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Abstract

Epileptic seizures are known to follow specific changes in brain dynamics. While some algo-

rithms can nowadays robustly detect these changes, a clear understanding of the mecha-

nism by which these alterations occur and generate seizures is still lacking. Here, we

provide crossvalidated evidence that such changes are initiated by an alteration of physio-

logical network state dynamics. Specifically, our analysis of long intracranial electroenceph-

alography (iEEG) recordings from a group of 10 patients identifies a critical phase of a few

hours in which time-dependent network states become less variable ("degenerate"), and

this phase is followed by a global functional connectivity reduction before seizure onset.

This critical phase is characterized by an abnormal occurrence of highly correlated network

instances and is shown to be particularly associated with the activity of the resected regions

in patients with validated postsurgical outcome. Our approach characterizes preseizure net-

work dynamics as a cascade of 2 sequential events providing new insights into seizure pre-

diction and control.

Author summary

Understanding and predicting the generation of seizures in epileptic patients is fundamental

to improving the quality of life of the more than 1% of the world population who suffer

from this illness. Although seizure prediction has made important advances over the last

decade, there is a lack of understanding of the common principles explaining the transitions

that brain activity undergoes before a seizure. In this study, we characterized this transition

from a novel perspective grounded on the mathematical analysis of continuous recordings

inside the brains of epileptic patients over several days using depth electrodes. We show that

the critical period preceding a seizure unfolds in a two-stage process. It begins with a phase
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of several hours when the highly correlated activity in the preceding days is altered, and it

proceeds with a second, shorter phase of decrease in global connectivity before the seizure

onset. Furthermore, our analysis reveals that these global alterations are more locally mani-

fested in areas that are selected for surgical treatment. Our study suggests that preseizure

activity might follow global stereotyped dynamics that could be targeted and modulated to

prevent epileptic seizures.

Introduction

Epilepsy is among the most common neurological disorders, with an estimated prevalence of

about 1% of the world’s population and almost 2% in low-income families in developed coun-

tries [1]. Epilepsy is characterized by the seemingly random occurrence of seizures, which can

greatly affect the quality of life of patients. Approximately one-third of all epileptic patients are

resistant to pharmacotherapy [2] and could benefit from a variety of surgical options. Among

them, closed-loop neuromodulation based on an accurate prediction of seizure occurrences is

a promising tool.

Over the last decades, several studies have shown that seizures are preceded by detectable

changes in brain dynamics that can be measured via intracranial recordings. Although not

fully understood, these changes have been associated with the existence of a transition of inter-

ictal (period between seizures) activity into the preictal state [3,4]. These findings have moti-

vated intense research on the development of seizure prediction algorithms for therapeutic

use in patients with pharmacoresistant epilepsy [5–8]. Although significant progress has been

made to attain above-chance level performance results [9], there is yet a long road to turn sei-

zure prediction into therapeutic devices [8,10]. A major caveat of current seizure prediction is

the lack of understanding about the neurophysiological processes associated with the emer-

gence and maintenance of the preictal state. Indeed, most studies have resorted to fully data-

driven methods to discriminate the preictal state with multiple signal features, which are typi-

cally patient specific and difficult to interpret [8].

Nowadays, epilepsy research is gradually adopting a network approach to study seizure

dynamics at a global level and assess the contribution of the epileptogenic zone [11–14]. In this

growing field, most studies have identified specific graph theoretical properties of functional

networks during ictal and interictal periods [15–18]. In particular, a few groups have started

to characterize the temporal variability of such functional networks during ictal [19–21] and

interictal epochs [22–24]. Specifically, some authors have employed state spaces to classify

recurrent functional networks during seizures to pinpoint those states that were responsible

for the generation, maintenance, and termination of ictal activity [20,21]. More recently, a sim-

ilar approach has been applied to a large sample of 10-min interictal epochs showing that inter-

ictal activity exhibits larger fluctuations than ictal periods over a common set of states [24]. In

this context, however, the crucial question on whether there exist network dynamics changes

pointing towards an upcoming seizure remains unaddressed. It is therefore due to ask: how

are recurrent network states dynamically altered before epileptic seizures? And more generally,

can network dynamics provide a common principle of the preictal state?

In the current study, we addressed these questions for the first time by analyzing time-depen-

dent alterations in the dynamic repertoire of the functional connectivity [25] during long con-

tinuous periods preceding seizures. Based on insights from other models [26,27] and recent

findings showing network dynamics alterations between interictal and ictal epochs [24], we

hypothesized that the variability of physiological (nondysfunctional) network states was reduced
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as interictal activity approached epileptic seizures. Under this hypothesis, we developed a novel

analysis to study specific variability changes prior to seizures preceded by long interictal periods

in 10 epileptic patients monitored with intracranial electroencephalography (iEEG) during pre-

surgical diagnosis. We made use of a graph theoretical property—the eigenvector centrality—to

characterize network states [20] as instances of a time-varying multivariate continuous variable

and resorted to the Gaussian entropy [28] to describe their variability. A controlled analysis

using time-matched periods of interictal activity from additional days revealed a consistent and

sustained decrease of the variability of network states before the seizure occurred. Remarkably,

in all patients, this loss of variability was specifically associated with an abnormal occurrence of

high-connectivity states (HCSs) during the preseizure period. We also investigated the contri-

bution of the epileptogenic sites to the measured effect in 2 patients with long-lasting (>4 y)

very good postsurgical outcome. In particular, the application of our analysis to the mapped epi-

leptogenic sites of these seizure-free patients showed a significant alteration in the resected areas

of the patients’ epileptic networks. Overall, our approach provides 2 main contributions in the

analysis of epileptic network dynamics. First, it characterizes the preictal state as a 2-stage pro-

cess in which epileptic networks undergo a functional reorganization before seizure onset. Sec-

ond, it develops methodological aspects that may be considered to improve seizure prediction

algorithms. More broadly, the results presented here open new lines to investigate dynamic

alterations in pathological networks by studying the time-varying nature of brain activity.

Results

We studied network dynamics prior to epileptic seizures in 10 drug-resistant patients using con-

tinuous multichannel intracranial recordings via video stereoelectroencephalography (SEEG)

during presurgical monitoring evaluation (see details in Fig 1). To capture long-term changes in

network dynamics, we considered patients whose first spontaneous clinical seizure occurred

after at least 30 h (average value: 71.4 ± 19.1 h; mean ± SD) of intracranial implantation. This

ictal activity exhibited variable onset times over patients who were more concentrated during the

0:00 to 8:00 period (Fig 1A). For every patient, we analyzed a long continuous period (average

value: 10.4 ± 1.9 h; mean ± SD) of intracranial activity before the seizure occurred (preseizure

period, Fig 1B). We controlled for the specificity of our findings by independently analyzing

time-matched periods of interictal activity from different days (e.g., control period, Fig 1B). In

this study, we separately analyzed 8 patients (patients 1–8, main patients) with no clinically rele-

vant events before the first seizure and 2 patients who presented potential factors perturbing the

preseizure period (patients 9 and 10, control patients) (Table 1). More precisely, patient 9 had

been electrically stimulated 16.5 h before the first recorded seizure, and patient 10 presented a

subclinical seizure 6.1 h before the first clinical seizure onset.

Network dynamics analysis

We tracked network state dynamics for each patient separately over each recording session. To

do so, we computed functional connectivity using Pearson correlation across all recording

sites (also referred to as sites; average value: 98.3 ± 25.1 sites; mean ± SD) over consecutive and

nonoverlapping time windows of 0.6 s (Fig 1D). Networks in each window were characterized

as a weighted undirected graph, such that electrode contacts represented the nodes and abso-

lute-valued pairwise correlations represented their weighted edges (Fig 1D). We then evaluated

a centrality measure for each connectivity matrix to track network dynamics in a reduced and

interpretable dimensionality space. Indeed, we computed the eigenvector centrality to reduce

each N x N connectivity matrix to an N-dimensional vector, such that N was the total number

of recording sites, thus obtaining a centrality sequence for each recording site (Fig 1D). This
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Fig 1. Study paradigm and network dynamics analysis. (A) Seizure onset time of the first recorded spontaneous

clinical seizure from every patient (n = 10). (B) Schematic representation of the experimental design: for each patient, a

preseizure period of up to 12 h was matched to the same time period of the previous day that served as a baseline

reference (control interictal period). (C) Multivariate (Gaussian) entropy, showing its dependence on the determinant

of the covariance matrix. Example for a case of 2 time series in which the determinant of the covariance is shown to

shape the joint variability. (D) Network dynamics analysis: simultaneous intracranial EEG recordings were first

divided into consecutive and nonoverlapping time windows of 0.6 s (top). Then, functional connectivity matrices were

computed using zero-lagged absolute-valued Pearson correlation in each time window (middle-top 1). These matrices

were modeled as weighted undirected graphs such that nodes represented recorded contacts and edges strength

represented correlation absolute values (middle-top 2). The centrality of each contact in every graph was evaluated

using the eigenvector centrality leading to a sequence of centrality vectors (middle-bottom 1). The overall eigenvector

centrality sequence was regarded as a set of simultaneous centrality time series with 1 time series per recording site,

over time steps of 0.6 s (middle-bottom 2). Finally, time-dependent centrality entropy values were found for each

period of interest by sequentially estimating the multivariate entropy of the centrality time series in consecutive and

nonoverlapping time windows of 120 s (200 samples). The labels TB, EC, A, and HP are used as an example to

illustrate where the anatomical information was conveyed in the initial steps of the analysis. A, Amygdala; EC,

Entorhinal cortex; EEG, electroencephalography; HP, Hippocampus; TB, Temporal basal area.

https://doi.org/10.1371/journal.pbio.2002580.g001
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Table 1. Main data of patients included in the study.

