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Abstract

During development, progenitor expansion, lineage allocation, and implementation of differ-

entiation programs need to be tightly coordinated so that different cell types are generated

in the correct numbers for appropriate tissue size and function. Pancreatic dysfunction

results in some of the most debilitating and fatal diseases, including pancreatic cancer and

diabetes. Several transcription factors regulating pancreas lineage specification have been

identified, and Notch signalling has been implicated in lineage allocation, but it remains

unclear how these processes are coordinated. Using a combination of genetic approaches,

organotypic cultures of embryonic pancreata, and genomics, we found that sphingosine-1-

phosphate (S1p), signalling through the G protein coupled receptor (GPCR) S1pr2, plays

a key role in pancreas development linking lineage allocation and specification. S1pr2 sig-

nalling promotes progenitor survival as well as acinar and endocrine specification. S1pr2-

mediated stabilisation of the yes-associated protein (YAP) is essential for endocrine specifi-

cation, thus linking a regulator of progenitor growth with specification. YAP stabilisation

and endocrine cell specification rely on Gαi subunits, revealing an unexpected specificity of

selected GPCR intracellular signalling components. Finally, we found that S1pr2 signalling

posttranscriptionally attenuates Notch signalling levels, thus regulating lineage allocation.

Both S1pr2-mediated YAP stabilisation and Notch attenuation are necessary for the speci-

fication of the endocrine lineage. These findings identify S1p signalling as a novel key path-

way coordinating cell survival, lineage allocation, and specification and linking these

processes by regulating YAP levels and Notch signalling. Understanding lineage allocation

and specification in the pancreas will shed light in the origins of pancreatic diseases and

may suggest novel therapeutic approaches.

PLOS Biology | DOI:10.1371/journal.pbio.2000949 March 1, 2017 1 / 31

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Serafimidis I, Rodriguez-Aznar E, Lesche

M, Yoshioka K, Takuwa Y, Dahl A, et al. (2017)

Pancreas lineage allocation and specification are

regulated by sphingosine-1-phosphate signalling.

PLoS Biol 15(3): e2000949. doi:10.1371/journal.

pbio.2000949

Academic Editor: Nicolas Tapon, The Francis Crick

Institute, UNITED KINGDOM

Received: August 31, 2016

Accepted: February 1, 2017

Published: March 1, 2017

Copyright: © 2017 Serafimidis et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Raw and normalized

data were deposited in GEO (www.ncbi.nlm.nih.

gov/geo) under accession numbers GSE 76482

(14.5 dpc and ALI samples) and GSE 76678 (13.5

and 15.5 samples) and are publicly available at the

links: https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE76482 and https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE76678.

Funding: DZD https://www.dzd-ev.de/ (grant

number 82DZD00101). Received by AG. The

funder had no role in study design, data

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2000949&domain=pdf&date_stamp=2017-03-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2000949&domain=pdf&date_stamp=2017-03-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2000949&domain=pdf&date_stamp=2017-03-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2000949&domain=pdf&date_stamp=2017-03-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2000949&domain=pdf&date_stamp=2017-03-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2000949&domain=pdf&date_stamp=2017-03-01
http://creativecommons.org/licenses/by/4.0/
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76482
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76482
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76678
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76678
https://www.dzd-ev.de/


Author summary

The pancreas develops from a field of progenitor cells localised in a restricted region of

the embryonic endoderm. These progenitor cells proliferate and eventually differentiate

to generate the three distinct lineages comprising the endocrine (which include insulin-

producing β cells), acinar, and ductal cells. The molecular pathways implicated in the

early generation of pancreas progenitors and their proliferation are well understood. It is

also known that the Notch signalling pathway is implicated in sequential binary cell fate

decisions that generate the three lineages; however, other signals that may regulate this

process remain unknown. Here, we show that a phospholipid, sphingosine-1-phosphate

(S1p), generated by the progenitor cells themselves, acts as a signal necessary to define the

acinar and endocrine lineage. We observe that in the absence of S1p only duct cells are

generated and the survival of pancreas progenitors is compromised. The function of this

signalling pathway in the generation of the endocrine cells is two-fold. Firstly, it stabilises

yes-associated protein (YAP), a transcriptional gene coactivator known to regulate pan-

creatic progenitor proliferation, and we show that this stability is necessary for the activa-

tion of the endocrine specification program. Secondly, it attenuates Notch signalling,

allowing the generation of endocrine and acinar cells. Notch attenuation is necessary for

the stabilisation of the transcription factor Ngn3, which is required for the generation of

endocrine cells. We conclude that S1p acts as an autocrine signal regulating YAP stabilisa-

tion and Notch attenuation to mediate pancreas specification. Understanding lineage allo-

cation and specification in the pancreas will shed light on the origins of pancreatic

diseases and may suggest novel therapeutic approaches.

Introduction

The pancreas is the origin of some of the most debilitating and fatal diseases, including pancre-

atic cancer and diabetes. Understanding the signalling pathways and gene regulatory networks

underlying pancreas development will shed light in the origins of these diseases and suggest

novel therapeutic approaches. Mouse reverse genetics and studies in humans have uncovered

multiple transcription factors that regulate formation of the pancreatic anlagen and its subse-

quent expansion, branching morphogenesis, and cell specification into the endocrine, acinar,

and ductal lineages [1,2]. Several extracellular signals have also been implicated [2,3], but the

molecular mechanisms coordinating lineage allocation with lineage specification remain

elusive.

The early pancreatic multipotent progenitor cells (MPCs) emerge at the posterior foregut

region of the definitive endoderm and are defined by the expression of the transcription fac-

tors Pdx1, Ptf1a, and Sox9 [4–8]. Maintenance of high Notch signalling is necessary for the

expansion of MPCs to form a tree-like branched epithelium and prevent early differentiation

[9–12]. The Hippo signalling effectors, the transcription factor TEAD1 and its coactivator

yes-associated protein (YAP), activate key pancreatic signalling mediators and transcription

factors to regulate expansion of pancreatic progenitors [13], but the signal(s) regulating YAP

stability are not known. Decreased Notch activity at the tips of the epithelium and the antago-

nistic functions of Ptf1a and Nkx6 transcription factors delineate the acinar progenitor and

endocrine/duct bipotent trunk territories [14–17]. In the trunk, differential Notch signalling

enables progenitors to differentiate into ductal and endocrine cells. High Notch levels divert

cells to the duct fate through repression of the expression of the Ngn3 transcription factor.
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Cells escaping high Notch levels induce Ngn3 and become endocrine progenitors [18]. A

Notch-mediated posttranslational mechanism for Ngn3 stabilisation has been proposed [19].

Endocrine progenitors provide Notch-dependent and Notch-independent feedback to main-

tain proliferative growth of the bipotent cell population [20–22]. Despite the central role of

Notch signalling, it is not understood whether levels of Notch activity are intrinsically regu-

lated as a function of time or whether unidentified extracellular signals play a role in this

process.

We used genetic approaches and organotypic cultures of mouse embryonic pancreata to

reveal the implication of sphingosine-1-phosphate (S1p) signalling in progenitor survival, dif-

ferentiation and lineage allocation. Our data show that S1p signals through the S1p receptor 2

(S1pr2) and YAP to up-regulate connective tissue growth factor (CTGF) that participates in

mediating survival of endocrine and acinar progenitors. Signalling specifically through Gαi

and YAP stabilisation is necessary for endocrine specification. Additionally, S1p signalling

attenuates Notch signalling to regulate lineage allocation. Both YAP stabilisation and Notch

attenuation are necessary for endocrine and acinar specification. Taken together, the data

uncover a novel mode of coordinating lineage allocation and cell specification through S1p sig-

nalling and link these processes with tissue growth control.

Results

Expression of S1p signalling components peaks during pancreas

secondary transition

S1p is a lipid mediator secreted in the extracellular milieu, where it interacts with the S1p G

protein-coupled receptors to regulate different cellular responses such as migration, survival,

and differentiation [23,24]. Because S1pr2-mediated S1p signalling guides the migration of

endocrine progenitors to form islets [25], we decided to examine its implication in earlier

stages of pancreas development. We first tracked its expression during mouse pancreas devel-

opment by following β-galactosidase activity in heterozygous S1pr2tm1lacz [26] (S3 Table)

embryos and by quantitative PCR (qPCR) analysis in wild-type (wt) embryos. Consistent

with an early role for this receptor in mesenchymal growth [27], S1pr2 tm1lacz expression was

predominantly mesenchymal from 9.5 days post coitum (dpc) to 12.5 dpc (S1 Fig). During sec-

ondary transition, its expression was significantly up-regulated, and in the developing epithe-

lium, it was colocalised with both trunk and tip progenitors (Fig 1A–1C, S1 Fig). By 16.5 dpc,

Lacz expression was eliminated in nascent endocrine cells and significantly reduced in the rest

of the developing organ, whereas it was completely abolished by postnatal day 1 (P1) (S1 Fig).

qPCR analysis confirmed this pattern, clearly indicating that S1pr2 expression in the develop-

ing pancreas peaked during secondary transition (Fig 1C). To further investigate the epithelial

expression of S1pr2, we isolated by fluorescence-activated cell sorting (FACS) the epithelial

and mesenchymal components of the developing pancreas at 13.5, 14.5, and 15.5 dpc (S1 Fig).

Consistent with the S1pr2tm1lacz expression pattern, we found that S1pr2 expression also peaked

at 14.5 dpc in the epithelium (S1 Fig).

S1p is a systemically circulating sphingolipid generated by platelets and endothelial cells but

it may also be generated in situ. Sphingosine kinases (Sphk) 1 and 2 catalyse the formation of

secreted S1p using endogenous cellular sphingosine [28]. Analysis of Sphk1 and Sphk2 expres-

sion by qPCR showed that their expression peaked during secondary transition and suggested

a predominantly epithelial expression (Fig 1F, S1 Fig). Immunostainings at 12.5, 14.5. and 16.5

dpc confirmed the predominantly epithelial expression of Sphk during that time (Fig 1D and

1E and S1 Fig).

Sphingosine-1-phosphate signalling in pancreas development
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Taken together, the temporal expression profile of S1pr2 and Sphks suggested that this sig-

nalling pathway may act as an autocrine signal to mediate pancreas specification. Expression

of both S1pr2 and Sphks in the developing epithelium peaked at 14.5 dpc, suggesting that this

time point was optimal to address their possible role in pancreas specification.

Developmental delay of the S1pr2 null pancreata reveals key role in

lineage specification

To address the role of S1pr2 in pancreas development, we first compared the RNA Seq gene

expression profiles of S1pr2tm1Rlp (S3 Table) null [29] embryonic pancreata (S2 Fig) with those

of 13.5, 14.5, and 15.5 dpc wt embryonic pancreata.

Principal component analysis (PCA) suggested that S1pr2 null pancreata were developmen-

tally delayed (Fig 2A). Endocrine and acinar lineage commitment genes were strongly down-

regulated. Ductal specification was much less affected, and the expression of important duct

markers such as Hnf1b, Car2, and Slc9a1 was not affected (Fig 2B–2D, S1 Table). Surprisingly,

expression of transcription factors and other genes implicated in epithelial progenitor specifi-

cation and maintenance was not significantly affected (S2 Fig, S1 Table) [30]. Consistent with

that, organ size, epithelial proliferation assessed by pH3 immunofluorescence, and cell survival

assessed by TUNEL assays were not affected (S2 Fig). These findings suggested that expansion

of the progenitor population in the S1pr2tm1Rlp null pancreata was not affected, but lineage

commitment was severely delayed.

