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Abstract

We hypothesized that during binary economic choice, decision makers use the first option

they attend as a default to which they compare the second. To test this idea, we recorded

activity of neurons in the dorsal anterior cingulate cortex (dACC) of macaques choosing

between gambles presented asynchronously. We find that ensemble encoding of the value

of the first offer includes both choice-dependent and choice-independent aspects, as if

reflecting a partial decision. That is, its responses are neither entirely pre- nor post-deci-

sional. In contrast, coding of the value of the second offer is entirely decision dependent

(i.e., post-decisional). This result holds even when offer-value encodings are compared

within the same time period. Additionally, we see no evidence for 2 pools of neurons linked

to the 2 offers; instead, all comparison appears to occur within a single functionally homoge-

nous pool of task-selective neurons. These observations suggest that economic choices

reflect a context-dependent evaluation of attended options. Moreover, they raise the possi-

bility that value representations reflect, to some extent, a tentative commitment to a choice.

Author summary

How we make decisions based on value and how these computations are implemented in

neuronal circuits remain topics of active debate. It also remains unclear how attention

shapes how we perceive and process value. The dorsal anterior cingulate cortex has been

implicated in both value-based decision-making and attention, although its role in these

processes remains controversial. We investigated the neuronal mechanisms underlying

value-based choice in the macaque dorsal anterior cingulate cortex using a task in which

subjects chose between 2 sequential options. We find that value encoding in this region

reflects partial commitment to a decision, suggesting this region is actively involved in the

decision-making process. We also see differences in value encoding between the first- and

second-viewed options, suggesting that the brain fundamentally encodes initially-viewed

options differently than subsequent ones. Finally, the sequential nature of our task allowed

us to falsify the hypothesis that 2 pools of neurons are linked to the 2 offers. These results

point towards a comparative mechanism shaped by attention and could potentially

inform future models of the neuronal circuits underlying this process.
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Introduction

When choosing between 2 options, we generally consider them in turn rather than processing

them in parallel [1–6]. Sequential evaluation and comparison is necessarily favored when

options are presented asynchronously but is likely to occur even when options are presented

simultaneously, as we attend each one in turn. For example, when we are free to look where we

like, we generally fixate on each option and preferentially evaluate the one within the fovea

[1,3,7–9]. Evidence for the idea of sequential processing in choice comes from eye-movement

data as well as from known limits on attention, which is normally constrained to a single focal

spotlight [10–12].

Sequential choice introduces an asymmetry between the first and second option: the first

option can serve as a default, which then determines the brain’s response to the second [4,13–

16]. Such a context-dependent choice mechanism has been well established for memory-

guided perceptual decisions [17–22]. In such decisions, the memorandum modifies the

response properties of neurons so that the appearance of the probe will lead to different

responses depending on their match status [23,24]. Thus, the working memory is stored in a

functional, not representational, manner. We hypothesized that a similar mechanism may

apply to reward-based choices.

One diagnostic feature of such a mechanism is that choice is made within a single pool of

neurons. That is, the same group of cells processes both the memorandum and the probe and

then also implements the comparison. In other words, the comparison involves a pool of neu-

rons all serving the same computation. In contrast, many models of economic choice are

2-pool models [25–29]. In such models, members of each pool preferentially encode the value

of a single option and compete for control of behavior. Because values are bound to corre-

sponding options through a stable assignment of neuronal pools, we refer to these models as

“labeled-line” models. At least some recent evidence suggests that such 2-pool models may not

correspond to the way the brain encodes value [7,9,30].

Studies of memory-guided decisions generally use options that are uncorrelated, and thus

the value of the first offer provides no information about the likely choice [17,19,21], as in

some neuroeconomic studies [31]. However, in many binary choices, the first offer provides

some evidence in favor or against its ultimate acceptance. Indeed, in some models of choice,

decision processes for the 2 options are somewhat independent, so responses to the first offer

may partially determine the ultimate decision [32]. As a consequence, if the first option is par-

ticularly good or bad, it may not matter as much what the second one is—the decision maker

may take advantage of this fact and begin to compute a tentative, or partial, decision even

before the second offer occurs. A signature of this process would be that the brain responds

differently to the first offer, depending on whether it would later be chosen.

We recorded responses of single dorsal anterior cingulate cortex (dACC) neurons in a

binary risky choice task, in which we controlled the locus of attention by presenting offers

asynchronously. This region has been closely implicated in economic choice and proposed to

be a key site for comparison in previous studies [33–39]. We found that population responses

to the first offer were partially invariant to whether it would later be chosen, yet were also par-

tially dependent on the upcoming decision. In contrast, responses to the second offer were

wholly dependent on whether it would later be chosen. We also found that the largely overlap-

ping populations of neurons encode each of the 2 presented offers—the opposite of what we

would expect from a labeled-line architecture. This result echoes findings in other brain

regions associated with value processing, including the ventromedial prefrontal cortex

(vmPFC) and the ventral striatum (VS) [40,41].

Correlates of decisional dynamics in dACC
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Results

Monkeys prefer options with higher expected values

On each trial, subjects chose between 2 options presented asynchronously. Although subjects

had to choose 1 of the options in order to proceed to the next trial, we will refer to each option

being “accepted” or “rejected” for ease of explanation.

Each option was a gamble defined by 3 parameters: win amount w, loss amount l, and win

probability p (Fig 1A). These parameters were selected randomly and independently by the

computer on each trial (see Materials and methods). The mathematical expected value of each

offer is defined as follows:

EV ¼ p�winþ ð1 � pÞ�loss

Subjects performed this task better than chance, meaning they reliably preferred the option

with greater expected value (subject B, 78.3%; subject J, 74.6%; p< 0.0001 on all individual ses-

sions in both subjects, Fig 1B). Our subjects showed extremely weak spatial biases, which only

reached significance for 1 subject, despite the large number of trials (subject B: 12,593 trials;

subject J: 20,967 trials). Subject B chose the left option on 49.7% of trials (2-sided binomial

test, p = 0.56), and subject J chose the left option on 51.0% of trials (2-sided binomial test,

Fig 1. Task structure, region of interest, and summary of behavior. (A) Task: subjects chose between 2 asynchronously presented gambles

and won or lost tokens accordingly. When subjects collected 6 or more tokens, they received a large liquid reward and token total reset to 0. (B)

Behavior for each subject, fit to a sigmoid function. Subjects chose the left option more often as its value increased, as would be expected, given

understanding of the task. (C) Neural responses were recorded from the dorsal banks of the anterior cingulate cortex (refer to Materials and

methods). dACC, dorsal anterior cingulate cortex; EV, expected value of gamble.

https://doi.org/10.1371/journal.pbio.2003091.g001
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p = 0.0028). These biases did not appear to be influenced by trial difficulty (see S1 Text). We

factor in the influence of spatial positions of the offers into future analyses by including this

variable in our multiple linear regression models (see below).

To confirm that preferences depended on the values of both offers, we used a logistic

regression model in which choice of the first option (versus the second) was predicted by

the 2 offer values in each trial (see Materials and methods). For both subjects, aggregate

regression coefficients were significantly different from 0 both for the first offer (1-sam-

ple t test of coefficients for offer 1 value per session: subject B, mean coefficient = 1.63,

t stat = 16.7; subject J, mean coefficient = 1.12, t stat = 27.3; both p < 0.0001) and the sec-

ond offer (subject B, mean coefficient = −1.48, t stat = −19.7; subject J, mean coefficient =

−1.11, t stat = −24.0; both p < 0.0001). The positive and negative values for offers 1 and 2,

respectively, indicate that these offers had opposite effects on the subject’s preference for

the first option, as expected. These results indicate that subjects’ decisions were informed

by the values of both gambles, and roughly equally so.

