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Abstract
Cognitive control, which continues to mature throughout adolescence, is supported by the

ability for well-defined organized brain networks to flexibly integrate information. However,

the development of intrinsic brain network organization and its relationship to observed

improvements in cognitive control are not well understood. In the present study, we used

resting state functional magnetic resonance imaging (RS-fMRI), graph theory, the antisac-

cade task, and rigorous head motion control to characterize and relate developmental

changes in network organization, connectivity strength, and integration to inhibitory control

development. Subjects were 192 10–26-y-olds who were imaged during 5 min of rest. In

contrast to initial studies, our results indicate that network organization is stable throughout

adolescence. However, cross-network integration, predominantly of the cingulo-opercular/

salience network, increased with age. Importantly, this increased integration of the cingulo-

opercular/salience network significantly moderated the robust effect of age on the latency to

initiate a correct inhibitory control response. These results provide compelling evidence that

the transition to adult-level inhibitory control is dependent upon the refinement and strength-

ening of integration between specialized networks. Our findings support a novel, two-stage

model of neural development, in which networks stabilize prior to adolescence and subse-

quently increase their integration to support the cross-domain incorporation of information

processing critical for mature cognitive control.

Author Summary

Adolescence is a unique period of brain development, with major changes occurring across
the brain at many different levels of brain functioning. At the macroscopic level, the brain
is composed of individual regions that collaborate in networks to perform diverse
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cognitive functions. Some networks of brain regions perform lower-level sensorimotor
processing, while other networks orchestrate more complex functions, such as cognitive
control. The affiliation of each region to a network is referred to as network organization.
Brain regions not only can communicate with other regions belonging to their own net-
work but also with regions in other networks. Brain regions that communicate with
regions belonging to other networks display a high level of integration since they link their
network with another network. We found that during adolescence, network organization
does not change. However, integration continues to increase, underscoring the notion that
brain function becomes more distributed and collaborative during this unique period of
development. Furthermore, this increased network integration underlies improvements in
cognitive control. Thus, we provide a network-based account for improvements in cogni-
tive functioning during adolescence.

Introduction
Cognitive control refers to the ability to execute voluntary, goal-directed behavior [1–3]. It
requires flexible and adaptive coordination of core executive systems that are supported by
integration among widely distributed, specialized brain circuitries [4]. The core components of
cognitive control are available early in development [5]. However, in adolescence, cognitive
control abilities become significantly more reliable and flexible, as response accuracy and speed
stabilize in adulthood [6]. These developmental gains in information processing occur in paral-
lel with brain maturational events, including synaptic pruning [7] and myelination [8], which
predominantly enhance collaboration among brain systems [9]. The nature of the interaction
between brain network maturation and cognitive development during adolescence is not well
understood [10], limiting our ability to understand the neural basis of psychopathologies that
emerge at this time, many of which are characterized by deficits in cognitive control [11].

Characterizing functional brain network interactions during the resting state (i.e., while the
subject is not engaged in any particular task) has become a valuable emerging approach for
investigating the brain basis of cognitive development. Studies using this approach have
revealed roles for these networks in supporting cognitive control [4,12]. Approximately 20
functional networks have been identified in the functional connectome [13], including sensory
networks, such as the somatomotor (SM) and visual networks; cognitive networks, such as the
fronto-parietal (FP) and cingulo-opercular/salience (CO/Salience) networks; and a task-nega-
tive default mode (DM) network [14]. Each functional network operates as a module within
the full connectome. Networks are demarcated by dense internal connectivity [15,16], defining
a foundational organization for the functional brain. Thus, network organization refers to the
network affiliation of each region of the connectome. Initial studies characterizing age-related
changes in functional network organization suggested that the organization of these networks
continued to change into adulthood [17], such that development proceeded from short-dis-
tance anatomical networks in infancy and childhood, to long-range, widely distributed net-
works in adulthood [17–20]. However, age-related differences in head motion artifacts may
have confounded the connectivity distance findings [21–23]. Advances in data processing
methods [21–23] and recent findings suggest that foundational aspects of functional network
organization are established early in development, while processes related to network integra-
tion continue to mature into adulthood [24]. Network integration refers to the level of func-
tional coupling between networks, measured by participation coefficient (PC), a graph
theoretical construct [25]. PC is a particularly useful construct to measure network integration,

Network Contributions to Cognitive Control Development

PLOS Biology | DOI:10.1371/journal.pbio.1002328 December 29, 2015 2 / 25

Abbreviations: AIC, Akaike information criterion;
aIns, anterior insula; CO/Salience, cingulo-opercular/
salience; dACC, dorsal anterior cingulate cortex;
dlPFC, dorso-lateral prefrontal cortex; DM, default
mode; DVARS, root mean square derivative of fMRI
timeseries; FD, framewise displacement; FP, fronto-
parietal; IPL, inferior parietal lobe; JZS, Jeffreys-
Zellner-Siow; MFG, middle frontal gyrus; NMI,
normalized mutual information; PC, participation
coefficient; PPC, posterior parietal cortex; RS-fMRI,
resting state functional magnetic resonance imaging;
ROI, region of interest; RT, reaction time; SM,
somatomotor; TPJ, temporal-parietal junction.



given its sensitivity to between-network connectivity, while maintaining robustness to the total
number of connections (degree). Degree-based measures of integration have been shown to be
dependent on the size (number of nodes) of a network and therefore can skew results towards
a greater number of hubs within larger networks, such as the default mode network [26]. PC is
normalized by the degree of the node. As a result, increases in PC are driven mainly by
increases in the number of between-network connections.

Properties of network organization and integration could parallel cognitive development,
which is characterized by enhanced adaptive and flexible integration of mature core control
components [1]. Thus, in the present study, we sought to identify whether age-related changes
in functional networks are determined by changes in network organization and/or network
integration and whether these changes are related to developmental improvements in cognitive
control. We applied graph theory [27,28] to a rich developmental resting-state functional mag-
netic resonance imaging (RS-fMRI) dataset obtained in 10–26-y-olds who also performed the
antisaccade task. In this inhibitory control paradigm, subjects fixate a central target on a com-
puter screen. A stimulus is then presented at an unpredictable horizontal location. Subjects are
instructed to refrain from making a saccadic eye movement towards the stimulus (i.e., inhibi-
tory response) and instead make a voluntary saccadic eye movement to the mirrored opposite
location on the horizontal meridian.

Given that core cognitive components are on line by childhood and that the ability to adap-
tively and flexibly engage these components improves into adulthood [29–33], we hypothe-
sized that network organization, which supports component processes, would not change with
age, but that network connectivity strength and integration, which both support interaction
between components, would increase with age. In turn, we hypothesized increased control net-
work integration would predict age-related improvements in cognitive control, as measured by
the antisaccade task.

