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Abstract

Learning complex ordering relationships between sensory events in a sequence is funda-

mental for animal perception and human communication. While it is known that rhythmic

sensory events can entrain brain oscillations at different frequencies, how learning and prior

experience with sequencing relationships affect neocortical oscillations and neuronal

responses is poorly understood. We used an implicit sequence learning paradigm (an “artifi-

cial grammar”) in which humans and monkeys were exposed to sequences of nonsense

words with regularities in the ordering relationships between the words. We then recorded

neural responses directly from the auditory cortex in both species in response to novel legal

sequences or ones violating specific ordering relationships. Neural oscillations in both mon-

keys and humans in response to the nonsense word sequences show strikingly similar hier-

archically nested low-frequency phase and high-gamma amplitude coupling, establishing

this form of oscillatory coupling—previously associated with speech processing in the

human auditory cortex—as an evolutionarily conserved biological process. Moreover,

learned ordering relationships modulate the observed form of neural oscillatory coupling in

both species, with temporally distinct neural oscillatory effects that appear to coordinate

neuronal responses in the monkeys. This study identifies the conserved auditory cortical

neural signatures involved in monitoring learned sequencing operations, evident as modula-

tions of transient coupling and neuronal responses to temporally structured sensory input.

Author summary

While natural environments constantly change, certain events can predict the future

occurrence of others. Learning ordering relationships is vital for animal perception and

human communication, yet how such learning and prior experience affect the brain

remains poorly understood. We set out to understand how learning relationships between
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words modifies neuronal responses in both humans and monkeys. Using an implicit

learning paradigm, we exposed human subjects and monkeys to sequences of nonsense

speech sounds that followed certain rule-based ordering relationships (an “artificial gram-

mar”). We then recorded neural responses directly from the auditory cortex in both spe-

cies in response to sequences that were either consistent with the artificial grammar or

created illegal ordering transitions between elements in a sequence. We found that learned

ordering relationships modulate a diversity of neural responses (some of which coordinate

in similar ways) at the scale of populations of neurons in both species. Our experiments in

monkeys also revealed that this scale of neural processing is related to single neurons, the

fundamental processing unit in the brain. This study reveals the conserved neuronal sig-

natures of the auditory cortex involved in monitoring learned sequencing operations,

which mechanistically inform and extend ideas on how the brain predicts the sensory

world.

Introduction

Natural environments are dynamic and constantly changing, yet certain sensory events can

predict the occurrence of others. For any animal to adapt and survive in its environment

requires that its brain establish and monitor the predictability of ordering relationships

between sensory events, a process that is impaired in neurodevelopmental and other disorders

[1–3]. It is known that neural oscillations at certain frequencies can entrain to rhythmic sen-

sory inputs, regulating the excitability of neuronal populations [4–13]. However, how learning

and prior experience with ordering relationships affect neural oscillations and neuronal

responses in the sensory neocortex is poorly understood.

Sequence learning paradigms can be used to comparatively test the sensitivity of human

and nonhuman animals to temporal order in sequences of sensory items [14–21]. Typically,

such experiments begin with an exposure period, during which the participant experiences the

regularities between the sensory items in a sequence—for example, listening to a string of legal

(“consistent”) sequences of sounds generated by a rule-based system (i.e., an “artificial gram-

mar”). The exposure phase is thought to elicit implicit learning of the ordering relationships

between the sensory items, a form of relational knowledge that does not require perceptual

awareness about what was learned [22]. The exposure period is followed by a testing period

in which the participant is presented with novel, consistent sequences and “violation” se-

quences that have illegal transitions not experienced during exposure. Differential responses to

different types of sequence ordering relationships can provide insights into the participant’s

sensitivity and learning strategy. There is growing evidence that following exposure to repre-

sentative legal sequences, humans and various species of nonhuman animals can recognize

ordering relationships between events in a sequence, and there is considerable interest in

understanding whether temporal sequence processing capacities are an evolutionary precursor

substrate upon which human language evolved [14–19, 21].

Although theoretical models and general comparisons across species point to broadly

evolutionarily conserved neural oscillatory processes [6, 7, 23–25], there is a paucity of direct

comparative evidence in humans and animal models. Direct intracranial recordings can occa-

sionally be obtained in humans being monitored for surgery, when the coverage for clinical

monitoring overlaps with the research question. However, to date there has been little com-

mon ground in terms of recording sites or tasks across the species, making it difficult to

extrapolate insights on neural mechanisms from animal models to humans. Moreover, certain
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neural processes involved in segmenting human speech and language [7–9, 26–29] are unlikely

to have direct correspondences in nonhuman animals, given that human language is unique in

the animal kingdom. To test for and establish whether neural processes are evolutionarily con-

served requires direct comparative neurobiological data obtained under similar tasks.

The goal of this study was to identify and compare the neural oscillatory signatures in the

monkey and human auditory cortex in response to sequences of nonsense words and to test

whether and how neural responses and oscillations, including single-neuron responses in the

monkeys, are modified by the learned between-word relationships established during the

preceding exposure period. Based on neurobiological models of auditory cortical oscillatory

processing of speech sounds [26] or sensory-driven entrainment of low-frequency neural oscil-

lations [5, 6], we hypothesized that nonsense word sequences consisting of spectrotemporally

complex sounds would elicit low-frequency phase and gamma amplitude coupling in the

human and monkey auditory cortex. Whether the form of neural oscillations or coupling

would be similar or different across the species was unclear. It was also difficult to predict

how the learned sequencing relationships would affect cortical oscillations or coupling, al-

though some form of impact on low frequency oscillations might be expected [6, 25, 27, 28].

Moreover, we expected that phase–amplitude coupling (PAC), which can capture extrinsic

influences [9, 24–28], would show evidence of either occurring in tandem or leading corre-

sponding effects on local neurons (i.e., single neurons or populations of neurons, as measured

by local field potential power at higher frequencies) during sequence processing. The results

show comparable low-frequency (delta and/or theta) phase and high-gamma amplitude cou-

pling in response to the nonsense words in population neural activity recorded directly from

the human and monkey auditory cortex, which was robust even with the stimulus-driven

response removed from analysis. The strength of this form of nested coupling was strongly

modulated by the temporal sequencing regularities in the sequences, as established by the

prior exposure period to the ordering relationships. Sequence-processing effects on oscillatory

coupling and single-neuron spiking activity occurred in tandem but preceded effects on local

field potential power. Sensitivity to the sequence ordering relationships was also time sensitive,

with, for instance, modulations of oscillatory coupling in response to sequencing relationships

consistent with the artificial grammar occurring prior to further modulations of oscillatory

coupling in response to violations of sequence ordering relationships. The results inform pre-

dictive coding models. This study demonstrates that learned sequence ordering relationships

modulate neural oscillations in ways that are found to be remarkably similar in the human and

monkey auditory cortex and that such oscillatory coupling appears to coordinate local neuro-

nal responses in the primate auditory cortex.

Results

We used an “artificial grammar” learning paradigm that generates sequences of nonsense

words with considerable variability in the transitions between elements (S1 Fig). This para-

digm has been used to identify differences in the sequence processing capabilities of different

nonhuman primate species [19] but, critically, appears to be processed comparably by humans

and macaques [20]. We used nonsense words because they contain all the spectrotemporal

components of speech needed to elicit theta–gamma coupling in the human auditory cortex

[25, 26] but minimize human lexical–semantic recognition. This made for a closer cross-spe-

cies comparison since the monkeys are likely to treat the nonsense words as complex sounds

and/or vocalizations, but they would not be able to attach meaning to them. Since the transi-

tions between the nonsense word stimuli occur at a lower frequency (~1.8 Hz) than the

within-word acoustic features, this allowed us to evaluate whether and how the learned
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contingencies between the nonsense words would affect the form of neural oscillations seen in

both monkeys and humans.

Eye-tracking measurements of orienting behavior with the two monkeys that participated

in these experiments have previously been used to confirm that the macaques produce longer

looking responses to sequences that violated the between-word ordering relationships than to

novel, “consistent” sequences that followed the legal ordering relationships [19]. Moreover,

macaques and humans show comparable patterns of behavioral responses to the regularities in

the sequences, in particular for adjacent relationships between the nonsense words in the

sequences [21]. During a follow-up visit after the surgical monitoring period, one of the

human subjects in this study participated in our behavioral testing paradigm. The results con-

firmed the subject’s sensitivity to the sequencing violations (S2 Fig).

We first presented the monkeys with the exposure set of representative consistent se-

quences for 30 min (Fig 1 and S1 Fig). This was followed by the testing period, during which

we recorded single-unit activity (SUA) from a total of 187 neurons (M1: n = 126; M2: n = 61)

and 145 local field potentials (LFPs) (M1: n = 90; M2: n = 55). The recordings were made from

tonotopically localized regions of the auditory cortex (involving primary and surrounding

auditory belt regions) as the animals listened to the testing sequences (S1 Fig). The testing

sequences were either consistent with the ordering relationships previously heard during expo-

sure or violated a specific ordering relationship. Critically, the neurobiological effects reported

for the sequencing relationships cannot be attributed to acoustic features, since identical non-

sense word elements were directly compared in matched pairs of consistent and violation

sequences. In other words, the analyses focused on the same acoustical elements (probe stimu-

lus period), prior to which there was either a violation or no violation, which we refer to as the

“sequencing context” (Fig 1C, S1 Fig).