Subjects also made choices based on the individual parameters characterizing each gamble.

Using a logistic regression model, we find that the values of the 2 possible outcomes within

each gamble, as well as the probabilities of those outcomes (thus, 6 total variables), all contrib-

ute significantly towards predicting the subject’s choice (1-sample t test for coefficients of all 6

offer parameters: all p< 0.0001. See S1 Table for detailed results).

In this study, we used expected values instead of subjective values as predictors in all analy-

ses. However, we replicated all analyses with subjective values and found that all results are

qualitatively similar (see S2 Table, S3 Table, S4 Table and S5 Table).

dACC neurons encode values of both attended and remembered offers

We recorded responses of 129 neurons in dACC (Fig 1C, also see Materials and methods) in 2

subjects. Subjects were well trained on the task (>1 month experience and consistent behav-

ior) before recording began. In all cases, neurons were well isolated, recorded stably, and col-

lected on single-contact electrodes.

We first quantified the encoding of each offer’s value while it was being displayed on the

screen. We focused on 2 fixed epochs for this analysis, epoch 1 and epoch 2. These epochs

were each 500 ms long, began 100 ms after offer 1 or 2 appeared, and ended when the offer

was removed from the screen (Fig 1A). To avoid p-hacking or data fishing, we chose this

epoch long before collecting data; specifically, it is the same one we used in previous studies

using a somewhat similar task in different brain areas [40–42].

We used a multiple linear regression model in which firing rate is predicted by offer values,

as well as 3 other variables: (1) the number of tokens currently collected, (2) the side the first

offer appears on, and (3) the chosen offer side. We included these 3 additional parameters to

control for any variability in firing rates they account for but do not further discuss them in

this study. Fig 2A and 2B show 2 example cells, the firing rates of which were affected by offer

values in the first and second epochs.

In our sample of cells, 27.1% (35/129) of neurons encoded the expected value of the first

offer during the first epoch (that is, while it appeared on the screen: 2-sided binomial test,

p< 0.0001). During the second epoch, a similar but slightly lower proportion, 23.3% (30/129),

of neurons encoded the same offer 1 value (p< 0.0001). This finding suggests that the offer 1

value was retained, presumably in working memory, even when it was no longer on the screen.

During the second epoch, 16.3% (21/129) of neurons encoded the value of the second offer

(p< 0.0001). We see no significant bias towards positive/negative encoding of any of these val-

ues, neither in the population of significantly tuned cells (p> 0.8 in all cases) nor in the overall

Correlates of decisional dynamics in dACC
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population (p> 0.4 in all cases). Note that these positive/negative bias statistics are not cor-

rected for multiple comparisons; had we done so, effects would be even further from signifi-

cance. All analyses yielded the same qualitative results when subjective values for offers were

used instead of expected values (see S2 Table and S3 Table).

Fig 2. Values of the 2 offers modulate firing rates of individual dACC neurons. (A) Firing rate of 1 example neuron significantly

modulated by the expected value of the first offer both when it was being presented (multiple linear regression: β = 0.041, p = 0.011) and

when it was remembered (β = 0.051, p = 0.0097). (B) Example dACC neuron activity, significantly modulated by the value of the second

offer while it was being presented (β = 0.046, p = 0.0061). (C) Percentage of neurons significantly tuned to the value of the first (red) and

second (blue) offers through the course of the trial, using a multiple linear regression with a sliding 500-ms window. Data used to generate

these plots can be found at https://doi.org/10.5061/dryad.h52f8. dACC, dorsal anterior cingulate cortex; EV, expected value of gamble.

https://doi.org/10.1371/journal.pbio.2003091.g002
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We also examined responses to the individual offer components; namely, the higher and

lower outcomes and the probability of the higher outcome (the probability of the lower out-

come is deterministically 100% minus the probability of the higher outcome). We looked at

responses to offer 1 during the first epoch, when nothing else has been presented during this

trial. The proportion of neurons selective for the probability of the offer 1 higher outcome was

26/129 (20.2%, p = 1.1756 × 10−9); the proportion selective for the value of the large payoff for

offer 1 was 21/129 (16.3%, p = 1.8453 × 10−6), and the proportion selective for the value of the

lower outcome was 12/129 (9.30%, p = 0.0300).

Finally, we looked at the variance explained by each of the offers’ values as a fraction of the

variance explained by task variables as a whole. Offer 1 value explains, on average, 17.2% of

total variance explained by task-relevant variables across the entire population in epoch 1 and

14.8% in epoch 2. Offer 2 explains an average of 13.9% of total variance explained across the

population in epoch 2.

Offer value encoding is decision dependent throughout the trial

Encoding of first offer while attended includes both choice-dependent and choice-inde-

pendent elements. Here, we use the term “format” as shorthand to refer to a population’s

ensemble tuning function for a particular variable [43]. By our definition, it consists of a vector

of linear regression coefficients, 1 coefficient for each neuron, indicating the linear component

of that neuron’s modulation in response to the variable in question (see Materials and methods

for further details). This measure resembles other aggregate tuning measures used in previous

studies [44–48]. Our approach here improves on one we used previously by (1) using multiple

linear regression, which controls for other variables that may affect firing rates, and (2) taking

into account noise in our estimate of each neuron’s modulation by different task variables.

Specifically, we use a Bayesian regression model to obtain a distribution of potential regres-

sion coefficients for every neuron, rather than a single value. This procedure produces a matrix

of coefficients with multiple estimates for each neuron in the population. This in turn allows

us to estimate the underlying distribution of the correlation between the encoding of different

variables, while taking into account noise at the individual neuron level, in order to visualize

the spread of the distribution of this statistic. We compared this distribution to one generated

at random by shuffling trials randomly, regardless of which option was ultimately chosen (i.e.,

a permutation test). If ensemble responses truly carry no information about the upcoming

decision (and differ across trials only due to noise), this distribution generated from randomly

shuffled trials should overlap significantly with that generated by splitting trials according to

which offer was accepted. In contrast, if the upcoming decision does affect value encoding,

coding formats for to-be-accepted and to-be-rejected offers should be less correlated than

expected only due to noise; the true correlation coefficient should be significantly smaller than

that generated through a random shuffling of trials.

We compared coding formats for the values of accepted and rejected first offers during the

presentation of the first offer (epoch 1). These formats are positively correlated (mean Pearson

correlation: r = 0.42, 99% credible interval: [0.36, 0.48]; Fig 3A, left and middle panels). The

positive value indicates that the way in which these neurons signal value is, to some degree,

independent of whether the option will later be chosen.

Nonetheless, this correlation, while positive, is not as strong as would be expected if there

were no difference between accept and reject trials except for that due to noise. We can esti-

mate this ceiling measure (which would ideally be r = 1 but in our data is r = 0.57 due to trial-

by-trial noise; Fig 3A, right panel, black distribution) by shuffling the labels on the trials at ran-

dom. The correlation we observe in our data is significantly smaller than this ceiling value

Correlates of decisional dynamics in dACC
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(permutation test: p< 0.001; Fig 3A, right panel). These results indicate a simultaneous depen-

dence on and independence of the upcoming decision, consistent with the idea that the ensem-

ble of neurons reflects a partially completed decision.