Results

Development of Functional Network Organization
We used a previously defined functional connectome parcellation of 264 functional regions of
interest (ROIs) across cortical, subcortical, and cerebellar structures [14] in a sample of 192
individuals, aged 10–26 y old (Table 1). For each subject, we correlated the time series of each
ROI with that of every other ROI. We then formed group matrices by averaging each subject’s
connectivity matrix within categorical age groups (10–12-, 13–15-, 16–19-, and 20–26-y-olds)
(See Materials and Methods) (Fig 1A). For each group, we partitioned the full functional con-
nectome into modules using Newman’s Q-metric coupled with an efficient optimization
approach [15,34,35] across network densities ranging from the top 1% to 25% of pair-wise cor-
relations in terms of correlation strength. Notably, Newman’s Q-algorithm returns modules of
densely interconnected nodes. We interpret these modules as being functionally connected col-
lections of brain regions sub-serving common functions and therefore refer to them as func-
tional brain networks. The representative network partition of the full connectome was given a
threshold of a density of 10% (Fig 1B) to partition the network into a meaningful structure
while maintaining high connectedness, which would be limited with lower thresholds. This
approach identified more comprehensive networks compared with those incorporating lower
thresholds [14], such that a single network encompassed the cingulo-opercular, subcortical,
and salience networks. We refer to this network, which includes regions critical to cognitive
control, as the CO/Salience network.

We tested changes in network organization using normalized mutual information (NMI),
which measures the mutual dependence of two variables (i.e., how much information in
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variable one is also contained in variable two). NMI values range from 0 to 1. A value of 0 indi-
cates no mutual dependence (no shared information), while a value of 1 indicates complete
dependency (completely shared information). We calculated NMI for networks between conse-
cutive age groups and between children and adults (Fig 1B). We used a random permutation
test to compare observed NMI values to a null distribution of 1,000 NMI values. For the adult
versus child contrast, observed NMI = 0.73 (null mean [M] = 0.68, null standard deviation
[SD] = 0.07); between children and early adolescents, NMI = 0.67 (nullM = 0.73, null
SD = 0.08); between early adolescents and late adolescents, NMI = 0.69 (nullM = 0.76, null

Table 1. Subject demographics.

Group n Age Mean (SD) IQ Mean (SD) Race Mean FD Mean DVARSa Mean DVARSb

Child 41(20F) 11.55 (0.82) 112.10 (13.17) 28(68%) white 0.64* 26.72 2.59

Early Adolescence 41(18F) 14.54 (0.91) 110.17 (10.94) 30(73%) white 0.20 21.97 2.17

Late Adolescence 53(28F) 17.89 (0.92) 112.51 (12.01) 44(83%) white 0.22 24.84 1.60

Adult 57(30F) 22.38 (1.83) 116.84 (13.18) 40(70%) white 0.18 22.97 2.43

a DVARS calculated prior to wavelet despiking.
b DVARS calculated on motion time series after wavelet despiking. Large decreases indicate wavelet despiking was effective in mitigating head motion

confounds.

* Mean FD was significantly greater in the child group compared to each other age group (p < 0.05, Tukey’s honest significant difference corrected for

multiple comparisons). A one-way analysis of variance (ANOVA) was conducted between groups for mean DVARS before wavelet despiking (Mean

DVARS a) and again between groups after wavelet despiking (Mean DVARS b), with no significant differences observed in either test (p > 0.05). Note FD

is calculated prior to our motion correction procedure while the final DVARS values (Mean DVARs b) are calculated after our motion correction procedure.

DVARS, root mean square derivative of fMRI timeseries; F, Female; FD, framewise displacement; SD, standard deviation.

doi:10.1371/journal.pbio.1002328.t001

Fig 1. Network organization is stable prior to the onset of adolescence. (A) Group-averaged correlation matrices organized according to network
affiliation. ROI order is consistent across all four groups. (B) Regions of interest imposed on a semitransparent brain. Normalized mutual information (NMI) is
a measure of similarity between two sets of data. Here, NMI refers to the comparison between two sets of network affiliation vectors between each
consecutive age group and between children and adults. (Data available at http://devrsfmri_2015.projects.nitrc.org/devrsfmri_2015.tar.bz2.)

doi:10.1371/journal.pbio.1002328.g001
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SD = 0.06); and between late adolescents and adults, NMI = 0.77 (M = 0.70, SD = 0.06) (Fig 2).
Importantly, all observed NMI values fell maximally just over one standard deviation of the
null mean, indicating no significant differences in network organization from late childhood
into adulthood. To provide statistical evidence for findings reflecting stable network organiza-
tion, we took a Bayesian approach, weighting evidence in favor of the null hypothesis (stable
network organization) versus the evidence for the alternative hypothesis (dynamic network
organization) [36]. First, we generated a distribution of observed NMI values by performing a
leave-one-out cross validation. We removed one subject from each group for any given con-
trast and calculated NMI on the remaining group-averaged matrices. Then, we compared the
resulting distribution to the previously generated null distribution for each contrast by calculat-
ing the Jeffreys-Zellner-Siow (JZS) Bayes factor [36]. Values greater than 1 provide evidence
supporting the null hypothesis, while values between 0 and 1 provide support for the alterna-
tive hypothesis. With respect to the null hypothesis of stable developmental network organiza-
tion, values ranging from 1 to 2 indicate anecdotal evidence and from 3 to 10, substantial
evidence. For children versus early adolescents, JZS Bayes factor = 3.82; for early adolescents
versus late adolescents, JZS Bayes factor = 2.49; for late adolescents versus adults, JZS Bayes
factor = 5.34; and for children versus adults, JZS Bayes factor = 8.01. These results indicate sub-
stantial evidence in favor of stable network organization throughout late childhood, adoles-
cence, and adulthood. Importantly, these results were robust across network densities; thus,
our results were not due to our choice of representational network density (S1 Table).

In addition to group-averaged matrices, we also calculated NMI between modules defined
on the basis of individual subject data and the group-averaged adult module assignments to
provide an analysis of subject variability. No significant differences were observed between

Fig 2. Comparison of observed NMI to a null distribution. Red lines denote the observed value for NMI.
This value was plotted against a null distribution for each subsequent age group comparison and between
children and adults. For each comparison, observed values fell maximally just over one standard deviation
from the mean of the null distribution. Importantly, this effect was not restricted to the network density
represented here (see S1 Table). (Data available at http://devrsfmri_2015.projects.nitrc.org/devrsfmri_2015.
tar.bz2.)

doi:10.1371/journal.pbio.1002328.g002
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groups, as any potential between-group variability was found to be smaller than that of within-
group variability (S1 Fig).

Within- and Between-Network Changes in Connectivity Strength
Given network organization is on line by childhood and remains stable throughout this devel-
opmental period, it cannot account for cognitive changes during adolescence. Hence, we inves-
tigated developmental changes in network connectivity strength within networks (reflecting
the integrity of specialized networks) and between networks (reflecting the integration of infor-
mation processing across functional domains). First, we partitioned each group-averaged
matrix into networks according to the adult network assignment. Consecutive age group com-
parisons of within- and between-network connectivity were conducted using a two-tailed t test
that was Bonferroni corrected for multiple comparisons (p< 0.01).

