s � m

ðk� 1Þ

2s Þ
2

s
ðk� 1Þ

2s þ eκm
ðk� 1Þ

3s þωrels
� 1 if spatial task

d
ðkÞ
2s ¼

s
ðkÞ
2s þ ðm

ðkÞ
2s � m

ðk� 1Þ

2s Þ
2

s
ðk� 1Þ

2s þ eκm
ðk� 1Þ

3s þωirrels
� 1 if temporal task;

8
>>>><

>>>>:

ð14Þ

d
ðkÞ
2t ¼

s
ðkÞ
2t þ ðm

ðkÞ
2t � m

ðk� 1Þ

2t Þ
2

s
ðk� 1Þ

2t þ eκm
ðk� 1Þ

3t þωrelt

� 1 if temporal task

d
ðkÞ
2t ¼

s
ðkÞ
2t þ ðm

ðkÞ
2t � m

ðk� 1Þ

2t Þ
2

s
ðk� 1Þ

2t þ eκm
ðk� 1Þ

3t þωirrelt

� 1 if spatial task:

8
>>>><

>>>>:

ð15Þ

Similarly, our response model could include both the relevant and irrelevant predictions

(with free parameters zrel and zirrel), or only the relevant predictions (with zirrel = 0). Addition-

ally, as an alternative observation model not based on the HGF, we considered a standard rein-

forcement learning based on the Rescorla-Wagner formulation [65], with 2 free parameters

representing fixed learning rates of location and latency, respectively. Models were compared

using their free-energy approximation to log-model evidence in a random-effects Bayesian

model selection procedure [32]. The prior and posterior means ± SD for all free parameters of

the winning model are shown in Table 3.

MEG acquisition and analysis

MEG data were acquired using a 275-channel whole-head setup with third-order gradiometers

(CTF MEG International Services LP, Coquitlam, British Columbia, Canada) at a sampling

rate of 1200 Hz. Eye movements and pupil size data were recorded using a nonferrous infrared

eye-tracking system (SR Research, Ottawa, Ontario, Canada). All subsequent analyses were

performed in SPM12 (Wellcome Trust Centre for Neuroimaging, University College London),

except where noted.

Continuous data were high-pass filtered at 0.1 Hz and notch-filtered at 50 Hz to remove

slow drifts and line artefacts, and downsampled to 300 Hz. The vertical eye-tracker data were

used to detect blinks. Sensor data were corrected for blink artifacts by subtracting their 2 prin-

cipal modes [66]. To reduce the dimensionality of the data for subsequent analysis, we identi-

fied the main sources involved in processing task stimuli using multiple sparse priors under

group constraints [67]. Here, artefact-corrected data were epoched between −1000 and 1000

Table 3. Optimised parameters of the winning HGF model.

Parameter Description Prior Mean Prior SD Posterior Mean Posterior SD

logðsð0Þ2s Þ Prior variance of spatial predictions 0.10 4 0.10 0.01

logðsð0Þ2t Þ Prior variance of temporal predictions 0.10 4 0.09 0.02

oðrelÞs Learning rate: location, spatial task −5 1 −5.13 0.15

o
ðrelÞ
t

Learning rate: latency, temporal task −5 1 −5.11 0.20

oðirrelÞs Learning rate: location, temporal task −5 1 −5.17 0.23

o
ðirrelÞ
t

Learning rate: latency, spatial task −5 1 −5.22 0.53

logðzðrelÞs Þ
Decision noise: location, spatial task 1.38 1 0.64 0.14

logðzðrelÞt Þ Decision noise: latency, temporal task 1.38 1 0.67 0.18

https://doi.org/10.1371/journal.pbio.2003143.t003
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ms relative to cues and targets, low-pass filtered at 48 Hz and baseline-corrected relative to

the last 100 ms before cue or target onset by subtracting the average of the baseline period.