Note that the difference in coding schemes for accepted and rejected offers is unrelated to

the fact that accepted offers have higher values and rejected ones have lower values. Our analy-

ses compare indices of modulation (the regression coefficients) rather than raw firing rates. If a

neuron’s firing rate carries no information about the upcoming decision, this regression coeffi-

cient should be the same, independent of offer value, and estimating it from different trials

should yield highly correlated values (as shown by the same analysis on shuffled trials; Fig 3A,

Fig 3. Coding format for offer 1 in the first epoch is similar, regardless of whether it will be accepted or rejected, yet also weakly depends on the

upcoming decision. Results also hold when the outlier cell is removed. (A) Format analysis: (left) scatterplot of offer 1/epoch 1 regression coefficients for

trials in which offer 1 is accepted (horizontal axis) versus rejected (vertical axis). Shaded error region indicates 99% credible interval, and dashed red lines

indicate the 95% credible interval. The black dashed line indicates the level of correlation we would expect to see under a chance model (see main text and

Materials and methods). (Middle) distribution of mean correlation coefficient of data. The mean of this distribution is represented as a red dashed line in the

right panel. (Right) distribution of mean correlation coefficients expected under a chance model (black distribution) compared to the mean correlation

observed in the data (red dashed line; permutation test with 1,000 permutations: p < 0.001). (B) Population analysis: (left) scatterplot of offer 1/epoch 1

absolute regression coefficients for trials in which offer 1 is accepted (horizontal axis) versus rejected (vertical axis). Shaded error region indicates 99%

credible interval, and dashed red lines indicate the 95% credible interval. The black dashed line indicates the level of correlation we would expect to see

under a chance model (see main text and Materials and methods). (Middle) distribution of mean correlation coefficient of data. The mean of this distribution

is represented as a red dashed line in the right panel. (Right) distribution of the mean correlation coefficients expected under a chance model (black

distribution) compared to the mean correlation observed in the data (red dashed line; permutation test with 1,000 permutations: p < 0.001). Data used to

generate these plots can be found at https://doi.org/10.5061/dryad.h52f8.

https://doi.org/10.1371/journal.pbio.2003091.g003
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right panel, black distribution). Therefore, our results are not due to the correlation between

offer value and likelihood of accepting an offer.

We next sought to determine whether the value of the first offer, when it was later accepted

versus rejected, was encoded in overlapping or discrete subpopulations of neurons in our sam-

ple. We did this using the same general approach detailed above (for more detail, see Materials

and methods), except using the absolute (rather than signed) regression coefficients [43]. This

allowed us to compare the strength of modulation for each neuron across conditions while

ignoring direction. Using this analysis, we found that the populations of cells that encode a to-

be-chosen offer 1 and a to-be-rejected offer 1 overlap more than expected by chance (Pearson

correlation of absolute regression coefficients: r = 0.36, 99% credible interval: [0.27, 0.44]). Spe-

cifically, these subpopulations overlap more than expected for random neuronal assignment

(i.e., r is approximately 0) or for distinct populations (i.e., r< 0) [43]. Nonetheless, the popula-

tions were also demonstrably not perfectly overlapping. Specifically, this correlation is signifi-

cantly weaker than we would expect with perfect overlap (i.e., ceiling measure r = 0.53;

permutation test: p< 0.001). Thus, the neurons most strongly involved in encoding offer 1

value change a bit depending on whether it will later be chosen.

Encoding of first offer in the second epoch is more dependent on the upcoming deci-

sion. We next performed the above analyses on offer 1 responses in epoch 2, when offer 2 was

being presented, and offer 1 was stored in working memory (epoch 2). By this point in the trial,

the subject possessed all the information necessary to make a choice. We therefore expected the

encoding of the value of the first offer to be more dependent on the upcoming decision. Indeed,

coding formats were still positively correlated (Pearson correlation: r = 0.14, 99% credible inter-

val: [0.056, 0.22]; Fig 4A, left and middle panels) and still less correlated than would be expected

for a signal that is entirely independent of the decision (i.e., ceiling measure r = 0.47; permuta-

tion test: p< 0.001; Fig 4A, right panel). This measure of similarity between formats was also

significantly smaller than in the first epoch, indicating greater dependence on the upcoming

decision (Kolmogorov-Smirnov [KS] test on distributions of correlation coefficients from

epochs 1 and 2: KS stat = 1.0, p< 0.0001; Fig 5). In other words, coding formats measurably

diverged when moving from the first to the second epoch, as if the partial decision were further

along the process of completion during the second epoch.

Unlike in the first epoch, the future choice markedly changed the populations encoding the

value of the first offer in epoch 2. Indeed, those populations became statistically indistinguish-

able from orthogonal (Pearson correlation of absolute regression coefficients: r = 0.059, 99%

credible interval: [−0.051, 0.17]). This lack of a significant correlation is likely not solely due to a

lack of signal in our data, because it is significantly weaker than the correlation we can detect

under a chance model (in which trials are shuffled across conditions: ceiling measure r = 0.38;

permutation test: p< 0.001). However, this is not to say these populations are separate, in

which case, we would observe a significant negative correlation (i.e., neurons encoding accepted

offer values are less likely to encode rejected offer values). This result is consistent with the idea

that moving from the first to the second offer makes ensemble coding more distinct, again,

likely because the decision is further along and thus more developed.

Ensemble coding of second offer depends wholly on choice. We then performed the

same analyses on the encoding of the value of the second offer while it was presented (epoch

2). We found that dACC neurons use orthogonal formats on trials when it is accepted and

when it is rejected (Pearson correlation: r = −0.067, 99% credible interval: [−0.15, 0.011]; Fig

6A, left and middle panels). This anticorrelation is not significantly different from zero and is

significantly less than the value that would be expected if dACC were blind to choice (i.e., ceil-

ing measure r = 0.33; permutation test: p< 0.001; Fig 6A, right panel). This measure provides

some assurance that the lack of correlation is not simply due to the fact that our data are too
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noisy to detect existing correlations. Not surprisingly, the near-zero correlation we do observe

is significantly weaker than the analogous correlations observed for offer 1 in both the first and

second epochs (KS test: offer 1, epoch 1: KS stat = 1.0, p< 0.0001; offer 1, epoch 2: KS

stat = 0.9992, p< 0.0001; Fig 5).