S1pr2 null embryos develop to full term but show perinatal mortality and display a range of

phenotypes, particularly in the hematopoietic and vascular systems [26,29]. Surprisingly,

Fig 1. S1pr2 and Sphk expression peaks during pancreas secondary transition. (A-C) β-galactosidase activity by X-gal staining and

immunofluorescence on cryosections in heterozygous 14.5 dpc S1P2 tm1lacz embryos indicated that S1pr2 is expressed in E-cad+ (A) and Pdx1+ (B)

cells in the developing epithelium and in the mesenchyme (A, B). qPCR analysis showed that S1pr2 expression peaks at 14.5 dpc and subsequently

declines (C). (D-F) Immunofluorescence showed that Sphk localisation is predominantly epithelial, as indicated by the strong Sphk co-staining with E-

cadherin (D) and Pdx1 (E). qPCR analysis showed that Sphk1 and Sphk2 expression peaks at 14.5 dpc (F). Scale bars, 50 μm; *p < 0.05, **p < 0.01,

***p < 0.001 (C, F) in reference to E14.5 samples; error bars show standard error of the mean (SEM). For raw data please refer to S1 Data.

doi:10.1371/journal.pbio.2000949.g001
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immunofluorescence analysis of S1pr2 tm1Rlp null pancreata at P1 showed no major defects in

the development of the endocrine, acinar, and ductal lineages. Additionally, fasting glucose

levels and glucose tolerance tests in the surviving adults failed to uncover glucose homeostasis

defects, suggesting no gross alterations, at least concerning endocrine cell function (S2 Fig).

To investigate whether systemic signals were necessary for functional compensation, we

used serum free air–liquid interface (ALI) cultures of embryonic pancreata. ALI cultures

mimic normal embryonic development and thus also give a means to temporally manipulate

signalling conditions and elucidate their effects on lineage specification [25,31]. Wt 14.5 dpc

pancreata in ALI cultures continue their developmental program over the course of 6 d, giving

rise to acinar, endocrine, and duct cells (S3 Fig). However, S1pr2tm1Rlp 14.5 dpc null pancreata

failed to develop normally, because both the endocrine and acinar lineages were severely com-

promised and there was a strong increase in the number of duct-like cells (S3 Fig). This was

consistent with the strong down-regulation of endocrine and acinar differentiation markers at

Fig 2. S1pr2 null pancreata are developmentally delayed but up-regulate Lpar1 and S1pr3. (A-D) PCA of RNA Seq gene expression profiles of

14.5 dpc S1pr2tm1Rlp null pancreata (in red) and 13.5, 14.5, and 15.5 dpc wt pancreata (in shades of black). PC1 shows developmental time because it

shows the highest variability among wt samples and there is only a small variance in PC2. S1pr2 null pancreata cluster away from their wt counterparts,

suggesting that they were developmentally delayed (A). Analysis of these RNA Seq data revealed that endocrine- (B) and acinar- (C) specific genes

were strongly repressed in S1pr2 null pancreata at 14.5 dpc as compared to 14.5 dpc wt controls, whereas expression of duct-specific genes was less

affected (D). (E) qPCR analysis of Lpar1 and S1pr3 expression in the FACS-isolated epithelial and mesenchymal components of 14.5 dpc wt (black

bars) and S1pr2 null (red bars) pancreata indicated that expression of both Lpar1 and S1pr3 was selectively up-regulated in the S1pr2 null epithelium

by 7- and 5-fold, respectively. (F-J) air–liquid interface (ALI) cultures of 13.5 dpc wt embryonic pancreata for 3 d results in the generation of several C-

pep+ and Gcg+ cells (F), and combined treatment with 20 μM and 50 μM of the specific Lpar1 and S1pr3 inhibitors, respectively, had no effect (G, J). In

contrast, the already reduced number of endocrine cells in the S1pr2 nulls (H, J) is further reduced upon addition of the two antagonists in these

concentrations (I, J). Padj for all genes <0.05 except Foxa2 where Padj <0.1 (B-D); **p < 0.01, ***p < 0.001, ns not significant in reference to

corresponding epithelial or mesenchymal values (E, F); error bars in E show SEM; error bars in J show standard deviation (SD); scale bars are at

80 μm. For raw data, please refer to the S1 Data file.

doi:10.1371/journal.pbio.2000949.g002
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14.5 dpc (Fig 2B and 2C) and in contrast to the eventually normal development of S1pr2tm1Rlp

null pancreata in utero. We next looked for up-regulated related receptors that may mediate

functional compensation of the S1pr2 null mutation and rescue the early pancreatic phenotype

of the S1pr2 nulls.

S1pr2 belongs to the family of the closely related lysophospholipid (LPL) receptors (LPLrs)

that have similar expression patterns and overlapping functions [32,33]. RNA Seq data showed

that only S1pr3 and lysophosphatidic receptor 1 (Lpar1), which are functionally related to S1pr2
[32], were expressed to any appreciable extent and to levels comparable to that of S1pr2 in the

14.5 wt pancreata (S1 Table). Interestingly, S1pr3 and Lpar1 expression increased in the 14.5

dpc S1pr2tm1Rlp null total pancreata (S2 Fig). To independently confirm that this up-regulation

was a consequence of abrogating S1pr2 signalling, we acutely blocked S1pr2 function by inject-

ing intraperitoneally (ip) pregnant dams at 13.5, 14.5, and 15.5 dpc with either 2 or 5 mg/Kg

body weight of the specific S1pr2 antagonist JTE013 [34]. In both treatments, expression of

both S1pr3 and Lpar1 was up-regulated in 16.5 dpc pancreata (S2 Fig). Expression of S1pr3
and Lpar1 is primarily mesenchymal in 13.5, 14.5, and 15.5 dpc wt pancreata (S2 Fig), but,

strikingly, their expression was selectively up-regulated, by 5- and 7-fold, respectively, in the

epithelium of 14.5 dpc S1pr2 null pancreata (Fig 2E and S2 Fig).

To establish that these receptors mediate the recovery of the endocrine lineage, we blocked

their function in ALI cultures by applying for 3 d the specific S1pr3 and Lpar1 inhibitors

VPC23019 and Ki16425 at 50 μM and 20 μM, respectively, in ALI cultures of 13.5 dpc wt and

S1pr2 null pancreata. Either inhibitor on its own was not sufficient to block endocrine specifi-

cation, but when used in combination, they essentially shut off endocrine specification, specifi-

cally in S1pr2 null pancreata but not in wt pancreata (Fig 2F–2J), demonstrating that S1pr3
and Lpar1 mediate the functional compensation in the S1pr2 nulls.

These findings established an important role for S1p signalling in the specification of pan-

creas progenitors and uncovered extensive functional compensation among specific LPL

receptors in pancreas development.

S1pr2 signalling has a dual role in promoting survival and commitment of

pancreas progenitors

To fully address the role of S1pr2 signalling in pancreas development, we decided to isolate

systemic signals mediating the functional compensation in S1pr2 null embryos using ALI cul-

tures. The presence of 15 μM JTE013 in ALI cultures of 14.5 dpc S1pr2 null pancreata did not

alter their growth, survival, and differentiation patterns, further confirming its specificity (S3

Fig). In contrast, blocking S1pr2 function in wt pancreata resulted in obvious morphological

defects, most notably the absence of light-reflective, dense cell clusters (S3 Fig).

The progression of the developmental program in ALI cultures of wt 14.5 dpc pancreata is

apparent 2 d following culture initiation. The segregation of the endocrine and ductal lineages

from the Nkx6.1+ bipotent progenitors has progressed and is shown by the reduction in the

numbers of Nkx6.1+ and Ngn3+ cells, the increase of strongly labelled Pdx1+ cells, and the

appearance of numerous C-pep+ and Gcg+ as well as CK19+ cells. Acinar cells become numer-

ous, as seen by the appearance of Ptf1a+/Pdx1- and Amy+ cells (compare Fig 3A–3D with 3E–

3H, see also S4 Fig and Fig 3M–3P) [16]. However, in the absence of S1pr2 signalling, develop-

ment of both acinar and endocrine lineages was blocked, as shown by the loss of Amy+ and

C-Pep+, whereas the development of CK19+ duct-like cells did not appear affected (S4 Fig).

These findings correlated with the persistence of a large number of Nkx6.1+ cells, the loss of

Ptf1a+/Pdx1- cells, the reduction of strongly labelled Pdx1+ cells as well as the dramatic reduc-

tion in the number of Ngn3+ cells (compare Fig 3E–3H with 3I–3L, see also S4 Fig and Fig

Sphingosine-1-phosphate signalling in pancreas development
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3M–3P). Additionally, there was a marked decrease of epithelial proliferation and the appear-

ance of apoptotic cells (S4 Fig).

Fig 3. S1pr2 signalling promotes commitment of pancreas progenitors. (A-H) Immunofluorescence analysis of embryonic pancreata at 14.5 dpc

and after 2 d in ALI cultures (14.5 dpc + 2 d) shows the progression of the developmental program. This was apparent by the reduction of Nkx6-1+ (A,

E) and Ngn3+ (C, G) progenitor cells, the corresponding increase of strongly labelled Pdx1+ cells (B, F) and the appearance of Ptf1a+/Pdx- cells (D, H;

arrows in H). (I-L) Immunofluorescence analysis at 14.5 dpc + 2 d in the absence of S1pr2 signalling clearly showed that the Nkx6-1+ population was

expanded (I), Ngn3+ cells (K) and strongly labelled Pdx1+ cells (J) were dramatically reduced, and Ptf1a+/Pdx1- cells were lost (L). (M-P) Quantitation

of Nkx6.1+and Ptf1a+ cells (M), Pdx1+ cells (N), Ngn3+ cells (O), and acinar progenitors (Ptf1a+ / Pdx1-) (P) in 14.5 dpc pancreata, 14.5 dpc pancreata

cultured in ALI for 2 d in the absence or presence of 15 uM of the S1pr2 specific inhibitor JTE013. Statistical significance is shown for the comparisons

between 14.5 dpc and 14.5 dpc + 2 d stainings (14.5 dpc + 2 d bar) as well as between 14.5 dpc + 2 d with and without S1pr2 block (14.5 dpc + 2 d

+ S1pr2 block bar). (Q-S) RNA Seq gene expression analysis on 14.5 dpc pancreatic explants after 2 d in ALI culture with S1pr2 signalling blocked

revealed a coordinated repression of transcription factors and terminal differentiation markers of the endocrine (Q) and acinar (R) lineages and, to a

lesser extent, of the ductal lineage (S) compared to untreated control explants at 14.5 dpc + 2 d. Scale bars, 80 μm; **p < 0.01, ***p < 0.001, Padj for

all genes <0.05; error bars M, N, P show SD; error bars in O show SEM. For raw data, please refer to the S1 Data file.

doi:10.1371/journal.pbio.2000949.g003

Sphingosine-1-phosphate signalling in pancreas development

PLOS Biology | DOI:10.1371/journal.pbio.2000949 March 1, 2017 7 / 31



To reveal the full extent of the changes, we analysed the transcriptome of ALI pancreatic

explants cultured for 2 d. Similarly to the transcriptome analysis of S1pr2 null pancreata at 14.5

dpc, the expression of progenitor markers, upon S1pr2 blocking with 15 μM of JTE013, was

only mildly affected, with the striking exception of the transcription factor Nkx6.2 and the

Notch membrane-bound ligand Dll1, two genes that are important for the segregation of the

bipotent trunk population from the acinar progenitor pool and Notch-mediated lineage segre-

gation (S4 Fig, S1 Table) [16,18]. On the other hand, and in agreement with the transcriptome

analysis of S1pr2 null pancreata at 14.5 dpc, there was coordinated repression of transcription

factors and terminal differentiation markers of the endocrine and acinar lineages. In contrast,

the ductal lineage was much less affected because, similarly to S1pr2 null phenotype at 14.5,

expression of several important genes, such as Hnf1b, Car2, and Slc9a1, was not affected (Fig

3Q–3S, S1 Table). Consistent with an important role of S1pr2 signalling for lineage commit-

ment during secondary transition, the total number of regulated genes in its absence increased

by 2.5-fold at 14.5 dpc + 2 d (S4 Fig).