Epoched data (960 trials per condition) were averaged per channel and condition using robust

averaging [68]. Per participant, we calculated 3D source activity maps corresponding to the

evoked activity in the 0–400 ms (Hanning) window relative to cue and target onset as well as

their respective baselines (−400 to 0 ms). The primary sources involved in cue (target) process-

ing were identified as clusters of significant differences between postcue (post-target) and pre-

cue (pretarget) source activity maps using GLMs with factors participant and epoch (post

versus pre), after thresholding and correcting the statistical parametric maps at a peak-level

pFWE < 0.05. Additionally, to identify sources involved in differential processing of cues and

targets, we calculated 3D source activity maps of total (evoked and induced) activity (0–400 ms

relative to cue and target) present in the data after band-pass filtering the entire epochs

between 1 and 48 Hz, and contrasted the ensuing activity maps related to cue- versus target-

processing in a GLM with factors participant, stimulus (cue versus target), and epoch (post

versus pre), thresholding and correcting the statistical parametric maps at a peak-level pFWE

<0.05. Sources were labeled using the SPM12 atlas provided by Neuromorphometrics, Inc.

Significant clusters were then used to extract individual participants’ source-level time-series

using a linearly constrained minimum variance beamformer [69], as implemented in the

Data Analysis in Source Space (DAiSS) toolbox for SPM12 (https://github.com/SPM/DAiSS).

Source-level time series, extracted from continuous data after high-pass and notch filtering,

but before the remaining preprocessing steps, were transformed into a TF representation (fre-

quency range: 8–48 Hz, frequency step: 2.5 Hz, frequency smoothing: ±2 Hz) using a sliding

Hanning tapered window (length: 400 ms, time step: 20 ms) as implemented in the mtmconvol

function of the FieldTrip toolbox (http://www.fieldtriptoolbox.org/). TF data were log-trans-

formed, averaged per source across hemispheres, and entered into a convolution analysis for

TF responses [34].

Convolution modelling. Rather than epoching the data, we modelled the continuous

TF data (low-pass filtered at 300 Hz) estimated for the entire session using several regressors

(Fig 5). Convolution modelling ([34]; see [70] for an application) is formally equivalent to

testing for the effects of trial-specific explanatory variables at each point in peristimulus time

but allows for overlapping responses to successive trials (in the same way that fMRI time-

series are modeled). The regressors included experimental regressors coding for cue, target,

and response onsets as well as nuisance regressors. Blinks were detected in the vertical eye-

tracker channel by detecting time points for which the temporal derivative of the vertical

eye-tracker exceeded its mean + 3 SDs. Pupil size data were corrected for blinks by interpo-

lating the data points from −15 ms to 385 ms relative to blink onset. Corrected pupil size

time-series, as well as horizontal and vertical eye-tracker time-series and their temporal

derivatives were used as nuisance regressors in the convolution GLMs. Furthermore, based

on continuous head movement measurement inside of the MEG scanner, we calculated 6

movement parameters (3 translations and 3 rotations; cf. [71]), which were used as further

nuisance regressors.

The event regressors coded for cue, target (each containing 960 entries), and response

onsets (960 minus the number of trials with no responses). The cue onset regressor was addi-

tionally modulated by parametric regressors coding for task (spatial versus temporal) and the

HGF-based inferred predictions about cue validity jm̂
ðkÞ
2 j (separately for spatial relevant, spatial

irrelevant, temporal relevant, and temporal irrelevant predictions). Similarly, the target onset

regressor was modulated by parametric regressors coding for task and the HGF-based inferred

precision-weighted PEs about target location (latency) jεðkÞ2st j, separately for the spatial/temporal
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and relevant/irrelevant contexts (as above). Finally, the response onset regressor was modu-

lated by parametric regressors coding for response speed (1/RT), button, and outcome (correct

or incorrect). The HGF-derived based regressors were largely uncorrelated (all r< 0.25; see

Results and Fig 2D).

We modelled total power (encompassing induced and evoked responses) with a time range

of −250 ms to 500 ms relative to events of interests (cue and target onsets), and a frequency

range of 8–48 Hz. Each event regressor (i.e., coding for experimental events and their paramet-

ric modulations) was convolved with a sixth-order Fourier basis set, allowing for an estimation

of TF responses (or their regressor coefficients) with the time-courses of 8–48 Hz power esti-

mates modulated up to 8 Hz (750 ms epoch length at the highest-order Fourier basis function).

