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Abstract
Recent advancements in animal tracking technology and high-throughput sequencing are

rapidly changing the questions and scope of research in the biological sciences. The inte-

gration of genomic data with high-tech animal instrumentation comes as a natural progres-

sion of traditional work in ecological genetics, and we provide a framework for linking the

separate data streams from these technologies. Such a merger will elucidate the genetic

basis of adaptive behaviors like migration and hibernation and advance our understanding

of fundamental ecological and evolutionary processes such as pathogen transmission, pop-

ulation responses to environmental change, and communication in natural populations.

Introduction
Biological research is guided by a series of unifying concepts, ranging from Darwin’s theory of
evolution and the modern synthesis to optimal foraging and Hubbell’s unified neutral theory
of biodiversity [1–5]. These paradigmatic ideas share a common theme in that they were largely
developed before adequate data were available to test them. That gap between theory and
empiricism, however, began to narrow in the 1950s when nations poured massive resources
into research and technology, paving the way for the transition from “little science to big sci-
ence” [6]. Though primarily tailored for military and biomedical purposes, the advancements
spilled over into other fields and opened up novel ways to tackle long-standing biological ques-
tions previously addressed only with mathematical models or restrictive experimental condi-
tions. For instance, tech-savvy wildlife biologists began designing radio transmitters to track
animals [7], and biochemically-inclined evolutionary biologists started developing tools to
assay genetic variation in the wild [8,9]. These technological innovations, among countless oth-
ers, revolutionized data collection in the biological sciences and had a lasting impact on our
understanding of ecological and evolutionary processes.
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Fast-forward to the present day, and these technologies have been replaced by smaller,
faster, higher-throughput versions. Aided by the so-called “Information Technology revolu-
tion” (sensu [10]), the ability to collect and remotely access detailed data on wild organisms
has changed the questions and scope of research in the biological sciences [11]. An estimated
50,000 wild animals are currently fitted with tracking devices [12], often sending real-time data
directly to the researcher. Tracking technology is rapidly improving [13,14], with handling
being minimized [15] and size reduced to the point where even invertebrates (as small as bum-
blebees) can be monitored remotely [16]. Analogously, evolutionary biologists now screen
entire genomes of wild populations; for instance, in one recent study, Poelstra et al. [17]
inferred evolutionary processes in natural crow populations on the basis of 1,700,000,000,000
base pairs of raw sequencing data. These novel datasets have already revealed insights into ani-
mal behavior [18,19], challenged evolutionary assumptions [20], and informed wildlife man-
agement and monitoring [21,22].

As major gains are being independently made in both fields (e.g., [13,23]), the parallel
advancements of animal instrumentation and high-throughput sequencing hold great potential
to reconcile animal behaviors and aspects of individual life history with ecological and evolu-
tionary dynamics. Importantly, animal instrumentation data capture information on hitherto
inaccessible phenotypic variability—often including the underlying physiological mechanisms
—upon which natural selection can act (Table 1). The integration with high-throughput DNA
sequencing data will elucidate the nature of the underlying genomic architecture of such traits
and advance our understanding of fundamental ecological and evolutionary processes such as
migration, foraging behavior, energetics, and communication in natural populations.

Despite the wealth of phenotypic and behavioral data that can be generated from animal
instrumentation, there exist only a handful of examples and tangential references as to how
they can be analyzed in an evolutionary context or integrated with (population) genetic infor-
mation. Merging these disparate datasets—including global remote sensing data at high spatial
and temporal resolution [24]—produces a more holistic view on what structures populations
and drives phenotypic variability in nature, and there is potential to develop new model sys-
tems and expand on existing biological theory [25,26]. In the following sections, we highlight
the first attempts to integrate animal instrumentation with DNA sequence data (Table 2), pro-
vide a conceptual framework for integrating animal instrumentation and high-throughput
sequencing, and list fundamental biological questions that might be addressed through this
merger.

Table 1. Types of biological information that can currently be obtained from high-tech animal instru-
mentation (including automated image-based tracking).