We next examined whether the offer 2 value is encoded in the same or different populations

according to whether it is later chosen or not. While the populations of neurons encoding the

offer 2 value are somewhat overlapping (Pearson correlation of absolute regression coeffi-

cients: r = 0.16, 99% credible interval: [0.049, 0.27]), this correlation is significantly smaller

than we would expect if the populations were strictly identical (ceiling measure r = 0.28;

Fig 4. Coding of offer 1 in the comparison epoch remains correlated across accept/reject conditions but with more dependence on the

upcoming decision (for statistical comparison between format correlations, see Fig 5). (A) Format analysis: (left) scatterplot of offer 1, epoch 2

regression coefficients for trials in which offer 1 is accepted (horizontal axis) versus rejected (vertical axis). Shaded error region indicates 99% credible

interval, and dashed red lines indicate the 95% credible interval. The black dashed line indicates the level of correlation we would expect to see under a

chance model (see main text and Materials and methods). (Middle) distribution of mean correlation coefficient of data. The mean of this distribution is

represented as a red dashed line in the right panel. (Right) distribution of mean correlation coefficients expected under a chance model (black distribution)

compared to the mean correlation observed in the data (red dashed line; permutation test with 1,000 permutations: p < 0.001). (B) Population analysis: (left)

scatterplot of offer 1, epoch 2 absolute regression coefficients for trials in which offer 1 is accepted (horizontal axis) versus rejected (vertical axis). Shaded

error region indicates 99% credible interval, and dashed red lines indicate the 95% credible interval. The black dashed line indicates the level of correlation

we would expect to see under a chance model (see main text and Materials and methods). (Middle) distribution of mean correlation coefficient of data. The

mean of this distribution is represented as a red dashed line in the right panel. (Right) distribution of mean correlation coefficients expected under a chance

model (black distribution) compared to the mean correlation observed in the data (red dashed line; permutation test with 1,000 permutations: p < 0.001).

Data used to generate these plots can be found at https://doi.org/10.5061/dryad.h52f8.

https://doi.org/10.1371/journal.pbio.2003091.g004
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permutation test: p = 0.026). This result indicates that the subset of neurons encoding the

value of offer 2 on accept and reject trials overlaps more than would be expected by chance.

Value comparison and attention shape responses of dACC neurons

In the following section, we test 3 hypotheses predicted by a 2-pool neural architecture under-

lying value comparison in the context of a sequential choice task (based on Wang’s 2002

2-pool model, with recurrent excitation and mutual inhibition between pools [49]). First, we

test for putative correlates of mutual inhibition between offer values during comparison. This

feature has been observed in other regions associated with value processing (including the

vmPFC [40,50] and the VS [41]) but is not sufficient to confirm an underlying 2-pool architec-

ture. The remaining 2 hypotheses can only be tested in the context of a sequential task (or at

least one where options are attended sequentially and the experimenter can determine which

option is attended at each point in time). Second, we test whether the first offer’s value is

retained in the same population of neurons and encoded in the same format, as would be pre-

dicted by 2-pool models. Third, we test for mutual inhibition through time. This hypothesis

predicts that the first offer (when attended) and the second offer (when attended) will be

encoded in opposing formats. This implies that neurons encode these offers’ values in oppos-

ing formats throughout the trial, not only during comparison.

Testing hypothesis 1: Mutual inhibition between offer values during comparison. A

putative neuronal signature of value comparison via mutual inhibition is an anticorrelation

Fig 5. Encoding formats of offer value when the offer is later accepted versus rejected become

successively more separable. Shown above are the distributions of correlation coefficients between

encoding formats of offers when they were later accepted versus rejected, for offer 1 in the first and second

epochs and offer 2 in the second epoch. These distributions are all significantly different from each other

(statistics reported in main text). Data used to generate these plots can be found at https://doi.org/10.5061/

dryad.h52f8.

https://doi.org/10.1371/journal.pbio.2003091.g005
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between formats for 2 values [27,40,41]. Such an anticorrelation effectively subtracts them.

The resulting signal can then be read out and its sign indicates the result of the comparison

and thus the ensuing decision. We investigated the relationship between the encodings of the

values of the 2 offers at the presumed time of comparison when the second offer appeared and

the first was presumably stored in working memory. We found that these 2 formats are antic-

orrelated (Pearson correlation: r = −0.30, 99% credible interval: [−0.35, −0.23]; Fig 7A, top

panel). This value is significantly less than would be expected by chance (permutation test:

p< 0.0001; Fig 7A, bottom panel). The same analysis performed on the absolute regression

coefficients (to examine only the strength of encoding, regardless of direction of modulation)

suggests that overlapping populations of neurons respond to both offer values during the

Fig 6. Coding of offer 2 in the comparison epoch is dependent on the upcoming decision (for statistical comparison between format

correlations, see Fig 5). Red lines indicate mean correlation, red shaded area indicates 99% credible intervals, red dashed lines indicate 95% credible

intervals, and black dashed line indicates the correlation expected under a chance model. (A) Format analysis: (left) scatterplot of offer 2, epoch 2

regression coefficients for trials in which offer 2 is accepted (horizontal axis) versus rejected (vertical axis). (Middle) distribution of mean correlation

coefficient of data. The mean of this distribution is represented as a red dashed line in the right panel. (Right) distribution of mean correlation coefficients

expected under a chance model (black distribution) compared to the mean correlation observed in the data (red dashed line; permutation test with 1,000

permutations: p < 0.001). (B) Population analysis: (left) scatterplot of offer 2, epoch 2 absolute regression coefficients for trials in which offer 2 is accepted

(horizontal axis) versus rejected (vertical axis). Shaded error region indicates 99% credible interval and dashed red lines indicate the 95% credible interval.

The black dashed line indicates the level of correlation we would expect to see under a chance model (see main text and Materials and methods). (Middle)

distribution of mean correlation coefficient of data. The mean of this distribution is represented as a red dashed line in the right panel. (Right) distribution of

mean correlation coefficients expected under a chance model (black distribution) compared to the mean correlation observed in the data (red dashed line;

permutation test with 1,000 permutations: p = 0.026). Data used to generate these plots can be found at https://doi.org/10.5061/dryad.h52f8.

https://doi.org/10.1371/journal.pbio.2003091.g006
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comparison stage (Pearson correlation of absolute regression coefficients: r = 0.42, 99% credi-

ble interval: [0.33, 0.50]).

The anticorrelation between offer value representations indicates that dACC does not

encode the values of the offers independently but only encodes their values relative to each

other. Further analysis indicates that the strengths with which offer values are encoded do not

differ significantly (Wilcoxon signed rank test: z statistic = −0.730, p = 0.466). This finding sug-

gests that neuronal activity in this region represents an unweighted difference signal, effec-

tively subtracting the 2 offer values (rather than, say, partially normalizing the value of the

second to the value of the first).

Correlates of mutual inhibition are consistent with both an underlying 2-pool architecture

and with a 1-pool architecture. On one hand, 2 separate populations of neurons, each encod-

ing one of the offer values, may be distinct, but each competitively inhibits the other popula-

tion, leading to our observed anticorrelated formats (we will call this a 2-pool architecture).

Fig 7. Formats of encoding values of the 2 offers support a 1-pool architecture of value-based choice. Red solid lines indicate mean correlation,

red shaded area indicates 99% credible intervals, red dashed lines (in scatterplots) indicate 95% credible intervals, and black dashed lines indicate the

correlation expected under a chance model. (A) Mutual inhibition during comparison: (top) scatterplot indicating the strength and direction of modulation

in response to offer 1 and offer 2 (both during comparison) for each individual neuron in the population. The negative correlation indicates that neurons

encode the values of the first and second offers in opposing formats during comparison. (Bottom) this correlation is significantly smaller than would be

expected by chance (black distribution; permutation test with 1,000 permutations: p < 0.001). (B) Encoding of offer 1 value through time: (top) scatterplot

indicating the strength and direction of modulation in response to offer 1 between the first and second epochs for each individual neuron in the population.