Patient Age/

Sex

Recording

time (h)

Epilepsy Side MRI Electrodes

(left)

Analyzed

regions

Seizures Epilepsy

duration

(y)

Surgery Seizure

outcome

(Engel’s

class)

Follow-

up

period

1 32/F 24 TLE R Negative 5(0) A, Ha, Hp,

TP, Lateral

OFC

FS w CA 11 ATL IA 4 y

2 27/

M

48 TLE R right

amygdala

enlargement

7(0) A, Ha, Hp,

TP, EC,

Lateral

OFC, TGi

FS w CA or

FS wo CA

12 RFTC IB 2.5 y

3 32/F 42.5 TLE L Negative 7(7) A, Ha, Hp,

TP, EC,

Lateral

OFC, PHCp

FS w CA or

FS wo CA

or FS w CA

and tonico-

clonic

bilateral

evolution

26 SAH IB 4 y

4 40/

M

45.45 PCE L reduced size

of right

hippocampus

10(8) A, Ha (2),

Hp, TP, EC,

POC(2), W,

AG

FS w CA or

FS wo CA

or FS w CA

and tonico-

clonic

bilateral

evolution

39 temporoparietooccipital

resection

III 17 mo

(Engel

IA for

12 mo)

5 26/

M

36.95 PCE R right

hemispheric

atropy

15(0) TP, A, Ha,

Hp, EC,

POC (2), W,

AG, Ia, Im,

Ip, Lateral

OFC, M1

FS w CA or

FS w CA

and tonico-

clonic

bilateral

evolution

17 temporoparietooccipital

resection

III 15 mo

(Engel

IA for 6

mo)

6 46/

M

48 TLE L Negative 12(12) A, Ha, Hp,

TP, EC,

iTG, Ia, Ip,

TPCp, HS,

FB, CGp

FS w CA or

FS w CA

and tonico-

clonic

bilateral

evolution

37 RFTC IA 19 mo

7 31/

M

23.2 TLE L reduced size

of left

hippocampus

9(8) A, Ha (2),

Hp, TP, EC,

W, PHCp,

TOJ

FS w CA or

FS w CA

and tonico-

clonic

bilateral

evolution

11 NO _ _

8 24/

M

44 TLE R right temporal

polar blurring

15(0) A, Ha, Hp,

TP, EC,

PHCp, W,

B, TOJ (2),

TGs, Lateral

OFC (4)

FS w CA or

FS w CA

and tonico-

clonic

bilateral

evolution

8 RFTC III 16 mo

9 41/

M

24 TLE L left temporal

polar blurring

8(8) A, Ha, Hp,

TP, EC,

Latreal

OFC,

PHCp, TOJ

FS w CA or

FS wo CA

or FS w CA

and tonico-

clonic

bilateral

evolution

39 RFTC III 2.5 y

(Continued)
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measure can be equivalently interpreted as the first principal component of the absolute-val-

ued correlation matrix of the set of intracranial recordings in each window.

Our initial hypothesis was that the preictal state was associated with a reduction of physio-

logical network states. We therefore tested this hypothesis by quantifying changes in the distri-

bution of the eigenvector centrality sequences representing these network states. In particular,

we assumed that the centrality time series could be approximated by a multivariate Gaussian

distribution for a sufficiently large number of samples (n> 100) [29]. In principle, the second-

order variability of a multivariate variable may exhibit 2 components: the temporal compo-

nent, i.e., how the centrality of a recording site varies as a function of time, and the spatial

component, i.e., how the centrality consistently varies across recording sites at a given time

instance. A measure that simultaneously quantifies both components is the multivariate

Gaussian entropy, which monotonically depends on the product of the covariance matrix’s

eigenvalues (Fig 1C). This measure corresponds to the differential entropy of multivariate nor-

mally distributed variables [28], but it can be proved useful to approximate the variability of

more general variables whose distribution is asymptotically Gaussian.

Network state variability identifies time-dependent alterations before

seizure onset

First, we centered our analysis on the preseizure period and the time-matched period from the

previous day (preseizure, control). Over both periods, we computed the multivariate Gaussian

entropy in consecutive and nonoverlapping time windows of 200 centrality samples (120 s)

and normalized the measure to lie within the interval (0, 1) per patient. We shall refer to this

applied measure as centrality entropy in the remainder of the article. The straightforward

application of the centrality entropy to both periods in the main patients showed that centrality

sequences were generally less entropic during the preseizure period (see S1A Fig), showing a

gradual increase and successive decrease of this crossperiod difference as the seizure onset

approached. In order to localize this effect in a specific and significant time segment, we

grouped consecutive entropy values into intervals and made use of a nonparametric test to

identify the cluster of consecutive centrality entropy intervals that was significantly yielding

the largest entropy decay per patient (Materials and methods). The results of this test are illus-

trated for the main patients in Fig 2A where average centrality entropy curves are plotted for

Table 1. (Continued)

Patient Age/

Sex

Recording

time (h)

Epilepsy Side MRI Electrodes

(left)

Analyzed

regions

Seizures Epilepsy

duration

(y)

Surgery Seizure

outcome

(Engel’s

class)

Follow-

up

period

10 34/F 8.16 TLE L left posterior

hippocampal

lesion

10(9) A, Ha (2),

Hp, TP, EC,

Lateral

OFC,

PHCp, TOJ,

Im

FS w CA or

FS w CA

and tonico-

clonic

bilateral

evolution

18 ATL III 3 y

Abbreviations: A, amygdala; AG, angular gyrus; ATL, Anterior temporal lobectomy; B, Broca’s area; CA, consciousness alteration; CGp, posterior cingulate; EC,

entorhinal cortex; F, female; FB, frontobasal area; FS, focal seizure; Ha, anterior hippocampus; Hp, posterior hippocampus; HS, Heschl’s area; Ia, anterior insula; Im,

mid insula; Ip, posterior insula; L, left; Lateral OFC, lateral parts of the orbitofrontal cortex; M, male; M1, primary motor area; NO, not operated; PCE, posterior cortex

epilepsy; PHCp = posterior parahippocampal cortex; POC = precuneus occipital cortex; R, right; RFTC, Radiofrequency thermocoagulation; SAH, Selective

amygdalohyppocampectomy; TGi, inferior temporal gyrus; TGs, superior temporal gyrus; TLE, temporal lobe epilepsy; TOJ, temporal occipital junction; TP, temporal

pole; TPCp, posterior temporoparietal cortex; w, with; W, Wernicke’s area; wo, without.

https://doi.org/10.1371/journal.pbio.2002580.t001
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the control (in blue) and preseizure period (in red) together with the identified significant

time segment (in cyan) during the 9.5 h preceding the seizure. In each patient, this segment

highlighted intervals in which the same centrality entropy reduction could not be achieved by

shuffling the entropy values within each interval across the preseizure and control periods (P
< 0.01; S1B Fig). Intriguingly, the pinpointed segment was rather patient specific, exhibiting

offset times that were not generally attached to the seizure onset. However, when grouping

samples across the main patients, significant intervals turned out to be regularly distributed

around the proximity of the seizure onset, with the interval (−2.5, −1.5) being the most fre-

quent (87.5%; Fig 2B). In particular, this distribution was statistically different (P< 0.01, Kol-

mogorov-Smirnov test) from a surrogate distribution obtained by randomly placing the same

segments per patient in every possible location of the preseizure period (Fig 2C). In addition,

relevant features of the significant segment such as the onset and offset times and the test’s sta-

tistic value were not correlated with the seizure onset time (S2B, S2C and S2D Fig). These find-

ings corroborated that our analysis controlled for possible underlying circadian modulations

of the iEEG data (S2A Fig). Finally, the results obtained in both control patients were rather

different from each other (S3A Fig). In particular, the crossperiod difference measured in

patient 9 was the least significant across all patients (S3B Fig), suggesting that the previous

received electrical stimulation might have had an effect on the preseizure dynamics. In con-

trast, the occurrence of a subclinical seizure in patient 10 did not yield a quantitatively different

significance effect. We analyzed the stability of the results over the main patients using a syn-

chronization measure over a wide range of frequency bands and an alternative centrality mea-

sure (Materials and methods). The separate application of both measures unravelled similar

trends with weaker statistical effects (S4 and S5 Figs). In conclusion, our initial findings sug-

gested that significant and sustained reductions of network state variability over a precedent-

day baseline could be related to a preictal state. Furthermore, this reduction in variability was

statistically mapped to a patient-specific time subperiod per patient. This subperiod will be

referred to in the following as the critical phase.

As observed earlier, the critical phase was not, in general, attached to the seizure onset of

every patient. Therefore, how could the critical phase be related to earlier reported evidence on

the preictal state? To address this question, we divided both recording sessions into the critical

phase and subperiods immediately before (pre-) and after (post-) the critical phase (Figs 2C and

S3C for control patients). For those patients with critical phases attached to the seizure onset

(patients 1, 6, and 8), we considered the postcritical phase to comprise the last window time

samples of the critical phase. In each subperiod, we evaluated the mean functional connectivity

during both recording sessions. Fig 2C shows that the mean connectivity exhibited a nonsignifi-

cant increase during the critical phase of the preseizure period (Fig 2C, P> 0.2, paired Wil-

coxon test, n = 7 patients). In contrast, when comparing the critical and the postcritical phases

of the preseizure period, the mean connectivity decreased significantly over all patients (Fig 2C,

P< 0.02, n = 8 patients) in concordance with previous works [4,30,31]. This result was validated

at a single-patient level in 7 out of 8 main patients (S6 Fig). Importantly, the postcritical effect

was not present during the control period (P> 0.5), suggesting that the global connectivity

decrease was specific to the preseizure period and could be a consequence of the critical phase.

Reduced network state variability spans across spatial and temporal

domains

As introduced earlier, the centrality entropy quantified the (spatiotemporal) variability of

simultaneous centrality sequences in a single scalar value. Then how was the variability reduc-

tion individually expressed along recording sites and along time samples? To answer this

Degenerate network dynamics anticipate seizures
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question, we repeated the previous nonparametric statistical analysis (Fig 2A) over both

recording periods using the spatial and temporal versions of centrality entropy independently

(Materials and methods). S7B Fig shows that the statistical effect was present in both

Fig 2. Time-dependent network state variability decreases near seizure onset during preseizure periods. (A)

Average normalized—to the (0, 1) range—centrality entropy for the main epileptic patients (n = 8) during a preseizure

period (in red, 9.5 h before the first seizure) and a control period (in blue, 9.5 h from the preceding day). Averages

were computed over time in nonoverlapping windows of 15 entropy samples each (total of 30 min) during both

periods. Each entropy sample was computed in a smaller window of 200 subsamples (120 s). Curves represent the

sequence of centrality entropy mean values, and error bars represent ±1 SD. In cyan, the sequence of consecutive time

steps lying in a significant clusterized difference (cluster-based test, P< 0.01). (B) Percentage of times that 30-min

intervals lie within a significant cluster. In cyan, significant clusters are located in their original position. In grey,

significant clusters are randomly placed along the preseizure periods of each patient. Error bars represent ±SEM. (C)

Time-average mean functional connectivity per patient (n = 8) along 3 consecutive subperiods of interest during

preseizure and control periods. The first subperiod (precritical) comprises intervals prior to the significant cluster, the

intermediate subperiod (critical) comprises intervals within the cluster, and the last subperiod (postcritical) comprises

postcluster intervals. In patients 1, 6, and 8, for whom the critical phase was attached to the seizure onset, the last

interval was considered to belong to the postcritical subperiod. Star denotes that there was a significant difference

between the critical and the postcritical subperiods of the preseizure period (P< 0.02, Wilcoxon test). Underlying

numerical values can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.2002580.g002
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dimensions for every patient, but it was not equally distributed over space and time in all cases

(S7 and S8 Figs). In sum, the decrease of network state variability observed during the presei-

zure period was associated with the occurrence of more similar centrality values over time

(less temporal variability), which in general exhibited more homogeneous centrality values

across recording sites (less spatial variability).