We first evaluated monkey auditory neural oscillatory responses to the nonsense words,

irrespective of the sequencing context. Macaque neural responses showed evidence of low-fre-

quency (including theta band) phase alignment and high-gamma power in response to the

nonsense words. We observed significant event-related spectral perturbations (ERSPs) [31] in

response to each of the nonsense words, which were prominent in theta (4–10 Hz), alpha (10–

13 Hz), beta (13–30 Hz), and high-gamma (>50 Hz) frequency bands (Fig 2A). Significant

increases in intertrial phase coherence (ITC) were also observed in theta, alpha, and beta fre-

quency bands (bootstrap significance level, p< 0.01, Fig 2B). These phase (ITC) and power

(ERSP) oscillatory responses to each of the sounds in the sequence substantiate that the core

ingredients are in place to assess low-frequency phase and high-frequency amplitude coupling.

We next evaluated whether significant coupling between low-frequency phase and high-fre-

quency amplitude occurs and, if so, what form such coupling takes and whether it can occur

with the stimulus-induced response removed. We calculated PAC in the LFP signals using a

modulation index (MI) to evaluate the strength of coupling between low-frequency phase (3–8

Hz) and high-frequency power (40–200 Hz). The vast majority of the LFP sites recorded from

the monkey auditory cortex showed robust PAC responses to the nonsense words as low-fre-

quency (3–8 Hz) phase coupling with gamma (>40 Hz) amplitude (141/145, 97%; M1: 88/90,

98%; M2: 53/55, 96%, p< 0.05, Bonferroni corrected; Fig 2C and 2E). Our approach ensured

that the results cannot be easily attributed to stimulus-evoked responses since we removed

the stimulus-driven component from contributing to the analyses (see Materials and methods,

S3 Fig).

Next, to evaluate the impact of the sequencing context on theta–gamma coupling (i.e., oscil-

latory coupling in response to the nonsense words), the time course of MI values was extracted

from the cluster of pixels showing PAC in response to the nonsense words under the two

sequencing conditions (Fig 2D). For the 141 LFP sites that showed significant PAC effects in
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response to nonsense words, 53% (75 LFPs, M1: 47/88, 53%; M2: 28/53, 53%) showed that the

sequencing context significantly modulated PAC coupling (p< 0.05, Bonferroni corrected;

Fig 1. Associative sequence learning paradigm. A. Spectrograms of the five nonsense word elements used in

this study. B. The paradigm used is based on Wilson et al. [19] using the artificial grammar of Saffran et al. [30]. It

consists of required (green) and optional (orange) nonsense word elements. In the illustration, following any of the

arrows from start to end generates a legal “consistent” sequence. C. Example consistent and matching violation

sequence comparison pair. The red box highlights the first illegal sound element in the sequence. This illustrates

how, in the monkeys, local field potential (LFP) and single-unit activity (SUA) data were analyzed using a 1,126 ms–

long analysis window (“probe stimulus analysis window” denoted by the horizontal arrow) to include responses to the

same two acoustically identical nonsense words (here the F and C elements, gray and red) in the two sequencing

conditions. See S1 Fig for all comparison sequence pairs used. D. Illustrated monkey testing trial time course.

Sequences consisted of nonsense words (each 413 ms–long) separated by a 150-ms interstimulus interval (ISI). A

sequence was initiated by the monkey fixating on a visual spot on the monitor screen for at least 500 ms, and each

sequence was separated by at least a 4,500-ms intertrial interval (ITI). See Materials and methods for details on the

human experiment using the same materials.

https://doi.org/10.1371/journal.pbio.2000219.g001
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Fig 2. Monkey phase–amplitude coupling in response to the nonsense words and between-word transitions. A. Time-frequency

representation of local field potential (LFP) cortical responses in the monkey auditory cortex to the nonsense words (all eight sequences). Shown is

the event-related spectral perturbation (ERSP). The color scale indicates power (in dB) at a given frequency and time relative to the 500-ms baseline

prior to sequence onset. B. Phase consistency was calculated using intertrial phase coherence (ITC). Bootstrap statistics (p < 0.01) were computed

using the same baseline used to calculate the ERSP, and nonsignificant points were colored in green for both ERSP and ITC. C. Exemplary phase–

amplitude coupling (PAC) in response to the nonsense words for the same data shown in (A) and (B). The MI values were z-scaled and shown at

each combination of frequency for phase in the x-axis and frequency of amplitude in the y-axis. D. The left panels show the modulation index (MI)

time course of PAC during the analysis window, extracted from the combinations of amplitude and phase pairs in response to the nonsense words

that were above the statistical threshold (p < 0.05, Bonferroni correction). The results shown here are for the same exemplary LFP site shown in A–

C. The thick lines denote the average PAC response across all significant phase and amplitude pairs, and the thin lines show the coupling strength

for all phase–amplitude pairs. The horizontal yellow and green bars above the response curve identify the time of occurrence of the elements in the

two types of sequences after the violation onset in the violation sequence or the acoustically identical elements in the corresponding consistent

sequence. The right two panels show difference plots of the time course of oscillatory coupling in response to the violation versus the corresponding

Sequencing predictions modulate neural oscillations
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Fig 2D). The exemplary site in Fig 2D shows that violations of the sequencing order (i.e., a

transition that never occurred during the exposure period) strongly modulated coupling

between low-frequency phase and gamma amplitude at specific times from ~450 ms after the

violation to ~700 ms; this is a time period covering the subsequent two sounds after the

sequencing violation.

The modulation of PAC seemed to occur independently of any stimulus-evoked, ERP-

driven, or time-locked ITC during the same probe stimulus period (see S3 Fig). This observa-

tion provides additional evidence that the observed modulation of PAC reflects a sequencing

context–related effect rather than one that is purely stimulus driven. Out of 75 sites, the largest

proportion (34/75; 45%) showed greater PAC responses to violation sequences. Interestingly, a

considerable number of sites also showed greater PAC responses to consistent sequences (31/75;

41%) and responses to both types of sequencing contexts (10/75; 13%), the latter evident as signifi-

cant deviations from chance variability in PAC for either context at different time points.

Interestingly, the form of low-frequency phase and high-gamma amplitude coupling

observed in monkeys in this study resembles that obtained in previous intracranial results in

humans [25]. However, it is difficult to directly compare our monkey results to this pioneering

work in humans, as it relied on word recognition tasks that can only be conducted in humans.

Furthermore, regions including and around the primary auditory cortex (Heschl’s gyrus

[HG]) were not assessed, which would better correspond to the regions that were recorded

here in the monkeys. For more direct cross-species comparisons, we recorded from two

human patients being monitored for surgery who had depth electrodes in HG as part of their

clinical treatment plan. We used auditory stimulation sequences identical to those in the mon-

key experiments for both exposure and testing (see Materials and methods).

The human neural oscillations recorded in HG showed striking similarities to the results

obtained from the monkey auditory cortex. We observed increased gamma power and ITC in

the low-frequency range in response to the nonsense words (compare human Fig 3A and 3B to

monkey Fig 2A and 2B). Moreover, 81% (13/16) of the contacts in human HG showed signifi-

cant low-frequency phase and gamma amplitude coupling (p< 0.05, Bonferroni corrected) in

response to the nonsense words (human subject 1 [H1]: 6/8 = 75%; H2: 7/8 = 88%; Fig 3C–

3F). Out of 13 LFP recording sites in HG, 10 sites (77%) showed significant modulation of

phase–amplitude coupling in response to the sequencing context (effects in at least one of the

stimulus sequence pairs; H1: 5/6 = 75%; H2: 5/7 = 88%). This is seen as low-frequency-to-

gamma coupling that is dynamically modulated over time after a sequencing violation (Fig 3D

right panels, p< 0.05, Bonferroni-corrected; significant modulation as a function of the

sequencing context). The presence of mixed types of context-dependent PAC responses (Fig

2D), as was seen in the monkey results, was also observed in the humans; out of 10 sites that

showed significant context-dependent PAC responses, 30% (3/10) showed significant PAC in

response to the violation sequences, 40% (4/10) showed greater response to the consistent

sequence, and 30% (3/10) showed significant PAC modulation to both types of sequences. The

observed PAC effects varied across the gamma frequency range and did not show clear topo-

graphical relationships in response to the two sequencing conditions across the recorded sites

in the human or monkey auditory cortex (S1 Text, S4 Fig, S5 Fig and S6 Fig). Further, a control

experiment in another human subject (H3) provides some support for the notion that effects

consistent sequence. The thick line denotes the average difference calculated from the data on the left. The horizontal dotted lines denote the CI

significance threshold. The vertical dotted line identifies the latency of the first significant effect. The top panels show an exemplary response with a

violation-preferring sequencing context effect. The bottom panels show exemplary response with a consistent-preferring sequencing context effect.

E. Average PAC in response to the nonsense words across all LFP sites in the monkeys (145 LFPs, p < 0.05, Bonferroni-corrected).

https://doi.org/10.1371/journal.pbio.2000219.g002

Sequencing predictions modulate neural oscillations

PLOS Biology | https://doi.org/10.1371/journal.pbio.2000219 April 25, 2017 7 / 32

https://doi.org/10.1371/journal.pbio.2000219.g002
https://doi.org/10.1371/journal.pbio.2000219


Fig 3. Human intracranial recordings from the auditory cortex in response to the nonsense words and sequencing relationships.

Figure format is the same as in Fig 2 for the monkey results. A. Time-frequency representation of neuronal responses in an exemplary local

field potential (LFP) recording site (channel 186) from Heschl’s gyrus (HG) in human subject 1 (H1). B. Intertrial phase coherence (ITC).