Age-related changes in connectivity strength were unique to developmental stages. From
childhood (10–12 y) to early adolescence (13–15 y), there was a global decrease in connectivity
strength for both within-network and between-network connectivity (Fig 3A and 3B)

Fig 3. Connectivity strength changes through development as a function of network organization. (A) Connectivity strength changes as a function of
within- and between-network connectivity. Asterisks denote significant differences between groups (p < 0.05, corrected) (B) Each cell represents the t-
statistic resulting from a t test of connectivity strength between each network contrast. The diagonal represents within-network comparisons (e.g., DM-DM
network connectivity strength differences between groups), while off-diagonal elements are between-network comparisons (e.g., DM network and CO/
Salience network). Therefore, matrices are symmetric. Asterisks denote significant differences between groups (p < 0.01, corrected). (Data available at http://
devrsfmri_2015.projects.nitrc.org/devrsfmri_2015.tar.bz2.)

doi:10.1371/journal.pbio.1002328.g003
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(p< 0.05, corrected). From early adolescence (13–15 y) to late adolescence (16–20 y) within-
network connectivity remained stable, while between-network connectivity increased across
networks, with the exception of DM/FP network connectivity, which remained stable (Fig 3A
and 3B). Lastly, from late adolescence (16–19 y) to adulthood (20–26 y), within-network con-
nectivity strength again decreased, while between-network connectivity continued to increase
(Fig 3A and 3B). These results indicate that the transition to adult-level network connectivity is
characterized by a shift from predominance of within-network connectivity to reliance on
between-network connectivity. Together, these results suggest that increased collaborative
brain function may underlie improvements in cognitive control.

No Changes in Distance-Dependent Connectivity through Adolescence
Next, we examined the presence of distance-related changes with development [17,19,20]. In
the present study, age-related changes in connectivity strength between ROI pairs were
assessed by subtracting each pairwise relation of the averaged child connectivity matrix from
the averaged adult connectivity matrix. We also calculated Euclidean distance for each pairwise
relation and regressed the change in connectivity strength against Euclidean distance (Fig 4).
Results showed that Euclidean distance accounted for a non-significant amount of the variance
in change in connectivity with age (R2 = 0.002, p> 0.05), indicating distance alone does not
play a significant role in connectivity strength changes from childhood to adulthood [17,19,20].
We also contrasted the distributions of the top 100 increasing and decreasing connections in
terms of connectivity strength between children and adults and found no significant differences
(p = 0.33).

Developmental Trajectories of Network-Level Integration
In addition to characterizing age-related changes in the strength of connectivity both as a func-
tion of network organization and as a function of distance, we also aimed to quantitatively

Fig 4. Developmental changes in connectivity strength are not a function of distance. (A) Distance distributions of significantly increasing connections
(blue) and significantly decreasing connections (red) between the child and adult group. No significant difference was found between the two distributions,
indicating a lack of evidence for distance-dependent effects on change in connectivity strength (p = 0.33). (B) Each point represents a pairwise relationship
between two regions of interest. Data values represent the difference found by subtracting the averaged child matrix from the averaged adult matrix, plotted
as a function of the Euclidean distance between regions of interest. No significant relationship was found between changes in correlation strength and
distance (p > 0.05). (Data available at http://devrsfmri_2015.projects.nitrc.org/devrsfmri_2015.tar.bz2.)

doi:10.1371/journal.pbio.1002328.g004
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characterize the distribution of these between-network interactions using graph theory. Brain
regions (nodes) within networks may either contain connections (links) solely to nodes within
the same network or may also contain between-network links. A node that has distributed
links across multiple networks can be regarded as a highly integrated region (Fig 5A). Here, we
operationally define integration as the level to which a region contains distributed links from
its “home” network to a foreign network. Participation coefficient (PC) is a graph theoretical
construct that is used to calculate integration between brain networks [25]. PC refers to the
level to which a node establishes links to foreign networks, with values ranging from 0 to 1.
Nodes that link solely to other nodes within their “home” network would have a PC of 0, while
nodes with many distributed between-network links would have a PC closer to 1. Delineating
the level of integration using a node’s PC extends beyond defining the degree (i.e., number of
links) of a node, to defining the relative importance of those links with other networks [16].

To analyze developmental trajectories of integration at the network level, we calculated PC for
every node within individual subject matrices at each network density. As an important aside, to
remove the arbitrary bias in thresholding, all subsequent calculations involving PC are repre-
sented as the mean value across the range of network densities. Though we chose this method,
PC across all nodes is significantly positively correlated with the PC of all nodes at each network
density (S2 Fig). If our results were only driven by a specific threshold (e.g., 5%), but not others
(e.g., 20%), a significant relationship between mean PC and the specific threshold driving the
effect (5% in this example) would exist, but would not exist in others (20% in this example). This
provides evidence that PC is robust to any biases that could be introduced by thresholding.

For each subject, nodes were grouped according to the network to which they were assigned
in the adult group. Then, we calculated the mean PC value for each network and tested each
network for significant age-related effects on individual subjects, fitting both linear and inverse
regression models, which are known to best fit this period of development [37]. The choice of
superior model fit was made quantitatively, using Akaike information criterion (AIC). The PC
of the CO/Salience network significantly increased over the age range studied (R2 = 0.09,
t = 3.74, p< 0.001) (Fig 5B), optimally fit with an inverse model. No other network displayed
age-related changes in PC for either linear or inverse models (p> 0.05) (Sheet “Fig5Fig6” in S1

Fig 5. Development of network integration. (A) Model network with four communities (larger gray circles) to illustrate PC. Nodes (smaller colored circles)
that are warmer colors have a larger PC due to the existence of distributed links to other networks, representing network integration. (B) The CO/Salience
network significantly increased in PC, and thus integration, through adolescence (p < 0.001). No other network demonstrated any significant relationship with
age in individual subjects (p > 0.05). (C) Development of long-term fluctuations in participation coefficient by network after smoothing data. The centerline of
each curve represents the mean. Upper and lower bounds represent the 95% confidence interval. Asterisks denote statistically significant results from the
regression analysis. (Data available from sheet “Fig5Fig6” in S1 Data.)

doi:10.1371/journal.pbio.1002328.g005
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Data). One purported role of the CO/Salience network is the maintenance of cognitive control.
Thus, increased integration of the CO/Salience network with other brain networks may under-
lie improvements in cognitive control performance during adolescence. We tested this hypoth-
esis by investigating associations between network integration and behavioral performance in
the antisaccade task.