After 6 d in culture in the absence of S1pr2 signalling, beta cells and acinar cells were virtu-

ally eliminated, and the explants were taken over by a greatly expanded number of CK19+

duct-like cells (compare Fig 4A–4C, Fig 4E–4G and 4N). Additionally, cell survival was

severely compromised at that stage, as shown by TUNEL assays (Fig 4D and 4H). To establish

that S1p is the ligand mediating these effects, we supplemented the S1pr2-blocked ALI cultures

with 20 μM S1p and achieved a rescue of both the acinar and endocrine lineages (S3 Fig,

S7 Fig).

These findings showed that S1p signalling, through S1pr2, was necessary for both cell sur-

vival and lineage commitment. To address whether these effects were distinct from one

another, we sought means to rescue the cell survival independently of cell specification. CTGF

was a plausible candidate to participate in mediating survival, as it has been implicated as such

a signal downstream of S1p signalling and it is expressed in the developing pancreas in both

the epithelium and the mesenchyme (S5 Fig) [35]. Importantly, its expression was significantly

repressed (3.5-fold) upon blocking S1pr2 signalling for 2 d in ALI 14.5 dpc explants (S5 Fig).

Addition of 50 ng/ml CTGF at the onset of the ALI culture in the absence of S1pr2 signalling

eliminated cell death 6 d later (Fig 4D, 4H and 4L). However, this was not sufficient to reverse

the early differentiation block, and results were very similar in this respect. After 2 d in culture,

there were again very few Ngn3+ cells, no Ptf1a+/Pdx1- cells, the number of strongly labelled

Pdx1+ cells did not increase compared to the 14.5 dpc stage, and proliferation rates in the epi-

thelium remained low (compare Fig 3G, 3K, 3H and 3L with S5 Fig and S5 Fig with S4 Fig).

Consistent with that, after 6 d in culture, the endocrine cells, beta cells in particular, and acinar

cells were again missing, whereas the numbers of duct-like cells remained greatly expanded

(compare Fig 4A and 4B to 4E, 4F, 4I and 4J, see also Fig 4N). These findings, the loss of Ptf1a+

cells, and the persistence of a large number of Pdx1+ and Nkx6.1+ cells (Fig 4C, 4G and 4K, S5

Fig and Fig 4M) suggest that cells are stabilised in a trunk bipotential identity when S1pr2 sig-

nalling is blocked but survival is rescued by CTGF. To further corroborate that cell survival

was mediated independently of cell fate commitment, we compared gene expression changes

of 14.5 + 2 d ALI embryonic pancreata cultured in conditions of S1pr2 block in the presence

or absence of 50 ng/ml CTGF. Gene expression changes of progenitor, endocrine, acinar, and

duct markers [30] were strikingly similar in the two conditions as compared to untreated con-

trols (S5 Fig, S1 Table). Furthermore, PCA showed that S1pr2 blocked explants with or with-

out CTGF clustered much closer together (PC2, 16% variance) than with control pancreata

(PC1, 68% variance) (S5 Fig). To establish that S1p signalling regulates expression of CTGF,

we used 20 μM of S1p in combination with 15 μM of JTE013 in 14.5 dpc ALI cultures and

showed that CTGF expression was restored to normal levels by S1p (S5O Fig).

Sphingosine-1-phosphate signalling in pancreas development
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These data showed that S1p signalling through S1pr2 mediates cell fate commitment to the

endocrine and acinar lineages. Independently of that, it promotes progenitor cell survival at

least partly through up-regulation of CTGF.

A novel role for Gαi subunits in mediating endocrine pancreas

specification

As shown above, genetic inactivation of S1pr2 results in strong developmental delay, particu-

larly for the endocrine and acinar lineage specification, but this is compensated for by up-regu-

lation of the expression of the related receptors S1pr3 and Lpar1 specifically in the epithelium.

To bypass this compensation and identify the downstream components of S1pr2 signalling, we

first targeted the function of Gαi subunits that are common mediators among these receptors

[32] and can be specifically inactivated by pertussis toxin A (PTX)-mediated adenosine di-

phosphate (ADP)-ribosylation [36,37]. We previously showed that conditional expression of a

single allele of the ROSA26LSLPTX transgene [38] (S3 Table) in endocrine progenitors using the

Ngn3-Cre driver mouse line TgNgn3Cre [39] (S3 Table) or a low (5 μg/ml) PTX dose in embry-

onic pancreatic explants resulted in disruption of endocrine cell migration to form islets [25].

Expression of a single allele of the ROSA26LSLPTX transgene in epithelial progenitors using the

Pdx1-Cre driver TgPdx1Cre [40] (S3 Table) had a similar effect (S6 Fig), but neither treatment

had any effect on pancreas lineage specification [25]. Strikingly, activation of two alleles of the

ROSA26LSLPTX transgene using the same driver resulted in specific and strong loss of C-pep+

and Gcg+ endocrine but not Amy+ acinar or CK19+ duct cells at P1 (Fig 5A and 5B, S6 Fig).

ALI cultures of 14.5 dpc embryonic pancreata expressing two PTX alleles in Pdx1+ progenitors

also generated very few endocrine cells after 6 d in culture without loss of Amy+ acinar or

Fig 4. S1pr2 signalling promotes survival and lineage specification of pancreas progenitors. (A-H, M, N) Immunofluorescence analysis showed

that S1pr2 block with 15 μM JTE013 in ALI cultures of 14.5 dpc embryonic pancreata for 6 d (14.5 dpc + 6 d) lead to the elimination of C-peptide+

endocrine cells (A, E, N) and Amylase+ acinar cells (B, F, N) and to a greatly expanded number of CK19+ duct-like cells (B, F, N). Markers of mature β
cells (Pdx1) and acinar cells (Ptf1a) were also eliminated upon S1pr2 block (C, G, M), and cell survival was severely compromised, as shown by TUNEL

immunofluorescence analysis (D, H). (I-L, M, N) Immunofluorescence and TUNEL analysis showed that addition of CTGF in the ALI cultures along with

the S1pr2 block virtually eliminated cell death (L), without reversing the loss of C-peptide+ endocrine (I, N), Amylase+ acinar cells (J, N). A large number of

CK19+ duct-like cells (J, N) and Pdx1+ cells (K, M) persisted. Scale bars, 80 μm (A, B, D-F, H-J, L) and 70 μm (C, G, K); ***p < 0.001; error bars show SD.

For raw data please refer to the S1 Data file.

doi:10.1371/journal.pbio.2000949.g004
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CK19+ duct cells (Fig 5C–5E, S6 Fig). Loss of endocrine cells was preceded by a dramatic

reduction in the number of Ngn3+ cells (Fig 5F and 5G, S6 Fig).

To assess whether loss of the Ngn3+ progenitors in the TgPdx1Cre/ROSA26LSLPTX/LSLPTX

embryos was due to disruption of signalling events directly responsible for Ngn3 induction or

defective competence of Pdx1+ progenitors acquired in earlier stages of pancreas development,

we cultured 14.5 dpc wt embryonic pancreata in ALI culture in the presence of 10 μg/ml dose

of PTX. The effects of this treatment closely matched the genetic experiment, as the number of

C-Pep+ and Gcg+ cells was also dramatically reduced, but the number of Amy+ acinar or

CK19+ duct cells was not affected (Fig 5C and 5H, S6 Fig). Again, this was preceded by a dra-

matic reduction in the number of Ngn3+ cells (Fig 5I, S6 Fig). Thus, Gαi-mediated signalling

controls both endocrine specification and migration in a dose-dependent manner. Irrespective

of the dose, neither acinar nor ductal specification was affected in either the genetic or ALI

paradigms.

Fig 5. Gαi subunits mediate endocrine pancreas specification. (A-I) Activation of PTX expression from two alleles of the ROSA26 LSLPTX transgene

using the TgPdx1Cre driver resulted in a striking loss of C-pep+ and Gcg+ cells at P1, as shown by immunofluorescence analysis (A, B; Quantitations are

provided in S6L Fig). ALI cultures of 14.5 dpc embryonic pancreata expressing PTX from two alleles in Pdx1+ progenitors also resulted in reduced

numbers of C-pep+ and Gcg+ cells after 6 d in culture (C, D, E), preceded by an equivalent reduction in the number of Ngn3+ cells at 2 d (F, G). ALI

cultures of 14.5 dpc wt pancreata in the presence of 10 μg/ml of PTX showed a dramatic reduction of Ngn3+ cells (I) and the total number of C-pep+ and

Gcg+ cells (C, H) at 2 and 6 d, respectively. Neither acinar (Amy+ cells) nor ductal (CK19+ cells) specification was affected by PTX in either the genetic or

the pharmacological approach (C). Scale bars, 80 μm (A, B) and 70 μm (D-I); ***p < 0.001 in reference to control ALI cultures (C); error bars show SD.

For raw data please refer to the S1 Data file.

doi:10.1371/journal.pbio.2000949.g005
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The data described so far showed that S1p signalling through S1pr2 plays an important role

in pancreas progenitor survival at least partly through CTGF transcriptional activation and in

triggering progenitor specification. Additionally, our findings show that endocrine specifica-

tion in particular is specifically mediated by Gαi subunits.

YAP mediates S1pr2 signalling and is important for endocrine

specification

We next sought to determine the transcriptional mediator of this signalling cascade. The tran-

scriptional responses following S1p activation are not fully understood, but recent work has

shown that S1p receptors can stabilise the transcriptional coactivator YAP, a central player in

tissue growth control [41–45]. YAP is a component of the Hippo signalling cascade that phos-

phorylates it, leading to its retention in the cytoplasm and its degradation by the proteasome

[46]. Additionally, CTGF is a direct target of YAP transcriptional activation, mediating cell

survival in different cellular contexts [47–49]. Importantly, the TEAD obligatory YAP tran-

scriptional partners have been shown to bind to multiple enhancer elements of genes impli-

cated in pancreas development [13].

Expression of YAP can be detected from the early stages of pancreas development, but, sim-

ilarly to S1pr2 and Sphk expression, it peaks during secondary transition, and transcript levels

are significantly higher in the epithelium (S7 Fig). Immunostaining with E-cadherin clearly

showed that the protein is stabilised and detectable only in the epithelium (Fig 6A). Therefore,

we asked whether S1pr2 signalling regulates YAP levels and, therefore, YAP-mediated tran-

scriptional regulation. RNA Seq and qPCR results clearly showed that YAP expression was not

affected in either S1pr2 nulls, S1pr2 blocked ALI cultures, or Gαi blocked ALI cultures (S7 Fig).