Altered occurrence of HCSs explains reduction of variability

The previous results described that network states (as modelled by the eigenvector centrality

measure) became more temporally redundant and more spatially homogeneous during the

critical phase. In turn, this reduced variability was associated with a nonsignificant variation of

the mean connectivity across patients (Fig 2C). Yet what was the actual interplay between net-

work dynamics and connectivity alterations during the preseizure period like? An initial time-

varying analysis of the mean functional connectivity (averaged over all recording sites’ pairs)

did not reveal consistent and sustained crossperiod differences over patients (S9 Fig). We then

related the reduction in network variability to alterations in the occurrence of certain states. In

particular, were there specific time-varying states producing the reported effect? We here

explored this question and inspected the eigenvector centrality sequences during the control

and preseizure periods. A visual inspection of these vector sequences for every patient sug-

gested the hypothesis that the amount of “homogeneous states” (represented as yellow strips

in the plot) was larger during the preseizure period than in the control period. Interestingly,

these homogeneous states were specifically associated with high-connectivity correlation

matrices in most of the patients (Fig 3A).

Centrality vector sequences like the one presented in Fig 3A were observed to be recurrent

over time. Then, we used a clustering algorithm to extract the 12 most representative vectors

over both periods of interest and classified each centrality vector at any given time accordingly

(Materials and methods). Consequently, the sequence of centrality vectors turned into a

sequence of discrete states whose frequency (or probability) over any time window could be

computed and compared across control and preseizure periods. Then, we formally tested the

hypothesis that the larger presence of homogeneous states during the preseizure period was

associated with the observed reduction in network state variability in each patient. For each

patient, we linearly regressed the crossperiod centrality entropy difference over 2 independent

state regressors—state probability and state heterogeneity—the latter being measured as the

SD across recording sites within a state (Fig 3B). We then computed the variance explained by

each regressor via its coefficient of determination (R-squared). To investigate the group-level

influence of every state’s connectivity into these associations, states were sorted for each

patient in decreasing order of connectivity (i.e., mean connectivity of its associated absolute-

valued correlation matrix), and coefficients of determination linked to state probability (Fig

3C, top) and state heterogeneity (Fig 3C, bottom) differences were distributed in boxplots for

each state. Fig 3C (left) shows, for both regressors (state probability and state heterogeneity),

that the most influential states on the reduced variability effect were those with highest-con-

nectivity correlation matrices. Specifically, the difference between the variance explained by

the highest-connectivity states and the remaining ones was significant in both state probability

(P< 0.01, Wilcoxon test) and state heterogeneity (P< 0.05) with large effect sizes (D = 3.2,

D = 1.6, Cohen’s d). Then, we computed the Spearman correlation between the highest-con-

nectivity state regressors and the centrality entropy reduction across the main patients to unra-

vel group-level correlation trends. Correlation values were of r = 0.7 (P< [1 × 10−5], n = 2328

time samples) and r = −0.45 (P< [1 × 10−5], n = 2328 time samples) for state probability and

heterogeneity increases, respectively, indicating that the reduction of network variability was
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Fig 3. High-connectivity instances influence network dynamics alterations. (A) Inspection of centrality values

around the critical phase (in cyan) suggested a higher presence of homogeneous (yellow strips) values across recording

sites during the preseizure period (left), which were associated with high-connectivity correlation matrices (right).

Color intensity (blue = lowest, red = highest) represents centrality and connectivity values across recording sites. (B)

Schematic representation (1 per patient) of crossperiod entropy differences as a function of 2 families of regressors:

changes of (discretized) states’ probability and changes of states’ heterogeneity across recording sites. (C) Variance

explained by each family of regressors (top, state probabilities; bottom, state homogeneities) in every patient highlights

HCSs as a common putative driver of the critical phase. Left: for each patient, discretized states (n = 12) were sorted

along the horizontal axis in mean connectivity decreasing order. For each sorted state, boxplots show the distribution

of the coefficient of determination (% variance explained) of each state across patients. Stars (� = P< 0.05, �� = P<
0.01, Wilcoxon test) denote the significance, and D (Cohen’s d) denotes the effect size of the difference between the

coefficients of determination of HCSs and the remaining states. Right: crossperiod comparison per patient of regressor

values associated with the HCS during the critical phase. Bars denote the average value of each regressor during the

critical phase of the preseizure (red) and control (blue) periods per patient. Error bars denote 1 SD. Upper stars show

that the differences in HCS probability and HCS SD were significant (� = P< 0.05, �� = P< 0.01, paired t test) after

multiple-test correction. All variables in this regression analysis were computed in time windows of 200 time samples

(120 s). Underlying numerical values can be found in S2 Data. HCS, high-connectivity state; SO, seizure onset.

https://doi.org/10.1371/journal.pbio.2002580.g003
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mostly explained by an increase in the frequency rate and homogeneity of the highest-connec-

tivity states.

To further investigate the interplay of HCSs with the preseizure period, we evaluated cross-

period state probability and heterogeneity differences at the patient level during the critical

phase previously identified in Fig 2A (Fig 3C right). First, we found that the probability of

HCS was significantly different in all patients across both periods (paired t test, P< 0.01, mul-

tiple test–corrected, D > 0.5). In 6 out of 8 patients, HCSs occurred significantly more often

during the critical phase, while they were less frequent in the 2 remaining patients (patients 2

and 5). Second, the homogeneity of HCSs were significantly increased in most of the patients

(paired t test, P< 0.01, multiple test–corrected, D > 0.5), except in patient 5, for whom it sig-

nificantly decreased, and in patient 2, for whom it remained statistically equal (P> 0.05).

Although the influence of HCSs into the preseizure period was consistent across all patients,

the differentiated trends found in some specific patients (patients 2 and 5) suggest that this

influence might be modulated by context-dependent variables. In sum, HCSs strongly contrib-

uted to make state dynamics less variable over time by altering the overall states’ variability

and imposing homogeneous centrality values across recording sites.

The key influence of HCSs into preseizure dynamics prompted us to evaluate the underlying

traces of iEEG data during their corresponding time instances in periods of high- and low-cen-

trality entropy. Our inspection of iEEG data from distinct epileptogenic sites over sequences of

HCS and non–high-connectivity state (nHCS) instances (see S11 Fig for an example) identified

these states as time segments in which the recorded electrical activity became transiently (low-

centrality–entropy epoch) or more persistently (high-centrality–entropy epoch) synchronized.

This synchronization was manifested through diverse patterns of oscillatory activity, which

often included a slow wave. In parallel, a clinical evaluation by the epileptologists discarded any

stereotyped epileptiform activity.

Crossvalidation analysis in additional interictal periods

We identified network dynamics changes in the preseizure period that were consistently

expressed with a similar trend (sustained variability reduction) across a heterogeneous cohort

of patients (Fig 1). Critically, these time-dependent changes could be associated with a com-

mon factor in all patients, namely, an alteration of recurrent high-connectivity time instances

(0.6 s) across recording sites. However, was this characterization specific to the preseizure

period? Or could it be alternatively ascribed to a postimplantation effect? To shed light onto

these questions, we analyzed an additional 121 h of interictal activity in 6 patients from time-

matched periods that were placed 2 d before the seizure (“precontrol” period) and a varying

number (across patients, mean = 3.83) of days after the seizure (“postcontrol” period). These

new interictal data were introduced in the analysis as schematized in Fig 4A As control experi-

ments, we defined 2 additional time-matched comparisons: a comparison between the precon-

trol and control periods (“C1”) and a comparison between the seizure and postseizure period

(“C2”). These new comparisons were then confronted with the original comparison particular-

ized to the 6 patients (“C0”). The overall analysis was made under the condition that period

lengths were time matched and balanced across comparisons for each patient. First, for every

comparison, we repeated the nonparametric statistical analysis of Fig 2A to determine the exis-

tence of putative critical phases in other periods. While comparison C2 only yielded 1 patient

with a significant effect, C1 revealed that entropy reductions could also occur in non-presei-

zure periods in 5 out of 6 patients (Fig 4B). Nonetheless, when grouping the 6 patients in Fig

4C, the entropy reductions of C1 were not followed by a functional connectivity decrease, in

contrast to C0, where the decrease showed a significant trend (P< 0.1, Wilcoxon test). Finally,
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we repeated the regression analysis of Fig 3B in patients with significant entropy reductions of

C1 (5 patients) and C0 (original comparison in 6 patients) and represented the results

Fig 4. Crossvalidation analysis in additional periods (patients 2–6 and 8). (A) Schematic representation of the

crossvalidation analysis involving patients 2–6 and 8 as well as 4 time-matched periods per patient. Time-matched

periods from 2 d before the seizure (precontrol) and from a varying number of days after the seizure (postseizure) gave

rise to 2 additional crossperiod comparisons (C1 and C2) to the previously analyzed comparison (C0). (B) Percentage

of significant intervals across patients in the crossperiod comparisons C0, C1, and C2 (cluster-based test, P< 0.01).

Error bars indicate SEM. (C) Reproducing the time-average mean connectivity plot of Fig 2C in comparisons C0 (in

red) and C1 (in blue). The upper star indicates that the difference between the time-average mean connectivity values

in the critical and postcritical phase trended a significant effect (� = P< 0.1, Wilcoxon test, N = 6) in C0. (D) Variance

explained by each family of regressors of Fig 3B using the comparison C0 (left) and C1 (right). The upper star indicates

that the difference between the coefficients of determination of HCSs and the remaining states trended a significant

effect (� = P< 0.1, Wilcoxon test). D denotes the effect size (Cohen’s d) of this difference. Underlying numerical values

can be found in S3 Data. HCS, high-connectivity state.

https://doi.org/10.1371/journal.pbio.2002580.g004
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analogously for each comparison. Crucially, for C1 periods, the variability decrease was more

weakly explained by crossperiod HCS differences than in C0 periods. Indeed, the significant

trend of C0 in the superior variance explained by HCSs (as compared to nHCSs) in both state

probability (P< 0.1, D = 1.5) and state homogeneity (P< 0.1, D = 1.6) could not be repro-

duced by C1 (P> 0.1). In conclusion, although decreases in network state variability may

occur across consecutive days (C1) preceding a seizure, we showed that those occurring during

the preseizure period were specifically tied to HCS alterations and a subsequent functional

connectivity decrease.