The resulting TF maps of regressor coefficients were converted into 2D images and entered

into second-level GLMs.

The group-level effects of predictions jm̂2
ðkÞj and precision-weighted PEs |ε2st

(k)| were

inferred per cortical source by entering the single-participant regressor coefficient maps into

2 GLMs with factors participant, task (spatial, temporal), and context (relevant, irrelevant).

To correct for multiple comparisons across cortical sources and regressors, the second-level

statistical parametric maps were subject to F-tests across conditions at a peak-level threshold

Fig 5. Convolution modelling for TF responses. TF data from the entire experiment (without epoching)

were modelled using a GLM approach, with the design matrix specifying event and nuisance regressors

(columns, left to right: cue onset and its 5 modulation regressors; target onset and its 5 modulation regressors;

response onset and its 3 modulation regressors; 5 EOG and pupil size nuisance regressors; 6 motion

regressors; see main text for details). Because each regressor was modelled as a Fourier time series (inset

below), the resulting Fourier coefficients (here depicted for the third out of k columns and corresponding to

parameter estimates for m basis functions and f frequencies) constitute a deconvolved TF response to each

event type and/or parametric regressor. Data pertaining this figure are available on Figshare https://figshare.

com/s/2d2755bfdeea1cbb415f. GLM, general linear model; EOG, electrooculography; freq, frequency; TF,

time-frequency.

https://doi.org/10.1371/journal.pbio.2003143.g005
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p< 0.05, Bonferroni-corrected across the investigated brain regions. To correct for multiple

comparisons across TF points, we used a cluster-level family-wise error correction at p< 0.05

under random field theory assumptions [72]. In an exploratory analysis of TF responses in a

higher frequency range (52–90 Hz, with all remaining analysis settings identical to the main

reported analysis), no additional significant clusters of relevance, task, and/or interaction

effects were observed.

DCM. To characterize the effective connectivity mediating the observed effects of predic-

tion and PE signaling (and their modulation by contextual relevance) on oscillatory activity,

we used DCM for TF responses ([35]; cf. [73] for an example application)—a phenomenologi-

cal model that quantifies effective (directional) connectivity between different regions and

frequency bands, without making assumptions about the underlying neurophysiological

mechanisms mediating this connectivity (as is the case in e.g., DCM for evoked responses or

stationary cross-spectra; the latter was not used here given the nonstationarity of the observed

effects over time). DCM was used to quantify the within- and cross-frequency amplitude–

amplitude coupling in 2 time windows: 0–500 ms relative to the cue onset, and 0–500 ms rela-

tive to the target onset. In the analysis of the neural responses to the cue (which were modu-

lated by predictions), connectivity was modelled in a network of 4 sources identified in the

analysis of cue-induced prediction signalling and its modulation by relevance: A1, MTG, TPJ,

and V1. Similarly, when analysing target-induced activity (modulated by PEs), connectivity

was modelled in a network of 2 sources: V1 and TPJ.

In each case, the TF maps of the parametric effects of predictions (respectively PEs), as well

as their modulation by relevance and task, were averaged across participants. A “full” DCM

model was designed, containing reciprocal connections between all regions and intrinsic

(self-)connections in each region, all of which could be modulated by relevance and task. All of

these modulatory effects were set to be nonlinear, i.e., allowed for amplitude-amplitude cou-

pling between different frequency bands. The full model was fitted to the observed grand-

average data and optimised using Bayesian model reduction [74], whereby “reduced” models

—in which different subsets of parameters (connections) were fixed to 0 and not allowed to be

modulated by relevance and/or task—were scored for their model evidence. This application

of Bayesian model reduction provides a Bayesian model average across all reduced models, in

which the contribution of each reduced model’s parameters to the average is weighted by this

model’s evidence. Modulatory connectivity parameters describing the effect of contextual rele-

vance on “baseline” prediction (or PE) signalling were considered significant when their poste-

rior probability exceeded 99.9%.