In contrast, YAP protein levels were significantly reduced in both S1pr2 null pancreata at 14.5

dpc and 14.5 pancreatic explants subjected to S1pr2 signalling block for 2 d in culture (Fig 6A,

6B, 6D, 6E and 6G). YAP target genes such as CTGF, Cdk6, and Ccnd1 identified in other con-

texts [47,50,51] as well as Sox9 and CTGF in pancreas development [13] were transcriptionally

down-regulated in S1pr2 blocked explants (S2 Table). To show direct dependence of YAP sta-

bility upon S1p signalling, we titrated the amount of exogenous S1p and found that 20 μM S1p

in explants treated with 15 μM JTE013 was sufficient to rescue YAP protein stability (Fig 6D–

6F and 6G). The determined binding affinities are slightly higher for S1p 34, 52 and therefore in

these concentrations S1p is in small molecular excess. Additionally, S1p, being the natural

ligand, should diffuse faster in the explant tissue. This finding further confirmed that YAP pro-

tein stability depends on S1p signalling through S1pr2.

S1pr2 signalling can be conveyed through Gαq, Gα12/13, and Gαi subunits [52], and we

sought to determine whether selective blocking of each of these Ga subunits would affect YAP

protein stability. Blocking of the Gαq subunits with 50 uM of the specific Gαq antagonist-2A

(GP2A) [53] or blocking the function of Gα12/13 subunits with 5 ug/ml of the C3 exoenzyme

[54] in explants had no effect on YAP stability (S7 Fig). In contrast, inactivation of Gαi sub-

units by 10 μg/ml PTX resulted in a dramatic loss of YAP protein stabilisation, showing that

signalling specifically through Gαi subunits is an important component of YAP stabilisation

(Fig 6C and 6G).

To address the potential role of YAP in pancreas specification, we first sought to rescue the

protein stability in ALI embryonic pancreas explants where S1pr2 signalling was blocked.

Addition of 2 d of 1 μM of the reversible proteasome inhibitor MG132, used previously to

restore YAP stability [55], resulted in the YAP stabilisation (Fig 6G). Strikingly, this restored

specifically endocrine but not acinar specification (Fig 6H and 6I, S7 Fig), suggesting that

S1pr2 signalling acts through Gαi and YAP stabilisation to promote the endocrine lineage. To
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Fig 6. YAP mediates Gαi-dependent S1pr2 signalling and is essential for endocrine specification. (A-B) Immunofluorescence analysis of

embryonic pancreata at 14.5 dpc showed that YAP protein is specifically expressed in E-cadherin+ epithelial cells (A) and that it is dramatically reduced

in S1pr2 nulls (B). (C-F) YAP expression is retained in the epithelium of 14.5 ALI embryonic pancreas explants cultured for 2 d (D) but dramatically

reduced upon either S1pr2 block by 15 μM JTE013 (E) or Gαi inactivation by 10 μg/ml PTX (C). YAP expression levels are restored in JTE013-treated

pancreata by 20 μM of S1p (F). (G) YAP protein levels detected by western blot were significantly reduced in S1pr2 null pancreata at 14.5 dpc and in

14.5 dpc ALI cultures subjected to S1pr2 blocking with 15 μM JTE013 for 2 d or subjected to Gαi inhibition by 10 μg/ml of PTX. YAP protein levels were

restored in JTE013 treated pancreata by 20 μM of S1p or 1 uM of the proteasome inhibitor MG132. (H, I) Immunofluorescence analysis showed that C-

pep+ and Gcg+ cells were restored in JTE013-treated 14.5 dpc + 6 d ALI cultures in the presence of 1 μM MG132 for the first 2 d (H). Amy+ cells,

however, were not restored under these conditions (I) and CK19 expression remained high (I). Quantitations are provided in S7A Fig. (J–L) Inactivation

of YAP in pancreas progenitors using the YAPfl/fl conditional allele, the TgPdx1CreERT2 driver, ip tamoxifen injections, and immunofluorescence analysis

showed a nearly 40% reduction in the number of endocrine C-pep+ and Gcg+ cells compared to controls at P1. Scale bars, 80 μm (B-F, H, I) and 70 μm

(K, L); ***p < 0.001, ns, not significant in reference to E14.5 samples (A) and wt embryonic pancreata; error bars show SEM with the exception of J, for

which they show SD. For raw data, please refer to the S1 Data file.

doi:10.1371/journal.pbio.2000949.g006
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directly address this, we used the TgPdx1CreERT2 Cre driver and the YAPfl/fl allele (S3 Table) to

temporally inactivate YAP and bypass its early role in the expansion of the pancreatic epithe-

lium [13]. Following tamoxifen administration permissible for normal pregnancy and embryo

development [56], the TgPdx1CreERT2 [57] allele partially labelled all three lineages in the pres-

ence of a conditional ROSA26LSLtdTomato reporter allele (S3 Table) at similar efficiencies (S7

Fig). Thus we used TgPdx1CreERT2 and tamoxifen administration to inactivate YAP (S7 Fig) in a

temporally delayed manner. Whereas there was no effect on the number of Ngn3+ cells at 14.5

dpc (S7 Fig), the number of endocrine Cpeptide+ and Gcg+ cells was reduced by nearly 40% at

P1 compared to controls (Fig 6J–6L). The number of Amy+ acinar and CK19+ duct cells was

not affected, demonstrating the specific role of YAP in endocrine specification (S7 Fig). There

was no cell death in these pancreata, suggesting that the remaining YAP+ epithelial cells gener-

ated sufficient secreted CTGF and/or other secreted factors to maintain cell survival. To fur-

ther confirm that S1p signalling acts through YAP in endocrine specification, we treated 14.5

dpc YAP-deleted pancreata with 20 μM S1p for 6 d in culture. This treatment failed to restore

the loss of endocrine cells, confirming that YAP mediates the S1p effects on endocrine specifi-

cation (S7 Fig).

Taken together, these results reveal a distinct mechanism whereby S1p signalling acts

through Gαi subunits to stabilise YAP, which in turn is necessary for endocrine specification.

Importantly, YAP destabilisation does not affect the number of Ngn3+ cells, suggesting that a

distinct S1p-dependent pathway regulates Ngn3 expression.

S1pr2-mediated attenuation of Notch signalling is necessary for

endocrine and acinar differentiation

Disruption of S1pr2 signalling dramatically reduced the number of Ngn3+ cells (Fig 3G, 3K

and 3O). YAP destabilisation could not account for this effect, as shown above by the condi-

tional inactivation of YAP. Additionally, after S1pr2 signalling disruption, Ngn3 gene expres-

sion was only marginally affected, and there was a large increase in the number of duct-like

cells (Figs 3G, 3K, 3O, 3Q, 4B, 4F and 4N). Both of these effects could be a result of high Notch

activity that has been shown to destabilise Ngn3 and induce the formation of supernumerary

duct cells [18,19,58,59]. To investigate this, we activated Notch signalling above the endoge-

nous levels using 10 μM of the soluble Notch ligand peptide Delta-Serrate/lag-2 (DSL) in ALI

cultures of 14.5 dpc pancreata. This peptide is derived from the Jag-1 ligand domain, and it

also corresponds to the conserved, receptor binding part of the other Notch ligands, thus elicit-

ing canonical Notch signalling [60,61]. This activation resulted in a very similar phenotype to

that of blocking S1pr2 signalling, disrupting endocrine and acinar specification. Ngn3+ cells

were essentially eliminated (S8 Fig and Fig 7B), and the number of endocrine and acinar cells

was drastically reduced in favour of a greatly expanded population of duct-like cells (compare

Fig 4A, 4B, 4E and 4F with S8 Fig, see also Fig 7C).

Therefore, we next determined whether S1pr2 signalling was necessary to down-regulate

Notch signalling. Notch levels normally drop, concurrently with differentiation, on 14.5 dpc

explants maintained for just 1 d in culture, as shown by Notch intracellular domain (NICD)

and Hes-1 immunofluorescence (Fig 8B, 8C, 8E and 8F). Notch down-regulation failed to take

place in explants with S1pr2 signalling block (Fig 8H and 8I) but was restored by the addition

of 20 μM of S1p (S8 Fig), further establishing the down-regulation of Notch signalling by S1p.

Because transcript levels of Notch signalling components did not point to an overall transcrip-

tional regulation of Notch by S1pr2 signalling (S1 Table), we investigated whether such regula-

tion may occur posttranscriptionally. Sel-1 suppressor of lin-12-like (Sel1l) is a member of the

endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway, first identified
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in Caenorhabditis elegans as a negative posttranscriptional regulator of Notch signalling

[62,63]. Sel1l is expressed in the epithelium of the developing pancreas [64] (Fig 8A), and its

disruption resulted in loss of endocrine and acinar differentiation and prolongation of the pro-

genitor cell state [65], a phenotype strikingly similar to that of the S1pr2 signalling block. Con-

sistent with a role in differentiation, Sel1l is up-regulated in differentiating pancreas explants

(Fig 8D). S1pr2 signalling block resulted in the loss of the Sel1l protein, concomitant with

maintenance of Notch signalling (Fig 8G). Further confirming this finding, activation of the

Notch signalling above the endogenous levels with the addition of 10 μM of DSL resulted in a

strong decrease of Se1l1 levels (S8 Fig). Moreover, addition of 20 μM of S1p restored Se1l1 lev-

els, confirming its dependence upon S1p signalling (S8 Fig). Se1l1 protein levels were also re-

stored in the absence of S1pr2 signalling by 1 μM of the specific proteasome inhibitor MG132

(Fig 8J), and this was sufficient to restore attenuation of Notch signalling (Fig 8K and 8L).

Fig 7. S1pr2-mediated Notch attenuation triggers endocrine and acinar differentiation. (A-C) Stimulation of Notch signalling with 10 μM DSL in

14.5 dpc + 2 d ALI cultures did not affect YAP protein levels, as shown by western blot analysis (A) but resulted in elimination of Ngn3+ cells (B,

immunostaining in S8A Fig) and a significant reduction in the number of endocrine and acinar cells in favour of an expanded population of ductal cells

(C, immunostainings in S8B and S8C Fig). (A-C, D-F) Inhibition of Notch signalling with 10 μM DAPT in 14.5 dpc + 2 d ALI cultures had no effect on

YAP protein levels (A) but resulted in a large increase in the number of Ngn3+ (B, D), C-pep+, and Gcg+ (E, C) cells at the expense of Amy+ and CK19+

cells (F, C), as shown by immunofluorescence. (A-C, G-I). Simultaneous inhibition of Notch and S1pr2 signalling in 14.5 dpc + 2 d ALI cultures

transiently resulted in a large increase in the number of Ngn3+ cells (B, G) shown by immunofluorescence. However, immunofluorescence analysis

showed that C-pep+, Gcg+ (H, C), and Amy+ (I, C) cells were eventually eliminated in favour of an expanded population of CK19+ cells (I, C). Absence

of terminally differentiated endocrine and acinar cells can be attributed to a significant reduction in YAP protein levels observed under these conditions

(A). Scale bars, 80 μm (D-I); ***p < 0.001 in reference to control ALI cultures (B); error bars in B show SEM; error bars in C show SD. For raw data,

please refer to the S1 Data file.

doi:10.1371/journal.pbio.2000949.g007
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Therefore, S1pr2 signalling stabilises the Sel1l protein that in turn mediates the Notch signalling

down-regulation that is necessary for acinar and endocrine differentiation.