C. Exemplary LFP phase–amplitude coupling (PAC) in response to nonsense words shown for site 186. D. Left: reconstructed image of

the location of the depth electrode placement in the left HG for H1. Right: (top) time course of modulation index (MI) values above the

significance threshold at the recording site identified by a red square in panel (D). (bottom) Difference plot of the time course of oscillatory

coupling in response to the violation versus the corresponding consistent sequence. PAC showed a significant difference in response to the

violation sequence at a latency of ~300ms (bootstrap statistics, p < 0.05). E. Exemplary LFP PAC in response to nonsense words shown for

site 81 in H2. F. Left: depth electrode placement in the right HG in H2. Right: (top) time course of MI values above the significance threshold

at the recording site, identified by the red square in panel (F). (Bottom) difference plot of the time course shown in the plot above with a

sequencing-context sensitivity latency of 510 ms.

https://doi.org/10.1371/journal.pbio.2000219.g003
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on PAC are stronger when the participant experiences exposure to statistically structured

sequences rather than those with unstructured transitions between the sound elements (S2

Text, S7 Fig, S1 Table and S2 Table).

LFP power and SUA effects in relation to single-neuron responses

The number of recording contacts in humans is limited, and access to single units was not pos-

sible; thus, using monkeys as a model system, with a more substantial sampling of population

and single neuronal responses, we conducted further analyses that link the fundamental scale

of neuronal processing in the brain to results obtained at the other neural scales (i.e., local field

potentials and oscillatory coupling; Fig 4 and Fig 5). Analysis of local field potential and single-

unit responses confirmed the relatively late auditory neuronal sensitivities to the sequencing

context seen with oscillatory coupling responses (>600 ms), and the results substantiated

the observation of different subpopulations of responses sensitive to either the consistent or

violating ordering relationships. Across the 145 LFP sites, the proportion of responses to the

sequencing context (differential violation versus consistent responses during the acoustically

matched sequence pairs in the probe stimulus analysis window) were significantly different for

high gamma (violation versus consistent, χ2 = 4.9, p< 0.03, n = 36) but not for theta and low

gamma oscillations (theta: χ2 = 0.44, p> 0.50, n = 36; low gamma: χ2 = 0.1, p> 0.70). This is

seen as a relatively even split in theta and low-gamma LFP power (Fig 4C) and SUA (Fig 5C)

in response to the violation or consistent sequences, with high-gamma responses tending to be

more prominent in response to the violation sequencing context.

Next, we analyzed the strength of the sequencing context effect in the LFP and SUA data in

terms of their magnitude and duration (Fig 4 and Fig 5). This analysis showed that all neuronal

LFP power and SUA responses to the sequencing context had substantial breach durations

(~40 ms) above the significance threshold (mean ± standard error of the mean [SEM]; high

gamma, 42 ± 5.7 ms, n = 40; low gamma, 41 ± 4.6 ms, n = 40; theta, 45 ± 5.2 ms, n = 36; SUA,

40 ± 2.8 ms, n = 40). High-gamma power, in particular, showed a significantly greater average

response magnitude to the violation context than to the consistent sequencing context (Fig

5D; 52 ± 7.8 ms versus 24 ± 1.5 ms, violation versus consistent, p< 0.02, Wilcoxon rank-sum

test). The observed sequencing context effect appears to be independent of the differential

response to the sounds prior to the probe stimulus window, since there was no significant cor-

relation between the magnitude of the high-gamma response to the sound preceding the viola-

tion transition and the magnitude of the context-sensitive response during the probe stimulus

window (r = 0.14, p = 0.54, Pearson correlation; see S3 Text and S8 Fig).

To evaluate whether the various neural response measures differed in the latency of their

responses to the sequencing context (Fig 6), we used an ANOVA with the response latencies as

the dependent variable and the factors monkey, sequencing context, and type of neuronal

response (PAC, LFP across three frequency bands, and SUA). The analysis revealed a main

effect of neuronal response type (F4, 221 = 2.776, p< 0.03) with no interactions (all p> 0.1).

Post-hoc comparisons showed that PAC response latencies were comparable to those in the

SUA but were significantly shorter than responses based purely on LFP power (Fig 6; Fisher’s

least significant difference [LSD], p< 0.03). Moreover, the PAC sensitivity latencies were sig-

nificantly later in response to violation sequences than to consistent sequences (Fig 6).

Discussion

This study identifies the auditory cortical neural signatures associated with monitoring learned

sequence ordering relationships. The oscillatory coupling in response to the nonsense words

and sequence ordering relationships are seen to be remarkably similar in humans and
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monkeys, and these results are further informed by local field potential and single-neuron

responses in the monkeys as a model system. After exposing humans and monkeys to rule-

based, nonsense word sequences, we demonstrated the following: (i) transient low-frequency

neural oscillatory phase couples with high-gamma band amplitude in response to the nonsense

word sequences in the auditory cortex, which was robust even with the stimulus-evoked

response removed; (ii) the previously experienced temporal ordering relationships modulate

neuronal responses and oscillatory coupling after a violation transition (~450–700 ms); (iii)

oscillatory coupling effects occurred in tandem with spiking activity (single neuron) responses

and led effects in local field potential power; and (iv) neural responses to the sequence ordering

Fig 4. Exemplary monkey local field potential (LFP) response sensitivity to the sequencing context. A. (left) An exemplary LFP high-

gamma response (50–100 Hz) to consistent (blue line) and violation sequences (red line), showing greater response to the violation sequence

during the probe stimulus analysis window (pink window in left panel). The horizontal color keys below the response curves indicate each

element of the consistent and the violation sequences. The gray area indicates the 913-ms baseline period (i.e., 500 ms prior to the sequence

onset through to the end of the first “A” element). (Right) a difference response waveform was created by subtracting the grand average

response to the consistent sequence from the grand average response to the violation sequence (“violation”–“consistent”). “L” is the length of the

sequencing context–dependent response (i.e., response duration breach above the CIs) and “t” is the sensitivity latency, which is defined as the

first time point that breached the CI. Significance of breach is based on permutation tests using both duration and magnitude criteria (see

Materials and methods). B. An exemplary LFP high-gamma response (50–100 Hz) that is greater for the consistent sequence. C. Proportions of

responses to sequences showing significant effects to either the consistent or violation conditions, subdivided by different LFP frequency bands.

https://doi.org/10.1371/journal.pbio.2000219.g004
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relationships were time sensitive, with, for example, oscillatory coupling responses occurring

early in time to consistent sequencing relationships prior to further modulations of oscillatory

coupling in response to violations of the sequence ordering relationships.

Fig 5. Exemplary monkey neuronal (single-unit activity [SUA]) response sensitivity to the sequencing context. Figure format is the

same as in Fig 4. A. Exemplary SUA showing significant response sensitivity to the violation sequence with a sensitivity latency of 963 ms (L = 77

ms). B. Exemplary SUA showing significant response sensitivity to the consistent sequence with a sensitivity latency at 361 ms (L = 36 ms). Note

that peak differences in panels A–B occurring before these reported significant latencies were either not significant by the joint criterion of

response magnitude and duration (Materials and methods) or occurred before the start of the analysis window and were thus not included for

analysis. C. Proportions of neuronal responses to sequences showing significant effects in response to either the consistent or violation

conditions. D. Magnitude of the context-dependent response to violation sequences (red) and consistent sequences (blue), measured as the

length of time above the significance threshold (L) across different neural response measures: high-gamma (n = 40), low-gamma (n = 40), and

theta (n = 36) local field potential (LFP) power, including SUA (n = 40). High gamma showed a significantly greater response magnitude to the

violation sequencing context (p < 0.02). The vertical lines denote the standard deviation.

https://doi.org/10.1371/journal.pbio.2000219.g005
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Evolutionarily conserved nested oscillatory coupling

The results appear to address any remaining uncertainty regarding whether human nested

coupling in response to complex sounds, such as speech, is at all like the auditory cortical cou-

pling elicited by the same type of stimuli in other animals. General cross-species correspon-

dences between neuronal oscillations in rodents, monkeys, and humans have been noted (e.g.,

[23]) and are taken as evidence of broadly evolutionarily conserved oscillatory processes and

mechanisms. A prominent neurophysiological model of auditory cortical segmentation of

speech [7, 9, 26] postulates that auditory cortical oscillations are entrained by the multi-time-

scale structure in speech sounds (e.g., phonemic, syllabic). Speech syllables entrain low-fre-

quency theta oscillations (4–8 Hz), which in turn couple with high-frequency (>30 Hz)

gamma amplitude, regulating neuronal excitability and segmenting speech into an appropriate

temporal granularity. Moreover, studies in nonhuman animals have reported auditory cortex

activity that is phase-locked to the temporal envelope of complex sounds, including vocaliza-

tions [10, 32], speech syllables [33], and natural sounds [11, 34], although not always at theta-

band frequencies. However, the lack of direct comparisons between humans and nonhuman

animals has left the comparisons and relationships to single-neuron responses tentative and

the issue unresolved. Our results show that nested neuronal coupling to nonsense words is

remarkably similar across the species, and effects occur in tandem with single-unit responses.

Fig 6. Sequencing context sensitivity latencies across neural response measures. Mean sensitivity

latencies in response to violation (red) and consistent sequences (blue) shown for different neural response

measures (high gamma, low gamma, theta, single-unit activity [SUA], and phase–amplitude coupling [PAC]).