Influence of the critical phase into epileptogenic sites

Importantly, network dynamic changes observed during the preseizure period could be associ-

ated with an altered occurrence of HCSs in all patients. Yet how could this seemingly physio-

logic alteration evolve into generating seizures? In particular, how was this effect manifested in

those regions that were involved in seizure generation? To relate our findings to the regional

generation of seizures, we particularized our analysis to the clinically mapped epileptogenic

sites of 2 patients with very good postsurgical outcome (Engel I) and a follow-up period of

more than 4 y (patients 1 and 3, Fig 1, Materials and methods). Both patients are seizure free

(Engel I), with patient 3 exhibiting some residual ictal symptomatology (seizure auras). In

these patients, we specifically investigated the influence of epileptogenic sites in the preseizure

network dynamic changes. To provide a complete comparison of sites, we independently ana-

lyzed seizure-onset zone (SOZ) sites (brain zone involved in the initial stages of the seizure

spread), resected zone (RZ) sites (brain zone that rendered seizure-freeness after its resection),

and the remaining sites (nonepileptogenic zone [nEZ] sites). In both patients, we note that the

SOZ was not fully included in the RZ, and therefore the SOZ and RZ were partially overlap-

ping regions. To carry out this region-specific analysis, we first evaluated the temporal mean

and SD of the recording sites’ centrality in the SOZ, RZ, and nEZ sites over the control and

preseizure periods. Fig 5A plots the time-average centrality of RZ and nEZ as a function of the

remaining time to seizure onset. This figure illustrates in both patients that the time-average

centrality of the RZ was higher than the nEZ over each period of interest, and—during the crit-

ical phase (in cyan)—the centrality of RZ sites was reduced at the expense of an increase in the

centrality of nEZ sites. This preliminary observation suggested that both regions could partici-

pate in the preictal dynamics. However, was this participation equal across the 3 considered

regions? Fig 5B characterizes the network dynamics of the 3 regions by comparing the tempo-

ral SD of their recording site’s centrality in SOZ (inner left), RZ (inner central), and nEZ

(inner right) regions for control (blue) and preseizure (red) periods, inside (outer left) and out-

side (outer right) the critical phase. To assess crossperiod differences across regions of variable

size, we highlighted significant differences (P< 0.05, paired t test, multiple test–corrected)

exceeding an effect size threshold of 0.5 (large effect, Cohen’s d). Using this quantification, Fig

5B shows that the largest decrease in the centrality variability (D > 0.5) of patient 1 was only

localized in the RZ during the critical phase. For patient 3, large effect sizes were found in RZ

but also in nEZ during the critical phase. Outside the critical phase, crossperiod differences

attained lower effect sizes (D < 0.3).

We next investigated the influence of HCSs on epileptogenic and nonepileptogenic sites to

further describe the functional alterations occurring during the critical phase. More specifi-

cally, we compared the average connectivity per site (node strength) in the RZ, SOZ, and nEZ

during the presence of the HCS and the remaining states (nHCS) in each patient for control

and preseizure periods in the critical phase (Fig 5C). This analysis revealed several findings.

First, in both patients, crossperiod differences in strength occurred more prominently during
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Fig 5. Epileptogenic sites are specifically altered in the critical phase (patients 1 and 3). In the 2 patients with the

best postsurgical outcome after resectomy, recording sites in the RZ, SOZ, and in none of these regions (nEZ) were

independently analyzed. (A) For each patient and period, site-average eigenvector centrality in the RZ and nEZ

averaged within consecutive and nonoverlapping time windows of 120 s (200 samples) for 9.5 h prior to seizure-onset

time. In solid lines, average centrality of the RZ. In dashed lines, average centrality of the nEZ. Blue and red curves

stand for the control and preseizure periods, respectively. For illustration purposes, curves were averaged within

windows of 30 min (15 samples per window) to enable direct comparison with the estimated critical phase (highlighted

in cyan between 2 dashed vertical lines). Error bars denote 1 SD. (B) Crossperiod comparison (control in blue,

preseizure in red) of sites’ centrality variability averaged over RZ, SOZ, and nEZ inside (critical, left) and outside

(noncritical, right) the critical phase (cyan segment in panel A). Each sample per recording site was computed by

performing an average of the centrality’s temporal SD measured in consecutive and nonoverlapping time windows of

120 s (200 samples). (C) Effect of HCSs into the epileptogenic zone. For each patient, bars showing the site-average

connectivity strength RZ, SOZ, and nEZ during the HCS (outer left) and during the remaining states (nHCS, outer

right) in control (inner left, “c”) and preseizure (inner right, “p”) periods within the critical phase. Strength samples

were computed for each site by performing an average over all time instances (HCS and nHCS) during the critical

phase. In (B) and (C), sizes of significant effects (paired t test, P< 0.05, multiple test–corrected) equal or larger to 0.5
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HCSs (average D> 1.8) than in nHCSs (average D< 0.7). Second, during HCSs, strengths

increased from control to preseizure periods consistently in the 3 studied regions, while the

differences were of varying signs across regions during nHCSs. Third, the region that exhibited

the highest increase in strength was the RZ for both patients (D = 2.9, 2.8), followed by the

nonepileptogenic sites (D = 2.2, 1.4) and the SOZ (D = 1.3, 0.7). Therefore, the abnormal

occurrence of HCSs altered the connectivity gradient between epileptogenic and nonepilepto-

genic regions by strongly boosting the connectivity of the RZ sites. In particular, during the

critical phase of the preseizure period, this increased connectivity was more persistent than in

the control period, resulting in a reduced variability of RZ centrality values (Fig 5B). Finally,

we evaluated how the postcritical functional connectivity decrease (Fig 2C) was spread over

the 3 regions in both patients. S12 Fig shows that this effect was reproduced in each region

(D� 1.2), with, again, the RZ showing a more prominent decay (average D = 2.1).

To relate some of our regional findings with the patients’ postoperative outcome, we

extended the analysis of the sites’ temporal variability (Fig 5B) to the main patients’ entire

cohort (S13 Fig). This included 3 patients who underwent RFTC with variable outcomes

(patients 2, 6, Engel I and patient 8, Engel III), 2 patients with bad postsurgical outcome after a

follow-up period of more than 1 y (patients 4 and 5, Engel III), and 1 patient who was seizure

free after SEEG monitoring (patient 7). The results are depicted for each patient in S13 Fig.

Despite the variety of treatments and outcomes, S13 Fig consistently shows for all patients the

larger contribution of epileptogenic sites than nonepileptogenic to the network variability

change during the critical phase. Therefore, we elaborated on this observation in S4 Fig to

show the temporal variability change of the nonresected and nonablated sites of all main

patients during the critical phase as a function of their postoperative outcome. In general, the

high values of the nontreated regions in Engel III patients (relative to Engel I patients) during

the critical phase provide preliminary evidence that bad postoperative outcomes are associated

with regions of large preseizure alterations not being treated.

Discussion

This study examined the existence of a common alteration principle in brain network dynam-

ics during long-lasting periods of activity preceding the first clinical seizure in 10 patients with

focal pharmacoresistant epilepsy. Using a comparative analysis between genuine preseizure

periods and time-matched periods of interictal activity per patient, we were able to consistently

show a sustained decrease in the variability of network states that was followed in most of the

patients by a functional connectivity drop of approximately 30 min before the seizure onset

(Fig 6). Further analysis revealed factors altering this variability in the temporal (time samples)

and spatial (recording sites) domains. First, this decrease in network variability was associated

with an abnormal occurrence of HCSs during preseizure periods as compared to previous

days. Second, the reduction in temporal variability and the functional connectivity decrease

was mainly localized in the RZ of the 2 patients with best postsurgical outcome.

Over the last decade, functional MRI (fMRI) studies have showed growing evidence that

dynamic connectivity patterns (“brain dynamic repertoire”) may be an intrinsic property of

brain function and disease [25]. Particular examples of disrupted dynamics have been found in

Alzheimer disease [32] and neuropsychiatric disorders [33] for which translation to new clini-

cal biomarkers is still a matter of discussion ([34] and references therein). In modern epilepsy

were reported using Cohen’s d and approximated to the first decimal. In all subfigures, error bars represent ± 1 SD.

Underlying numerical values can be found in S4 Data. c, control; HCS, high-connectivity state; nEZ, nonepileptogenic

zone; nHCS, non–high-connectivity state; p, preseizure; RZ, resected zone; SOZ, seizure-onset zone.

https://doi.org/10.1371/journal.pbio.2002580.g005
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research, the dynamic principle of brain function has been postulated to be commonplace to

understand how seizures are generated [35], but most network studies have studied alterations

in static functional network parameters, with a few recent exceptions [20,24,36–39]. In this

context, our approach differs from previous works in several key elements. To name a few, we

formulate a hypothesis about the variability of functional network states at short time scales

(rather than using a grand-average measure), the analysis of long-lasting (approximately 10-h)

continuous interictal periods (rather than a selection of short epochs), and—more importantly

—the use of time-matched reference epochs outside the preseizure period to assess specificity.

Next, we further elaborate on the latter point.

When studying the variability of brain dynamics along long recording periods, one is con-

fronted with the confounding effect of circadian rhythms [23,36,40], which span across sleep

and wake phases. These rhythms may become critical when one characterizes specific brain

configurations associated with the preictal state, which has been shown to last approximately 4

h [41]. Previous studies on the preictal state have analyzed preictal changes with reference to

previous interictal periods, not necessarily time-matched. Inspired by a previous work [42],

the strategy used here tackled this issue by defining time-matched reference periods from pre-

cedent and subsequent days, thus allowing for a more specific identification of preictal changes

in brain network dynamics. Although this approach may not be sufficient to control for all

daily physiological state transitions, our preliminary data on the relationship between patients’

putative critical phases and seizure onset times discard the influence of daily rhythms into our

main results. However, a larger cohort of patients with variable seizure times and a good read-

out of their sleep phases will be necessary to address this question in the future. Another key

aspect of the study was the use of the first monitored clinical seizure occurring during the first

implantation days. This choice was pivotal to analyze comparable long-term network dynamic

changes across patients with limited influence of confounding factors such as the reduction of

antiepileptic drugs, the effect of previous ictal processes, and the response to clinical stimula-

tion. In most of the studied patients, this first seizure was the first event of a succession of sei-

zures separated by short interictal periods of a few hours or minutes, which are clinically

known as seizure clusters [43]. Therefore, understanding the preictal process of this initial sei-

zure can also have important consequences for the control of later ictal activity. In any event,

the analysis introduced here should be extended to subsequent seizures in future studies to

Fig 6. Scheme representing the preictal characterization with 2 sequential events of different nature and duration:

The critical phase and the global functional connectivity decrease.

https://doi.org/10.1371/journal.pbio.2002580.g006
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determine whether the presented characterization is specific to seizures preceded by long

interictal periods.