To identify any long-term fluctuations in PC that may not be captured at the individual sub-
ject level, we sorted individual subject matrices by age and then calculated average subject cor-
relation matrices using a moving average approach (see Materials and Methods). After
calculating PC for each region within each moving average group, we computed the mean PC
within each network. We then fit linear, inverse, quadratic, and cubic regression models to the
data, with the best fit model defined as the one with the lowest AIC (Fig 5C). The best fit model
for the CO/Salience network was an inverse fit (R2 = 0.59, p< 0.05), showing an increase in PC
from late childhood through approximately 14 y of age, followed by relative stability (Fig 5C,
black curve). The quadratic model best fit age-related changes in the DM network (R2 = 0.28,
p< 0.05), which decreased in PC throughout adolescence, but increased slightly into early
adulthood (Fig 5C, red curve). A quadratic model best fit the visual network (R2 = 0.51,
p< 0.05), with peak levels of integration occurring late in adolescence (Fig 5C, blue curve). A
cubic model best fit the FP network (R2 = 0.29, p< 0.05), where PC increased from late child-
hood through approximately 14 y of age before declining from approximately 14 to 20 y, and
then increasing again throughout early adulthood (Fig 5C, yellow curve). Lastly, the SM net-
work remained relatively stable throughout development (R2 = 0.01, p> 0.05) (Fig 5C, cyan
curve). The fact that no other network demonstrated significant age-related effects in the indi-
vidual subjects analysis compared to the moving average approach suggests the lack of differ-
ences is likely due to a high amount of individual subject variability.

Cingulo-Opercular/Salience Network Integration Moderates the
Relationship between Age and Antisaccade Latency
The antisaccade task is a particularly robust test of inhibitory control that reliably shows sensitiv-
ity to cognitive development through adolescence as accuracy and reaction times (RTs) during
successful response inhibition improves through adolescence [38–40]. First, we tested the effect
of age on accuracy and RT separately, with age modeled as both a linear and an inverse function.
As is typical for the adolescent age range [37], all regression models involving age were best fit by
an inverse model, as determined by lower AIC, compared to linear models. Similar to previous
studies [38–44], we found developmental increases in the accuracy of correct inhibitory response
(R2 = 0.14, t = 5.77, p< 0.0000001) and decreases in RT through the adolescent period (R2 =
0.13, t = -5.51, p< 0.00001) (Fig 6A and 6B) (Sheet “Fig5Fig6” in S1 Data).

Next, we tested the association between PC of the CO/Salience network (i.e., CO/Salience
network integration) and antisaccade accuracy and RT, controlling for age. Results showed no
association between CO/Salience network PC and accuracy (p = 0.34). However, as CO/
Salience network PC increased, RT to correct inhibitory responses decreased (t = -2.09,
p = 0.03) (Fig 6C), suggesting that greater CO/Salience network integration supports timely
successful inhibitory control. Notably, no other network displayed a significant relationship
between PC and accuracy or RT (all p> 0.05).

Given the relationship between age and both antisaccade performance and CO/Salience net-
work PC, we assessed whether CO/Salience network PCmoderates the relationship between anti-
saccade performance and age. To test this, we ran two moderation analyses, one including CO/
Salience network PC as a moderator of age and antisaccade accuracy and a second including CO/
Salience network PC as a moderator of age and antisaccade RT. In each model, both regressors
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were centered prior to model fitting. CO/Salience network PC did not significantly moderate the
relationship between age and accuracy (p> 0.05). However, CO/Salience network PC did mod-
erate the relationship between age and correct antisaccade RT (R2 = 0.16, t = -3.28, p< 0.001).
To identify when in development this interaction was most prominent, we investigated effects on
RT within age groups by performing a median split of CO/Salience network PC (Fig 6D). We
observed a significant difference in individual subjects within the child group (10–12 y) between
RTs of subjects with high versus low CO/Salience network PC. Lower CO/Salience network PC
resulted in slower RTs, while higher CO/Salience network PC resulted in faster RTs (t = 2.84,
p = 0.02, Bonferroni corrected). When we extracted the data for each subject, the results showed
that as PC increased, antisaccade RT decreased (R2 = 0.18, t = -2.99, p = 0.005) (Fig 6E).

Developmental Patterns of Regional Integration
In order to identify the contribution of regions of interest (ROIs) to age-related differences in
network integration, which is overlooked when averaging at the network level, we tested each
ROI in the network for significant increases in PC across age groups. Specifically, we permuted
the connectome 1,000 times between consecutive age groups to generate null distributions for

Fig 6. Relationship between increased cingulo-opercular/salience network integration and cognitive control. Performance on the antisaccade task
improves throughout adolescence, evidenced by increased accuracy (A) and decreased reaction time (B). As integration of the CO/Salience network
increases, reaction time significantly decreases (C). (D) Results from the moderation analysis. CO/Salience integration significantly moderated the effect
between age and antisaccade reaction time, such that less CO/Salience integration was predictive of longer reaction times, while higher CO/Salience
integration led to significantly faster reaction times (p < 0.001). Note that this effect only occurred during late childhood, indicating that earlier maturation of
the CO/Salience network is critical for achieving adult-like behavior earlier in development. (E) Reaction time as a function of CO/Salience network
integration in the child group. (Data available from sheet “Fig5Fig6” in S1 Data.)

doi:10.1371/journal.pbio.1002328.g006
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each brain region. Here, we report significant regional increases in PC in a stage-like manner
throughout development (Fig 7).

Childhood to early adolescence. From childhood to early adolescence, 26 ROIs demon-
strated significant increases in PC (Fig 7; S2 Table). Of those, two were in the DM network,
three were in the SM network, ten were in the visual network, 11 were in the CO/Salience net-
work, and zero were in the FP network. The significant increases in PC for ROIs within the SM
network were mainly driven by increased degree (i.e., number of links) to the visual, CO/
Salience, and FP networks, with a concomitant decrease in degree within the SM network.
Within the visual network, ROIs that significantly increased in PC also increased in degree to
the DM, SM, and FP networks. ROIs within the CO/Salience network showed an increase in
degree with the SM, visual, and FP networks, and a decrease in degree within the CO/Salience
network. Importantly, many regions within the CO/Salience network that significantly
increased in PC were anatomically located in the dorsal anterior cingulate (dACC), anterior
insula (aIns), and striatum, including bilateral putamen and globus pallidus.

Early adolescence to late adolescence. Twenty regions significantly increased in PC from
early adolescence to late adolescence (Fig 7; S2 Table). Of those, two were in the DM network,
14 were in the SM network, three were in the visual network, one was in the CO/Salience

Fig 7. Regional increases in participation coefficient. Node color represents network affiliation as defined
in Fig 1. In the transition from childhood to adolescence, most regional increases were localized to the CO/
Salience network, corroborating network-level findings. During adolescence, regional increases were mostly
within the SM network, while regions within the DM network and FP network increased in integration from late
adolescence into early adulthood. (Data available at http://devrsfmri_2015.projects.nitrc.org/devrsfmri_2015.
tar.bz2.)

doi:10.1371/journal.pbio.1002328.g007
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network, and zero were in the FP network. Within the DM network, the posterior cingulate
cortex showed a decrease in degree with the DM and visual networks, but an increase in degree
to the CO/Salience network. Within the SM network, ROIs increased in both within- and
between-network degree, especially to the FP, visual, and CO/Salience networks. The only
region within the CO/Salience network that significantly increased in PC was the right poste-
rior insula. This region demonstrated increased degree within network and between all net-
works. Three ROIs within the visual network increased significantly in PC: the left middle
occipital gyrus, right cuneus, and left fusiform gyrus. All three regions increased in degree to
the DM, SM, and FP networks.