The value of the first offer is encoded in correlated formats when it is attended (epoch 1) and when it is remembered (epoch 2). (Bottom) this correlation is

not as strong as we would expect by chance (black dashed line; permutation test with 1,000 permutations: p = 0.038). This result holds when the outlier

cell is removed. (C) Aligned encoding of attended offer values. (Top) scatterplot indicating the strength and direction of modulation in response to

attended offers (offer 1 in the first epoch versus offer 2 in the second epoch). Values of attended offers are encoded in correlated formats across time, in

contrast to 2-pool model predictions of mutual inhibition through time. (Bottom) this correlation is significantly larger than expected by chance (black

distribution; permutation test with 1,000 permutations: p = 0.0060). This result holds when the outlier cell is removed. Data used to generate these plots

can be found at https://doi.org/10.5061/dryad.h52f8.

https://doi.org/10.1371/journal.pbio.2003091.g007
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Because each neuron still responds to the values of both offers (either directly or via inhibition

from the other population), our finding of overlapping populations does not falsify this model.

On the other hand, these findings could indicate a single pool of neurons that respond to the

offer values differently, effectively implementing value subtraction within each neuron (we will

refer to this as a 1-pool architecture). In this model, no neurons are permanently dedicated to

the representation of either offer value. To differentiate between these 2 proposed architec-

tures, we take advantage of the asynchronous presentation of offers in our task to test 2 addi-

tional predictions: retention of offer 1 value and mutual inhibition over time.

Testing hypothesis 2: Offer 1 value is retained through time yet weakly influenced by

offer 2 value. Under a 2-pool model, 1 pool of neurons is dedicated to encoding the value of

the first offer through time. If this is true, we should see overlapping populations of neurons

being activated in a similar fashion when the first offer is presented and when it is remem-

bered, effectively “retaining” the value of the offer when it is no longer on the screen.

More specifically, we would expect to see a positive correlation between the encoding of the

first offer’s value across the first epoch (when it is attended) and the second epoch (when it is

no longer on the screen and must be remembered), because presumably the same population

of neurons is permanently involved in encoding this offer’s value. We do, in fact, observe this

positive correlation (Pearson correlation: r = 0.30, 99% credible interval: [0.24, 0.36]; Fig 7B,

top panel). A population analysis also suggests that it is largely the same population of neurons

encoding this value, rather than 2 separate populations (Pearson correlation of absolute regres-

sion coefficients: r = 0.48, 99% credible interval: [0.39, 0.56]). However, compared to a chance

model, in which neurons encode the values of both offers but don’t differentiate between

them, the format correlation is lower than would be expected (i.e., ceiling measure r = 0.41;

permutation test: p = 0.038; Fig 7B, bottom panel; see Materials and methods for details). The

population correlation is significantly stronger than we would expect by chance (r = 0.33; per-

mutation test: p = 0.017). This is not due to levels of noise in our data, because our chance

model analysis uses the exact same data, except shuffled, and detects a stronger correlation.

Thus, while the value of the first offer is retained across epochs, its format is still modestly

influenced by the appearance of offer 2. This evidence suggests that, while the value of the first

offer is retained in the population, it is not retained in the same format for comparison with

the second offer. While a 2-pool architecture posits that separate neuronal pools interact

through mutual inhibition (as illustrated above), neurons in this framework should still

respond similarly to the value of the first offer, faithfully retaining its value for comparison

with the second offer.

Testing hypothesis 3: Offer values are not mutually inhibitory across time. If separate

pools of neurons are dedicated to encoding each offer value, neurons excited by the offer 1 value

in the first epoch should be inhibited by the offer 2 value in the second epoch, and vice versa.

This prediction is an extension of the mutual inhibition prediction tested above, only through

time, and is a prediction that follows from the 2-pool architecture hypothesis. We do not see any

such pattern in our data. In fact, attended offers are encoded in strongly positively correlated for-

mats (Pearson correlation: r = 0.33, 99% credible interval: [0.27, 0.39]; Fig 7C, top panel), more

so than we would expect under a chance model (i.e., ceiling measure r = 0.17; permutation test:

p = 0.006; Fig 7C, bottom panel). There is no separation in the populations activated in response

to these offers, either; in fact, we see a significant overlap between the populations responding to

offers 1 and 2 when they appear on the screen (Pearson correlation of absolute regression coeffi-

cients: r = 0.30, 99% credible interval: [0.22, 0.38]). This is not significantly different from a

chance model (i.e., ceiling measure r = 0.22; permutation test: p = 0.13). Our data thus support a

1-pool hypothesis. Specifically, they suggest that the same population of neurons is activated in

similar formats to offers being attended, regardless of offer identity.
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Discussion

We measured encoding of value in dACC neuron ensembles while monkeys performed a

2-option gambling task. Offers appeared in sequence, which let us observe choice occurring

serially and let us experimentally control the focus of attention. We hypothesized that dACC

neurons implement a comparison-to-reference mechanism in which the first offer serves at

first as a reference to which the second is compared. Consistent with this hypothesis, neuronal

encoding of the first offer was partially independent of the choice ultimately made, whereas

neuronal encoding of the second offer was wholly dependent on the upcoming choice. We

observed this discrepancy in decision dependence even when the encodings of offers’ values

were analyzed within the same epoch, indicating a fundamental difference in how the first ver-

sus the second offer’s value was represented. The 2 offers were encoded by largely overlapping

sets of neurons, consistent with the idea that comparison occurs within a single pool rather

than in the form of competition between 2 discrete pools of neurons. These results suggest that

economic choice can occur through comparison-to-reference mechanisms similar to those

that apply to memory-guided decisions.

We developed new permutation analyses that allowed us to differentiate true ensemble cod-

ing differences from spurious differences due to noise. Surprisingly, ensemble responses to

the first offer were partially dependent on the upcoming choice, meaning that the ensemble

behaved qualitatively differently (not just gain changes, for example) depending on whether

the offer would be chosen. This differentiation widened over time, as the similarity between

value-encoding formats shrank. This finding indicates that responses to the first offer are par-

tially post-decisional. They indicate that the neural response is not simply a representation of

value but also includes responses associated with the specific choice to be made. Whether an

internal commitment to the action has been made, we cannot say.

Several previous results highlight the post-decisional nature of value encodings in dACC

[51,52]. Others indicate a direct role for this area in decision-making. Our results suggest a

solution to these contradictory sets of results: the area does participate in decisions but because

of the rapid nature of most studies, the post-decisional response is strongest. Indeed, our

results suggest that the distinction between pre- and post-decisional is a misleading one. These

results thus support a recent argument made by Hunt and colleagues [53]. In this study, Hunt

et al. interpret the presence of decisional information as a correlate of decision formation,

rather than an indicator of a strictly evaluative, post-decisional role.