Acknowledgments

Andre Cravo, Andreea Diaconescu, Christoph Mathys, and members of the Theoretical Neu-

robiology group at the Wellcome Trust Centre for Neuroimaging and the Brain and Cognition

group at the Oxford Centre for Human Brain Activity provided useful feedback. Sammi Chek-

roud, Alexander Irvine, and Yoshihito Shigihara helped with data acquisition. The Wellcome

Centre for Integrative Neuroimaging is supported by core funding from the Wellcome Trust

(203139/Z/16/Z)

Author Contributions

Conceptualization: Ryszard Auksztulewicz, Karl J. Friston, Anna C. Nobre.

Data curation: Ryszard Auksztulewicz.

Formal analysis: Ryszard Auksztulewicz, Karl J. Friston, Anna C. Nobre.

Relevance modulates neural effects of sensory predictions

PLOS Biology | https://doi.org/10.1371/journal.pbio.2003143 December 4, 2017 23 / 27

https://doi.org/10.1371/journal.pbio.2003143


Funding acquisition: Anna C. Nobre.

Investigation: Ryszard Auksztulewicz.

Methodology: Ryszard Auksztulewicz, Karl J. Friston, Anna C. Nobre.

Project administration: Ryszard Auksztulewicz.

Supervision: Karl J. Friston, Anna C. Nobre.

Visualization: Ryszard Auksztulewicz.

Writing – original draft: Ryszard Auksztulewicz, Karl J. Friston, Anna C. Nobre.

Writing – review & editing: Ryszard Auksztulewicz, Karl J. Friston, Anna C. Nobre.

References

1. Summerfield C, de Lange FP. Expectation in perceptual decision making: neural and computational

mechanisms. Nat Rev Neurosci. 2014; 15(11): 745–756. https://doi.org/10.1038/nrn3838 PMID:

25315388

2. Friston K. The free-energy principle: a unified brain theory? Nat Rev Neurosci. 2010; 11(2): 127–138.

https://doi.org/10.1038/nrn2787 PMID: 20068583

3. Rohenkohl G, Gould IC, Pessoa J, Nobre AC. Combining spatial and temporal expectations to improve

visual perception. J Vis. 2014; 14(4): 8. https://doi.org/10.1167/14.4.8 PMID: 24722562

4. Friston K. A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci. 2005; 360(1456): 815–

836. https://doi.org/10.1098/rstb.2005.1622 PMID: 15937014

5. Bastos AM, et al. Canonical microcircuits for predictive coding. Neuron. 2012; 76(4): 695–711. https://

doi.org/10.1016/j.neuron.2012.10.038 PMID: 23177956

6. Michalareas G, et al. Alpha-beta and gamma rhythms subserve feedback and feedforward influences

among human visual cortical areas. Neuron. 2016; 89(2): 384–397. https://doi.org/10.1016/j.neuron.

2015.12.018 PMID: 26777277

7. Gould IC, Rushworth MF, Nobre AC. Indexing the graded allocation of visuospatial attention using antic-

ipatory alpha oscillations. J Neurophysiol. 2011; 105:1318–1326. https://doi.org/10.1152/jn.00653.

2010 PMID: 21228304

8. Rohenkohl G, Cravo AM, Wyart V, Nobre AC. Temporal expectation improves the quality of sensory

information. J Neurosci. 2012; 32(24): 8424–8. https://doi.org/10.1523/JNEUROSCI.0804-12.2012

PMID: 22699922

9. Sedley W, et al. Neural signatures of perceptual inference. Elife. 2016; 5: e11476. https://doi.org/10.

7554/eLife.11476 PMID: 26949254

10. Todorovic A, Schoffelen JM, van Ede F, Maris E, de Lange FP. Temporal expectation and attention

jointly modulate auditory oscillatory activity in the beta band. PLoS ONE. 2015; 10(3): e0120288.

https://doi.org/10.1371/journal.pone.0120288 PMID: 25799572

11. van Ede F, de Lange F, Jensen O, Maris E. Orienting attention to an upcoming tactile event involves a

spatially and temporally specific modulation of sensorimotor alpha- and beta-band oscillations. J Neu-

rosci. 2011; 31(6): 2016–24. https://doi.org/10.1523/JNEUROSCI.5630-10.2011 PMID: 21307240