Late adolescence to adulthood. Seventeen ROIs significantly increased in PC from late
adolescence into adulthood (Fig 7; S2 Table). Of those, nine were in the DM network, one was
in the SM network, four were in the visual network, one was in the CO/Salience network, and
two were in the FP network. Profiles of change in degree were variable for regions within the
DM network. The left superior frontal gyrus, left temporal-parietal junction (TPJ), and left fusi-
form all decreased in within-network degree, while the left angular gyrus, left posterior cingu-
late, and right medial frontal gyrus (MFG) all increased in within-network degree. The regions
that increased in within-network degree also had increases in degree with other networks. The
left TPJ, left angular gyrus, and bilateral MFG increased in degree to the FP network. Interest-
ingly, many DM network regions, including the bilateral MFG, also had increased degree to the
CO/Salience network. With the exception of the right lingual gyrus, the regions within the
visual network that significantly increased in PC showed decreased within-network degree and
increased between-network degree to each of the four other networks. For the first time
throughout development, nodes within the FP network significantly increased in PC, namely
the left inferior parietal lobe (IPL) and left dorsolateral prefrontal cortex (dlPFC). Both regions
decreased in within-network degree and increased in between-network degree with the DM
network. Additionally, the left dlPFC also decreased in degree to the CO/Salience network.

Discussion
We sought to characterize the development through adolescence of functional brain network
organization, connectivity strength, and integration. Furthermore, we tested the relationship
between network integration and developmental improvements in inhibitory control. Our
results provide evidence that: (1) network organization—as measured via Bayesian inference of
NMI between module assignments of age groups—is stable by late childhood; (2) connectivity
strength changes with development, reflecting concurrent decreases in within-network connec-
tivity and increases in between-network connectivity; (3) anatomical distance does not account
for age-related changes in connectivity strength through adolescence; (4) increased integration
of the CO/Salience network occurs throughout the adolescent period; and (5) CO/Salience net-
work PC moderates the relationship between age and antisaccade reaction time, such that
higher PC, and thus integration, of this network contributes to faster RTs on the antisaccade
task. These findings suggest that foundational aspects of functional network architecture, spe-
cifically network organization, are established early in development, while the processes under-
lying network integration continue to mature into adolescence [24]. This process reflects the
way cognitive control develops, as characterized by more adaptive and flexible interactions of
earlier maturing core components.

Developmental Stability in Functional Brain NetworkOrganization
Within the human functional connectome, densely interconnected brain regions are organized
into well-defined functional networks, subserving sensory, motor, and cognitive functions. Our
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findings indicate that this network organization is stable between 10 and 26 y of age, counter-
ing earlier findings that suggested developmental changes in network organization reflect a
shift from localized to distributed organization, which may have been confounded by head
motion artifact [17,21,22,45,46]. The current study applied a wide array of advanced prepro-
cessing steps to limit head motion artifact, including wavelet despiking [47], simultaneous
bandpass filtering the time series data and nuisance regressors [23], as well as scrubbing [21].
These results suggest that, after controlling for head motion, there are no changes in network
organization from late childhood to adulthood.

Previous studies found that many aspects of human functional network topology remain
stable throughout adolescence, including small-worldness [17,18,48], global efficiency, and
hub organization [24]. Combining these findings with our results showing the stability of net-
work organization, we see strong evidence that the large-scale organization of functional net-
works is present by late childhood, possibly even earlier. Despite the fact the brain undergoes
continual structural maturation of both gray and white matter [8,49–51], key fundamental
properties of large-scale functional circuitry, including organization, are stable throughout late
childhood to adulthood. While non-significant age-related changes to network organization
cannot be concluded through inferential statistics, Bayesian inference via JZS Bayes factors
allowed us to test the likelihood of the null versus the alternative hypothesis [36]. Using this
method, we confirmed the finding that network organization does not change significantly
with age.

Age-Related Changes in Connectivity Strength
Our results show age-related changes in connectivity strength. Within-network connectivity
strength decreased with age, suggesting that maturity results in network refinements akin to
pruning unnecessary connections, which improves signal transmission within networks. On
the other hand, we found between-network connectivity strength decreased into early adoles-
cence and subsequently increased into adulthood, ultimately enhancing the ability for different
networks to collaborate. Interestingly, adolescence demarcated the period when between-
network connectivity began to increase, perhaps reflecting a qualitative shift in network inter-
actions towards collaborative network functioning. The overall trend towards increased
between-network connectivity is at odds with a previous study by Stevens and colleagues, who
found causal between-network coupling decreased in strength [52], reflecting greater segrega-
tion of specialized networks. However, this study used an independent components analysis
approach to define functional networks, which only coarsely correspond to the canonical net-
works used in the current study. Furthermore, this study was conducted before advances con-
cerning mitigation of head-motion–related artifacts.

Changes in within- and between-network connectivity strength were sensitive to network
organization, not solely by the distance between regions, as initial studies had suggested
[17,19,20,53]. Divergences from previous results are not surprising given our implementation
of recent advances in head motion control that minimized its confounds on age differences in
connection strength as a function of distance [21,22]. Distance-related changes in connectivity
strength by age have been found after controlling for head motion, albeit with a weaker effect
than previously reported, in a sample that included children younger than those in the current
sample (8 versus 10 y of age) [53]. Decreasing short-range connectivity and increasing long-
range connectivity may be specific to an earlier developmental stage, when greater changes in
white matter connectivity are occurring [8]. These results suggest that the adolescent transition
to maturity is a period of refinements in connectivity within stable networks and concomitant
increases in connectivity across widely distributed circuitry.
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Increased Integration of the Cingulo-opercular/Salience Network
While between-network connectivity increased with age, the distribution of links (i.e., integra-
tion) among networks remained stable for most networks studied. This suggests that the frame-
work for network integration is available by childhood, with continued increases in the
strength of these established between-network links. An exception, however, was the CO/
Salience network, which displayed age-related changes in integration with other networks, as
assessed by PC. The CO/Salience network is involved in maintaining a task set, saliency, and
configuring sensory information, cognitive state, and motor output [12,54]. The continued
enhancement of CO/Salience network integration follows what is known about the develop-
ment of cognitive control. Core cognitive control abilities are present early in development, but
the consistent successful implementation of control continues to improve into adulthood. This
developmental pattern has been found for a wide range of cognitive control tasks, such as the
antisaccade, go-no-go, and stroop tasks [33,55]. Our findings of stable network organization,
coupled with increased integration, are consistent with these behavioral findings, suggesting
that the underlying architecture supporting mature brain functioning is present early in devel-
opment, with refinements continuing into adolescence.