Instrumentation Biological information obtained from data

Tracking technology (e.g., GPS radio collars, light-
based geolocators, passive acoustic arrays)

Migration patterns (timing, direction), habitat selection,
energetic expenditure, temporal activity patterns,
decision processes

Heart-rate monitors Stress responses, physiological patterns

Accelerometers, time-depth recorders Activity patterns, foraging or diving behavior

Acoustic recorders Foraging behavior, communication, social interaction

Video recorders Foraging behavior, habitat interface, social interaction

Contact collars Social interaction

Temperature loggers Daily and seasonal body temperature patterns,
metabolism

Automated image-based tracking Individual and species interactions, complex
ecological patterns

doi:10.1371/journal.pbio.1002350.t001
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Integration into Ecological Genetics
Ecological genetics is an integrative field of study focused on establishing a link between varia-
tion in environmental or phenotypic parameters and population genetic attributes (e.g., popu-
lation differentiation, demographic history, adaptive genetic variation). Analyses can take
various forms, such as landscape genetics, association studies, or comparative analyses: all
essentially share the same premise of quantifying (or visualizing) the interaction between an
ecological and genetic dataset (see Table 2). To date, the ecological component of these studies
has typically consisted of a single location where animals were captured (with accompanying
environmental parameters), only allowing for the assessment of broad-scale covariance
between ecological or morphological parameters and genetic variation (e.g., [40]). As both
instrumentation and genomic data can be obtained with increasing ease in a high number of
individuals, the field of ecological genetics is expanding and moving from largely population-
level summaries toward both ecosystem-wide and individual-based analyses.

To this end, we present a conceptual framework (Fig 1) that we view as a methodological
partner to the more theoretical frameworks presented in Coulson et al. [41] and Ellegren and
Sheldon [42]. The merger of instrumentation data with genomic data comes as a natural pro-
gression of traditional work in ecological genetics capitalizing on (i) mature methodology in
two hitherto disparate research streams and (ii) the fact that both datasets are simultaneously
obtained, in that it is common practice to sample DNA (blood, tissue, buccal swabs) when
instrumenting an animal (see Fig 1). Below, we provide examples of key biological questions
that will benefit from the integration of genomic data with various types of instrumentation
data.

Characterizing Species Interactions
The organization of natural communities is what drives ecosystem functions. Both environ-
mental DNA (eDNA) and tracking technology provide compatible approaches to documenting
species interactions. Image-based tracking visually captures encounters with other species and
conspecifics [43] and can reveal predator–prey dynamics [44] along with fine-scaled resource
selection or avoidance. High-throughput eDNA approaches can assay species communities,
infer diet composition, and document invasive species [45]. In particular, contrasting eDNA
catalogues with tracking-based assessments of species interactions and resource use will
improve estimates of ecological niche breadth and overlap.

Quantifying the Impact of Environmental Change
How changes in the environment have and will impact natural populations is the focus of
much research and debate. Historical changes in a population’s effective size (Ne) can be recon-
structed by temporal sampling of DNA [46] or estimated from whole-genome sequence of a

Table 2. Examples of questions addressed by integrating high-tech instrumentation with genetic
data.

Basic biological question Reference

How does the spatial ecological landscape influence gene flow? [27,28]

What is the genetic basis of migratory behavior? [29–31]

Does genetic structure reflect movement patterns or habitat use? [32–34]

When is the use of habitat and resources a learned versus innate behavior? [35]

Are animal social networks genetically structured? [36–38]

How do social interactions and genetic relatedness impact disease transmission? [39]

doi:10.1371/journal.pbio.1002350.t002
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Fig 1. Conceptual overview of the integration of data from high-tech animal instrumentation with high-throughput sequencing data. The top section
highlights that tissue collection for sequencing and instrumentation fitting naturally occur at the same time. The two side boxes show the separate analysis
streams—ecological (left) and genomics (right). Integrative approaches making use of both data types are listed in the middle. Image contributors: raccoon in
trap byWoodstream Corporation; map of habitat use was generated in ArcMap by Kevin White (Alaska Department of Fish & Game); radio-collar from
LOTEKWIRELESS Inc.

doi:10.1371/journal.pbio.1002350.g001
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single individual [47]. Individual-based location data from animal instrumentation coupled
with paleodistribution models is a powerful tool for inferring past ecological niches [48]. Inte-
gration of these separate streams has the potential to link changes in historical Ne with paleo-
ecological niche reconstructions and, in turn, identify key climatic variables connected to past
population changes (e.g., [49]). Newly developed community-level models relying on genomic
and environmental variables (the latter based on instrumentation data and subsequent habitat
models—see below) can then identify gene–environment relationships with the applied poten-
tial to earmark populations particularly vulnerable to environmental change [50].