12. Schoffelen JM, Oostenveld R, Fries P. Neuronal coherence as a mechanism of effective corticospinal

interaction. Science. 2005; 308(5718): 111–3. https://doi.org/10.1126/science.1107027 PMID:

15802603

13. Arnal LH, Giraud AL. Cortical oscillations and sensory predictions. Trends Cogn Sci. 2012; 16(7): 390–

8. https://doi.org/10.1016/j.tics.2012.05.003 PMID: 22682813

14. Brunet NM, et al. Stimulus repetition modulates gamma-band synchronization in primate visual cortex.

Proc Natl Acad Sci. 2014; 111(9): 3626–3631. https://doi.org/10.1073/pnas.1309714111 PMID:

24554080

15. Todorovic A, van Ede F, Maris E, de Lange FP. Prior expectation mediates neural adaptation to

repeated sounds in the auditory cortex: an MEG study. J Neurosci. 2011; 31(25): 9118–912. https://doi.

org/10.1523/JNEUROSCI.1425-11.2011 PMID: 21697363

16. Doherty JR, Rao A, Mesulam MM, Nobre AC. Synergistic effect of combined temporal and spatial

expectations on visual attention. J Neurosci. 2005; 25(36): 8259–8266. https://doi.org/10.1523/

JNEUROSCI.1821-05.2005 PMID: 16148233

Relevance modulates neural effects of sensory predictions

PLOS Biology | https://doi.org/10.1371/journal.pbio.2003143 December 4, 2017 24 / 27

https://doi.org/10.1038/nrn3838
http://www.ncbi.nlm.nih.gov/pubmed/25315388
https://doi.org/10.1038/nrn2787
http://www.ncbi.nlm.nih.gov/pubmed/20068583
https://doi.org/10.1167/14.4.8
http://www.ncbi.nlm.nih.gov/pubmed/24722562
https://doi.org/10.1098/rstb.2005.1622
http://www.ncbi.nlm.nih.gov/pubmed/15937014
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/j.neuron.2012.10.038
http://www.ncbi.nlm.nih.gov/pubmed/23177956
https://doi.org/10.1016/j.neuron.2015.12.018
https://doi.org/10.1016/j.neuron.2015.12.018
http://www.ncbi.nlm.nih.gov/pubmed/26777277
https://doi.org/10.1152/jn.00653.2010
https://doi.org/10.1152/jn.00653.2010
http://www.ncbi.nlm.nih.gov/pubmed/21228304
https://doi.org/10.1523/JNEUROSCI.0804-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22699922
https://doi.org/10.7554/eLife.11476
https://doi.org/10.7554/eLife.11476
http://www.ncbi.nlm.nih.gov/pubmed/26949254
https://doi.org/10.1371/journal.pone.0120288
http://www.ncbi.nlm.nih.gov/pubmed/25799572
https://doi.org/10.1523/JNEUROSCI.5630-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21307240
https://doi.org/10.1126/science.1107027
http://www.ncbi.nlm.nih.gov/pubmed/15802603
https://doi.org/10.1016/j.tics.2012.05.003
http://www.ncbi.nlm.nih.gov/pubmed/22682813
https://doi.org/10.1073/pnas.1309714111
http://www.ncbi.nlm.nih.gov/pubmed/24554080
https://doi.org/10.1523/JNEUROSCI.1425-11.2011
https://doi.org/10.1523/JNEUROSCI.1425-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21697363
https://doi.org/10.1523/JNEUROSCI.1821-05.2005
https://doi.org/10.1523/JNEUROSCI.1821-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16148233
https://doi.org/10.1371/journal.pbio.2003143


17. O’Reilly JX, McCarthy KJ, Capizzi M, Nobre AC. Acquisition of the temporal and ordinal structure of

movement sequences in incidental learning. J Neurophys. 2008; 99(5): 2731–2735.

18. MacKay A, Juola F. Are spatial and temporal attention independent? Percept Psychophys. 2007; 69

(6): 972–979. PMID: 18018979
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