Age differences in integration patterns at the regional scale within the CO/Salience network
corroborated the network-level findings. From childhood into early adolescence, specific
regions that drove increased integration of the CO/Salience network included the right aIns,
bilateral dACC, anterior and mediodorsal nuclei of the thalamus, and putamen. Both the aIns
and dACC are extensively anatomically connected to many major brain networks across corti-
cal and subcortical regions [56,57]. Together these regions drive a control network guiding
mental activity and behavior through an interaction of cognitive, affective, and homeostatic
functions [54,58–61]. We observed an increase in the number of links between the CO/Salience
network and the SM network from every region that became more integrated within the CO/
Salience network, enabling more rapid access from this control system to the motor system to
guide goal-directed behavior [60]. Specifically, the right aIns has been shown to play a critical
developmental role as an outflow hub in directing cognitive control processes, having greater
directed causal influence on other brain regions (dACC and posterior parietal cortex (PPC))
critical for proper cognitive control execution in adults compared to children. Furthermore,
these functional refinements were shown to be supported structurally via enhanced white mat-
ter fiber density with development between the right aIns and PPC [62]. Additionally, it has
been shown that the right aIns increases in connectivity strength to regions within network
(e.g., dACC) and between networks (e.g., DLPFC and PCC), supporting its increased role in
network integration over the adolescent period [63]. Due to its roles in detecting salient stimuli
and acting as a switch between large-scale networks [13,61], the aIns likely plays a particularly
important role in normative development, supporting enhanced integration of multiple brain
processes. In addition to the right aIns, the dACC also plays a critical role in cognitive control
execution [40,64]. Using a multimodal approach, Fjell and colleagues found the surface area
and white matter integrity of the dACC accounted for a significant portion of variance in per-
formance on a flanker task [65]. In sum, much like the aIns, the dACC plays a critical role in
control abilities and shows a protracted development. In support of their critical developmental
role, there is evidence that abnormal engagement of the aIns and dACC may underlie neurode-
velopmental disorders, such as autism [53,60,66,67].

Many of the regions within the CO/Salience network that significantly increased in integra-
tive properties were subcortical, including the putamen and thalamus. These regions show
larger changes than cortical areas with respect to fractional anisotropy in white matter, increas-
ing 30% to 50% from childhood into early adulthood [68], and also show a protracted
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neurophysiological development [69]. This parallels our findings of increased integration of
these subcortical structures with cortical networks. Given that adolescence is a period of
enhanced sensation seeking [13,37], the steep increase in the integrated nature of these regions
with other brain networks during early adolescence suggests a mechanism by which motiva-
tional systems are reconfigured with more cognitive, sensory, and affective systems [70].

Cingulo-opercular/Salience Network Integration Moderates Age-Related
Improvements in Inhibitory Control
In agreement with an extensive literature [33,40], we found age-related decreases in reaction
times of correct inhibitory responses. Our network analyses indicated that increased CO/
Salience network integration predicted faster RTs on the antisaccade task, underscoring the
importance of the CO/Salience network integrating with other networks, subserving cognitive
control. Importantly, we found that CO/Salience network integration moderated decreases in
antisaccade latency as a function of age. This moderation was significant in the transition from
late childhood to early adolescence, when (at both the network and the regional scale) the CO/
Salience network became significantly more integrated with other functional networks.
Together, these results indicate that development brings greater integration between the CO/
Salience network, supporting sustained cognitive control [12], and regions that underlie action
such as the SM network, resulting in the ability to generate quicker execution of correct cogni-
tive control signals [64].

The Role of Intrinsic Functional Couplings in Integration
Although intrinsic, spontaneous coupling between regions at frequencies<0.1 Hz has been stud-
ied for nearly 20 y, the neural substrate and the meaning of the slow frequency signal remains
unclear [71,72], though functional networks observed using fMRI have also been identified using
magnetoencephalography [73]. Many ROI-ROI pairs demonstrate high correlations between
their time courses despite a lack of monosynaptic connections [74,75]. Though the functional
purpose of spontaneous slow frequency BOLD oscillations is not known, a range of possibilities
exist. Resting-state functional networks may be groups of regions that often coactivate in task-
based settings, reflecting a history of coactivation [12,76,77]. This interpretation is supported by
studies finding strong resting-state correlations, despite the lack of a direct anatomical connection.
However, the existence of strong functional connectivity in the absence of direct anatomical con-
nections allows for other alternatives, including the notion that resting-state networks are con-
stantly sampling a possibility of configurations, constrained by anatomy, to make predictions
about optimal network configurations for a given input [72]. Furthermore, over long timescales,
such as in this study, resting-state functional brain networks are dependent on anatomical con-
nectivity; however, at shorter timescales, numerous configurations are possible [78]. That said,
changes in the framework of integration within the functional connectome during adolescence
may reflect differences in the pattern in which information is shared across distributed neural net-
works. Specifically, from a graph theoretic view, the regions that significantly increased in partici-
pation coefficient are areas that integrate across multiple functional networks to a greater extent.
Importantly, the role these brain regions play in integrating information may reflect a particular
vulnerability for the emergence of psychopathology, which emerges during adolescence—a time
when the brain is reorganizing the way it shares and processes information across these networks.

Limitations
This study was not without limitations. The sample was cross-sectional, undermining our abil-
ity to analyze subject-specific growth trajectories. We are also limited by some inherent
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drawbacks of fMRI, including residual head motion, though we took multiple processing steps
towards mitigating these effects, including wavelet despiking, simultaneous bandpass filtering
of the time series and nuisance regressors, and scrubbing. Additionally, 5 min of resting-state
data is considered a minimum requirement for analyses of resting-state fMRI data, with recent
pushes for longer acquisitions [75,79]. However, longer acquisitions may lead to even greater
differences between age groups in head motion. Lastly, because PC was averaged over all nodes
within a network, it is possible that some single brain regions could be driving this effect more
than others. That said, we still found CO/Salience network increases in integration with age
that moderated the relationship between cognitive control performance and age. This finding
stresses the importance of network integration for adult-like cognitive control performance,
rather than the maturation of any singular brain region. Future studies could aim to elucidate
specific brain regions driving cognitive control maturation via integration.

Materials and Methods

Participants
One hundred and ninety-five subjects aged 10–26 y participated in this study (Table 1). Writ-
ten informed consent was obtained from every subject and minors did sign assents. This
research was approved by the University of Pittsburgh Institutional Review Board. A phone
screen questionnaire was used to assess medical history and history of psychiatric disorders at
the time of recruitment. Subjects were excluded at the time of recruitment if the subject or a
first-degree relative currently or previously had a psychiatric disorder. Subjects also completed
a battery of self-report measures of psychopathology. As determined through the interview
process, neither subjects included in this study nor their first-degree relatives currently or pre-
viously had any neurological disease, brain injury, or diagnosed psychiatric illness. Substance
use was assessed using the drug use and history questionnaire. Subjects included in this study
were free from substance use or abuse. A post-scan questionnaire was used to inquire if subjects
had fallen asleep. Sixteen subjects reported periods when they may have briefly drifted into
sleep but none reported sleeping throughout the entire resting state scan. Data from three sub-
jects were discarded due to excessive head motion. Therefore, we report data from 192 subjects.
While age was considered as a continuous variable, some analyses considered developmental
stages by binning ages after first sorting individual subjects by age, similar to methods used in
the past to characterize changes in childhood (n = 41 10–12 y olds), early (n = 41 13–15 y olds)
and late adolescence (n = 53 16–19 y olds), and adulthood (n = 57 20–26 y olds).

