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Abstract
New neurons are continuously generated in specific regions in the adult brain. Studies in ro-

dents have demonstrated that adult-born neurons have specific functional features and me-

diate neural plasticity. Data on the extent and dynamics of adult neurogenesis in adult

humans are starting to emerge, and there are clear similarities and differences compared to

other mammals. Why do these differences arise? And what do they mean?

Introduction
For a long time, it was thought that the nervous system is fixed and incapable of regeneration.
Although it is indeed true that most neurons in the brain are generated before birth and are
never exchanged, it is now well established that new neurons are continuously generated by
stem cells in at least two discrete regions in the brain throughout life in most mammals: the
hippocampus—a seahorse-shaped structure underneath the cortex that is important for mem-
ory formation and cognitive functions; and the olfactory bulb (OB)—a structure located above
the nasal cavity that is important for the sense of smell.

At the end of last century, Eriksson, Gage, and colleagues established that new neurons are
born in the adult human hippocampus [1]. Only recently, however, has it become possible to ac-
quire quantitative data on the extent and dynamics of adult neurogenesis in humans—by mea-
suring the concentration of the radioactive carbon-14 isotope (14C) in genomic DNA. Nuclear
bomb tests during the ColdWar resulted in an enormous increase in atmospheric 14C, which
thereafter has declined exponentially, mainly due to uptake by the biotope and diffusion from
the atmosphere. The different 14C concentrations in the atmosphere at different times is reflected
in the human body, and a cell that was born at a certain time will have a 14C concentration in its
genomic DNA corresponding to the time when the cell was born [2]. Measuring 14C in genomic
DNA allows retrospective birth dating of cells, and mathematical modeling of such data provides
detailed information on the turnover dynamics of a cell population of interest [3]. This research
has revealed both that there is more extensive neuronal turnover than many had predicted, and
that there is a unique distribution of adult neurogenesis in the adult human brain compared to
other mammals. Why is that? And what are the roles of adult neurogenesis in humans?

PLOS Biology | DOI:10.1371/journal.pbio.1002045 January 26, 2015 1 / 12

OPEN ACCESS

Citation: Ernst A, Frisén J (2015) Adult Neurogen-
esis in Humans- Common and Unique Traits in Mam-
mals. PLoS Biol 13(1): e1002045. doi:10.1371/
journal.pbio.1002045

Published: January 26, 2015

Copyright: © 2015 Ernst, Frisén. This is an open ac-
cess article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Funding:Work in the authors’ laboratory was sup-
ported by grants from the Swedish Research Council,
the Swedish Cancer Society, the Karolinska Institute,
Tobias Stiftelsen, AFA Försäkringar, the Swedish
Foundation for Strategic Research, the Strategic Re-
search Programme in Stem Cells and Regenerative
Medicine at Karolinska Institutet (StratRegen), the
ERC, Torsten Söderbergs Stiftelse and Knut och
Alice Wallenbergs Stiftelse. The funders had no role
in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Abbreviations: 14C, carbon-14 isotope; DCX, dou-
blecortin; DG, dentate gyrus; LV, lateral ventricle; OB,
olfactory bulb; PC, principal component.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.1002045&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Adult Hippocampal Neurogenesis Is Conserved Among Mammals
Carbon dating demonstrated that hippocampal neurons are generated at comparable rates in
middle-aged humans and mice [4]. However, humans present a somewhat different pattern of
adult hippocampal neurogenesis as compared to rodents (Fig. 1). The vast majority of the neu-
rons in the dentate gyrus (DG), the subdivision of the hippocampus with neuronal turnover, is
subject to exchange in humans, compared to approximately 10% in mice [4–6]. Moreover, hu-
mans show a less pronounced age-dependent decline in hippocampal neurogenesis during
adulthood compared to mice [4]. Adult-born hippocampal neurons are more likely to be lost
than the neurons born during development in humans [4]. Whether this is also the case in
other mammals has not been directly investigated, but data from mice is consistent with this
notion [7].