A central question in seizure prediction research has been the role of synchronization [44]

during the preictal period. Some studies have reported drops in synchronization a few hours

before seizure onset [30], while others have pinpointed the coexistence of distinct synchroniza-

tion states depending on the recorded structures [12,31]. Even though a clear mechanism of

such alterations is still missing, the most successful algorithms applied to large data sets make

use of correlation matrices as key data features [9]. The findings presented in this study sup-

port the view that preictal correlation patterns are state dependent [22,24,31] over time win-

dows of 600 ms, and therefore their alterations should be also analyzed and interpreted at this

time scale. More precisely, our results suggest that a time-dependent variation in the occur-

rence of highly correlated time instances may be at the origin of the preictal state. This varia-

tion was manifested in most of the patients as an excess of HCSs, while in 2 patients it was

manifested as a deficit. Although preictal connectivity trends are known to be patient specific

[44], they should be further investigated against the influence of patient-dependent variables

(e.g., implantation schemes, monitored behavioral states), a question that was outside of the

scope of this study.

In recent years, there has been accumulated evidence that seizure generation and spread

involves complex interactions between seizure-generating and surrounding areas [14,19,21].

Evaluating network dynamics in patients with good postsurgical outcome (>4 y), we were able

to relate our findings to clinically mapped epileptogenic sites, namely the SOZ and the RZ, as

well as the remaining sites. In these patients, the network centrality was higher in the epilepto-

genic than in nonepileptogenic sites, in line with previous studies [45,46,47]. Not surprisingly,

changes in overall centrality within periods simultaneously occurred during the critical phase

where centrality values from both regions approached (Fig 5A). Crucially, this occurred during

a significant decrease in the (temporal) centrality variability of the RZ (Fig 5B), which was spe-

cific in patient 1 and also present in the nonepileptogenic sites of patient 3, who presented a

slightly worse postsurgical outcome. The analysis of the influence of HCSs on validated epilep-

togenic sites supports the idea that these states might destabilize physiological state dynamics

by increasing the connectivity of key sites within the epileptic network during the critical

phase (Fig 5C). The follow-up of this phase is shown to be a global functional connectivity

decrease, which is again more prominently manifested across resected nodes (S12 Fig). We

speculate that this decrease in connectivity could be the result of central nodes of the epileptic

network adopting a more autonomous activity that would result in the generation of a seizure.

The inclusion in the analysis of additional patients with different postoperative outcome sug-

gests that preseizure alterations in centrality variability may be a promising biomarker for tar-

geting epileptogenic regions during surgery and ablation (S14 Fig). Yet a larger study

including more seizure-free patients will be necessary to fully elucidate the mutual influence of

physiological network dynamics and the epileptic network during the transition from interictal

activity to focal seizures.

The results shown in this study prompt us to introduce new ingredients in seizure-predic-

tion algorithms such as the control for daily rhythms [48] and the continuous tracking of

time-dependent linear connectivity alterations at short time scales (<1 s). Some considerations

are yet to be mentioned. First, the use of intracranial recordings is a limiting factor in the spa-

tial analysis of brain states, thus making them a priori subject-dependent. Nonetheless, it is

recognized that the SEEG methodology offers an optimal temporal and spatial resolution of

neurophysiological recordings for neural signal analysis in comparison with other techniques

in patients with epilepsy. Second, this study was aimed at defining network states in a linear

and instantaneous form using zero-lagged functional connectivity rather than effective
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connectivity [49]. Although our results were validated against a nonlinear coupling measure at

different narrow bands, the extension of our analysis to nonlinear [50] and linear [51] direc-

tional methods in follow-up studies may provide additional information on specific connectiv-

ity changes underlying preseizure alterations. In conclusion, this work provides

electrophysiological evidence for characterizing the preseizure period as a long-lasting process

in which epileptic networks undergo a sequential functional reorganization. Further investiga-

tions under this conception will help unravel seizure generation mechanisms from a network

perspective, provide practical insights into how to predict and control ictal activity, and may

constitute a general approach to analyze dynamic alterations of other neuropathologies.

Materials and methods

Ethics statement

All diagnostic and surgical procedures were approved by The Clinical Ethical Committee of

Hospital del Mar, and all clinical investigation was conducted according to the principles

expressed in the Declaration of Helsinki. Following the Declaration of Helsinki, patients were

informed about the procedure, and they gave their written consent beforehand.

Patients and recordings

A total number of 344 h of iEEG recordings from 10 patients with pharmacoresistant focal-

onset seizures were analyzed. A summary of the patients’ characteristics is given in Table 1.

We included patients who presented the first spontaneous clinical seizure in a timeframe that

allowed us to perform a controlled analysis of EEG recordings during the preseizure period.

Specifically, each patient in the study was selected if her first video SEEG–recorded clinical sei-

zure had occurred after at least 30 h (average value: 71.4 ± 19.1 h; mean ± SD) with no presence

of spontaneous clinical seizures. Among the selected patients, we included 2 patients present-

ing potential perturbation factors affecting the preseizure period (patients 9 and 10). Patient 9

had been electrically stimulated 16.5 h before the first recorded seizure, and patient 10 pre-

sented a subclinical seizure 6.1 h before the first clinical seizure onset.

For each patient, the selection of recording sessions was as follows. We considered up to 12 h

before the first monitored clinical seizure occurred. As a baseline reference, we selected the

same time period from the previous day (control period). For independent validation of our

results, we selected additional time-matched periods of variable length in 6 patients (patients

2–6 and 8; average period length: 10 h) from 2 d before the seizure onset (precontrol period)

and a few days after the seizure onset (postcontrol period; average value = 3.83 d). No more

patients could be added to the validation analysis for time limitations (patients 7 and 10), a sub-

stantial modification of the implantation montage during the first monitoring days (patient 1),

or the presence of direct electrical stimulation in the iEEG recordings (patient 9).

After detecting recording cuts in a few patients, we restricted the analysis to 11 h per session in

patients 1 through 9 and to 2.4 h per recording session in patient 10 to ensure a time-matched

crossperiod comparison. Among the selected patients, 2 patients achieved seizure freedom after

surgical resection and radiofrequency thermocoagulation (RFTC, [52]) with a follow-up of 4 y

and 3 y, respectively (patients 1 and 2, Engel IA). An additional patient only exhibited seizure

auras after surgical resection and a follow-up of 4 y (patient 3, Engel IB). We considered patients 1

and 3 to have a validated very good postsurgical outcome. Therefore, for the purpose of analyzing

epileptogenic sites, we separately considered the diagnosed SOZ and the RZ of these 2 patients in

Fig 5. The SOZ was independently marked by 2 epileptologists (AP and RR) and consisted of n =
5 (anterior hippocampus) and n = 9 (anterior hippocampus, amygdala) recording sites for patient

1 and 3, respectively. The RZ covered 24 contacts in patient 1 (parts of anterior hippocampus,
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temporal pole, and entorhinal cortex) and 12 contacts in patient 3 (parts of anterior, posterior hip-

pocampus, and amygdala). The remaining patients presented one of these cases: they had not

undergone surgery (patients 2, 6, 8, 9), had a non–sufficiently long follow-up period (<18 mo,

patients 4 and 5), had not yet been operated on (patient 7), or exhibited a bad postoperative out-

come (patient 10). All recordings were performed using a standard clinical EEG system (XLTEK,

subsidiary of Natus Medical, Pleasanton, CA) with a 500 Hz sampling rate. A uni- or bilateral

implantation was performed accordingly, using 5 to 15 intracerebral electrodes (Dixi Médical,

Besançon, France; diameter: 0.8 mm; 5 to 15 contacts, 2 mm long, 1.5 mm apart) that were stereo-

tactically inserted using robotic guidance (ROSA, Medtech Surgical, New York, NY).

Data preprocessing

Intracranial EEG signals were processed in the referential recording configuration (i.e., each

signal was referred to a common reference). Examples of iEEG signals are displayed in S11 Fig.

All recordings were filtered to remove the effect of the alternate current (Notch at 50 Hz and

harmonics using a FIR filter). Then, signals were further band-pass filtered between 1 Hz and

150 Hz to remove slow drifts and aliasing effects, respectively. Artifacts were removed in each

period by detecting time window samples (600 ms) such that mean (over pairs of sites) abso-

lute-valued correlation values and mean (over sites) absolute-valued voltage amplitudes were

3 SDs larger than the median values across each period. To perform functional connectivity

analysis, each iEEG signal was divided into consecutive and nonoverlapping 0.6 s–long win-

dows (300 samples with 500 Hz sampling rate) to balance the requirements of approximate sta-

tionarity of the time series (requiring short epochs) and of sufficient data to allow accurate

correlation estimates (requiring long epochs).

Functional connectivity analysis

There are different methods to assess functional connectivity from time series data based on

coupling measures [53,54]. Previous research on the comparison of linear and nonlinear cou-

pling measures has resulted in having distinct “ideal” measures for distinct studied situations

[55]. Here, we chose to employ Pearson correlation—a zero-lagged linear correlation measure

—for its good tradeoff between simplicity and robustness [54] and, more importantly, because

it allowed for a convenient definition of network state as it will be explained later.

Let x and y be 2 N-length time series representing 2 recorded signals and let �x and �y be

their respective sample means. Their sample Pearson correlation is estimated as

rðx; yÞ ¼

XN

i¼1
ðxðiÞ � �xÞðyðiÞ � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ðxðiÞ � �xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ðyðiÞ � �yÞ2

q ð1Þ

For each patient and each consecutive 0.6 s–long window, we computed the absolute value

of the coupling measure across all pairs of electrode contacts. For most of the patients, the over-

all pairwise computations resulted in approximately 123,000 sequential connectivity matrices

combining both recording sessions (control and preseizure periods). In the current study, we

did not test the statistical significance of each pairwise coupling because our purpose was to

track the overall network dynamics regardless of pairwise thresholding methods.

Definition of network states

For each patient, we characterized each correlation matrix as a functional network. This net-

work was modelled as a weighted undirected graph, such that electrode contacts represented
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the nodes and absolute-valued pairwise correlation values across represented their weighted

edges [56]. Then, we computed the network measure of eigenvector centrality for each connec-

tivity matrix [57]. For a given graph G=(V,E), let A=(av,t) be its weighted adjacency matrix.

The relative centrality score xv of vertex v can be defined as

xv ¼
1

l

X

t2V
av;txt; ð2Þ

which can be rearranged in a matrix form as λx=Ax. Given the requirement that all entries in x
must be non-negative, the Perron–Frobenius theorem implies that only the greatest eigenvalue

results in a proper centrality measure [57]. Therefore, the centrality measure is given by the

eigenvector associated with the largest eigenvalue of the connectivity matrix. Then, the ith con-

tact is assigned the ith component of this eigenvector such that i goes from 1 to number of

recording sites in a patient. The eigenvector centrality is by definition a self-referential mea-

sure of centrality, i.e., nodes have high eigenvector centrality if they connect to other nodes

that have high eigenvector centrality [58], which ultimately provides a measure of relative

importance of each node in the network. The eigenvector centrality measure has been applied

to resting-state fMRI studies [59] and more recently to ECoG recordings of epileptic patients

[20].