Antisaccade Task
The antisaccade task was performed by subjects outside of the MR scanner on a separate day
from the MR visit. For a full description of the antisaccade task used, see [80]. Briefly, neutral
trials were extracted from an incentivized antisaccade task, consisting of reward, loss, and neu-
tral trials. There were a total of 40 of each trial type. Each neutral trial began with a white cen-
tral fixation, which then turned red for 1.5 s, prompting subjects to prepare a response. Next, a
peripheral stimulus (yellow dot at approximately 0.5 degree/visual angle) appeared at an
unpredictable location on the horizontal meridian (±4 and 8 degrees/visual angle) for 1.5 s.
Subjects were instructed to inhibit making a saccade towards the stimulus, and instead to sac-
cade to the mirror location of the stimulus. Eye movement data were scored online using inter-
faced E-Prime (Psychology Software Tools, Inc., Pittsburgh, PA) and ASL (Applied Science
Laboratories, Bedford, MA) eye tracking software. A script detected if at any time during the
first 1,000 ms a subject made a saccade to the stimulus or if no eye movement was generated.
An auditory tone (1,163 Hz) was played for 400 ms if the subject made a saccade to the
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stimulus. If the subject made a correct saccade a “cha-ching” sound (1,516 Hz) was presented
for 400 ms. Correct responses were defined as those in which the first eye movement in the sac-
cade was directed toward the mirror location at a velocity greater than or equal to 30°/s [81]
and extended beyond a 2.5°/visual angle from the central fixation. A response was considered
incorrect when the first saccade was directed towards the target beyond a 2.5°/visual angle
from central fixation, but were subsequently directed to the hemifield opposite the target, simi-
lar to previously published work [80].

Eye Tracking
In addition to the online scoring, eye data were scored offline by a technician for various sac-
cade metrics, including correct trials and errors, as well as saccade latency, using ILAB software
[81] and an in-house scoring suite written in MATLAB (Math Works, Inc., Natic, MA). A cor-
rect antisaccade response was one in which the first saccade following stimulus onset was
towards the mirror location of the stimulus and extended beyond a 2.5 degrees/visual angle
central fixation zone. Errors were defined as occurring when the first saccade following stimu-
lus onset was directed towards the stimulus and extended beyond central fixation.

MRData Acquisition
Data were acquired using a 12-channel Siemens 3T Tim Trio at the University of Pittsburgh
Medical Center Magnetic Resonance Research Center. The resting-state scan was acquired at
the end of the scanning session and was always at the same time of acquisition for all subjects.
For each subject, we collected 300 s (200 TRs) of resting-state data. Structural images were
acquired using a sagittal magnetization-prepared rapid gradient-echo sequence (repetition
time [TR] = 1,570 ms, echo time [TE] = 3.04 ms, flip angle = 8°, inversion time [TI] = 800 ms,
voxel size = 0.78125 × 0.78125 × 1 mm). Functional images were acquired using an echo-planar
sequence sensitive to BOLD contrast (T2

�; TR = 1.5 s, TE = 29 ms, flip angle = 70°, voxel
size = 3.125 × 3.125 mm in-plane resolution, 29 contiguous 4-mm axial slices). During the rest-
ing-state scan, subjects were asked to close their eyes and relax, but not fall asleep.

RS-fMRI Preprocessing
Functional images were preprocessed using AFNI [82] and Freesurfer [83]. Standard prepro-
cessing steps were completed, including (1) normalization based on global mode, (2) wavelet
despiking [47], (3) simultaneous multiple regression of nuisance variables from BOLD data
and bandpass filtering [23] at 0.009 Hz< f> 0.08, and (4) spatial smoothing using a 6 mm
full-width at half-maximum Gaussian blur. Freesurfer was used to segment gray matter, white
matter, and ventricular voxels. Nuisance regressors included ventricular signal averaged from
ventricular regions of interest (ROIs), six head realignment parameters obtained by rigid body
head motion correction, and the derivatives of these signals and parameters. In addition to
wavelet despiking, we removed any remaining high motion volumes via a scrubbing procedure
[21,22]. For the original 195 subjects, we calculated two quality control measures with respect
to head motion, volume-to-volume framewise displacement (FD) and the root mean square
derivative of fMRI timeseries (DVARS). We censored and removed volumes in individual sub-
jects that had an FD> 0.5 mm and DVARS> 5, as well as the frame preceding the motion arti-
fact and the two subsequent frames. FD is calculated on the original motion time series (i.e.,
before motion correction with wavelet despiking). On the other hand, DVARS is calculated
after motion correction with wavelet despiking. Large DVARS values after wavelet despiking
would indicate motion/artifact-related noise in the global signal (i.e., brain-wide change from
one volume to the next) still remained after despiking, which we did not observe (Table 1: note
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DVARS after wavelet despiking is considerably lower in all four groups than DVARS calculated
prior to wavelet despiking). Because we collected 300 s of data, subjects were dropped entirely
if>20% of their volumes were removed, leaving the minimum amount of rest data for any sub-
ject 240 s. This procedure resulted in the removal of three subjects from further analyses. Of
the remaining 192 subjects, only four did not contain a full 300 s of data.

Functional Network Parcellation
For each subject, nodes (n = 264) were defined from the functional parcellation defined by
Power and colleagues [14]. Coordinates were derived through fc-Mapping [84,85] and a meta-
analytic procedure [14], covering major brain systems involved in both tasks and rest. All ROIs
were modeled as 10 mm diameter spheres around a center coordinate. For each subject, the
timeseries of voxels within each ROI were averaged and then correlated to produce a 264 × 264
correlation matrix. Any comparisons made between correlations were transformed to z values
using Fisher z(r) transformation, and then reconverted to Pearson r values for reporting and
visualization.

Individual and Group Correlation Matrices
Network-level age-related changes were assessed using individual correlation matrices. For all
other RS-fMRI analyses, age was treated as a categorical variable to assess stage-like develop-
mental changes in graph metrics and changes in the distribution of connections between chil-
dren (aged 10–12), early adolescents (aged 13–15), old adolescents (aged 16–19), and adults
(aged 20–26). Notably, no standard for binning age groups over adolescence currently exists,
though binning roughly follows Luna and colleagues [37]. Since short-distance correlations
(Euclidean distance<20mm) can arise from artifacts [21], these connections were not included
in tests for age-dependent significant strength changes in connectivity.

Network Detection and Comparison
Since there is no ideal, biologically salient threshold that definitively defines functional net-
works, we explored a range of network densities from 1%–25% to avoid any thresholding bias.
Results involving PC at the group level reflect values that are averaged across all network densi-
ties to remove any bias of a single threshold. For a representative network assignment, we
chose a network density of 10%, since this threshold results in meaningful network organiza-
tion (i.e., five networks), while maintaining full connectedness. Importantly, we did not impose
network assignments according to [14], since that would erode the ability to make conclusions
concerning developmental changes in network organization.