The neural population data for each type are the same as those used for Fig 4C, Fig 5C and 5D. The different

neural response measures showed relatively late sensitivity latencies (high gamma, mean ± SEM: 677 ± 43

ms, n = 40; low gamma: 674 ± 48 ms, n = 40; theta: 680 ± 57 ms, n = 36; SUA: 547 ± 48 ms, n = 40, PAC:

538 ± 34 ms, n = 85, Fig 6) with significantly shorter latencies in response to consistent sequences compared

to violation sequences in the oscillatory coupling response: PAC (violation: 607 ± 48 ms, n = 44; consistent:

463 ± 47 ms, n = 41; Wilcoxon rank-sum test, p < 0.05).

https://doi.org/10.1371/journal.pbio.2000219.g006
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These cross-species observations raise the important question of what are the neurobiological

processes supporting human speech perception, if complex sound segmentation is seen to be a

general property of neural processing within and around the primary auditory cortex. Part of

the answer might be that downstream processes, such as those in the human superior temporal

gyrus and sulcus, support more speech perception–specific representations [35].

Since speech production and perception are unique to humans, it is unlikely that nonhu-

man primates perceived the nonsense words differently to other complex natural sounds.

With training, monkeys and rodents can learn to discriminate speech [36, 37]. For our para-

digm, it is critical that the monkeys and humans are able to perceptually distinguish the dif-

ferent nonsense words in order to recognize the ordering relationships [19, 21]. However,

because of their experience with speech and language, humans might process the phonotactic

content (and other aspects of speech) contained within the nonsense words differently than

would monkeys. Nonetheless, given these and other unavoidable differences in testing the two

species or how they might perceive the stimuli, the similarities in the form of nested coupling

seen in the human and monkey auditory cortex are all the more remarkable.

Our human oscillatory coupling results in response to speech sounds are generally consis-

tent with those from the initial report of theta–gamma coupling in human intracranial record-

ings [25]. The prior study used word recognition tasks, leaving uncertain the extent to which

sublexical stimulus features are sufficient to evoke theta–gamma coupling. Accumulating evi-

dence from this and other studies support the notion that theta signal modulation and theta–

gamma coupling can arise as a function of speech-related processing [38–40], which, as we

show, is evident in human and monkey neuronal oscillations within the auditory cortex even

with stimulus-driven responses removed from analysis. These oscillations are further modu-

lated by learning and mnemonic operations, as we now consider.

Sequencing relationships modulate hierarchically nested oscillations and

neuronal responses

By design, we used violations of specific sequencing relationships to ensure that the subsequent

probe stimulus period that was analyzed across the “violation” and “consistent” sequence pairs

contained the same acoustical elements that were being compared across the conditions. Thus,

the contribution of pure stimulus entrainment in the observed PAC should be equal across the

conditions. Note also that the wavelet filtering across the two sequence conditions was identi-

cal. Our results also confirmed that initial stimulus-driven, pure power or phase effects cannot

easily explain the results, since we removed the trial-by-trial evoked stimulus–response from

the LFP signals (see S3 Fig, Materials and methods). Moreover, to rule out potential artificial

PAC coupling, which can occur for a number of reasons [41], we used phase-clustering correc-

tion [42] and trial-shuffled permutation testing before calculating PAC. Beyond the PAC elic-

ited by the nonsense words, we observed that PAC was sensitive to the sequence learning

context, seen as dynamic modulation of the PAC for a substantial amount of time after a viola-

tion transition (~450–700 ms over the next two sounds in the sequence), which can occur

independently of any stimulus time-locked phase coherence (S3 Fig). Therefore, a parsimoni-

ous general explanation of the results is that non-stimulus–driven effects are responsible for

the observed PAC of neuronal oscillations in both the human and monkey auditory cortex.

The analyses in relation to SUA responses suggest that oscillatory coupling occurs in tandem

with single neuronal responses, with effects on populations of local neurons’ (i.e., time-aver-

aged LFP gamma power) activity following (Fig 6).

The between-word transitions in our sequences occurred at a regular 1.8 Hz rate. Thus, one

prediction is that monitoring the sequencing transitions would entrain low-frequency delta
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oscillations and affect the form of nested oscillations to more strongly involve a delta compo-

nent [6, 29, 39, 43–46]. Although our analysis could only measure as low as 3 Hz, the observed

PAC effects are clearly not specific to delta (<4 Hz), however, involving also theta (4–8 Hz)

phase coupling with gamma amplitude (S1 Text and S4 Fig). Sequence learning effects on

theta, in particular, at least on the surface appear to resemble those shown for other learning or

mnemonic processes. For instance, theta oscillations in the auditory cortex measured by

magnetoencephalography (MEG) are modulated during speech recognition when speech is

comprehensible [38]. Also, when participants monitor syntactic properties in sentences and

store certain relationships in memory, electroencephalography (EEG)-based theta frequencies

are modulated in frontoparietal brain regions [28].

Some of the neuronal effects related to sequence learning reported here could be intrinsic

to the auditory cortex, given that rapid, learning-related, receptive field plasticity occurs in the

auditory cortex [47]. It is also possible that the auditory cortex interacts with a broader net-

work of regions, and we consider some likely candidate regions and physiological processes

involved. For example, it is broadly accepted that the hippocampus is important for encoding

and retrieval during explicit forms of learning and memory [13, 48, 49]. Recent evidence using

implicit (statistical or associative) learning tasks has raised the interesting possibility that the

hippocampus is also involved in more implicit forms of learning, assisting in evaluating previ-

ously learned associations in relation to novel incoming input [50–53]. The hippocampus also

has intrinsic neuronal oscillations in the theta-frequency band that can be modulated by learn-

ing and memory [54–61]. Thus, hippocampal neuronal oscillations seem to be important for

sampling temporally discrete sequential events [13], processes that are modulated by cognitive

operations.

Much less is known about the role of the sensory cortex, especially with regards to how the

monitoring of previously experienced sequencing relationships impact on neuronal oscilla-

tions and coupling. Recordings of auditory neuronal spiking responses in songbirds using a

statistical learning paradigm showed stronger responses to novel low-probability transitions

versus familiar sequences [62]. In the monkey inferior temporal cortex, neurons adapt their

responses to an image whose presence is predicted by a leading image [63], and the neurons

respond more strongly to the image not predicted by the preceding image(s) [64]. However, a

study in rodents using a fixed A–B–C–D sequence of visual gratings at different orientations

showed strong potentiation in response to the familiar predictable sequence in the rat primary

visual cortex in relation to sequences with unpredictable transitions between the stimuli [65].

Our work could help to reconcile and extend some of these seemingly discrepant findings

across brain regions and species: we see similar neuronal responses and oscillatory signatures

in humans and macaques associated with previously experienced sequence ordering relation-

ships that are seen prominently, but not exclusively, for violations of sequencing relationships

(Fig 4 and Fig 5).

The relatively late sensitivity to the sequencing relationships is an interesting observation,

since it is generally consistent with the approximate time of behavioral eye-tracking sensitivity

in response to specific violations to these sorts of sequencing relationships (~600 ms) [19].

Also, using the same stimuli and paradigm as the ones used here, monkey EEG results showed

a late event-related positivity at ~500 ms ([66], also see [67]). Thus, our results establish the

primate auditory cortex as an important site for monitoring previously experienced sequence

ordering relationships, whereby specific violations to the ordering relationships modulate

nested coupling at a time when the effects appear to be behaviorally meaningful and seem to

elicit large-scale event-related potentials. However, structured sequence learning is related to

but not equivalent to grammatical violations in natural language, which in humans are known

to elicit late effects in EEG potentials such as the P600 [68, 69]. In all cases, our study shows an
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approach for identifying the auditory cortical correlates of certain EEG or MEG responses,

some of which might have hierarchically nested coupling as an underlying mechanism. In

humans these processes can be compared with natural language operations.

The auditory cortical effects that we observe occur later than other types of contextual audi-

tory cortical effects [70], raising the question of which brain regions are interacting with the

sensory cortex to elicit these learning-related effects. The hippocampus is a good candidate, as

we considered above, and neural processes in this region also show relatively late sensitivity to

violations of other types of sequence ordering relationships (300–600 ms) [71]. Additionally,

we predict that the ventral frontal cortex plays a key role in monitoring sequence order for pre-

viously learned relationships [72]. Namely, a recent comparative functional magnetic reso-

nance imaging (fMRI) study in monkeys and humans using the same paradigm showed that

the ventral frontal and opercular cortex is consistently engaged across participants and in both

species in response to violations of the ordering relationships [20]. However, possibly because

of the mixed subpopulations of different types of neuronal responses that the current study

identified in the auditory cortex, the involvement of the auditory cortex was not clear in the

prior comparative fMRI study. This was the case even with the fMRI data reanalyzed here,

focusing specifically on the human and monkey auditory cortex (S4 Text and S9 Fig).

Our monkey neurophysiological data provided more systematic coverage of SUA and LFP

activity in the auditory cortex than was possible with the human neural recordings, revealing a

dichotomy of neuronal response types. These combined observations are difficult to explain

by early stimulus-specific adaptation (SSA) because of the rather late occurrence of the effects

that we see (~600 ms), but see the long-lasting effects reported by Yaron and colleagues [73].

Also, rapid SSA effects would elicit a reduction in neuronal responses to stimulus regularities

[74, 75], whereas we also see stronger responses to the legal (consistent) versus violation

sequences in a subpopulation of neurons. We also find evidence for different types of neuronal

responses across scales (Fig 4C), with mainly high gamma showing significantly greater mag-

nitude and proportions of responses to the violation sequencing context (Fig 4C and Fig 5D).

These aspects of the results appear to be more comparable to the potentiation of neuronal

responses to predictable stimulus transitions, as seen in the rodent primary visual cortex [65],

although, again, it is worth noting that the effects here occur well after stimulus onset.