By computing the centrality in each 0.6 s–long connectivity matrix, we obtained—for each

patient—independent eigenvector centrality sequences along each recording session. If we

consider each connectivity matrix to represent a brain state [60], these vectors can be regarded

as representative elements of these states in a vector space of a dimension equal to the number

of recording sites. Furthermore, these vectors point to the direction that best summarizes the

original brain state. In particular, every time that a significant change arises in the connectivity

matrix, the eigenvector centrality rotates to update the relative importance (“centrality”) of

each contact within the new network configuration.

Choice of zero-lagged correlation and eigenvector centrality

Computing the eigenvector centrality over zero-lagged connectivity matrices was key for re-

garding our network state measure as an informative summary of how the set of simultaneous

iEEG recordings were instantaneously coupled within a short time window. Indeed, under

these conditions, the eigenvector centrality corresponds, by definition, to the first principal

component of the absolute-valued correlation matrix, i.e., the vector in the space of recording

sites that accounts for the largest variance of the whole set of (normalized) iEEG recordings in a

given time window. Combinations of other coupling measures and network features could lead

to alternative definitions of network states. For the sake of comparison, we also provide in S4

Fig the results obtained by combining zero-lagged correlation with a different network feature

—the node strength—which can be defined as the average pairwise connectivity of this node

with the remaining ones [58]. Indeed, S4 Fig shows that the node strength yielded, in general,

statistically weaker results than the eigenvector centrality. Furthermore, we investigated the pos-

sibility of combining a synchronization measure such as the phase-locking value [61] with the

eigenvector centrality. This measure may capture contributions of non–zero-lagged couplings

as well as nonlinear effects. To illustrate the difference between both measures in the frequency

domain, we repeated the cluster-based statistical analysis of Fig 2A for consecutive frequency

narrow bands over the range 1 to 120 Hz. S5 Fig shows that the results were qualitatively similar

across all bands for most of the patients. Yet in those patients for whom discrepancies were

found, the phase-locking value measure yielded weaker peaks than the (absolute-valued) zero-

lagged correlation.
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Evaluating network state dynamics via Gaussian entropy

Our goal was to evaluate the variability of these representative states in each period. The long

sequence of centrality vectors for each period can be equivalently regarded as a stream of

simultaneous centrality time series, one for each recorded contact. Then, one can evaluate the

spatiotemporal variability of the centrality time series through the application of the multivari-

ate Gaussian entropy [28] in a given estimation time window, which we choose for this study

to be 120 s. The multivariate Gaussian entropy is defined as

Hc ¼
K
2
ð1þ lnð2pÞÞ þ

1

2
lnðdet SÞ; ð3Þ

such that K is the number of recording sites and S is the covariance matrix of the centrality

time series estimated in the estimation windows. By considering centrality vectors to be inde-

pendent, S in (4) becomes a diagonal matrix, and the Gaussian entropy captures the aggre-

gated variability of the centrality vectors across the temporal dimension:

Hc
ð1Þ ¼

K
2
ð1þ lnð2pÞÞ þ

1

2

X

i¼1:Kln Si;i: ð4Þ

By subtracting (4) from (3), one can evaluate the variability of the centrality vectors across

the spatial dimension:

Hð2Þc ¼
1

2
ðlnðdet SÞ �

X

i¼1:K
ln Si;iÞ: ð5Þ

Therefore, the 2 contributions sum up to give the Gaussian entropy (4):

Hc ¼ Hð1Þc þHð2Þc : ð6Þ

Choice of window sizes (correlation and entropy)

The choice of 0.6 s (300 samples) for the correlation window was critical to gain statistical

power. Choices of 1, 5, or 10 s were shown to weaken the detection of network dynamics

changes because they were intermingling high- and low-connectivity effects in the same win-

dow. On the other hand, values of entropy windows ranging from 100 to 200 s yielded quite

stable results. We selected a window size of 120 s (200 samples) because it offered a good trade-

off between estimation accuracy (200 samples are good enough to estimate covariance matri-

ces of at most 120 variables) and stationarity.

State clusterization

To associate the network variability decrease observed in the main patients with the occur-

rence of specific recurrent connectivity states, we jointly clustered the eigenvector centrality

sequences in the analyzed time-matched comparisons using the k-means algorithm [62]. In

the main results, we fixed the number of clusters to 12 to cover a sufficiently wide range of

visually inspected connectivity states per patient. This cluster size was selected after exploring

the stability of the results illustrated in Fig 3C for the range of values n = 8–12. In particular,

S10 Fig shows that these results were qualitatively very similar for the choices n = 8, 10, 12.
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Statistical analysis

The preseizure decrease in centrality entropy was statistically tested as follows. We started by

windowing consecutive entropy samples (n = 15, 30 min) in nonoverlapping and paired time

segments across each period, and then we computed the effect size for each segment pair using

Cohen’s d [63]. We then clustered adjacent segments with a criterion that effect size be larger

than 0.15 (moderate effect) over a minimum of 4 adjacent segments (2 h) and considered the

aggregated sum of these segments’ effect sizes as the main statistic. We further checked the sta-

tistical significance of this value through nonparametric statistical testing based on Monte

Carlo sampling [64]. More concretely, for each patient with time segments satisfying the above

criterion, we computed 1,000 random permutations of the centrality entropy samples across

both conditions (within preseizure or control period) at each time segment and repeated the

same segment clusterization procedure to obtain 1,000 surrogate statistic values. These values

were used to approximate a null distribution against which we compared the original aggre-

gated effect size value via a right-tail–sided significance test. If the test’s significance value was

below 0.05, we considered the preseizure interval formed by the adjacent segments to exhibit

significantly lower centrality entropy than the one obtained in the control period and we iden-

tified it as a critical phase. In addition, we made use of the Kolmogorov Smirnov test to assess

that the critical phase distribution across patients was significantly different from a distribu-

tion of randomly placed significant clusters of the same duration.

In general, to test paired or unpaired samples across time (e.g., preseizure versus control

period) or recording sites (e.g., seizure-onset sites across different periods) per patient, we

made use of the Wilcoxon test for small sample sizes and the t test for sufficiently large num-

bers of samples (>30). However, in most comparisons, noncomparable or very large numbers

of samples could overestimate statistical effects. Therefore, in those cases, we computed and

reported the effect size using Cohen’s d (based on the difference between medians and/or

means for Wilcoxon test and/or t test). To deal with the multiple-comparison problem, we

applied the Holm–Bonferroni correction [65] over patients in Fig 3 and over combinations of

regional comparisons in Fig 5. We resorted to linear regression and the coefficient of determi-

nation (R-squared) to evaluate the association between crossperiod differences in state proba-

bility and/or heterogeneity and the decrease in centrality entropy in Fig 3 and Fig 4. Finally,

mean connectivity values across electrode pairs were computed using the Fisher transform

[66].

Note on the typology of statistical tests

The main results combined within-subject and group-level statistical tests depending on the

question at hand. Within-subject tests can be found in Fig 2A, Fig 3C (right), and Fig 5.

Group-level tests can be found in Figs 2B, 2C, 3C (left), 4B, 4C, and 4D.

Supporting information

S1 Data. Numerical values underlying Fig 2. Fig 2A results: Data that generate the centrality

entropy plots and justifies the statistics of Fig 2A. Rows 2–9: patients 1–8; Columns 2–11:

mean entropy during the control period, SD of the entropy during the control period, mean

entropy during the preseizure period, SD of the entropy during the preseizure period, signifi-

cant period indices, cluster-based test P-value, cluster-based statistic value, surrogates mean,

surrogates SD, 1,000 surrogate vectors. Fig 2B results: top: percentage of intervals within the

critical phase over patients for the original and surrogate distribution. Rows 2–3: original clus-

ters, randomly placed clusters. Columns 2–3: percentage value, SEM. Bottom: P-value of the

Kolmogorov–Smirnov test between both distributions. Fig 2C results: data that generate the
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mean connectivity plots across preseizure and control subperiods and justifies the statistics of

Fig 2C. Top: rows 2–9: patients 1–8. Columns 2–7 in order: precritical subperiod during con-

trol period, precritical subperiod during preseizure period, critical subperiod during control

period, critical subperiod during preseizure period, postcritical subperiod during control

period, postcritical subperiod during preseizure period. Bottom: statistic results for the com-

parison across subperiod samples. Rows 12–15: P-value of paired Wilcoxon test in precritical

versus critical (preseizure), P-value of paired Wilcoxon test in critical versus postcritical (pre-

seizure), P-value of paired Wilcoxon test in precritical versus critical (control), P-value of

paired Wilcoxon test in critical versus postcritical (control).

(MAT)

S2 Data. Numerical values underlying Fig 3. Fig 3A results: data that generate the centrality

entropy plots of patient 3. Fig 3C results: data that generate the boxplots of Fig 3C left and the

bars of Fig 3C right, and justifies the statistics shown for each panel. Top: rows 2–9: patients

1–8. Columns 2–13: pairs of R-squared coefficients for states 1–12 (in decreasing mean con-

nectivity value). Columns 14–25: mean HCS probability in control period, SD of HCS proba-

bility in control period, mean HCS probability in preseizure period, SD of HCS probability in

preseizure period, P-value paired t test for HCS probability, effect size (Cohen’s d), mean HCS

SD (heterogeneity) in control period, SD of HCS SD in control period, mean HCS SD in pre-

seizure period, SD of HCS SD in preseizure period, P-value paired t test for HCS SD, effect size

(Cohen’s d). Bottom: statistic results for the comparison between HCS and nHCS R-squared

coefficients in probability and heterogeneity (Fig 3C left). Rows 12–13: HCS versus nHCS

probabilities, HCS versus nHCS SD. Columns 2–3: P-value of paired Wilcoxon test, effect size

of the test. HCS, high-connectivity state; nHCS, non–high-connectivity state.

(MAT)

S3 Data. Numerical values underlying Fig 4. Fig 4B results: percentage (over patients) of sig-

nificant periods found in each comparison. Rows 2–4: Comparison 0, Comparison 1, Compar-

ison 2. Columns 2–3: percentage (over patients), SEM. Fig 4C results: data that generate the

mean connectivity plots for Comparisons 0 and 1. Top: mean connectivity values for Compari-

son 0 (original) and Comparison 1. Rows 2–3: Comparison 0, Comparison 1. Columns 2–7:

mean connectivity during precritical subperiod, SEM, mean connectivity during critical sub-

period, SEM, mean connectivity during postcritical subperiod, SEM. Bottom: statistics of

mean connectivity critical versus postcritical subperiod. Rows 6–7: Comparison 0, Compari-

son 1. Column 2: P-value paired Wilcoxon test. Fig 4D results: data that generate the boxplots

of Fig 4D. Top: boxplots for comparison C0. Rows 3–8: patients 2–6 and 8. Columns 2–13:

pairs of R-squared coefficients for states 1–12 (in decreasing mean connectivity value). Med-

ium: Comparison C1. Rows 12–17: patients 2–6 and 8. Columns 2–13: R-squared coefficients

for states 1–12 (in decreasing mean connectivity value). Bottom: statistic results for the com-

parison between HCS and nHCS R-squared coefficients in probability and heterogeneity.