To define and examine the developmental trajectory of functional network organization, we
partitioned the full connectome of 264 ROIs into modules using Newman’s Q-metric coupled
with an efficient optimization approach proposed by Blondel et al. [15,34,35]. This method has
been verified to be one of the best-performing community detection algorithms of undirected
networks [86]. We then calculated normalized mutual information (NMI) to determine the
level of similarity between network assignments across age groups, with values closer to 0 indi-
cating dissimilar network assignments and values closer to 1 indicating similar assignments.
NMI is a standard measure for assessing the degree of similarity between two distributions,
which has been used to compare sets of network assignments in resting-state fMRI data
[16,21]. NMI measures information shared between two probability distribution functions,
specifically measuring how much knowing one distribution leads to certainty of the other. Fur-
thermore, NMI will detect any type of relationship between two distributions, making it more
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robust than a simple correlation coefficient. In this way, we can empirically test the level of sim-
ilarity of these distributions across subjects. To this end, we permuted the labels of individual
matrices between contrasts 1,000 times to generate a null distribution of NMI values for each
contrast. Matrices between groups were randomly shuffled and partitioned into functional net-
works, and NMI was calculated. Upon the finding that the observed NMI values fell around
one standard deviation of the mean of the null distribution, we executed a leave one out cross
validation to generate a distribution of observed NMI values for the following analysis. Because
conventional significance testing does not allow stating evidence in favor of null findings, we
implemented a Bayes factor alternative [36] to compare the observed NMI distribution with
the null distribution. Values greater than 1 indicate the likelihood of stable functional network
organization is “n” times more likely than the likelihood of developmental changes in func-
tional network organization.

Connectivity Strength Changes during Adolescence
A general concept in the development of functional networks is that they develop from “local
to distributed” [17]. To test this hypothesis, given methodological improvements for head
motion and a denser, more representative functional network [14], we contrasted connectivity
values from averaged weighted matrices in children versus adults for each ROI-ROI pair.
Euclidean distance was also calculated for each pairwise relation. We then performed a simple
linear regression with distance as a predictor of change in connectivity strength between the
children and adult matrices.

We also addressed changes in connectivity strength as a function of within- and between-
network interactions. First, within each group-averaged matrix, we averaged all within-net-
work pairwise relations and all between-network pairwise relations, separately. We then per-
formed a two-tailed t test for each consecutive age contrast. We then wanted to test for
significant increases or decreases in connectivity with respect to specific network interactions.
To this end, within each group-averaged matrix, the average connectivity strength was calcu-
lated for each network. We then tested each combination of within-network (e.g., DM/DM net-
work) and between-network (e.g., DM/FP networks) interactions to determine significant
increases or decreases in connectivity strength between consecutive age groups. For each com-
parison, we ran a two-tailed t test to determine significance (Bonferroni corrected for multiple
comparisons).

Developmental Changes in Participation Coefficient at the Network-level
For each subject, we partitioned the full network into sub-networks imposing the module
assignments from the adult group in the analysis outlined above, and subsequently calculated
PC for every node within each group. PC is a graph measure quantifying the degree to which a
node engages in inter-network communication [25,26]. Higher PC indicates more distributed
between network connectivity, while a PC of 0 signifies a node’s links are completely within its
home network (within network). Nodal PCs were then averaged within each network and were
tested for significant age-related effects using linear and inverse models.

Long-Term Fluctuations in Network-Level Participation Coefficient
To determine any long-term fluctuations in PC that may not be captured at the individual sub-
ject data, we calculated average subject correlation matrices using a moving average approach,
used previously in functional brain network data [17] and commonly used in economics
research. Averaged group matrices were formed using a moving average of age-ordered sub-
jects (e.g., group1: subjects 1–30, group2: subjects 2–31, . . . group163: subjects 163–192), thus
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generating 163 groups of 30 subjects in each group. Each group matrix was then parcellated
according to the adult network assignment and PC was calculated for each ROI within each
group. For each group, the PC for ROIs within a network were averaged and plotted as a func-
tion of age.

Relating Changes in Integration to the Development of Inhibitory Control
To test the hypothesis that the relationship between age and performance (accuracy and RT)
on the antisaccade task is moderated by integration of the CO/Salience network with other
functional networks, a hierarchical multiple regression analysis was conducted separately for
accuracy and reaction time. If a significant interaction was observed, age groups were binned
into the four age groups previously defined and a median split of the averaged PC within the
CO/Salience network was conducted. Within each bin, we tested for significant differences in
RT using a t test between high and low PC groups and corrected for multiple comparisons
using the Bonferroni method.

Identifying Specific Nodes Increasing in Participation Coefficient
We sought to discover brain regions that significantly increased in the ability to integrate infor-
mation from widespread functional networks using graph theory. PC was calculated for each
node within each categorical age group. Importantly, the degree, or number of links a node
has, was not considered as a metric for integration since network measures that are degree-
based have recently been called into question in Pearson correlation RS-fMRI networks [26].
PC for each node was contrasted between each set of chronological age groups (children versus
early adolescents, early adolescents versus late adolescents, and late adolescents versus adults)
and between adults and children by subtracting the younger group’s PCs from the older
group’s PCs resulting in four total contrasts. Permutation tests were conducted on each node
to test nodes for significant changes in PC. To generate a null distribution of PCs for each
node, subject labels were randomized within groups 1,000 times and PC was calculated for
every node in each run. Contrasts between age groups were then generated by subtracting the
PCs for each node for the younger group from the older group. This process was repeated for
each age contrast. A significant increase or decrease in participation coefficient for a node was
Bonferroni corrected for multiple comparisons.

Age-Related Changes in the Distribution of Regional Participation
Coefficient
Within each group, and for each node that significantly increased in PC, we calculated the
degree of the ROI to each network, including its “home” network, and then contrasted these
values for consecutive age groups for comparison. The degree of a node is determined by the
number of links a node has. This approach allowed us to contrast the distribution of links to
each network between consecutive age groups (i.e., within-network versus between-network
connectivity), giving us the ability to characterize the driving factor(s) behind the observed sig-
nificant increases in PC.

Computations and Visualizations
AFNI [82] and Freesurfer [83] were used to process MRI images. We used the Brain Connec-
tivity Toolbox [28] in MATLAB (The Mathworks, Natick, MA) for network computations and
statistical testing. For brain visualizations, we used the BrainNet Viewer [87].
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Conclusion
These results provide evidence that the period of childhood through adulthood is characterized
by increased integration of widely distributed but stable networks. As such, a critical compo-
nent underlying the adolescent transition to adult-level execution of control is the refinement
and strengthening of integration between existing specialized networks. In particular, the CO/
Salience network continues to increase its integration with and, thus, its influence on other net-
works, providing a mechanism for developmental improvements in cognitive control. These
findings support a novel two-stage model of adolescent brain development in which network
organization stabilizes prior to adolescence, while the integration of information across widely
distributed circuitry increases in the transition from adolescence to adulthood.
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