These results suggested that S1pr2 signalling mediates Notch down-regulation to induce

endocrine and acinar differentiation but did not clarify whether this was sufficient and

whether Notch signalling affected YAP levels. To answer these questions, we first blocked

Notch signalling without affecting endogenous S1pr2 signalling using 10 μM of the gamma-

secretase inhibitor DAPT in ALI cultures of 14.5 dpc pancreata [19,66]. This induced a large

increase in the number of Ngn3+ cells and resulted in preferential endocrine differentiation

(Fig 7B and 7D) (compare Fig 4A, 4B, 4E and 4F with Fig 7E and 7F and compare S4 Fig with

S8 Fig, see also Fig 7C).

We then addressed whether Notch down-regulation in the absence of S1pr2 signalling

would be sufficient to initiate and maintain differentiation. We found that despite the large

number of Ngn3+ cells at 14.5 dpc + 2 d explants (Fig 7B and 7G) and the transient initiation

of differentiation (compare S4 Fig with S8 Fig), neither endocrine nor acinar cell differentia-

tion were maintained (Fig 7F and 7I), suggesting that Notch down-regulation is not sufficient

but acts in concert with other effectors of S1pr2 signalling. We have shown above that with

regard to endocrine specification YAP plays an important role. Importantly, we have further

found that YAP levels depend upon S1pr2 but not Notch signalling. YAP levels did not change

when Notch signalling alone was inhibited or when Notch signalling was inhibited concur-

rently with S1pr2 inhibition (Fig 7A). This suggested that YAP levels are regulated by S1pr2

signalling through the Gαi function and not Notch attenuation (Fig 6G).

Fig 8. S1pr2 signalling attenuates Notch signalling. (A-F) Immunofluorescence analysis showed that Sel1l is strongly expressed in 14.5 dpc

pancreata maintained for 1 d (14.5 dpc + 1 d) in ALI cultures compared to 14.5 dpc pancreata (A, D), and this correlated with a drop in the expression

levels of NICD (B, E) and Hes1 (C, F). (G-I) S1pr2 signalling block with 15 μM JTE013 in 14.5 dpc + 1 d ALI cultures resulted in loss of Sel1l expression

(G), concomitant with maintenance of high NICD (H) and Hes1 (I) expression. (J-L) Sel1l expression was restored in the absence of S1pr2 signalling by

1 μM of the specific proteasome inhibitor MG132 in 14.5 dpc + 1 d ALI cultures (J), and this was sufficient to restore attenuation of both NICD (K) and

Hes1 (L) expression. Scale bars, 50μm (A-L). For raw data, please refer to the S1 Data file.

doi:10.1371/journal.pbio.2000949.g008
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Taken together, these experiments showed that S1pr2 signalling attenuates Notch activity

through the protein stabilisation of its negative regulator Sel1l. Both this attenuation and the

YAP stabilisation are necessary for the specification of the endocrine and acinar lineages.

Discussion

During development, cell fate decisions need to be coupled to the implementation of differen-

tiation programs so that different cell types in each organ are generated in the appropriate

numbers. Notch signalling is widely employed as a regulator of binary cell fate decisions, and

it also plays a key role in sequential lineage segregation during pancreas development [9–

12,14,18,19]. How Notch activity is coordinated with the implementation of specification pro-

grams is not well understood. Furthermore, signalling molecules that trigger lineage differenti-

ation remain largely elusive. Our findings revealed the implication of the S1p signalling

pathway in key pancreas developmental decisions. We found that the S1p signalling pathway

has a dual role in pancreas development by regulating lineage allocation and differentiation

and thus coordinating these processes.

Consistent with the notion that S1p is an important signalling molecule for pancreas devel-

opment, expression of the S1p generating enzymes at both the protein and the mRNA levels is

substantially higher in the epithelium and gradually increases during the secondary transition.

We found that S1pr2 is the main S1p receptor expressed in the developing epithelium. Devel-

opment of the acinar and endocrine lineages was severely delayed in S1pr2 null embryos, but

specific up-regulation of the functionally related receptors S1pr3 and Lpar1 in the epithelium

compensated and eventually restored pancreas development. Acute S1pr2 blocking in wt

explants prevented this compensation, resulting in complete loss of the endocrine and acinar

lineages and a massive appearance of duct-like cells. Down-regulation of Sox9 expression may

contribute to the loss of endocrine and acinar lineages [67]. The remaining cells are clearly of

ductal identity, although ductal gene expression is perturbed consistent with the interdepen-

dence of pancreatic lineage development [22].

This experimental set up provided us with a means to unravel the downstream events.

Specific blocking of the S1pr2 downstream effector Gαi, either in explants or genetically,

dramatically and selectively reduced endocrine lineage specification, suggesting that differ-

ent Ga subunits mediate distinct aspects of pancreas development that could be exploited in

stem cell differentiation protocols. Loss of S1pr2 signalling or Gαi function resulted in desta-

bilisation of the YAP transcriptional coactivator. Inactivation of the Hippo pathway by pan-

creas selective disruption of the Mst1/2 kinases led to increased levels of YAP in acinar cells

and their subsequent ductal metaplastic conversion [68,69]. However, the role of YAP dur-

ing pancreas development has not been genetically explored. Genetic temporal inactivation

of YAP specifically reduced endocrine specification without affecting the appearance of

Ngn3+ cells. YAP stabilisation by proteasome inhibition in the absence of S1pr2 signalling

restored endocrine specification. Furthermore, additional S1p signalling could not restore

endocrine specification levels in the YAP-deleted pancreata, establishing that an S1p to

S1pr2, Gαi, and YAP stabilisation cascade is necessary for the endocrine differentiation pro-

gram to be triggered (Fig 9). YAP mRNA levels are significantly higher in the epithelium,

and these findings explain the selective importance of the S1p signalling/YAP axis for the

development of the epithelium.

S1p signalling block was accompanied by cell death and down-regulation of CTGF, a

secreted survival factor and known YAP target gene [47–49]. Exogenous addition of CTGF in

S1pr2 blocked pancreata rescued the cell death but not the specification defects underlining

distinct functions of S1p signalling in progenitor survival and specification (Fig 9).
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Several effects of S1pr2 signalling loss would be consistent with maintenance of high Notch

activity, raising the possibility that S1p signalling regulates Notch. We found that S1p signal-

ling is necessary for the maintenance of Sel1l protein levels, a member of ERAD pathway, and

negative Notch regulator [62,63]. Sel1l deficiency impaired endocrine and acinar differentia-

tion and maintained the progenitor cell state [65]. Consistent with that, S1p signalling attenu-

ates Notch activity, a necessary step to trigger differentiation of the acinar and endocrine

lineages [9–12,14,18,19]. Rescue of the Sel1l protein levels by proteasome inhibition restored

Notch down-regulation in the absence of S1pr2 signalling. However, Notch down-regulation

on its own was not sufficient to sustain endocrine and acinar differentiation in the absence of

S1pr2 signalling, demonstrating that another effector of the latter is also necessary for endo-

crine specification, and we have shown that this effector is Gαi, which mediates YAP stabilisa-

tion (Fig 9). Interestingly, Ngn3 protein levels are dependent upon Notch signalling but not on

YAP, suggesting that S1p-dependent YAP stabilisation may be acting as a primer of the endo-

crine program that is then realised in the cells that stabilise Ngn3 protein levels.

Developmental pathways are often employed in adult tissues during regeneration, and their

application has also been pivotal in the generation of glucose responsive beta-like cells from

Fig 9. S1pr2 signalling regulates pancreatic lineage allocation and specification. S1pr2 signalling attenuates Notch signalling to promote the

segregation of tip MPCs that will give rise to acinar progenitors and bipotent trunk progenitors and, in the latter, to promote the generation of endocrine

progenitors via Ngn3 stabilisation. These are two temporally distinct steps shown here as one for simplicity. Ngn3 is stabilised post-translationally in

Notchlow cells [19]. Additionally, S1p signalling stabilises YAP to enable progenitor survival. Gαi activation mediates the stabilisation of the YAP protein to

enable endocrine specification. Both YAP stabilisation and Notch down-regulation are necessary for endocrine specification.

doi:10.1371/journal.pbio.2000949.g009
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human pluripotent stem (PS) cells [70–72]. During pancreas development, TEAD and its coac-

tivator YAP activate key pancreatic signalling mediators and transcription factors to regulate

the expansion of pancreatic MPCs that will generate all the pancreatic lineages. After the onset

of differentiation, YAP is rapidly degraded in acinar and endocrine cells but is retained in duc-

tal cells [13,68,69]. Our findings suggested an additional role for YAP in activating the endo-

crine differentiation program and identified S1p as an important signal that maintains its

stability through the secondary transition.

This work identified a new signalling pathway in pancreas development that leads to YAP

stabilisation and Notch attenuation in the developing pancreas, thus linking lineage allocation

and differentiation with a molecular player central for tissue growth control. These findings

have important implications for the efficient generation of endocrine cells from pluripotent

stem cells and for pancreas regeneration.

Materials and methods

Ethics statement

Animal maintenance and experimentation were conducted in accordance with the FELASA

recommendations and the ethical and practical guidelines for the care and use of laboratory

animals set by the competent veterinary authorities in the authors’ institutions.

Mouse strains, maintenance, and genotyping

Animal maintenance and experimentation were conducted in compliance with the FELASA

recommendations and the ethical and practical guidelines for the care and use of laboratory

animals set by the competent veterinary committees in the author’s institutions. Mouse mutant

and transgenic lines used were S1P2tm2Ytak [73], YAPfl/fl [74], TgPdx1CreERT2 [57], S1pr2tm1Rlp

[29], and Gt(ROSA)26Sortm1(ptxA)Cgh [38] purchased from the Mutant Mouse Regional

Resource Center (MMRRC; Chapel Hill, NC) and Gt(ROSA)26Sortm9(CAG-tdTomato)hZE [75] and

Tg(Pdx1-cre)6Tuv [76] purchased from The Jackson Laboratory (Bar Harbor, Maine) (S3 Table).

All mouse strains used were interbred onto the same genetic background (C57BL/6J). Geno-

typing was performed by conventional PCR on genomic DNA isolated from mouse-tails using

standard procedures. Briefly, mouse tails were dissolved in Tail buffer (100 mM Tris-HCl pH

8.0, 200 mM NaCl, 5mM EDTA, and 0.2% SDS) with 50 μg/ml Proteinase K (Sigma) overnight

at 55˚C. Following a protein extraction step with Phenol/Chloroform (Sigma), genomic DNA

was precipitated from the aqueous phase with 100% ethanol and finally resuspended in TE

buffer (10 mM Tris-HCl pH 8.0 and 1 mM EDTA). PCR conditions and primers used are pro-

vided in S4 Table.

Mouse injections

Tamoxifen (Sigma) was diluted in corn oil and injected ip in pregnant dams for 6 consecutive

days starting at 10.5 dpc with 1 mg, followed by 0.5 mg in the following days. To ensure homo-

geneity in the analysis, all newborns were collected either following delivery or by caesarean

section at 19.5 dpc (P1). JTE013 was diluted in PBS and injected ip at 2 or 5 mg/Kg body

weight in pregnant dams at 13.5, 14.5, and 15.5 dpc. Embryos were collected at 16.5 dpc for

analysis.