The predictive coding theory of brain function can potentially explain and be informed by

our results. Predictive coding models of perception posit that low-frequency prediction signals

from hierarchically higher areas are compared with incoming sensory information from hier-

archically lower areas, generating high-frequency error signals in the form of gamma oscilla-

tions that are fed forward to higher areas [76–79]. Our results on oscillatory coupling and the

observation of a more prominent high-gamma signal in response to violation sequences (Fig

5) are generally consistent with these models. Innovation is provided here by the observation

of fundamental interactions between low- and high-frequency oscillations as a function of

learned sequencing relationships likely encoded via intrinsic auditory cortical interactions

with other areas of the brain (Fig 7). Such interactions are a possible manifestation of the

gamma error signal from a lower-frequency (possibly beta band) prediction input [77, 78].

Interestingly, theta and/or alpha oscillations have also recently been shown to relate in magni-

tude to the precision of higher predictions [79] and as a feed-forward process in the primate

visual pathway [78, 80], indicating wider roles for these low-frequency oscillations than

acknowledged in current theory. Enhanced low-frequency oscillations may therefore be

important for strengthening the gamma prediction error signal for learned sequencing opera-

tions on sensory input. Moreover, informing predictive coding models, we discovered a candi-

date physical mechanism for comparing ongoing prediction signals with incoming sensory

information, based on PAC that is delayed beyond the PAC directly resulting from the signal
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itself. This is illustrated in Fig 7, whereby prediction signals, induced here by the processing of

consistent sequencing relationships, lag those associated with stimulus onset. When there is a

prediction error (in our case, a response to a sequencing order violation) there is a further

modulation of PAC and local neuronal processing. Future studies could seek to establish the

feed-forward and feedback interactions that may occur between the sensory cortex and other

brain regions, including specifying the cortical layers where the reported effects occur [81, 82].

The work here provides the framework for such pursuits that can now strongly benefit from

studies in animal models to complement and extend the observations that can be obtained

from intracranial recordings in humans.

In summary, the findings support the notion that hierarchically nested oscillations, such as

theta–gamma coupling in response to complex sounds, reflect general auditory physiological

processes in primates. Moreover, the human and monkey auditory cortex show the neural sig-

natures of learning- or experience-based sequence monitoring in the form of modulations of

transient, low-frequency (including theta) oscillations coupling with gamma and concomitant

effects in single neurons and populations of neurons at specific times as a function of the

predictability of the sequence ordering relationships. Overall the results imply that these pro-

cesses are unlikely to have evolved, at least at this level, in a uniquely specialized manner in

humans. The described physiological processes inform neurobiological research on the neural

bases of learning and predictive coding. The work opens the door for more systematic study of

the mechanisms for these processes in animal models with more direct comparisons to neural

processes in humans.

Fig 7. A physiological model of sequencing predictions in time. Sound onset is known to coordinate low-frequency phase and high-

frequency amplitude neural oscillations (see text). Less is known about how context-dependent sequence learning effects modulate neural

oscillations and coordinate with neuronal responses. This physiological model based on the results of the study shows that after exposure to

structured sequencing relationships, different neural signals (local field potential [LFP], single-unit activity [SUA], oscillatory coupling) show

context-dependent response modulation that can lag responses due to sound onset. Prediction signals, reflected in phase–amplitude

coupling (PAC) and possibly emanating from hierarchically higher brain areas, occur throughout the sequences when the ordering

relationships are consistent with the learned sequence ordering relationships (note that for simplicity this is only illustrated in the black

dashed line box for one violation transition). This prediction signal is modulated later in time when a sequencing violation occurs (a prediction

error), also affecting local neural processes (see results in Figs 5 and 6).

https://doi.org/10.1371/journal.pbio.2000219.g007
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Materials and methods

Ethics statement

All macaque procedures performed in this study were approved by the UK Home Office (proj-

ect license: 70/8318) and by the Animal Welfare and Ethical Review Body at Newcastle Univer-

sity. The work complies with the Animal Scientific Procedures Act (1986) on the care and use

of animals in research and with the European Directive on the protection of animals used in

research (2010/63/EU). We support the principles of the consortium on Animal Research

Reporting of In Vivo Experiments (ARRIVE).

All human research procedures were approved by the University of Iowa Institutional

Review Board (IRB ID #: 200112047). Prior informed written consent was obtained from each

subject participating in the study. These guidelines are also consistent with European Ethical

Guidelines (Helsinki Declaration and H2020 EU guidelines).

Monkey experiments

Two adult male rhesus macaques (Macaca mulatta, weighing 9 and 13 kg and 5 and 8 y old,

respectively) from a group-housed colony were studied. The pen sizes in our colony range

from 130 × 240 cm to 215 × 240 cm width and depth with 230 cm height. Hatches between

neighboring pens are used to increase the space available to the animals.

Task and stimuli. Nonsense word sounds were used within sequences that were consistent

with the allowed AG transitions between the nonsense words or violated them in very specific

ways. The transition graph (Fig 1B) consists of multiple forward-branching relationships and has

considerable variability in the transitional probabilities [19, 21, 30]. The paradigm consists of five

nonsense words serving as elements to the sequences (A, C, D, F, and G). The words were “yag,”

“lek,” “kem,” “pav,” and “rop” (Fig 1A). The nonsense words were produced by a female human

talker, digitally recorded with an Edirol R-09HR sound recorder (Roland Corp.) in a sound-atten-

uating acoustical chamber. The mean duration of the nonsense words was 413.6 ms (yag = 413.7

ms; kem = 413.1 ms; lek = 414.0 ms; pav = 413.7 ms; rop = 413.5 ms). The amplitude of each non-

sense word was root mean square (RMS) balanced. The stimulus presentation rate was 1.8 Hz per

nonsense word with an interelement interval of 150 ms. The consistent and violation sequences

were balanced in duration and other acoustical aspects: for details, see [19, 66]. Sound waveforms

were amplified, attenuated (PA4, TDT), and delivered through audio speakers at ~75 dB SPL. The

sound level was calibrated at the animal’s head position using an XL2 sound level meter (NTI

Audio) before every recording session. The electrophysiological recording sessions were con-

ducted in a darkened, foam-lined, single-walled acoustical chamber (IAC). The animals had previ-

ously been acclimated to periods of head immobilization using operant training with positive

reinforcement. The macaque was seated in a recording chair with the head immobilized, facing a

video monitor approximately 60 cm in front of the subject (24” Samsung, LCD). Two free-field

speakers (Creative Inspire T10) were horizontally positioned at approximately 30˚ visual angle.

Each session consisted of a 30-min exposure phase in which the animals passively listened

to the habituation sequences. During the exposure phase, a set of exposure sequences that

followed the ordering relationships specified by Fig 1B were presented in random order (all

the sequences used in this study are shown in S1 Fig). This exposure phase was followed by a

30-min testing phase (~260 trials). During the testing phase, a randomly chosen sequence of

the eight “consistent” or “violation” testing sequences was individually presented over the

audio speakers while the animals fixated on a spot on the video monitor.

The animals had previously been trained to perform a fixation task during sound stimula-

tion, which was assessed using an infrared eye tracker (Arrington Research, AZ, US). During
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the testing phase, they initiated an experimental trial by fixating on a spot at the center of the

monitor for 500 ms, triggering the presentation of a randomly selected testing sequence from

the eight testing sequences available (S1 Fig). The macaque was required to fixate on the spot

for 3,000 ms (within a ~2–4˚-diameter fixation acceptance window centered on the spot) until

the end of the testing sound sequence presentation to obtain a juice reward. They received the

juice reward at the offset of the fixation spot for correctly fixating during testing sequence pre-

sentation. Reward delivery occurred between 50 to 67 ms after the end of the sequence presen-

tation. The fixation task minimized eye movements during sequence presentation, and only

successfully completed fixation trials (>90% correct performance) were analyzed. The task

was self-paced and intersequence intervals were on average 7.6 ± 2.3 s. Typically, the animals

quickly engaged the fixation spot to start the next trial or took a brief break before starting the

next trial.

Monkey electrophysiological recordings. MRI was used for guiding chamber placement

and the electrodes. The MRI structural and functional data were obtained with a 4.7T scanner

(Bruker BioSpin, Etlingen, Germany). A customized, MRI-compatible head post and cylindri-

cal recording chamber (19 mm diameter, PEEK) were implanted under aseptic conditions

during general anesthesia. The recording chamber was positioned stereotaxically over the

right hemispheres of both animals to target the caudal, tonotopically organized auditory cortex

(see S1 Fig and S6 Fig; [83, 84]). The locations of the chambers of both animals were later also

physiologically confirmed using the topography of tonotopic responses of SUA, covering the

caudal core (including field A1) and the lateral belt of auditory cortex (S1 Fig). Multiple inde-

pendently driven tungsten microelectrodes (~1.0 MΩ, epoxylite insulation, FHC, Bowdoin,

ME) were used for the extracellular electrophysiological recordings. Guide tubes were first

advanced through the dura to protect the electrode tips and to prevent electrode deflection.

After the guide tubes were in place, the electrodes were independently advanced using a

remote-controlled, multichannel microdrive system (NAN-SYS-4; Plexon. Inc., Dallas, TX).

Search stimuli (including tones, noise, and complex sounds) were used to ensure that

recordings were from the auditory cortex. However, the recorded locations, neuronal spiking

activity, and LFPs were not selected by their stimulus response preference nor the shape of the

waveforms of the spiking activity. The search stimuli were only used to confirm a significant

auditory response to any of the sounds. The neuronal signal from each electrode was sent

through a head stage (gain one, HST/8o50-G1, Plexon Inc.) and then split into spiking and

LFP activity through a preamplifier (PBX2/16sp/16fp, Plexon Inc.). The spike signals were

bandpass filtered between 150 and 8,000 Hz, further amplified, and then digitized at 40 kHz.