Our results endorse the idea that value comparison in dACC occurs within a single pool of

neurons, not between 2 discrete pools whose responses correspond to each option. The 2-pool

model is one that is central to many models of value-based choice [25–29]. Critically, the

sequential nature of our task allowed us to test for the first time a key prediction of 2-pool mod-

els. Such models make 2 predictions. First, a pool of neurons is hypothesized to maintain the

value of the offer it represents through time. Our data do not support this prediction: the format

of encoding the first offer’s value changes when the second offer appears, suggesting that this

representation is not faithfully maintained for comparison with the second offer’s value. Second,

2-pool models predict that offer values attended sequentially will be encoded in opposing for-

mats. Again, our data do not support this hypothesis: overlapping pools of neurons respond

similarly to the values of both offers when each is attended. These findings support a mecha-

nism of comparison in which neural activity is attentionally aligned, previously reported in the

vmPFC and the VS [42,43]. Note that we do find mutual inhibition between offers when both

have been viewed (i.e., in the second epoch, when offer 2 is attended and offer 1 is presumably

held in working memory). This result corroborates findings from previous studies [27,40,41,50]

but, as we show here, is not sufficient evidence for an underlying 2-pool architecture.
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Our results must be interpreted in light of 2 caveats. First, because we present offers sequen-

tially (in order to experimentally control which offer is attended at each point in time), we can-

not fully distinguish between the effects of attention and those of order of presentation. Other

paradigms relying on eye position, for example, could be used to determine the locus of atten-

tion at each point in time, although at least 1 previous study shows that overt fixation and

covert attention are not always aligned [7]. Second, it is possible that endogenous fluctuations

in attention or arousal influence choice and would thus appear as a post-decisional encoding

of value (especially the value of the first offer). We believe this is a semantic difference rather

than a scientific one: we believe the process of making a decision includes all factors contribut-

ing to a choice. These include factors that are relevant to the decision at hand—such as the val-

ues of the offers—as well as other variables—such as fluctuations in attention, arousal, etc.

While our results offer an explanation for serial choice processes, there is some reason to

believe that a great deal of even ostensibly simultaneous choice actually reflects serial process-

ing. First, our gaze (overt attention) and focus of attention (covert attention) are generally

aligned and limited to 1 position [10,11]. Indeed, recent studies suggest overt or covert atten-

tion may structure the accumulation of evidence about different options [1,2,7] and emphasize

the importance of the interaction between attentional effects and value on choice [8,54,55].

Second, foraging decisions, presumably a naturalistic form of decision-making, preferentially

occur in a sequential context [6,56,57]. Nonetheless, it is an open question to what extent the

comparison-to-reference mechanism we propose will generalize to other types of decisions.

A plethora of previous studies have implicated the dACC in the decision-making process.

Kennerley and colleagues [31] find the strongest, most integrated value signals in dACC, and

argue that this area is critical for value updating and subsequent value-based decision-making

[58]. This region is also known for representing quantities in a manner that is context depen-

dent, for example, relative to the values of other available options [59] or relative to their order

in a sequence [60,61]. This region is also known for its role in directing attention to valuable

and salient stimuli [62]. However, while the importance of the dACC in choice seems evident,

its role in this process remains a subject of debate [38,63,64]. Most relevant to the present

study, one view holds that the dACC is a critical site of value-based comparison in choice and

is thus pre- or mid-decisional (depending on how one defines these terms [34,39,65]). Another

school holds that the dACC can be situated largely post-decisionally, meaning that it receives

the outputs of decisions and uses this information to monitor or adjust future behavior

[51,52]. This post-decisional role in turn is consistent with a literature emphasizing a largely

monitoring role of the dACC [38,66]. Our results here suggest the 2 views can be reconciled:

the first offer sets the context of comparison (including pre-decisional aspects), thus allowing

the second offer to encode the outcome of the decision (post-decisional aspects). In other

words, our findings push against the dichotomy between pre- and post-decisional processes,

arguing that this region is involved in decision formation itself. More broadly, it is possible

that the dACC and even the brain more generally does not represent value divorced of upcom-

ing decisions and plans of action (related arguments have previously been made [67,68]).

Our findings fit particularly well with a recent study by Boorman and colleagues [4]. There,

the authors find that dACC activity during choice correlates well with the value of the currently

available option relative to a default option with the highest long-term value. We extend these

findings by showing that dACC activity at the single-unit level also reflects this default/alter-

native framework of comparison and in contexts in which the default is defined by order of

presentation, rather than by long-term value. A recent imaging study by Lopez-Persem and col-

leagues [16] also argues for this mechanism, and finds correlates of it in the vmPFC. Although

they find no correlates of default-to-alternative evaluation in the dACC, we posit that this may

be due to the relative weakness of these decision-dependent signals in the dACC, which may
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make them difficult to detect in aggregate measures such as BOLD. This finding would fit into a

more general framework in which different brain regions along the processing stream trans-

form value information into decisions and information necessary for post-decisional, evaluative

processes. We expect this transformation to be gradual, such that “pre”- and “post”-decisional

correlates would be observed in multiple brain regions in varying degrees. Further research will

be required to test this theory and understand how single-neuron correlates we observe in our

study would translate into aggregate measures, such as BOLD.

More generally, our findings suggest that dACC neurons carry value signals that are not

abstract representations of value—or even necessarily consistent across contexts within a single

task (similar patterns of neural activity have been observed in the orbitofrontal cortex [69]).

These ideas in turn raise the possibility of a subtle but important shift in the interpretation of

neural correlates of value. A representational approach views such neural correlates as a repre-

sentation of an abstract value signal, that is, a signal whose function is the same as its form—to

convey to downstream structures the abstract value of the option, regardless of the computa-

tion this quantity is involved in. Instead, our results support a functionalist interpretation—

value correlates may have diverse purposes that, while they correlate with value, are not strictly

representational (this argument has been previously expounded in more detail [70]). Beyond

representing an abstract quantity to be read out by a downstream brain region, these signals

function to enable mental processes that rely on option value and may thus serve different

functions depending on the eventual decision [71].

Materials and methods

Ethics statement

All procedures were approved by the University Committee on Animal Resources at the University

of Rochester and were designed and conducted in compliance with the Public Health Service’s

Guide for the Care and Use of Animals (protocol UCAR-2010-169). Two male rhesus macaques

(Macaca mulatta, subject B: age, 8 years, 11 months; subject J: age, 10 years, 9 months) served as

subjects. A small prosthesis for holding the head was used. Animals were habituated to laboratory

conditions and then trained to perform oculomotor tasks for liquid reward. A Cilux recording

chamber (Crist Instruments) was placed over the dACC. Position was verified by magnetic reso-

nance imaging with the aid of a Brainsight system (Rogue Research Inc.). Animals received appro-

priate analgesics and antibiotics after all procedures. Throughout both behavioral and physiological

recording sessions, the chamber was kept sterile with regular antibiotic washes and sealed with ster-

ile caps. All recordings were performed during the animals’ light cycle, between 8 AM and 5 PM.

Some of the data for dACC recordings were previously published [42]; all analyses pre-

sented here are new.

Recording site

We approached the dACC through a standard recording grid (Crist Instruments). We defined

the dACC according to the Paxinos atlas [72]. Roughly, we recorded from a region of interest

lying within the coronal planes situated between 29.50 and 34.50 mm rostral to interaural

plane, the horizontal planes situated between 4.12 and 7.52 mm from the brain’s dorsal surface,

and the sagittal planes situated between 0 and 5.24 mm from medial wall. The atlas called these

Areas 8/32 and 9/32; we prefer to call them Area 24 [38]. Our recordings were made from a

central region within this zone. We confirmed recording location before each recording ses-

sion using our Brainsight system with structural magnetic resonance images taken before the

experiment. Neuroimaging was performed at the Rochester Center for Brain Imaging on a Sie-

mens 3T MAGNETOM Trio Tim using 0.5-mm voxels. We confirmed recording locations by
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listening for characteristic sounds of white and gray matter during recording, which in all

cases matched the loci indicated by the Brainsight system.