Organotypic cultures of embryonic pancreata

Dorsal pancreatic buds were dissected under a light stereoscope (Leica MZ75) at 13.5 or 14.5

dpc and cultured for 1, 2, 3, or 6 d on 0.4-μm pore diameter filters (Millicell-CM; Millipore) in
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DMEM (Gibco) supplemented with N2 (Gibco) and streptomycine-penicillin-glutamine

(Gibco). Treatments were with JTE013 (Tocris) at 15 μM, CTGF (Peprotech) at 50 ng/ml, PTX

(Calbiochem) at 10 μg/ml, DSL (CDDYYYGFGCNKFCRPR)(AnaSpec, AS-61298) at 10 μM,

DAPT (Sigma) at 10 μM, C3 exoenzyme (Biomol) at 5 μg/ml, GP antagonist-2A (Enzo) at

50 μM, VPC23019 (Avanti Lipids) at 50 μM, Ki16425 (Sigma) at 20 μM, MG132 (Sigma) at

1 μM and S1P (Tocris) at 20 μM. Controls were treated with the same amount of solvent

where appropriate. Chemicals were replenished with each medium change daily for 2-day and

3-day cultures or every second day for 6-day cultures.

Immunostainings on cryosections

Dissected pancreata were fixed in 4% paraformaldehyde (PFA; Sigma), washed in PBS, and

dehydrated in 30% sucrose (Sigma) overnight at 4˚C. Tissues were embedded in optimal cut-

ting temperature (OCT) compound (BDH), cut into sections of 12-μm thickness and mounted

onto Superfrost slides (VWR) for storage at −80˚C. For immunostainings, cryosections were

post-fixed in 4% PFA for 5 min and blocked for 1 h at room temperature in 10xBlocking solu-

tion (10% goat serum, 0.1% BSA, and 0.3% Triton X-100 in PBS). Primary antibodies were

diluted in 1xBlocking solution and incubated o/n at 4˚C, whereas secondary antibodies, also

diluted in 1xBlocking solution, were incubated for 2 h at room temperature. All washes were

done in PBST (PBS with 0.3% Triton X-100). After the final washes, slides were mounted with

DAPI (Vectashield; Vector or Prolong Gold antifade reagent with DAPI; Molecular Probes)

and taken for fluorescent microscopy.

Immunostainings on paraffin sections

Dissected pancreata were fixed in 10% formalin (Sigma) for 1 h at 4˚C, washed in PBS, and

taken into 70% ethanol. Tissues were then gradually dehydrated in a series of ethanol concen-

trations (70%, 95%, and 100% for 10 min each), before transferring in xylene for 10 min and

then into liquid paraffin for an additional 10 min. Sections of 6-μm thickness were cut on a

Leica RM2265 microtome and mounted onto polylysine-treated slides (VWR). For immuno-

fluorescence, slides were incubated with Xylene for 20 min for deparafinisation and then

immersed in a reverse series of ethanol concentrations (100%, 95%, 70%, and 50%) for rehy-

dration followed by washes in PBS. Sections were then processed for immunofluorescence as

described for cryosections, with the addition of an antigen-retrieval and a signal-amplification

step. For antigen retrieval, slides were immersed in 10 mM Sodium citrate pH 6.0, boiled in a

microwave oven at 600 W for 4 min, and then left to simmer at 250 W for 15 min. Slides were

allowed to cool at room temperature for 40 min and then washed in distilled water and finally

in PBS before proceeding with blocking. For amplification, a biotinylated secondary antibody

(Vector) was used, followed by incubation with an avidin/biotin-HRP enzyme complex (ABC

kit; Vector) for 1 h at room temperature. Slides were then washed in PBST and incubated with

Tyramide-Cy3 diluted at 1:50 in TSA buffer (TSA kit; Perkin Elmer) for 3 min at room tem-

perature to achieve HRP signal amplification. After a final wash in PBST, slides were mounted

with DAPI (Vectashield) and taken for fluorescent microscopy.

Morphometric analysis

Morphometric analysis on embryonic pancreata and pancreatic explants was performed using

immunofluorescent images taken at saturation and the ImageJ (Fiji) software. More specifi-

cally, the “Analyse Particles” tool of ImageJ was used to quantitate the number of pixels that

correspond to signal area on an immunofluorescent image. For the 14.5 dpc pancreata and all

pancreatic explants, analysis was performed using at least three 12-μm-thick cryosections per
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sample 24 μm apart, spanning the entire tissue. For the 19.5 dpc and P1 pancreata, analysis

was performed using at least six 12-μm-thick cryosections per sample, 120 μm apart, spanning

the entire tissue. For endocrine, acinar, and ductal cell quantitation, the signal area of C-pep-

tide/Glucagon-, amylase-, and Cytokeratin19-positive immunofluorescence, respectively, was

measured and divided by the corresponding total signal area for DAPI, thus normalising for

mass. The same procedure was followed for Pdx1-, Ptf1a-, Nkx6.1, and YAP-signal area quan-

titation. For quantitation of epithelial mitotic activity, PH3-positive nuclei were counted and

divided over the DAPI area of the epithelium as marked by E-cadherin co-staining. Similarly,

for endocrine progenitor quantitation, Ngn3-positive nuclei were counted and divided over

total DAPI area. To quantify the recombination efficiency, double Tdt + each marker (Cpep-

tide+Glucagon, Amylase, CK-19) positive cells were counted and this number divided for the

total number of cells expressing each marker. For each quantitation, at least three pancreata of

each genotype and/or condition were analysed.

RNA isolation and real-time PCR

Total RNA was prepared using the RNeasy kit with on-column genomic DNA digestion fol-

lowing the manufacturer’s instructions (Qiagen). First strand cDNA was prepared using

Superscript II RT (Invitrogen). Real-time PCR primers were designed using the Primer 3 soft-

ware (SimGene), specificity was ensured by in silico PCR, reactions were performed with

SYBR-Greener (Invitrogen) using an ABI PRISM 7000 machine or a Roche LC480 machine,

and primary results were analysed using the machine’s software. Reactions were carried out

from at least four independent samples with the exception of embryonic pancreata from

JTE013 injected dams where three samples were used. Absolute expression values were calcu-

lated using the ΔCt method using β-actin for normalisation except for the embryonic pan-

creata from JTE013 injected dams where Eif3 was used. Primers used were further evaluated

by inspection of the dissociation curve. Primer sequences were as follows:
S1pr2F: CACTACAATTACACCAAGGAGAC,R: CAGCACAAGATGATGATGAAGG;
Sphk1F: AGAAGGGCAAGCATATGGAA,R: ACCATCAGCTCTCCATCCAC;
Sphk2F: ACTGCTCGCTTCTTCTCTGC,R: GCCACTGACAGGAAGGAAAA;
Lpar1F: TCTTCTGGGCCATTTTCAAC,R: TCCTGGGTCCAGAACTATGC;
S1pr3F: GGGAGGGCAGTATGTTCGTA,R: GGCATCATATGGCCTCATCT;
Yap1 F: GCGGTTGAAACAACAGGAAT, R: TGCTCCAGTGTAGGCAACTG;
Pdx1 F: TCCACCACCACCTTCCAG,R: CAGGCTCGGTTCCATTCG;
Ctgf F: AGCGTCCAGACACCAACCT,R: GGTAGGAGGATGCACAGCAG;
β-actinF: TGGCTCCTAGCACCATGA,R: CCACCGATCCACACAGAG
Eif3 F: TCTCCGGCCGTACCGGCTAA, R: GAGCTGGCGTGGATGGGGTG

RNA sequencing and bioinformatic analysis

Embryonic pancreata (13.5, 14.5, or 15.5 dpc) from up to three pups of the same genotype

were pooled to generate one sample. For ALI cultures, up to three pancreata having undergone

the same treatment (normal medium, JTE013 or JTE013, and CTGF supplemented) were

pooled to generate one sample. Three independent samples from each stage/genotype or ALI

condition were used as biological replicates.

Total RNA was prepared using the RNeasy kit with on-column genomic DNA digestion

(Qiagen), and only RNA with an integrity number of�8 was used. mRNA was isolated from 1

ug total RNA by poly-dT enrichment using the NEBNext Poly(A) mRNA Magnetic Isolation

Module according to the manufacturer’s instructions. Final elution was done in 15 ul 2x first

strand cDNA synthesis buffer (NEBnext, NEB). After chemical fragmentation by incubating

for 15 min at 94˚C, the sample was directly subjected to the workflow for strand-specific
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RNA-Seq library preparation (Ultra Directional RNA Library Prep, NEB). For ligation, custom

adaptors were used (Adaptor-Oligo 1: 5’-ACA-CTC-TTT-CCC-TAC-ACG-ACG-CTC-TTC-

CGA-TCT-3’, Adaptor-Oligo 2: 5’-P-GAT-CGG-AAG-AGC-ACA-CGT-CTG-AAC-TCC-

AGT-CAC-3’). After ligation, adapters were depleted by an XP bead purification (Beckman

Coulter) adding bead in a ratio of 1:1. Indexing was done during the following PCR enrich-

ment (15 cycles) using custom amplification primers carrying the index sequence indicated

with ‘NNNNNN’. (Primer1: Oligo_Seq AATGATACGGCGACCACCGAGATCTACACTCT

TTCCCTACACGACGCTCTTCCGATCT, primer2: GTGACTGGAGTTCAGACGTGTGC

TCTTCCGATCT, primer3: CAAGCAGAAGACGGCATACGAGAT NNNNNN GTGACTG

GAGTT). After two more XP beads purifications (1:1), libraries were quantified using Qubit

dsDNA HS Assay Kit (Invitrogen). Libraries were equimolarly pooled and sequenced on an

Illumina HiSeq 2500, resulting in ca. 16–20 million single end reads per library.

After sequencing, FastQC (http://www.bioinformatics.babraham.ac.uk/) was used to per-

form a basic quality control on the resulting reads. As an additional control, library diversity

was assessed by redundancy investigation in the aligned reads. Alignment of the short reads to

the mm10 reference was done with GSNAP (v 2014-12-17) [77], and Ensembl gene annotation

version 69 was used to detect splice sites. The uniquely aligned reads were counted with fea-

tureCounts (v1.4.6) [74] and the same Ensembl annotation.

Normalisation of the raw read counts based on the library size and testing for differential

expression between the different conditions was performed with the DESeq2 R package

(v1.6.2) [78]. To calculate the number of regulated genes between two conditions, we accepted

a maximum of 10% false discoveries (padj� 0.1) and considered only genes with normalised

counts >100 in either condition and fold change <0.6 or >1.6. Unknown transcripts, pseudo-

genes, and RNAs other than mRNAs were not considered.

For the PCA, the raw read counts of the conditions to be analysed and their replicates were

transformed with the variance stabilising transformation of the DESeq2 package. The top 500

genes that showed the highest variance were selected and used for the PCA calculation.

TUNEL assays

TUNEL assays on cryosections were performed using a fluorescent cell death detection kit

(Roche) according to the manufacturer’s instructions. Briefly, cryosections were washed in

PBS and incubated in Permeabilisation solution (0.1% Triton X-100 in 0.1% Na-citrate) for 2

min at 4˚C. For labelling of DNA strand breaks, slides were incubated with 50 μl of TUNEL

reaction mixture (fluorescein-labelled nucleotides mixed with terminal deoxynucleotidyl

transferase) for 1 h at 37˚C. Slides were finally rinsed in PBS, mounted with DAPI (Vecta-

shield), and analysed by fluorescent microscopy. Slides that were incubated with DNase I prior

to the labelling reaction were used as a positive control.