The LFP signals were filtered between 0.7 and 500 Hz, amplified, and digitized at 1 kHz. Dur-

ing the electrophysiological recording session, spiking activity was sorted using voltage thresh-

olding and then a template-matching principal component analysis (PCA) clustering method

(RASPUTIN, Plexon). The frequency tuning profiles of the neuronal responses were also

estimated during the experiment (Neuroexplorer, Nex Technologies, MA). Throughout the

recording sessions, we also monitored spiking activity visually with an oscilloscope (HM407-2,

HAMEG) and aurally through headphones (HD 280 Professional, Sennheiser). Since the signal

on each electrode often contained activity from more than one SUA, offline we separated the

multiunit spike trains into single-unit spike trains using PCA (Offline Sorter, Plexon, Inc). The

degree of separation of multiple clusters was inspected using MANOVA when more than one

cluster was identified (i.e., multiunit spike trains). We applied a threshold of p< 0.01 to iden-

tify whether the observed clusters recorded from the same electrodes came from a separate

SUA, and only well-isolated units were included for further analysis. The temporal stability of

SUA was inspected using the PCA analysis, and we excluded data that was temporally discon-

tinuous. The interspike interval was also inspected to better ensure that results were from
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separate single units, ensuring that the interspike interval was greater than the neuronal refrac-

tory period (1–2 ms).

The timing of behavioral events, reward, and stimuli were controlled by a Windows COR-

TEX (Salk Institute) dual-computer system through a 12-bit D/A converter (CIO-DAS1602/

12, CIO-DIO24, National Instruments). Continuous data such as audio waveforms and eye

traces measured by the eye-tracking system were sent to the Plexon MAP data acquisition sys-

tem (Plexon, Inc.) and stored with the spiking activity and LFP data.

Spike density function: Monkey SUA. For the monkey SUA data, a spike density func-

tion was created to construct spike density peristimulus time histograms (PSTHs). This

involved convolving spike counts with an asymmetric exponential function (time constants

for the growth function: phase = 1 ms, decay phase = 20 ms) [85]. This asymmetric procedure

avoids the influence of spiking activity during the prestimulus period, as would result from a

symmetric kernel (e.g., Gaussian kernel), and improves the precision in measuring response

latencies.

Recording sites and tonotopic maps: Monkey SUA. The neuronal tonotopic response

maps (S1 Fig) in combination with the monkeys’ fMRI tonotopic maps show that the record-

ings encompassed the high- to low-frequency regions of A1 in M1 and M2, extending partially

into R in M2 and including part of the lateral belt regions adjacent to these fields. To construct

tonotopic maps of neuronal best-frequency responses for each animal, we first normalized the

mean firing rates of neuronal spiking responses by subtracting the average baseline firing rate

(300 ms period prior to sound onset) across all of the pure tone stimuli. Seven pure tones were

used for stimulation, ranging from 220 to 14,080 Hz in octave steps, and/or data was obtained

using ten pure tones ranging from 32 to 16,384 Hz in octave steps. The tones were randomly

presented and the data were obtained before or after the experimental recording session. Tun-

ing curves were constructed for auditory neurons with significant increase in their firing rates

(>3 SD) in relation to the baseline period. For such neurons, we defined a best-frequency (BF)

response as the tone frequency eliciting the maximal response during the 300-ms pure tone

presentation period across the tone frequency range. For this study, we did not attempt to

separate auditory core and belt recordings, which would require additional data using other

sound stimulation conditions. We used this approach primarily to confirm recordings that

occurred from the tonotopically organized macaque auditory cortex.

Monkey LFP (power) and SUA analyses. We evaluated whether the LFP and spiking

(SUA) responses in the monkey auditory cortex could be modulated by the artificial grammar

(AG) context (contrast between responses to consistent versus violation sequences or vice

versa). The difference waveform plots (Fig 4 and Fig 5) were created by subtracting the grand

average response to the consistent sequence from the grand average response to the corre-

sponding violation sequence (violation–consistent). The start of the analysis window for the

LFP power-based responses was shifted to 150 ms after the onset of the violation transition to

remove any aftereffects of preceding responses (Fig 4).

To quantitatively evaluate whether the activity in response to the same acoustical elements

was different depending on whether a violation or no-violation transition preceded the re-

sponse to the acoustical elements, a difference waveform was calculated from the grand aver-

age responses across all trials. This was done separately for both LFPs and SUA. Then, a

difference response waveform confidence interval was defined (99% or 1% confidence inter-

val) using a permutation procedure defining a null distribution of difference waveforms com-

puted from a baseline period. The baseline period used for this analysis consisted of responses

during the silent period prior to the onset of the sequence and the first acoustical element

“A” that was present as a starting element in all sequences (i.e., a baseline 913-ms window

including the 500 ms prior to the sequence onset throughout the end of the first element “A”).
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Furthermore, for breaches across the confidence interval (CI), we also calculated the discrete

duration in time (“L”) above the significance threshold, which was statistically defined using

two permutation tests (p< 0.05) on the magnitude and the duration of the breaches above the

CI in either direction (preference for violation or consistent sequence). LFP or SUA responses

that showed a significant breach in magnitude and duration across the CI were identified as

showing a significant sequence condition latency effect (“sensitivity latency”). We ensured

that the calculation of sequencing context sensitivity latency started only after any preceding

response difference became not significant (see S8 Fig and S3 Text).

Human experiments

Human experiments. Three adult neurosurgical patients participated in this study (two

males [H1, H3] and one female [H2]; ages 29, 31, and 37). All three subjects were right handed

(+100 RH lateralization index). H1 (L307) and H3 (L357) showed left-dominance language

lateralization by a Wada test [86]. H2 (R316) had no indication of atypical language organiza-

tion and had suspected right hemisphere dysfunction, thus the Wada test was not performed.

Audiometric and neuropsychological evaluations were performed on all of the subjects before

the study. H1 was noted to have a naming deficit and a hearing deficit in the right ear (a notch

in their audiogram of 40 dB HL at 4 kHz). H2 was noted to have some cognitive deficits in spa-

tial skills and visual memory with no hearing deficits. H3 was noted to have a modest verbal

memory deficit and no hearing deficits. All of the participants were native English speakers.

Patients, electrode implantation, and intracranial recordings. The HG was not found

to be involved in the generation of epileptic activity in any of the human patients reported

here. The methods for human intracranial electrophysiological recordings are similar to those

reported elsewhere [87]. Briefly, eight contact (70–300 kO) depth electrodes were implanted

along the axis of HG in one hemisphere (on the left hemisphere for H1 and H3 and the right

hemisphere for H2). Whole-brain MRI and CT scans were performed before electrode implan-

tation for each subject. The electrode positions were determined using postoperative MRI

scans by coregistering the electrode locations with the subject’s preoperative, high-resolution,

T1-weighted structural MRIs (0.78 × 0.78 × 1.0 mm). Then, the MRI with the electrode loca-

tions was 3-D rendered. The boundaries in the two subjects between the posteromedial and

the anterolateral aspects of Heschl’s gyrus (S5 Fig) are defined using the morphology of the

short-latency auditory-evoked potentials (AEP) to sound click trains and frequency following

responses [88].

Task and stimuli in the human study. Both exposure and testing sequences used in the

human experiment were identical to the ones used in the monkey experiment shown in S1 Fig.

However, the 8 testing sequences were tested in one testing session for the human experiment

rather than in two testing blocks as with the monkeys. The duration of the exposure session

was 10 min, and the testing session lasted 14 min. The exposure session was conducted first,

followed by the testing session. In the exposure session, 8 sequences were randomly repeated

20 times (a total of 160 sequences) with sequence onset asynchrony of 5.1 sec. In the subse-

quent testing session, the 8 consistent and 8 violation sequences were randomly presented ten

times each (a total of 160 trials). The subject was comfortably sitting on the bed and was only

required to listen passively to the stimuli. The sound sequences were delivered from two free-

field speakers located 1 m away from the subject’s head on both sides of the bed. Stimulus pre-

sentation was controlled by Presentation software (www.neurobs.com). LFP data and sound

waveforms were recorded through a TDT RZ2 processor, in which signals were amplified, fil-

tered (0.7–800 Hz bandpass, 12 dB/octave roll off), digitized at 2,034.5 Hz, and stored for sub-

sequent offline analysis.
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H1 agreed to participate in the behavioral follow-up to the intracranial recordings experi-

ment 61 d after their surgical monitoring period (S2 Fig). This allowed us to evaluate whether

the subject could behaviorally differentiate between consistent and violation sequences using

the same sequences used in the electrophysiological experiment. For comparative macaque

and typical human sequence learning behavioral data on this task, see [2, 3]. The identical

sound sequences used in the electrophysiological experiments were used. First there was an

exposure session, followed by a testing session. In the exposure session, eight sequences were

randomly repeated seven times (a total of 56 trials), and in the testing session, eight consistent

and eight violation sequences were randomly presented five times (a total of 80 trials). During

the testing phase, the subject heard one of the testing sequences randomly selected for each

trial and was required to respond by using two buttons to classify the test sequence heard as

either following the “same” ordering pattern as the exposure sequences previously heard (a

consistent sequence) or following a “different” ordering pattern (violation). A forced-choice

procedure was used in which the next trial only began once a response was given. No feedback

was given to the subject for their behavioral responses to the testing sequences. We conducted

two repeats of the exposure and testing sessions, with the whole experiment taking ~25 min to

complete. Reaction times after sound sequence offset were compared between the consistent

and violation conditions for correct response trials using a Mann–Whitney rank test (S2 Fig).