Rows 20–21: HCS versus nHCS probabilities, HCS versus nHCS SD. Columns 2–5: P-value

paired Wilcoxon test for C0, effect size for C0 (Cohen’s d), P-value paired Wilcoxon test for

C1, effect size for C1 (Cohen’s d). HCS, high-connectivity state; nHCS, non–high-connectivity

state.

(MAT)

S4 Data. Numerical values underlying Fig 5. Fig 5A results: mean eigenvector centrality val-

ues in the RZ and the nEZ. Rows 2–3: patient 1, patient 3. Columns 2–9: mean centrality in the

RZ (control period), SD of the centrality in the RZ (control period), mean centrality in the RZ

(preseizure period), SD of the centrality in the RZ (preseizure period), mean centrality in the
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nEZ (control period), SD of the centrality in the nEZ (control period), mean centrality in the

nEZ (preseizure period), SD of the centrality in the nEZ (preseizure period). Fig 5B results:

temporal variability in the RZ, SOZ, and nEZ. Top: differences in the critical phase. Bottom:

differences in the noncritical phase. Rows 2–3 and rows 8–9: patient 1, patient 3. Columns

2–19: mean temporal variability in the RZ (control period), SD of the temporal variability in

the RZ (control period), mean temporal variability in the RZ (preseizure period), SD of the

temporal variability in the RZ (preseizure period), P-value paired t test, effect size (Cohen’s d),

mean temporal variability in the SOZ (control period), SD of the temporal variability in the

SOZ (control period), mean temporal variability in the SOZ (preseizure period), SD of the

temporal variability in the SOZ (preseizure period), P-value paired t test, effect size (Cohen’s

d), mean temporal variability in the nEZ (control period), SD of the temporal variability in the

nEZ (control period), mean temporal variability in the nEZ (preseizure period), SD of the tem-

poral variability in the nEZ (preseizure period), P-value paired t test, effect size (Cohen’s d).

Fig 5C results: node strength in the RZ, SOZ, and nEZ. Top: node strength in HCS. Bottom:

node strength in nHCS. Rows 2–3 and rows 8–9: patient 1, patient 3. Columns 2–19: mean

node strength in the RZ (control period), SD of the node strength in the RZ (control period),

mean node strength in the RZ (preseizure period), SD of the node strength in the RZ (presei-

zure period), P-value paired t test, effect size (Cohen’s d), mean node strength in the SOZ (con-

trol period), SD of the node strength in the SOZ (control period), mean node strength in the

SOZ (preseizure period), SD of the node strength in the SOZ (preseizure period), P-value

paired t test, effect size (Cohen’s d), mean node strength in the nEZ (control period), SD of the

node strength in the nEZ (control period), mean node strength in the nEZ (preseizure period),

SD of the node strength in the nEZ (preseizure period), P-value paired t test, effect size

(Cohen’s d). nEZ, nonepileptogenic zone; RZ, resected zone; SOZ, seizure-onset zone.

(MAT)

S5 Data. Numerical values underlying S1 Fig.

(MAT)

S6 Data. Numerical values underlying S2 Fig.

(MAT)

S7 Data. Numerical values underlying S3 Fig.

(MAT)

S8 Data. Numerical values underlying S4 Fig.

(MAT)

S9 Data. Numerical values underlying S5 Fig.

(MAT)

S10 Data. Numerical values underlying S6 Fig.

(MAT)

S11 Data. Numerical values underlying S7 Fig.

(MAT)

S12 Data. Numerical values underlying S8 Fig.

(MAT)

S13 Data. Numerical values underlying S9 Fig.

(MAT)
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S14 Data. Numerical values underlying S10 Fig.

(MAT)

S15 Data. Numerical values underlying S11 Fig.

(MAT)

S16 Data. Numerical values underlying S12 Fig.

(MAT)

S17 Data. Numerical values underlying S13 Fig.

(MAT)

S18 Data. Numerical values underlying S14 Fig.

(MAT)

S1 Fig. Crossperiod differences of centrality entropy raw values (patients 1–8). (A) Central-

ity entropy curves for the control period (blue) and the preseizure period (red) are shown for

all patients for 9.25 h preceding seizure onset time. In cyan, the sequence of consecutive time

steps lying in a significant clusterized difference (randomization test, P< 0.01). (B) Results for

the cluster-based significance test. White bars show the value of the cluster-based statistic.

Grey bars show the average across all surrogate statistic values. Error bars indicate ± 1 SD.

Underlying numerical values can be found in S5 Data.

(TIF)

S2 Fig. Effect of daily rhythms. (A) Mean intracranial EEG signal energy (across channels

and time windows of 120 s, bipolar montage) of patient 5 for more than 10 h preceding the sei-

zure onset time in the control (blue) and preseizure period (red). The common time-depen-

dent patterns of both traces reflect the potential effect of circadian rhythms into this basic

measure. (B, C, D) Scatter plots of seizure onset time versus preictal segment properties (B,

clusterized effect size; C, duration; D, remaining time to seizure onset) across patients 1–8. P-

value lower bounds of Spearman correlation in each panel indicate that none of these associa-

tions was found significant. Underlying numerical values can be found in S6 Data. EEG,

electroencephalogram.

(TIF)

S3 Fig. Results for the control patients (patients 9 and 10). Time-dependent network state

variability and functional connectivity for control patients. (A) Average normalized—to the (0,

1) range—centrality entropy for the control patients (n = 2) during a preseizure period (in red,

9.5 h before the first seizure) and a control period (in blue, 9.5 h from the preceding day).

Averages were computed over time in nonoverlapping windows of 15 entropy samples each

(total of 30 min) during both periods. Each entropy sample was computed in a smaller window

of 200 subsamples (120 s). Curves represent the sequence of centrality entropy mean values,

and error bars represent ± 1 SD. In cyan, the sequence of consecutive time steps lying in a sig-

nificant clusterized difference (randomization test, P< 0.01). (B) Results for the cluster-based

significance test. White bars show the value of the cluster-based statistic. Grey bars show the

average across all surrogate statistic values. Error bars indicate ± 1 SD. (C) Time-average mean

functional connectivity per patient (n = 2) along 3 consecutive subperiods of interest during

preseizure and control periods. The first subperiod (precritical) comprises intervals prior to

the significant cluster, the intermediate subperiod (critical) comprises intervals within the clus-

ter, and the last subperiod (postcritical) comprises postcluster intervals. Underlying numerical

values can be found in S7 Data.

(TIF)
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S4 Fig. Comparison between network measures. (A) Strength entropy curves for the control

period (blue) and the preseizure period (red) are shown for every patient for 9.25 h preceding

seizure onset time in a similar fashion as in Fig 2A. In cyan, the sequence of consecutive time

steps lying in a significant clusterized difference (cluster-based randomization test, P< 0.01).

(B) Results for the cluster-based significance test using the strength entropy (left) and the

eigenvector centrality (right) to compute the multivariate entropies. White bars show the value

of the cluster-based statistic. Grey bars show the average across all surrogate statistic values.

Error bars indicate ± 1 SD. Underlying numerical values can be found in S8 Data.

(TIF)

S5 Fig. Stability of the statistics of Fig 2A using a nonlinear measure and frequency narrow

bands. Cluster-based statistic of the nonparametric test (Fig 2A) computed for eigenvector

centrality sequences based on Pearson correlation (original, blue) and phase-locking value

(red) on frequency narrow bands from 1 to 120 Hz. Underlying numerical values can be found

in S9 Data.

(TIF)

S6 Fig. Postcritical functional connectivity decrease per patient. Time-average mean func-

tional connectivity computed for each patient in 3 periods of interest for 9.25 h preceding the

seizure onset time: the precritical phase (1), the critical phase (2), and the postcritical phase

(3). In patients 1, 5, and 8, the last interval of the critical phase was considered to be in (3).

Patient 8 did not present any interval before the critical phase in the period considered here.

Error bars denote the SD across time samples. Stars denote that the decrease was significant in

7 out of 8 patients (P< 0.01, paired t test). Underlying numerical values can be found in S10

Data.

(TIF)

S7 Fig. Network state variability reduction across spatial and temporal dimensions. (A)

Schematic representation of the 2 sources of variability in a set of simultaneous time series. (B)

For every main patient, green dots representing pairs of statistic values (“temporal/spatial

effects”) obtained from repeating the clusterized effect-size test (Fig 2A) with the spatial and

temporal entropy, respectively. The circled effect pairs are exemplified in C. (C) For exemplary

patients 2, 3, 5, and 8, the figure shows the decomposition of the centrality entropy values into

pairs of temporal and spatial entropy values. In blue, pairs of entropy values obtained from the

control segment. In red, pairs of entropy values obtained from the preseizure period. Underly-

ing numerical values can be found in S11 Data.

(TIF)

S8 Fig. Complementary information for Fig S6. Centrality entropy decomposition of

patients 1, 4, 6, and 7 into pairs of temporal and spatial entropy values. In blue, pairs of entropy

values obtained from the control segment. In red, pairs of entropy values obtained from the

preseizure period. Underlying numerical values can be found in S12 Data.

(TIF)

S9 Fig. Crossperiod comparison of mean connectivity. Time-average mean connectivity

curves for the main patients for 9.25 h preceding seizure onset time. The mean connectivity

was computed over all recording pairs in consecutive and nonoverlapping 0.6 s windows (300

samples). The time average was performed at the same time scale of the centrality entropy, i.e.,

120 s (200 samples). In blue, curve corresponding to the control period. In red, curve corre-

sponding to the preseizure period. Underlying numerical values can be found in S13 Data.

(TIF)
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S10 Fig. Effect of the number of discretized states into the results of Fig 3. Variance

explained by state probability and state homogeneity (“state SD”) differences in the crossper-

iod regression per patient of Fig 3B. when using n = 8 (left), n = 10 (center) discretized states

and the original discretization (n = 12) shown in Fig 3C. (left). In the 3 cases, discretized states

were sorted along the horizontal axis in mean connectivity decreasing order for each patient.

For each sorted state, boxplots show the distribution of the coefficient of determination (%

variance explained) across patients. Underlying numerical values can be found in S14 Data.