Understanding Animal Movement
Animals respond to their environment at different temporal and spatial scales. Dispersal (uni-
directional movement between natal and breeding sites) and migration (cyclic, seasonal move-
ment between breeding and non-breeding areas) are two key strategies animals employ in
response to environmental and demographic stimuli. Instrumentation data can provide novel
insight into migration routes [51] and the spatial partitioning and choice of habitat during
migration [52], while genome scans have revealed candidate genes associated with migratory
behavior [53]. Incorporating survival data further allows for assessing fitness differences across
movement strategies and their population genetic consequences [54] or causes, predicated on
the idea of fitness-associated dispersal [55]. Comparing runs of homozygosity (ROH; long
stretches of invariant DNA sequence that are identical by descent) in dispersers and residents
(non-dispersers)—identified either with genomic or tracking data—will allow for testing theo-
retical predictions on the role of inbreeding in the evolution of dispersal on a locus-by-locus
basis [56]. Moreover, studies of collective (movement) behavior or social contagion (e.g.,
[57,58]) will benefit from an understanding of the genetic underpinnings of individual differ-
ences, such as boldness or leadership, in affecting movement dynamics.

Gene Flow and Adaptive Divergence
Dispersal results in the exchange of individuals among breeding populations, and landscape
genetics attempts to quantify how landscape variation influences this flow of genes [59]. Select-
ing and quantifying variables is challenging, subjective, and inherently biased by human per-
ception. Tracking technology with coarse (geolocators) to fine-scale (GPS telemetry data)
resolution fed into habitat selection models provides a more objective approach to scoring
landscape features relevant to the organism [27,28]. Combined with environmental data from,
for example, satellite imagery or habitat selection models, tracking and genomic data can iden-
tify patterns consistent with adaptive divergence [50,60]. Using instrument data as prior infor-
mation to parameterize habitat features in a landscape genetics model will link often abstract
population genetic parameters to real biological processes and guide hypotheses on local adap-
tation that form the basis of screening for adaptive genetic variation and studies of ecological
speciation [40,61]. Furthermore, the combination of contemporary movement data and geno-
mic estimates of admixture and gene flow will allow for testing fundamental ideas on the role
of non-random dispersal on local adaptation and resource use [62].

Altruism and Kin Selection
Theory predicts that population structuring is a prerequisite for altruistic behavior to evolve.
Kin selection theory puts a premium on genetic relatedness [63], and game theoretical
approaches model the evolution of altruism on structured social interaction networks [64].
While the relationship between social structure, genetic relatedness, and their evolutionary
consequence has been extensively treated in the theoretical literature, empirical contributions
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remain scare [65,66]. Data from proximity loggers, GPS tracking, and automated image sys-
tems allow for social interactions to be quantified remotely [36,38]; large-scale genomic data
allows accurate estimates of genetic relatedness [67]. The combination of behavioral data with
individual whole-genome sequences also has the exciting prospect of unveiling the actual loci
underlying altruistic behavior (e.g., green-beard genes [68]).

Mechanisms of Pathogen Transmission
The relative risk of pathogen transmission in wild populations is often inferred with population
genetic models [69] or, alternatively, by attempting to link animal contact rates and relatedness
to transmission probabilities [39] or pathogen population structure [70]. Similar to the estima-
tion of population connectivity mentioned above, the combination of genomic and instrument
data should improve predictive power if integrated into a modeling framework that screens
host and pathogen genomes. Furthermore, researchers studying humans have recognized the
clinical relevance of detecting ROH [71], and domestic animal researchers have found links to
disease in case and control studies [72]. In the wildlife disease context, it is conceivable that the
frequency of social interactions, use of point resources, or general range overlap (all inferred
from instrumentation) might be, in part, mediated by specific ROH or genomic regions.