Electrophysiological techniques, eye tracking, and reward delivery

All methods used were described in previous manuscripts [40] and largely reproduced here.

Single electrodes (Frederick Haer & Co., impedance range 0.8–4 MU) were lowered using a

microdrive (NAN Instruments) until waveforms of between 1 and 3 neuron(s) were isolated.

Individual action potentials were isolated on a Plexon system (Plexon, Inc.). Neurons were

selected for study solely on the basis of the quality of isolation; we never preselected based on

task-related response properties. All collected neurons for which we managed to obtain at least

250 trials were analyzed.

Eye position was sampled at 1,000 Hz by an infrared eye-monitoring camera system (SR

Research). Stimuli were controlled by a computer running Matlab (Mathworks) with Psy-

chtoolbox [73] and Eyelink Toolbox [74]. Visual stimuli were colored rectangles on a com-

puter monitor placed 57 cm from the animal and centered on its eyes (Fig 2A). A standard

solenoid valve controlled the duration of juice delivery. The relationship between solenoid

open time and juice volume was established and confirmed before, during, and after

recording.

Behavioral task

Monkeys performed a 2-option gambling task. The task was similar to one we have used previ-

ously [40,41,75], with 2 major differences: first, monkeys gambled for virtual tokens rather

than liquid rewards, and second, outcomes could be losses as well as wins.

Two offers were presented on each trial. Each offer was represented by a rectangle 300 pix-

els tall and 80 pixels wide (11.35˚ of the visual angle tall and 4.08˚ of the visual angle wide).

Twenty percent of options were safe (100% probability of either 0 or 1 token), while the

remaining 80% were gambles. Safe offers were entirely red (0 tokens) or blue (1 token). The

size of each portion indicated the probability of the respective reward. Each gamble rectangle

was divided horizontally into a top and bottom portion, each colored according to the token

reward offered. Gamble offers were thus defined by 3 parameters: 2 possible token outcomes,

and the probability of the top outcome (the probability of the bottom was strictly determined

by the probability of the top). The top outcome was 10%, 30%, 50%, 70%, or 90% likely.

Six initially unfilled circles arranged horizontally at the bottom of the screen indicated the

number of tokens to be collected before the subject obtained a liquid reward. These circles

were filled appropriately at the end of each trial, according to the outcome of that trial. When 6

or more tokens were collected, the tokens were covered with a solid rectangle while a liquid

reward was delivered. Tokens beyond 6 did not carry over nor could number of tokens fall

below zero.

On each trial, one offer appeared on the left side of the screen and the other appeared on

the right. Offers were separated from the fixation point by 550 pixels (27.53˚ of the visual

angle). The side of the first offer (left and right) was randomized by trial. Each offer appeared

for 600 ms and was followed by a 150-ms blank period. Monkeys were free to fixate upon the

offers when they appeared (and in our observations almost always did so). After the offers

were presented separately, a central fixation spot appeared and the monkey fixated on it for

100 ms. Following this, both offers appeared simultaneously and the animal indicated its

choice by shifting gaze to its preferred offer and maintaining fixation on it for 200 ms. Failure

to maintain gaze for 200 ms did not lead to the end of the trial but instead returned the mon-

key to a choice state; thus, monkeys were free to change their mind if they did so within 200
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ms (although in our observations, they seldom did so). A successful 200-ms fixation was fol-

lowed by a 750-ms delay, after which, the gamble was resolved and a small reward (100 μL)

was delivered—regardless of the outcome of the gamble—to sustain motivation. This small

reward was delivered within a 300-ms window. If 6 tokens were collected, a delay of 500 ms

was followed by a large liquid reward (300 μL) within a 300-ms window, followed by a random

intertrial interval (ITI) between 0.5 and 1.5 s. If 6 tokens were not collected, subjects proceeded

immediately to the ITI.

Each gamble included at least one positive or zero outcome. This decreased the number of

trivial choices presented to subjects and maintained motivation.

Statistical methods for behavior

Subjective values for each gamble were estimated based on subjects’ behavior performance in

each test session, according to the following formula:

SV ¼ p�wina þ ð1 � pÞ�lossb

(the same approach used by Yamada and colleagues [76]). Because our task includes both wins

and losses, we fit a parameter α for wins and another parameter β for losses. A value for α
greater than 1 and a value for β less than 1 both indicate risk seeking.

Both subjects were risk seeking on average (values of α> 1 or β< 1 both indicate risk seek-

ing; subject B: average α = 1.21, SD = 0.409, average β = 0.0764, SD = 0.132; subject J: average

α = 1.60, SD = 0.404, average β = 0.0216, SD = 0.0530).

We also fit subjective values conditioned on the number of tokens the subject had accumu-

lated as of the beginning of each trial. We did this by fitting the above equation to trials in each

possible tokens-accumulated condition (accumulated tokens = 0, 1, . . ., 5). We thus obtained 6

different parameters for gains and losses for each subject (S2 Table).

We used the subjective values fit by the parameters obtained using these 2 methods to repli-

cate our analyses of significantly-modulated neurons (S3 Table) and beta correlation analyses

(S4 Table).

We fit logistic regression models of behavior to predict choice of the first versus second

offer. To ensure that subjects did, in fact, pay attention to both offers, we fit a model in which

the values of the first and second offers were the predictors of interest, while also including the

number of tokens already accumulated, the side the first offer appears on, and the choice even-

tually made to explain any variance these variables might contribute to. To determine whether

subjects pay attention to all features of an offer, we use an extended model with the 3 variables

characterizing each offer (the 2 possible outcomes and the probability of the larger outcome)

included as predictors, controlling for the same variables mentioned above. We fit such a

model for each behavioral session and obtained the regression weights associated with each of

the variables of interest. We then tested the vector of these variables across all sessions using a

1-sample t test to determine whether they differ significantly from zero.

Statistical methods for physiology

Peristimulus time histograms (PSTHs) were constructed by aligning spike rasters to the pre-

sentation of the first offer and averaging firing rates across multiple trials. Firing rates were cal-

culated in 20-ms bins but were generally analyzed in longer (500-ms) epochs. This method is

standard in our lab and was described in a previous manuscript [40].

Firing rates were normalized by subtracting the mean and dividing by the standard devia-

tion of the entire neuron’s PSTH. We tested for significant neuronal modulation using a multi-

ple linear regression, including the following task-relevant variables: expected/subjective value
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of offers 1 and 2, the number of tokens collected as of the beginning of the trial, the side the

first offer appeared on, and the side of the chosen offer.

Analysis epochs were chosen a priori before data analysis began to reduce the likelihood of

p-hacking. The first and second offer epochs were defined as the 500-ms epoch beginning 100

ms after the offer was presented, to account for information-processing time. These epochs

were used in previous studies of choice behavior [40,41]. All fractions of modulated neurons

were tested for significance using a 2-sided binomial test. All binomial tests throughout the

manuscript were 2-sided.