(TIF)

S11 Fig. Exemplary iEEG epileptogenic recordings in high- and low-centrality entropy

periods (patient 3). (A) Sequence of 21 (12.6 s) consecutive centrality eigenvectors extracted

from an epoch with high-centrality entropy values (left) and from an epoch with low-centrality

entropy values (right) in the preseizure period of patient 3. Color intensity (blue = lowest,

red = highest) represents centrality values. Horizontal dashed lines delimit HCSs (homoge-

nous yellow strips) and nHCSs (heterogeneous strips) per epoch of 0.6 s duration. (B) Normal-

ized and voltage-shifted (for visualization purposes) iEEG recordings in HA (channel 11,

blue), HP (channel 24, red), and EC (channel 35, green) in the high-centrality entropy (left)

and low-centrality entropy (right) epoch. Horizontal dashed lines delimit the iEEG recording

segments corresponding to the previous HCSs and nHCSs. Underlying numerical values can

be found in S15 Data. EC, entorhinal cortex; HA, anterior hippocampus; HCS, high-connec-

tivity state; HP, posterior hippocampus; iEEG, intracranial electroencephalography; nHCS,

non–high-connectivity state.

(TIF)

S12 Fig. Postcritical global functional connectivity decrease across epileptogenic and none-

pileptogenic sites. For patients 1 and 3 (patients with best postsurgical outcome after resec-

tion), bars showing the site-average connectivity strength of the RZ, SOZ, and remaining sites

(nEZ) during the critical phase (left) and postcritical phase (right) in the preseizure period.

Strength samples were computed for each site by performing averages over time samples (0.6

s) during each phase. Effect sizes were reported for each sites’ group by computing Cohen’s d
across both phases. Underlying numerical values can be found in S16 Data. nEZ, nonepilepto-

genic zone; RZ, resected zone; SOZ, seizure-onset zone.

(TIF)

S13 Fig. Extension of regional analysis to all main patients. For patients 2, 4, and 5–8, cross-

period comparison (control in blue, preseizure in red) of sites’ centrality variability averaged

over RZ, SOZ, and nEZ inside (critical, left) and outside (noncritical, right) the estimated criti-

cal phase whenever it was possible. Each sample per recording site was computed by perform-

ing an average (across critical and noncritical phases) of the centrality’s temporal SD measured

in consecutive and nonoverlapping time windows of 120 s (200 samples). Sizes of significant

effects (paired t test, P< 0.05) equal or larger to 0.5 were reported using Cohen’s d and

approximated to the first decimal. In all subfigures, error bars represent ± 1 SD. Underlying

numerical values can be found in S17 Data. nEZ, nonepileptogenic zone; RZ, resected zone;

SOZ, seizure-onset zone.

(TIF)

S14 Fig. Relationship between centrality time variability of the nontreated zone and post-

operative outcome. For the main patients (n = 7) who underwent either surgery or RFTC,

dots represent the effect size (Cohen’s d) of preseizure changes in the centrality time variability

of nontreated regions (nonresected or nonablated) as a function of the postoperative outcome.

(A) Results for surgical treatment (patients 1 and 3–5) inside (left) and outside (right) the
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critical phase. (B) Results for RFTC treatment (patients 2, 6, and 7) inside the critical phase.

Underlying numerical values can be found in S18 Data. RFTC, radiofrequency thermocoagula-

tion.

(TIF)
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50. Tauste Campo A, Martinez-Garcia M. Nácher V, Luna R, Romo R, Deco G. Task-driven intra-and inter-

area communications in primate cerebral cortex. Proc Natl Acad Sci. 2015; 112(15): 4761–4766.

https://doi.org/10.1073/pnas.1503937112 PMID: 25825731

Degenerate network dynamics anticipate seizures

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002580 April 5, 2018 30 / 31

https://doi.org/10.1016/S0920-1211(03)00002-0
https://doi.org/10.1016/S0920-1211(03)00002-0
http://www.ncbi.nlm.nih.gov/pubmed/12694925
https://doi.org/10.1016/j.clinph.2004.10.014
http://www.ncbi.nlm.nih.gov/pubmed/15721070
https://doi.org/10.1371/journal.pone.0039731
https://doi.org/10.1371/journal.pone.0039731
http://www.ncbi.nlm.nih.gov/pubmed/22761880
https://doi.org/10.1016/j.nicl.2014.07.003
http://www.ncbi.nlm.nih.gov/pubmed/25161896
https://doi.org/10.1016/j.neuron.2014.08.034
https://doi.org/10.1016/j.neuron.2014.08.034
http://www.ncbi.nlm.nih.gov/pubmed/25475184
https://doi.org/10.1136/jnnp-2011-301944
http://www.ncbi.nlm.nih.gov/pubmed/22917671
https://doi.org/10.1063/1.3504998
http://www.ncbi.nlm.nih.gov/pubmed/21198096
https://doi.org/10.1007/s10548-008-0071-4
https://doi.org/10.1007/s10548-008-0071-4
http://www.ncbi.nlm.nih.gov/pubmed/19005749
https://doi.org/10.1523/JNEUROSCI.2287-11.2011
https://doi.org/10.1523/JNEUROSCI.2287-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22049419
https://doi.org/10.1089/brain.2014.0251
https://doi.org/10.1089/brain.2014.0251
http://www.ncbi.nlm.nih.gov/pubmed/24901036
https://doi.org/10.1016/j.yebeh.2013.04.010
http://www.ncbi.nlm.nih.gov/pubmed/23751358
https://doi.org/10.1093/brain/awl241
http://www.ncbi.nlm.nih.gov/pubmed/17008335
https://doi.org/10.1103/PhysRevE.67.010901
http://www.ncbi.nlm.nih.gov/pubmed/12636484
http://www.ncbi.nlm.nih.gov/pubmed/12654962
https://doi.org/10.1113/jphysiol.2012.239590
https://doi.org/10.1113/jphysiol.2012.239590
http://www.ncbi.nlm.nih.gov/pubmed/23184516
https://doi.org/10.1111/j.1528-1167.2010.02785.x
http://www.ncbi.nlm.nih.gov/pubmed/21126244
https://doi.org/10.1111/epi.12206
http://www.ncbi.nlm.nih.gov/pubmed/23647147
https://doi.org/10.1016/j.seizure.2014.10.013
http://www.ncbi.nlm.nih.gov/pubmed/25468511
https://doi.org/10.1093/brain/awx173
http://www.ncbi.nlm.nih.gov/pubmed/28899023
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1089/brain.2011.0008
http://www.ncbi.nlm.nih.gov/pubmed/22432952
https://doi.org/10.1073/pnas.1503937112
http://www.ncbi.nlm.nih.gov/pubmed/25825731
https://doi.org/10.1371/journal.pbio.2002580


51. Gilson M, Tauste Campo A, Chen X, Thiele A, Deco G. Non-parametric test for connectivity detection in

multivariate autoregressive networks and application to multiunit activity data. Net Neurosci 2017; 1(4):

1–24. https://doi.org/10.1162/NETN_a_00019

52. Cossu M, Fuschillo D, Casaceli G, Pelliccia V, Castana L, Mai R, et al. Stereoelectroencephalography-

guided radiofrequency thermocoagulation in the epileptogenic zone: a retrospective study on 89 cases.

J Neurosurg. 2015;1–10. https://doi.org/10.3171/2014.12.JNS141968 PMID: 26090841

53. Pereda E, Quiroga RQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals.

Prog Neurobiol. 2005; 77:1–37. https://doi.org/10.1016/j.pneurobio.2005.10.003 PMID: 16289760

54. Wendling F, Ansari-Asl K, Bartolomei F, Senhadji L. From EEG signals to brain connectivity: a model-

based evaluation of interdependence measures. J Neurosci Met. 2009; 183:9–18. https://doi.org/10.

1016/j.jneumeth.2009.04.021 PMID: 19422854

55. Stefan H, da Silva FHL. Epileptic neuronal networks: methods of identification and clinical relevance.

Front Neurol. 2013; 4. https://doi.org/10.3389/fneur.2013.00008 PMID: 23532203

56. Ponten SC, Bartolomei F, Stam CJ. Small-world networks and epilepsy: graph theoretical analysis of

intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol. 2007; 118:918–27. https://

doi.org/10.1016/j.clinph.2006.12.002 PMID: 17314065

57. Newman MEJ. Networks: An introduction. Oxford University Press; 2010. https://doi.org/10.1057/

9780230226203.1064

58. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neu-

roimage 2010; 52: 1059–69. https://doi.org/10.1016/j.neuroimage.2009.10.003 PMID: 19819337

59. Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll M,

Villringer A, Turner R. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of

the human brain. PLoS One. 2010; 5(4): e10232. https://doi.org/10.1371/journal.pone.0010232 PMID:

20436911

60. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD. Tracking whole-brain connectivity

dynamics in the resting state. Cereb Cortex. 2014; 24(3):663–676. https://doi.org/10.1093/cercor/

bhs352 PMID: 23146964

61. Lachaux JP, Rodriguez E, Martinerie J,Varela FJ. Measuring phase synchrony in brain signals. Hum

Brain Mapp. 1999; 8(4):194–208. PMID: 10619414

62. Forgy EW. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Bio-

metrics. 1965; 21:768–69.

63. Cohen J. A power primer. Psychol Bull. 1992; 112(1):155–159. PMID: 19565683

64. Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods.

2007; 164(1):177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024 PMID: 17517438

65. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;65–70.

66. Fisher RA. Frequency distribution of the values of the correlation coefficient in samples from an indefi-

nitely large population. Biometrika.1914; 10(4):507–521.

Degenerate network dynamics anticipate seizures

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002580 April 5, 2018 31 / 31

https://doi.org/10.1162/NETN_a_00019
https://doi.org/10.3171/2014.12.JNS141968
http://www.ncbi.nlm.nih.gov/pubmed/26090841
https://doi.org/10.1016/j.pneurobio.2005.10.003
http://www.ncbi.nlm.nih.gov/pubmed/16289760
https://doi.org/10.1016/j.jneumeth.2009.04.021
https://doi.org/10.1016/j.jneumeth.2009.04.021
http://www.ncbi.nlm.nih.gov/pubmed/19422854
https://doi.org/10.3389/fneur.2013.00008
http://www.ncbi.nlm.nih.gov/pubmed/23532203
https://doi.org/10.1016/j.clinph.2006.12.002
https://doi.org/10.1016/j.clinph.2006.12.002
http://www.ncbi.nlm.nih.gov/pubmed/17314065
https://doi.org/10.1057/9780230226203.1064
https://doi.org/10.1057/9780230226203.1064
https://doi.org/10.1016/j.neuroimage.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19819337
https://doi.org/10.1371/journal.pone.0010232
http://www.ncbi.nlm.nih.gov/pubmed/20436911
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1093/cercor/bhs352
http://www.ncbi.nlm.nih.gov/pubmed/23146964
http://www.ncbi.nlm.nih.gov/pubmed/10619414
http://www.ncbi.nlm.nih.gov/pubmed/19565683
https://doi.org/10.1016/j.jneumeth.2007.03.024
http://www.ncbi.nlm.nih.gov/pubmed/17517438
https://doi.org/10.1371/journal.pbio.2002580