Data analysis: Human and monkey experiments

Data preprocessing. Data selection, pre-processing, and data analyses were conducted

using MATLAB 7.1 or Python 2.7. For monkey LFPs, the 50-Hz electrical line noise was

removed using multitaper time-frequency decompositions with a 1-s window and 0.5-s steps

(Chronux package function, rmlinesmovingwinc.m, http://chronux.org/). A time bandwidth

product of five and nine Slepian taper functions was used.

For human LFP recordings, the data were first downsampled to 1 kHz. Large-amplitude

timetransients, identified by thresholding, were suppressed by multiplying the signal with a

0.2-s Hann-window notch centered at the time of the transient. To minimize the potential for

spectral leakage artifacts and resultant cross-frequency contamination, line noise was removed

according to an adaptive filter procedure using a complex, demodulation-based, time–fre-

quency decomposition [89, 90].

For all human and monkey comparisons, the neural responses to violation and consistent

sequences were analyzed using a probe stimulus analysis window comprising two elements

and two interstimulus intervals (1,126 ms) after a violation had occurred in the violation

sequence and the corresponding acoustical elements in the matching consistent sequence (see

“probe stimulus analysis window” in Fig 1C and S1 Fig). Thus, the difference of neural results

in response to the two sequences being compared cannot arise from acoustical differences or

filtering artefacts.

Time-frequency analysis. To extract estimates of band-specific, time-varying phase and

power in the LFP data, a complex Morlet wavelet convolution was used (sinusoid windowed

with a Gaussian, three wavelet cycles). The ERSP [31] was calculated for each frequency and

time point. ERSP measures event-related changes in the power spectrum using a sliding win-

dow that is averaged across trials. The consistency of phase angles across trials (ITC) was calcu-

lated by the length of the average population vector of unit-length vectors from each trial. The

length of the average vector reflects the proximity of vectors across trials. It is calculated using

Euler’s formula:

ITC f ; tð Þ ¼
1

n
Pn

N¼1
eifðf ;tÞ

�
�
�
�

�
�
�
� ð1Þ
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where n is the number of trials, with phase angle Ф at trial N, at a frequency f and time t. An

ITC value of 0 indicates a uniform distribution of phase angles across trials. An ITC value of

1.0 indicates completely identical phase angles. For displaying the time-frequency power plots

shown in Figs 2A, 2B, 3A and 3B, we used EEGLAB (function: newtimef.m) [31]. To extract

power spectra, we employed successive overlapping time windows using a three-cycle wavelet

at the lowest frequency, continuously expanding to the highest frequency in the range of 3 and

100 Hz (wavelet cycles = [3 0.5]). Baseline power normalization at each frequency was per-

formed during a baseline period of 500 ms prior to the sequence onset. The data were first

averaged across trials and decibel-normalized. Significant levels were evaluated by randomly

shuffling the spectral estimates from different time windows during the 500-ms baseline

period (bootstrap, p< 0.05), for details see [31].

Phase–amplitude coupling MI. To evaluate the strength of phase–amplitude coupling of

the LFPs in the monkey and human data, an MI was calculated between two different fre-

quency ranges of phase and amplitude (Figs 2 and 3). First, the averaged LFP signals (ERP)

were subtracted from LFP signals for each trial per sound sequence and this signal was band-

pass-filtered using MATLAB’s fir1 and filtfilt functions. For the frequency of amplitude (i.e.,

gamma), a bandwidth of 20 Hz was used for extracting the analytic amplitude in the frequency

range between 40 and 200 Hz in 5-Hz steps. For the frequency of phase, a bandwidth of 1 Hz

was used for extracting analytic phase in the frequency range between 3 and 8 Hz in a 1-Hz

step. The analytic phase and amplitude were extracted using the Hilbert transform.

To calculate the coupling strength between low-frequency phase and high-frequency ampli-

tude, a composite, complex-valued, time-varying signal z was constructed by combining the

analytic amplitude of one frequency and the analytic phase of the other using Euler’s formula

as follows:

zðtÞ ¼ AðtÞðeifðtÞ � �fÞ ð2Þ

�f ¼
1

n
Pn

t¼1
eifðtÞ ð3Þ

where n is the total number of samples, t is the time point, A is the amplitude of one frequency

(e.g., gamma), Ф is the phase (in radians) of the other frequency (e.g., theta) after the mean

phase angle subtraction (Eq 2). Nonuniformity of phase angle distribution could bias the

detection of PAC in the low-frequency band, therefore we performed a linear removal of the

phase clustering bias by subtracting the average vector of the phase angles from each phase

angle before multiplying them with the power values in the Euler transform [42]. The results

were robust to other types of analyses, being qualitatively similar using other approaches such

as amplitude-weighted phase locking values. A uniform phase distribution in the complex

plane would result from independent amplitude and phase of the time-series. A lack of unifor-

mity results from a dependence between phase and amplitude, which can be measured by the

length of the mean vector z(t) defined as a MI, which is similar to the modulation index used

in Canolty et al. [25], as follows:

MIraw ¼
1

n
Pn

t¼1
zðtÞ

�
�
�
�

�
�
�
� ð4Þ

The MI was then normalized by a null distribution of MIs generated from surrogate data

lacking the temporal relationships within a trial between phase and power. This null distribu-

tion was created by using trial-shuffled composite time series [54] by calculating Ф(t) from

trial j and A(t) from trial k, where j and k were selected randomly from the total number of
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trials in each session. Shuffling over trials corrects PAC artefacts arising from concurrent ev-

oked and induced responses that are time-locked to stimulus trial onset, which may not reflect

true cross-frequency coupling. Phase locking might come about through evoked responses

and high-gamma responses that are both time-locked to the stimulus onset but are otherwise

independent of each other, which is a possibility we wanted to exclude. Because shuffling the

phase and amplitude components separately over trials does not change the average evoked

and induced responses, it should not affect PAC related to these averages; this approach

should, however, abolish any contribution of trial-by-trial variability to the PAC. The shuffled

data therefore give a null distribution that accounts for potentially spurious phase locking

explained by the average responses but otherwise assumes no between-trial PAC. By pairing

between phase and amplitude from different trials, this procedure also allows removal of the

influence of large-amplitude fluctuations, which might spuriously amplify PAC values. For the

null distribution, surrogate MIs were created using 200 permutations, and the raw MIs were

transformed to z scores by subtracting the mean of the surrogate distribution and then nor-

malizing by its standard deviation. In the absence of phase–amplitude modulation, MI values

will vary around 0, whereas MI values significantly greater than 0 reflect phase–amplitude cou-

pling. In addition to shuffling over trials, we used an alternate method to create surrogate data

by adding a large temporal offset in one of the time series of the composite signals, as described

by Canolty et al. [25]; these two methods generated qualitatively similar results, an observation

also noted in the supplementary materials of Tort et al. [54].

We calculated the PAC in response to nonsense words per recording site as follows: the MI

matrix was computed during the entire sound sequence duration (2,665 ms after sound onset)

for all pairs of amplitude (40–200 Hz in 5-Hz steps) and phase (3–8 Hz in a 1-Hz step). This

was done by concatenating across trials to increase the signal-to-noise ratio needed to estimate

cross-frequency coupling and detect task-related coupling effects [91]. The statistical signifi-

cance threshold for MI values was determined using Bonferroni correction for multiple com-

parisons (α = 0.05, 144 comparisons of pixels in the MI matrix, corresponding to a corrected

p< 0.05 and z score of 3.39 or higher). MI matrices were generated for individual LFP sites

with significant PAC.

Time courses of PAC at each pair of frequencies of amplitude and phase from the MI

matrix were extracted using the Morlet wavelet analysis. The MI values were calculated using a

30 ms–step time window over the probe stimulus analysis window (1,127 ms) which contains

the same acoustic elements for both violation and corresponding consistent sequences to

detect transient changes in sequencing context–sensitive neural responses after the violation

sound onset or corresponding sounds in the consistent sequence. To increase the signal-to-

noise ratio to compensate for using a short time window, we concatenated data from each

time window over trials [91]. Then, the same trial shuffle procedure as described above was

performed using z scores. To evaluate whether the observed PAC is significantly modulated

over time by the sequencing context (i.e., violation versus consistent), several criteria were

applied: Firstly, the sequencing context effect was evaluated for sites with a significant PAC in

response to the nonsense words (Bonferroni correction: 144 pairs of frequencies for phase and

amplitude, corresponding to a corrected p< 0.05 and z = 3.39). This allowed us to ask whether

for considerable general PAC effects in the MI matrix (in response to nonsense words across

all sequencing conditions) there are differences across the sequencing conditions (consistent

versus violation) and whether these are time specific (Bonferroni correction: 38 time points,

corresponding to a corrected p< 0.05 and z = 2.43). Secondly, the mean difference plot of

PAC time course values (differential MI values in response to the violation or consistent

sequences) needed to deviate from the 95% confidence interval of a null distribution of differ-

ence waveforms calculated during the baseline period (200 to 700 ms prior to sound onset).
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Lastly, sequencing context effects were only evaluated after any preceding differential

response, if it was present, to the acoustically different stimuli preceding the probe stimulus

window became not significant.

We also calculated the latency of any differential responses to the violation or consistent

sequencing context. The sensitivity latency in the PAC response over time was defined as the

first time point when the significant sequencing context–dependent response was observed

meeting the above-three criteria. Mean latencies in response to violation sequences and consis-

tent sequences were separately calculated per site, provided that more than one sequence pair

elicited significant sequencing context–dependent responses at the recording site.