Western blotting

Protein extraction, gel electrophoresis, and immunoblotting procedures were according to

standard protocols. For protein extraction, samples were lysed in RIPA buffer (50 mM Tris-

HCl pH 7.4, 1% NP-40, 0.5% Na-deoxycholate, 0.1% SDS, 150 mM NaCl, and 2 mM EDTA)

and supplemented with protease and phosphatase inhibitor cocktails (Sigma). Proteins were

loaded at 30 μg/lane on a polyacrylamide gel for electrophoresis, and protein transfer was sub-

sequently performed on a standard nitrocellulose membrane (Amersham). Blocking was per-

formed in 5% milk in TBST (50 mM Tris-HCl pH 7.6, 150 mM NaCl, and 0.05% Tween-20)

for 1 h at room temperature, and primary and secondary antibodies were diluted in 1% milk

in TBST and incubated overnight at 4˚C or for 2 h at room temperature, respectively. Signal
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was developed using the ECL kit (Perkin Elmer) according to the manufacturer’s instructions.

Primary antibodies used were rabbit anti-Yap1 (1:1000; Proteintech), rabbit anti-S1P2 (1:500;

Thermo Fisher Scientific), rat anti-E-Cadherin (1:2,000; Zymed), and mouse anti β-actin

(1:5,000; Santa Cruz). Secondary antibodies were anti-rabbit, anti-rat, and anti-mouse horse-

radish peroxidase (HRP)-conjugated goat antibodies (1:5,000; Dako).

Fluorescence activated cell sorting

The epithelial and mesenchymal components of embryonic and cultured pancreata were sepa-

rated by FACS based on the epithelial expression of Cd49f as described [79]. Briefly, pancreata

were dissected and incubated in a 0.05% Trypsin/EDTA solution (Gibco) for 5 min at 37˚C.

The reaction was terminated with 10% FBS (Sigma), tissues were dispersed with mild pipett-

ing, and single cells were collected by centrifugation (400 g; 4 min). Cells were resuspended in

PBS with 0.5% FBS, and after blocking with rat IgG (Abcam) for 15 min, cells were incubated

with a Cd49f-FITC (BD Pharmigen) antibody, added at 1:50 dillution for 1 h on ice with gentle

rocking. Cells were collected by centrifugation, resuspended in PBS with 0.5% FBS, and sorted

by FITC fluorescence intensity on a BD FACS Aria III, following standard procedures [79].

Two fractions were collected consisting of fluorescent (epithelial) and non-fluorescent (mesen-

chymal) cells, which were subsequently processed for RNA isolation and real-time PCR analy-

sis. The efficiency of the separation was independently confirmed by determining Pdx1

expression in the two fractions.

X-gal stainings

Cryosections of embryonic pancreata were washed in PBS and incubated with 1 mg/ml

5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal; Roche) in staining solution

[5mM K3Fe(CN)6, 5mM K4Fe(CN)6, 2 mM MgCI2, and 5 mM EGTA] for 8 h at 37˚C. For

double stainings, X-gal–treated sections were rinsed in PBS, incubated in blocking solution

(10% normal goat serum, 0.3% Triton X-100) for 1 h at room temperature, and subsequently

processed for immunofluorescence as described. For imaging, X-gal stainings were photo-

graphed in bright field, and the image was inverted and assigned to the green colour of the

RGB composite. This was then merged with the immunofluorescent image (in red) and the

DAPI image (in blue) of the corresponding field photographed under UV.

Statistical analysis

Statistical significance in morphometric analyses and real-time PCRs was determined by the

Student’s t test for two-tailed distributions of unpaired groups. Error bars represent the stan-

dard error of the mean (SEM). p< 0.05 was considered significant.

List of antibodies used for immunofluorescence

Primary antibodies used were rabbit anti-Ngn3 (1:100; Acris), rat anti-E-cadherin (1:400;

Zymed), rabbit anti-C-peptide (1:200; Linco), rabbit anti-Amylase (1:300; Sigma), rabbit anti-

Ptf1a (1:3,000; Gift from B. Breant), rat anti-Cytokeratin19 (1:250; DSHB), mouse anti-Gluca-

gon (1:500; Sigma), rabbit anti-Pdx1 (1:5,000; Gift from C. Wright), mouse anti-Pdx1 (1:250;

DSHB), rabbit anti-Sphk (1:250; Abcam), mouse anti-Nkx6-1 (1:1,000; DSHB), mouse anti-

Insulin (1:1,000; Sigma), rabbit anti-PH3 (1:500; Cell Signaling), rabbit anti-Yap1 (1:200; Cell

Signaling), rabbit anti-NICD (1:100; Cell Signaling), rat anti-Hes1 (1:500; MBL-Biozol), and

rabbit anti-Sel1l (1:250; Abcam). Secondary antibodies were anti-mouse, anti-rabbit, and anti-

rat Alexa-488-, Alexa-568-, and Alexa-633-conjugated goat antibodies (1:500; Molecular
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Probes), as well as anti-rabbit and anti-rat biotinylated goat antibodies (1:100; Vector). For

Nkx6.1 and Pdx1 mouse antibody staining together with Sphk, a Goat anti-Mouse IgG affini-

Pure Fab Fragment from Jackson ImmunoResearch (115-007-003) was used at 1:50 dilution

following the instructions of the manufacturer.

Supporting information

S1 Fig. S1pr2 and Sphk expression during pancreas development. (A-F) Tracking β-galacto-

sidase activity with the X-gal assay from heterozygous S1P2tm1lacz mouse embryos revealed that

S1pr2 was expressed in the pancreas at 9.5 dpc (A, D) and was mainly detected in the mesen-

chyme until 12.5 dpc because immunofluorescence showed that S1pr2 expression was appar-

ent in a few Pdx1+ (B, C) and E-cadherin+ (E, F) epithelial cells. (G-I, Q) Epithelial S1pr2
expression detected by the x-gal activity of the modified allele in heterozygous S1P2tm1lacz

mouse embryos peaked at 14.5 dpc, and immunofluorescence showed that it was co-locoalized

with Nkx6.1+ trunk cells (eg arrows in G) as well as with Ptf1a+ tip cells (eg arrows in H). The

same analysis showed that by 16.5 dpc, S1pr2 expression was eliminated in nascent endocrine

C-Pep+ and Gcg+ (Endo) cells and significantly reduced in the rest of the tissue (I). At P1

expression had disappeared completely (Q).(J-L) Quantitative PCR analysis on FACS-isolated

epithelial and mesenchymal components of the developing pancreas at 13.5, 14.5 and 15.5 dpc

confirmed that S1pr2, Sphk1 and Sphk2 expression peaked at 14.5 dpc (K, L), and that Sphk1
and Sphk2 expression was predominantly epithelial (L). The efficiency of the separation was

confirmed independently by determining Pdx1 expression by qPCR in the mesenchymal and

epithelial components of FACS separated cells (J). (M-P) Time course of Sphk expression by

immunofluorescence at 12.5, 14.5 and 16.5 dpc confirmed the presence of the protein primarily

in the epithelium (M-O) and co-localization with Nkx6-1 at 14.5 dpc in the epithelial trunk

cells (P). Scale bars, 40μm (A, F), 80μm (G-I, P), 10μm (M-O), 160μm (Q); �p< 0.05, ��p<0.01,
���p<0.001, ns not significant in reference to epithelial expression in the corresponding time

point (J, L) or corresponding to the E14.5 samples (K); Error bars show SEM. For raw data

please refer to the S2 Data file.

(TIF)

S2 Fig. Analysis of progenitor marker genes, proliferation and expression of Lpar1 and

S1pr3 in the S1pr2 tm1Rlp null embryonic pancreata and postnatal endocrine phenotype of

S1pr2tm1Rl null mice. (A-G) RNA Seq gene expression profiling revealed that transcription

factors and other genes implicated in epithelial progenitor specification and maintenance were

not significantly affected in S1pr2tm1Rlp null pancreata at 14.5 dpc (A). RNA seq counts of both

S1pr3 and Lpar1 were increased in the S1pr2tm1Rlp null pancreata at 14.5 dpc (B). Abrogating

S1pr2 signalling by intraperitoneally injecting pregnant mice with 2 or 5 mg/kg of body weight

JTE013 at 13.5, 14.5 and 15.5 dpc resulted in upregulation of both S1pr3 and Lpar1 at 16.5 dpc

as shown by qPCR (C). Quantitative PCR analysis on isolated epithelial and mesenchymal

components of the wt developing pancreas at 13.5, 14.5 and 15.5 dpc showed that expression

of expression of both S1pr3 (D) and Lpar1 (E) was predominantly mesenchymal. Quantitative

PCR for Pdx1 expression was used to confirm the efficiency of mesenchymal and epithelial

separation by FACS (F). Immunofluorescence and quantitation of the ratio pH3+ / E-cad-

herin+ cells in wt and S1pr2 null pancreata showed that epithelial proliferation was not affected

(G). (H) Western blot analysis on wild-type and S1pr2tm1Rlp null pancreata at 14.5 dpc show

that S1Pr2 protein is completely absent in the S1pr2tm1Rlp null. (I-K) The number of endocrine

cells (C-pep+ and Gcg+) in S1pr2 null newborns is similar to wt littermates (I) and 8 week

S1pr2 null adults show no difference in fasting glucose blood levels (J) or in glucose tolerance

test (K). padj< 0.05 (B); �p< 0.05, ��p<0.01, ���p<0.001, ns not significant in reference to
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expression in untreated or control samples; Error bars show SEM. For raw data please refer to

the S2 Data file.

(TIF)

S3 Fig. S1pr2tm1Rlp null embryonic pancreata in ALI cultures showed defects in lineage

specification; S1p rescues endocrine specification in JTE013-treated pancreata in ALI cul-

tures. (A-I, M, N) Immunofluorescence analysis showed that 14.5 dpc S1pr2 null pancreata in

ALI cultures for 6 days (14.5 dpc + 6ds) gave a strongly reduced number of C-pep+ and Gcg+

endocrine cells (B, E, N), a strongly reduced number of Amy+ acinar cells and an increased

number of CK19+ duct-like cells (C, F, N). S1pr2 block by 15μM JTE013 in 14.5 dpc + 6ds ALI

cultures of wild-type pancreata resulted in morphological defects characterised by an absence

of the dense cell clusters observed by brightfield microscopy in untreated wt and S1pr2 tm1Rlp

null cultures (compare M to A and D). In contrast, 14.5 dpc + 6ds ALI cultures of S1pr2 null

pancreata in the presence of 15μM JTE013 caused no such morphological defects (G), and

immunofluorescence analysis showed that it did not further affect specification of endocrine

(C-peptide+ and Glucagon+)(B, E, H, N), acinar (Amylase+) or ductal (CK19+) (C, F, I, N) cells

confirming the specificity of JTE013 for S1pr2 also in this context. (J-L) Immunofluorescence

analysis showed that the presence of 20 μM S1p rescued specification of endocrine (Cpep+ and

Gcg+) cells in JTE013-treated 14.5 dpc + 6 ds ALI cultures (K), and to a lesser extent specifica-

tion of acinar (Amy+) and ductal (CK19+) cells (L). Morphological defects were also rescued

under these conditions as evidenced by brightfield microscopy (J). Quantitations are provided

in S7A Fig.Scale bars, 80μm (B, C, E, F, H, I, K, L) and 100μm (A, D, G, J, M); ���p<0.001, in

reference to corresponding untreteated controls; Error bars show SD. For raw data please refer

to the S2 Data file.