Genotype:Phenotype Correlations
Charting the genetic basis of phenotypic variation relevant to fitness is key to furthering our
understanding of ecological and evolutionary processes in the wild [42]. Screening phenotypes
derived from instrumentation data goes beyond standard biometric or coloration traits that are
often the focus in these studies, and genome data gives the individual-based resolution required
to uncover the genomic architecture of such traits. Virtually all phenotypes obtainable through
instrumentation data—ranging from vigilance behavior to hibernation period—might have sub-
stantial narrow-sense heritability (i.e., phenotypic variation explained by specific alleles). Migra-
tory behavior is a prime example in which substituting population-based approaches (of linking
allele frequencies with phenotypic proxies by stable isotope biomarkers) with individual-based
instrumentation and genomic data is expected to make a difference [73,74]. We should point
out that underlying genomic architecture dictates the power of such scans [75], and there are
cases (e.g., polygenic traits) in which genotype:phenotype signals will be virtually impossible to
disentangle from noise without a large sample size. Any association will likely require functional
studies to have biological significance beyond detecting a candidate genetic basis.

A Role for Gene Expression
Identical protein sequences can have different phenotype effects, depending on their relative
abundances [76]. Linking mRNA gene expression patterns (dictating protein abundance to a
large degree) to phenotypic differences (e.g., activity budgets, response to stressors) will aid in
characterizing trait plasticity and prescreening potential targets of selection. For now, this
approach is largely restricted to common garden approaches, but could enter natural settings
under selective or innovative sampling regimes. Similarly, new sequencing technology allowing
the characterization of epigenetic inheritance patterns provides another exciting opportunity
to link differences in gene regulation to phenotypic variability as displayed in the wild.

Challenges for Implementation
Despite the apparent synergies between animal instrumentation and sequencing data, there are
reasons why this integration has been hampered. Primarily, both are young types of data, with
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their respective fields still struggling with data management and streamlined analytical pipe-
lines. Below, we expand on the primary roadblocks and reflect on possible solutions as we see
them.

Knowledge and Collaboration
The training, background, and expertise needed to analyze these disparate datasets are unlikely
to exist in a single lab or research group. In Shafer et al. [27], two very different datasets and
analyses were combined: a population genetic study and an analysis of habitat selection. These
studies can be demarcated as “genetic” and “ecological,” and historically would have been pub-
lished separately (i.e., the streams in Fig 1). Understanding the nuances of habitat selection and
population genetic theories require separate schools of training, and their combination is an
undertaking that cannot be achieved without collaboration. As many instrumentation studies
already require expertise from engineering and physics, and genomics similarly requires
diverse expertise, from specialized lab technicians to bioinformaticians, the need for multidisci-
plinary collaborations is at a premium.

Informatics Issues and the Data Deluge
The amount of data being generated by both of these data streams is a major challenge. Storing,
analyzing, and archiving genomic data is already a hurdle, requiring massive amounts of stor-
age and CPU hours that are generally only available on high-performance computing resources
(see [77]). There are also challenges associated with analyzing and understanding these new
datasets that were simply not present with more “traditional” ecological and genetic datasets
[78,79] and that will only become more profound with their integration. In many instances,
the challenges have been recognized and are active areas of research and debate, simply requir-
ing time to be resolved. A critical step will be to link existing databases (such as Movebank and
GenBank) to allow researchers easy access to all biological data available on their focal species.

Financial Considerations
Re-sequencing individual genomes is still costly, although prices have rapidly declined [80]. If
the focal species does not have a reference genome (which will limit the available analyses),
researchers might choose to assemble a draft genome, a task that is both expensive and requires
significant expertise [81]. The logistical and financial requirements to capture and fit an animal
with a GPS radio collar and camera can also be substantial. Multiply these costs by twenty to
achieve a modest sample size, and we have easily exceeded most research group budgets for the
foreseeable future. There are cheaper alternatives, for example, geolocators and reduced repre-
sentation genome sequencing, but they come at the expense of resolution and, thus, might not
be appropriate for addressing some of the aforementioned questions. Many wildlife agencies
regularly capture and instrument animals; thus, academic–agency collaborations provide a key
opportunity to navigate this financial obstacle.

Conclusion
Technological innovations take time to trickle down to basic biological research, but we are
now in the midst of a data revolution stemming from recent high-tech and throughput
advancements. There are several promising fundamental research questions that are tenable
from the merger described in this essay, and there is clear potential to link largely disparate
schools of thought. Twenty years ago, an essay about sequencing genomes and remotely track-
ing animals across the globe in real time would have been the subject of science fiction. In
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2015, there are over 50,000 animals being tracked [12], and single research groups now
sequence dozens, up to hundreds, of individual genomes [17,82]. By embracing new technol-
ogy and integrating these data streams into an ecological genomic framework (Fig 1), we are
now poised to inform, challenge, and develop biological theory.
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