Supporting information

S1 Fig. Artificial grammar sequences and recording sites. A. Artificial grammar exposure

and testing sequences. This figure shows the composition of all of the exposure and testing

sequences used in these experiments. The letters (A, C, D, F, G) represent the specific nonsense

words in the sequences (see manuscript Materials and Methods). First, eight exposure sequences

were individually presented in random order. During the subsequent testing phase, one of

the eight ‘consistent’ or ‘violation’ sequences was randomly selected for presentation without

replacement. Some violation sequences could have multiple violations (bottom-right in panel

A), but for this study, analysis was only conducted on effects related to the first violation in the

sequences. The monkeys were tested on the two blocks (shown in the right panel in A) sepa-

rately. Human participants were exposed for 10 mins and tested for 10 mins with all of the expo-

sure or testing sequences, respectively, in one block. Red letters denote the first element after a

violation transition in a violation sequence, and the green boxes show the corresponding acous-

tical elements used for analysis in the comparison consistent sequence pairs. B. Schematic of all

pairs of consistent and violation sequences used in the analyses. Shown are the comparison pairs

of consistent and violation sequences, highlighting the acoustically matched sections of the

sequences used for analysis. Red boxes highlight the element after an illegal violation transition

in the violation sequences, also depicted by a red line between elements. All violation sequences

are aligned and paired to a matching consistent sequence pair (‘probe stimulus analysis window’

denoted by the black arrays). C. Neuronal response tonotopic maps in Monkey 1 (M1) and

Monkey 2 (M2). The color maps depict the best frequency (BF) pure tone responses of the audi-

tory neurons within the recording sites (neurons with tone firing rate responses &gt; 3SD from

the baseline no-sound stimulation period; M1: n = 142; M2: n = 160). For display purposes the

1mm grid spacing is smoothed using a 3x3 pixel moving average filter.

(TIF)

S2 Fig. Behavioral results on the AGL paradigm in human patient (H1) after the surgical

monitoring period. A. Reaction times after offset of the testing sequences for which a correct

response was given were significantly shorter in reaction time (RT) to the violation sequences

compared to the consistent sequences (consistent: 1.5 ± 0.8 secs in 55 trials out of 80 consistent

trials; violation: 1.1 ± 0.6 secs in 46 trials out of 80 violation trials; p< 0.001, Mann-Whitney

rank test). B. Percent of trials within the 160 trial experiment (80 trials for consistent and violation

sequences, respectively) in which the subject responded to the test sequences as ‘different’ to

those heard during exposure. We observe a significantly greater response as ‘different’ to the vio-

lation sequences (red bar; p< 0.01, χ2 = 6.53, χ2 test) than to the consistent sequences (blue bar).

(TIF)

S3 Fig. Exemplary ERP, EPR-subtracted LFP, phase-amplitude coupling (PAC), and inter-

trial phase coherence (ITC) responses. A. An exemplary averaged monkey LFP response
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(ERP) to the violation (left column) and the consistent sequence (right column). The horizon-

tal color keys above the response curve identify the time of occurrence of the elements in the

sequences. The red vertical lines indicate the onset of the sequence and the blue vertical lines

indicate the onset and offset of the probe stimulus period after the violation or corresponding

time during the consistent sequence. The bottom panels in A show a magnified view of the

ERP response during the probe stimulus analysis window shown. B. An exemplary ERP (blue),

raw single-trial LFP (green; nth trial), and ERP-subtracted single-trial LFP (red) response sig-

nals during the same probe stimulus window shown in A. C. PAC response to the violation

(left) and consistent sequences (right) shown in B. The ERP was subtracted trial-by-trial

from the LFP signals prior to PAC analysis (see Materials and Methods). The line plots show

the time course of PAC extracted from all the pairs of amplitude and phase of MI matrix in

response to the nonsense words, regardless of the sequencing context (p< 0.05, Bonferroni

correction). The horizontal dotted line denotes the threshold of significance (p< 0.05, Bon-

ferroni-corrected). D. (left) PAC response to the violation (pink) and consistent sequences

(blue). The examples are the same as shown in C. (right) Difference plot of the time course of

PAC response to violation vs. consistent sequences shown in the left panel. Figure format is

the same as in manuscript Fig 2D and Fig 3D and 3F. E. Inter-trial phase coherence (ITC) in

response to the violation (left) and consistent (right) sequences during the same probe stimu-

lus analysis window as in A-C. If stimulus-driven phase resetting leads to PAC, the ITC shown

in E should be the same for the two sequencing conditions, given that the two elements during

the probe stimulus analysis window are acoustically identical for both the violation and consis-

tent sequences. Note however that PAC results typically do not show a similar phase clustering

in time as the ITC, which is earlier and will pick up stimulus driven phase coherence (compare

the results for PAC in panels C to the ITC results in panel E). Thus, the sequencing context

elicited PAC appears to be independent of the stimulus-driven time-locked component.

(TIF)

S4 Fig. Distributions of frequency of phase and amplitude for the PAC response in humans

and monkeys. The distributions of peak PAC values were calculated per phase (A, C) or ampli-

tude (B, D) separately. The error bars denote the standard deviation. No obvious differences

are seen between the results in the two monkeys or the two humans.

(TIF)

S5 Fig. Topography of PAC frequency of phase and amplitude in human Heschl’s Gyrus.

The distributions of peak PAC values were calculated at postero-medial (blue) and antero-

lateral (red) recording sites separately per phase (A, C) or amplitude (B, D). The error bars

denote the standard deviation. The boundaries in the two subjects between the postero-medial

and the antero-lateral aspects of Heschl’s Gyrus are based on the morphology of the short-

latency auditory evoked potentials (AEP) to sound click trains and frequency following

responses (S1 Text). No obvious topographical differences between PAC responses in postero-

medial versus antero-lateral HG are seen.

(TIFF)

S6 Fig. Tonotopic maps and locations of significant sequencing context effects. A. Tonoto-

pic maps based on fMRI (left) and electrophysiological recordings (right) of two animals. The

fMRI image on the left shows a slice looking down on the supratemporal plane. B. Recording

sites that showed sequencing context effects across all LFP signals (theta, low-gamma, and

high-gamma) and SUA. The color denotes the number of sequences that elicited significant

contextual responses. The results do not show a particular clustering in the amount of
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significant responses sensitive to the sequencing context.

(TIF)

S7 Fig. Control experiment in human participant H3 and resulting PAC effects. A. Time

course of the experiments. The testing conditions were identical, with the key difference what the

subject experienced before testing: either exposure to random transitions between the nonsense

words in a sequence or structured sequences consistent with the artificial grammar learning

(AGL) paradigm, see manuscript text and S1 Text for further details. B. Reconstructed image of

the location of the depth electrode placement on the left HG for H3. C-D. Resulting PAC response

during the first testing session after exposure to random transitions in the sequences. The major-

ity of sites (3/5) showed significant phase-amplitude coupling (PAC) in response to the nonsense

words. An exemplary response is shown in C for channel 57, whereas the majority of the sites (4/

5) showed no significant sequencing context effect (consistent vs. violation, see exemplary PAC

response in D). Figure format is the same as in Fig 2C and 2D and Fig 3C–3F. Resulting PAC

responses during the second testing session after exposure to legal AGL sequences (same as the

ones used in the main experiment reported in the manuscript: see exposure AGL set of sequences

in the Materials and Methods). All of the sites (5/5) showed significant PAC in response to the

nonsense words (an exemplary response is shown in E for channel 60). The majority of the sites

(3/5) also showed significant sequencing context effects (an exemplary response is shown in F for

channel 56 where a significant consistent sequence preference is seen with a sensitivity latency of

900 ms (the earlier violation sequence sensitivity did not breach for long enough to be significant

by the joint magnitude and duration criteria (see Materials and Methods).

(TIF)

S8 Fig. Correlation analysis between the magnitude of the response to the sounds preced-

ing the probe stimulus window (x-axis) and the magnitude of the sequencing context effect

during the probe stimulus (y-axis) for LFP power. The data from high-gamma, low-gamma,

and theta bands are displayed here together as the results were comparable for the separate fre-

quency bands. No significant correlations were seen in these analyses (all p> 0.1) between the

sequencing context response and the magnitude of the response to the acoustically different

sounds preceding the probe stimulus (where the acoustical items were identical and during

which the sequencing context response was calculated).

(TIFF)

S9 Fig. Monkey and human auditory cortex fMRI responses (data re-analyzed from Wilson

et al., Nature Communications, 2015 [20]) do not show strong sequencing context sensitiv-

ity. The analyses performed in Wilson et al. (2015 [20]) report no significant activation to the

violation vs consistent contrast within auditory cortex in either the macaque or human data

at a cluster corrected significance threshold (p< 0.05). Here we looked for subthreshold sen-

sitivity, as follows: A. Mean activation (Z-score) to the violation vs consistent contrast was cal-

culated across primary auditory cortex (field A1) for each of the macaques. These analyses

revealed limited and variable activation patterns across the macaques tested, and none of the

macaques showed differential activation to the violation vs consistent sequences that exceeded

even a very liberal significance threshold (uncorrected p = 0.05 corresponding to Z = 1.96;

see dotted lines). M1 is the same animal studied in this electrophysiological report. B. The loca-

tion of the anatomical ROI used for these analyses in the macaque auditory cortex (field A1).

C. Human medial Heschl’s gyrus also showed no significant differential activation to the viola-

tion vs consistent contrast. D. Location of the anatomical ROI used in the human fMRI data

analyses. See manuscript text for discussion.

(TIF)
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