Format and population correlation analyses

We used beta correlation analyses to assess whether neurons represented 2 variables (or the

same variable at different time periods) using similar/orthogonal/opposing formats, in over-

lapping/orthogonal/distinct populations. To do this, we first found the regression coefficient

associated with the variable of interest (controlling for other task variables, listed above) per

neuron. We then combined these regression coefficients into a vector of the same length as the

number of neurons in our sample. This vector indicates the strength and direction of modula-

tion for each individual neuron in the population, in response to a particular variable in a par-

ticular epoch. We call this the population “format.” We compared different formats by finding

the Pearson correlation coefficient between them.

We modify this method slightly to account for the noise levels of each individual neuron’s

encoding of each variable of interest, which our existing method cannot account for. We used

a Bayesian regression to obtain a probabilistic distribution over each regression coefficient for

each neuron, rather than an individual value per neuron. We sampled 10,000 regression coeffi-

cients from this distribution per neuron to obtain 10,000 potential formats for the population.

We then performed the correlation analyses on each of these samples, thus generating a distri-

bution of 10,000 correlation coefficients. This is a more robust estimate of the correlation

between formats, as it takes into account the uncertainty inherent in estimating any individual

regression coefficient and allows us to view the spread of the distribution of this correlation

when this significant source of noise is taken into account. Credible intervals of 99% allowed

us to estimate the likely range of the correlation coefficients with 99% certainty.

The Pearson correlation coefficient between signed regression coefficients indicates

whether variables were represented in a similar format, i.e., directionality of tuning across the

population. A positive correlation indicates a preservation of directionality, while a negative

correlation suggests variables were represented in opposing directionality of firing rate modu-

lation. No correlation suggests orthogonal formats.

Similarly, the Pearson correlation coefficient between unsigned regression coefficients indi-

cates whether similar neuronal populations tended to be involved in encoding the 2 variables

in question. A positive correlation indicates overlapping populations, while a negative correla-

tion indicates separate ones. A lack of correlation suggests orthogonal populations (i.e., encod-

ing 1 variable does not affect the neuron’s likelihood of encoding the other variable).

We then compare these distributions of correlation coefficients to distributions that would

be obtained under a chance model. For the first set of analyses, meant to differentiate between

the 1-pool and 2-pool hypotheses, we assume a chance model is one in which, during the sec-

ond epoch, neurons encode the values of both offers but don’t differentiate between them. We

achieve this by shuffling the values of the 2 offers and using these new shuffled vectors as pre-

dictors in our regression model. For the second set of analyses, examining the encodings of

accepted and rejected offers, we assume a chance model in which neurons do not differentiate

between values according to whether they will later be accepted or rejected. To achieve this, we

Correlates of decisional dynamics in dACC

PLOS Biology | https://doi.org/10.1371/journal.pbio.2003091 November 15, 2017 19 / 25

https://doi.org/10.1371/journal.pbio.2003091


shuffle trials across these 2 categories (offer 1 or 2 accepted/rejected) at random. These chance

models achieve a permutation of the existing data, which we then use for the same beta correla-

tion analyses explained above. We then compare the mean correlation of our actual data to the

distribution of mean correlations obtained from each of 1,000 permutations of our data. This

form of test allows us to (1) ensure that we have enough signal in our data to detect significant

correlations, and (2) determine whether the variable of interest does, in fact, play a role in dif-

ferentiating the formats/populations involved. As we have often found in this study, a positive

correlation between formats, while in itself informative, may not actually be as strong as would

be expected purely by chance given this dataset, which is also, in itself, an important finding

that informs our theories and interpretations.

Data were deposited in the Dryad depository http://dx.doi.org/10.5061/dryad.h52f8 [77].

Supporting information

S1 Text. Spatial bias is not influenced by trial difficulty.
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S2 Text. Replicating neural analyses with subjective offer values.
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S3 Text. A closer look at pre-decisional versus post-decisional encoding within the value-

tuned neuronal population.
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S4 Text. Visualizing influence of upcoming choice on early trial activity using principal

component analysis.

(DOCX)

S5 Text. Influence of decision on value encoding in the vmPFC and VS. vmPFC, ventrome-

dial prefrontal cortex; VS, ventral striatum.

(DOCX)

S1 Table. Subjects rely on all option values to make a choice. We use a logistic regression

model, including the variables listed in the table below, controlling for number of tokens the

subject has as of the beginning of the trial, the side the first offer appeared on, and the chosen

side. We use these variables to predict whether the subject chose the first offer presented. If sig-

nificant, coefficients for the first offer should be positively skewed, while coefficients for the

second offer should be negatively skewed. We perform this analysis on each behavioral session,

then test whether the resulting regression coefficients differ significantly from zero (related to

behavioral analyses in the main text).

(XLSX)

S2 Table. Percent of neurons modulated in response to different task variables (related to

Fig 2 and single-neuron modulation results in the main text).

(XLSX)

S3 Table. Biases in modulation in significant population and across the entire population

(related to single-neuron modulation results in the main text).

(XLSX)

S4 Table. Beta-correlation results for format and population analyses, when offers are

accepted versus rejected (related to Figs 3, 4 and 5 in the main text).

(XLSX)
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S5 Table. Beta-correlation results for format and population analyses, for 1-pool model

results (related to Fig 7 in main text).

(XLSX)

S1 Fig. Visualizing the first PC when offers are later accepted/rejected. The first PC shows a

general rise in activity, culminating after both offers have been shown and the subject has pre-

sumably made a choice. Even this first PC shows significant differences between trials in

which the first versus the second offer is ultimately chosen. Activity peaks significantly when

the ultimately chosen offer appears, and overall activity peaks at a higher level when offer 1 is

chosen rather than offer 2. PC, principal component.

(TIF)

S2 Fig. Visualizing the second and third PCs when offers are later accepted/rejected. The

second and third PCs also show earlier peaks in activity when offer 1 (versus 2) is chosen,

which are more pronounced than those observed in the first PC. No significant differences

were observed in PCs 4 and 5. These findings additionally support our general hypothesis, in

which offer value and choice signals are intimately intertwined, and both affect firing rates

early on in the trial. PC, principal component.

(TIF)

S3 Fig. Correlations between offer formats when they are later accepted/rejected, visual-

ized through time. Solid line shows the mean correlation between accepted and rejected

regression coefficients for each offer, aligned to offer onset. Shading indicates the upper and

lower bounds of the 99% credible interval. The first vertical line indicates the appearance of

the first offer. The second vertical line indicates the appearance of the second offer. The third

vertical line indicates the disappearance of the second offer and the end of the second epoch,

after which the subject would be allowed to indicate his choice. These plots reiterate and

emphasize our results. Offer 1 encodings across decision contexts start out fairly correlated,

and this correlation decreases as the trial proceeds and information about the second offer

appears. Offer 2 appears to be encoded in less correlated formats than offer 1 when it appears.

Results in the main text show that these correlations, although mostly positive, are less than

would be expected from randomly permuted trials.

(TIF)

S4 Fig. Correlations between first and second offer formats, visualized through time. The

solid line shows the mean correlation between offer 1 and offer 2 values, aligned to the offer 2

onset. Shading indicates the upper and lower bounds of the 99% credible interval. The first ver-

tical line indicates the appearance of the second offer. The second vertical line indicates the

end of the offer 2 epoch, after which the second offer disappears. This plot also confirms our

findings in the main text. It also shows that the mutual inhibition signal fades and offers are no

longer encoded in opposing formats as the trial transitions into the choice epoch.

(TIF)
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