(TIF)

S4 Fig. S1pr2 block in pancreatic ALI cultures affects lineage specification. (A-I) Immuno-

fluorescence showed that terminally differentiated endocrine (C-pep+ and Gcg+), acinar

(Amy+) and ductal (CK19+) cells are scarce in wt 14.5 dpc embryonic pancreata (A, B), but are

readily detected after 2 days in ALI cultures (C, D). S1pr2 block with 15 μM JTE013 in 14.5

dpc + 2 ds ALI cultures and immunofluorescence analysis showed a loss of endocrine (C-

pep+) and acinar (Amy+) cells (C-F) and a decrease in epithelial proliferation (ratio of pH3+/

E-Cad+ cells) (G). In these experiments a small increase in cell death was evident by TUNEL

analysis (H, I). (J, K) High-magnification immunofluorescence showing the presence of

Ptf1a+/Pdx1- cells in 14.5 + 2 ds ALI cultures (arrows in J), which are lost upon S1pr2 block

(K). (L, M) RNA Seq gene expression analysis on 14.5 dpc + 2 ds pancreatic ALI cultures,

revealed that expression of progenitor markers was only weakly affected upon S1pr2 block

with 15 μM JTE013, with the notable exception of Nkx6.2 and Dll1 (L). Venn diagram for up-

and down-regulated genes in 14.5 dpc S1pr2 tm1Rlp null pancreata and wt pancreata and pan-

creata cultured for 2 days in standard conditions or with S1pr2 signaling blocked by 15 μM

JTE013 (M). Scale bars, 80μm (A-F, I, J), 25μm (J, K). For raw data please refer to the S2 Data

file.

(TIF)

S5 Fig. CTGF rescues cell death caused by S1pr2 block. (A-C) Quantitative PCR analysis

showed that CTGF expression peaks at 14.5 dpc (A) and that it was expressed in both the mes-

enchyme and the epithelium of 13.5, 14.5 and 15.5 dpc embryonic pancreata (B). S1pr2 block

in 14.5 dpc + 2 ds ALI pancreatic cultures with 15 μM JTE013 causes a 3.5-fold decrease in

CTGF expression as shown by RNA Seq (C). (D-I) Immunofluorescence analysis of 14.5 dpc

+ 2 ds (D-F) or 14.5 dpc + 6 ds (G-I) ALI cultures that were S1pr2 signaling blocked with

Sphingosine-1-phosphate signalling in pancreas development

PLOS Biology | DOI:10.1371/journal.pbio.2000949 March 1, 2017 24 / 31

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2000949.s003
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2000949.s004
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2000949.s005


15 μM JTE013 and supplemented with 50 ng/ml CTGF. Addition of CTGF was not sufficient

to restore the number of Ngn3+ cells (D), there was no effect on the expression pattern of Pdx1

and Ptf1a progenitor markers (E) and epithelial proliferation remained decreased (F). S1pr2

block in 14.5 dpc + 6 ds ALI cultures eliminated Nkx6.1+ cells (G, H) but supplementation

with CTGF for the duration of the culture lead to an expanded population of Nkx6.1+ cells (I)

(J-N) Comparison of gene expression changes detected by RNA Seq analysis in 14.5 dpc + 2 ds

dpc ALI cultures under conditions of S1pr2 block (15 μM JTE013), in the presence (grey bars)

or absence (black bars) of CTGF. Gene expression changes (fold regulation) of progenitor (K),

endocrine (J), acinar (L) and duct (M) markers were strikingly similar in the two conditions as

compared to untreated 14.5 dpc + 2 ds ALI cultures. Principal component analysis (PCA)

showed that S1pr2-blocked explants with or without CTGF cluster much closer together than

with untreated control explants (N). (O) Quantitative PCR analysis showed that the presence

of 20μM S1p in S1pr2-blocked 14.5 dpc + 2 ds ALI cultures restored CTGF expression to con-

trol levels. Scale bars, 80μm (D, E, G-I); padj<0.05 (C); �p< 0.05, ��p<0.01, ���p<0.001, ns not

significant in reference to E14.5 samples (A) or untreated samples (F); Error bars show SEM.

For raw data please refer to the S2 Data file.

(TIF)

S6 Fig. Block of Gαi subunits does not affect the acinar or ductal lineages. (A-K) Expression

of a single allele of the conditional ROSA26LSLPTX transgene in pancreatic epithelial progeni-

tors using the Pdx1-Cre driver TgPdx1Cre resulted in disruption of endocrine cell migration and

clustering as shown by immunofluorescence of 14.5 dpc + 6 ds ALI cultures (A, B). Expression

of two alleles of the ROSA26LSLPTX transgene using the same driver did not affect Amy+ acinar

of CK19+ duct cells either at P1 (C, D) or at 14.5 dpc + 6 ds ALI cultures (E, F, J) as shown by

immunofluorescence. Similarly, addition of 10 μg/ml of PTX in 14.5 dpc + 6 ds ALI cultures

also had no effect on acinar or duct cell specification (K). Immunofluorescence analysis of 14.5

dpc + 6 ds ALI cultures or 14.5 dpc + 2 ALI cultures from ROSA26LSLPTX/LSL/PTXmice had no

defect in endocrine specification and islet clustering (G) or in the generation of Ngn3+ cells

(H). Quantitation of the effects of Gαi block in the number of Ngn3+ endocrine progenitor

cells showed a strong decrease in both the genetic and ALI culture paradigms (I). (L) Quantita-

tion of the effects of PTX actiivation from the ROSA26 LSLPTX transgene using the TgPdx1Cre

driver showed a striking loss of C-pep+ and Gcg+ cells compared to wild-type animals at post-

natal day 1 (P1). Scale bars, 80μm (A-H, J, K); ���p<0.001, in reference to untreated ALI cul-

tures (I) or wild-type animals (L); Error bars in I show SEM; Error bars in L show SD. For raw

data please refer to the S2 Data file.

(TIF)

S7 Fig. Temporal YAP inactivation does not affect acinar or ductal specification. (A)

Quantitation of the effects of S1p or the proteasome inhibitor MG132 in S1pr2-blocked 14.5

dpc + 6 ds ALI cultures, on β- (Cpep+), acinar (Amy+) and duct (CK19+) cells. (B) Quantitative

PCR analysis in embryonic pancreata at 10.5, 12.5, 14.5 and 15.5 dpc showed that YAP tran-

script levels peak at 14.5 dpc. (C) Quantitative PCR analysis showed that YAP is expressed in

both the mesenchyme and the epithelium of 13.5 embryonic pancreata but is predominantly

expressed in the epithelium at 14.5 and 15.5 dpc pancreata. (D) RNA Seq analysis on 14.5 dpc

pancreata and pancreatic ALI cultures showed that YAP gene expression is not affected in

S1pr2-nulls and in S1pr2-blocked explants in the presence or absence of CTGF (E) Quantita-

tive PCR analysis showed that YAP levels remain unchanged in 14.5 dpc + 2ds ALI cultures

treated with 10μg/ml PTX compared to untreated controls. (F) Western blot analysis on 14.5

+ 2 ds ALI cultures treated with 50μM of the Gαq inhibitor GP-2A or 5μg/ml of the Gα12/13

inhibitor C3-exoenzyme, showed that YAP levels remained unchanged in both cases,
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compared to untreated controls.(G-J, N, O) A conditional ROSA26LSLtdTomato allele was acti-

vated using the TgPdx1CreERT2 driver and tamoxifen ip injections in pregnant mice. Analysis by

immunofluorescence at 14.5 dpc showed that endocrine (C-pep+ and Gcg+)(G), acinar

(Amy+) (H) and ductal (CK19+) (I) cells were labeled with tdTomato, with a similar efficiency

ranging between 38–50% (J). Immunofluorescence analysis of these samples showed that there

was no effect on acinar (N) or duct (O) cell specification. (K-M) Immunofluorescence analysis

on the above samples at 14.5 dpc indicated that YAP expression in TgPdx1CreERT2 / YAPfl/fl pan-

creata (L, M) drops by 64% compared to their wild-type counterparts (K, M). (P-R) However,

no differences in the numbers of Ngn3+ cells were observed between YAP inactivated (Q,R)

and control YAPfl/fl pancreata (P,R). (S-V) TgPdx1CreERT2 / YAPfl/fl E14.5 pancreata kept in cul-

ture for 6 days displayed a 30% reduction in the levels of endocrine cells compared to control

YAPfl/fl pancreata explants (S, T, V). Treatment with 20 μM S1P, did not restore the numbers

of endocrine cells in the YAP inactivated explants (U, V). Scale bars, 70μm (G-I, P, Q, S-U),

100μm (K, L); ���p<0.001, ns not significant in reference to S1pr2-blocked controls (A), to

E14.5 samples (B), to expression in the mesenchymal component of the corresponding time

point (C), to untreated control explants (E) or to expresion in control (YAPfl/fl) pancreata (N,

O, R); Error bars in B, C, E show SEM; Error bars in A, J, M, N, O, R, V show SD. For raw data

please refer to the S2 Data file.

(TIF)

S8 Fig. Interaction of Notch and S1pr2 signaling in pancreatic ALI cultures. (A-C) Immu-

nofluorecence analysis showed that stimulation of Notch signalling with 10 μM DSL resulted

in elimination of Ngn3+ cells (A, quantitations in Fig 8B) in 14.5 dpc + 2ds ALI cultures and in

a significant reduction in the number of C-pep+, Gcg+ (B, quantitations in Fig 8C) and Amy+

cells in favour of an expanded population of CK19+ cells (C, quantitations in Fig 8C) in 14.5

dpc + 6ds ALI cultures (D-F) Immunofluorescence analysis in 14.5 dpc + 1d ALI cultures

showed that Sel1l expression was restored in the absence of S1pr2 signalling by 20 μM of S1p

(D), and this was sufficient to restore attenuation of both Hes1 (E) and NICD (F) expression.

(G-H) Notch inhibition of 14.5 dpc + 2 ds ALI cultures with 10 μM DAPT caused a dramatic

transient expansion of C-pep+ and Gcg+ cells (G), at the expense of Amy+ and CK19+ cells (H).

(I-J) Notch inhibition with 10 μM DAPT together with S1pr2 block with 15 μM JTE013 in 14.5

dpc + 2 ds ALI cultures transiently restored endocrine (C-pep+) (I) and acinar (Amy+) (J) cell

specification. (K-L) Immunofluorescence analysis in 14.5 dpc + 2d ALI cultures showed that

Notch stimulation with 10 μM DSL resulted in a significant reduction of Sel1l expression (K, L).

Scale bars, 70μm (A-C and G-J), 50μm (D-F, K, L). For raw data please refer to the S2 Data file.

(TIF)

S1 Table. Normalised RNA Seq counts, regulation and statistical significance of genes

implicated in pancreas progenitors, endocrine, acinar, and ductal cells.

(XLSX)

S2 Table. Expression of YAP regulated genes.

(XLSX)

S3 Table. List of mouse lines used.

(DOC)

S4 Table. Genotyping primers and PCR Conditions.

(DOC)

S1 Data. Raw data for figures.

(XLSX)
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