Adult Neurogenesis in the Subventricular Zone and Olfactory Bulb
Neuronal precursor cells, or neuroblasts, are produced not only in the hippocampus but also in
the subventricular zone of the LV wall in adult humans, like in other mammals. The density of
neuroblasts and the dynamics of its decline with age are very similar between the hippocampus
and subventricular zone in humans [8–10]. However, whereas most features of adult hippo-
campal neurogenesis appear rather highly evolutionarily conserved, there are large differences
between humans and other mammals in the output of new neurons from the subventricular
zone. In rodents and nonhuman primates, these neuroblasts migrate to the OB (Fig. 1)
[11, 12].

Humans appear unique among mammals in that there is negligible, if any, addition of new
neurons in the OB after the perinatal period. This conclusion is based on the very few neuro-
blasts that can be found in the adult human rostral migratory stream, the migratory path from
the subventricular zone to the OB, and carbon dating of OB neurons [9, 13]. Although it is not
possible to conclude a complete absence of adult OB neurogenesis in adult humans, carbon
dating sets the limit to what could go undetected to less than 1% of the OB neurons being ex-
changed over 100 years [13]. One study reported very large numbers of proliferating cells in
the human subventricular zone and rostral migratory stream, implicating substantial adult
human OB neurogenesis [14], but only very small numbers of neuroblasts and no evidence of
new mature neurons were found in subsequent studies [9, 13, 15].

Adult Striatal Neurogenesis Is Most Pronounced in Humans
The striatum is a forebrain structure underneath the cortex and is involved in regulating motor
behaviors and responses to rewarding and aversive stimuli. In rodents, the vast majority of neu-
rons generated in the subventricular zone integrate in the OB. There are, however, studies sug-
gesting the postnatal generation of small numbers of striatal interneurons in mice, rats, and
rabbits [16–18]. Adult neurogenesis was also reported in the striatum of untreated and sham-
operated adult nonhuman primates [19–21]. In squirrel monkeys, a subset of newborn cells
was found to deviate from the rostral migratory stream. Instead of reaching the OB, these cells
were shown to migrate into the part of the ventral striatum called the olfactory tubercle, where
they displayed a mature neuronal phenotype [20].

In humans, neuroblasts are not restricted to the LV wall, but are also present adjacent to
this neurogenic niche, in the striatum (Fig. 1) [22]. Detection of the thymidine analog iodo-
deoxyuridine in striatal interneurons, which allows prospective labeling of dividing cells and
identification of their progeny, showed the generation of this cell type in adults. Retrospective
birth dating of striatal neurons confirmed the postnatal generation of interneurons [22].
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It appears likely that the neuroblasts and new neurons in the adult human striatum derive
from the neighboring subventricular zone. One major difference in adult neurogenesis between
rodents and humans may thus be the direction of neuroblast migration from the subventricular
zone, with the OB being the principal destination in most mammals. It is also possible that new

Figure 1. Schematic illustration of adult neurogenesis in the adult rodent and human brain.New neurons are indicated in green. (A) Neuroblasts that
are generated in the subventricular zone lining the lateral ventricle (LV) in rodents migrate to the OB, a structure crucial for olfaction, where they integrate as
interneurons. (B) Neuroblasts are present in the subventricular zone also in humans, and new neurons integrate in the adjacent striatum, which plays an
essential role in movement coordination, procedural learning, and memory, as well as motivational and emotional control. New neurons are continuously
generated in the DG of the hippocampus—a brain structure essential for memory and mood control—in both rodents and humans (A, B). A limited
subpopulation of DG neurons are subject to exchange in rodents (C), whereas the majority turn over in humans (D) [4–6]. The neurons within the turning over
population are continuously exchanged. A value of 100% on the y-axis means that all neurons have been replaced since the individual’s birth. Image credit:
Mattias Karlén.

doi:10.1371/journal.pbio.1002045.g001
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Figure 2. Proportional OB (A), hippocampal (B), and striatal volumes (C). Species are grouped
according to major phylogenetic classes varying in phylogenetic distance from humans: nonprimates first
(e.g., shrews, tenrecs, hedgehogs), then Strepsirrhine (e.g., lemur), Tarsier, Platyirrhine (e.g., NewWorld
monkey),Cercopithecine (e.g., baboon, macaque), Hylobate (e.g., gibbon), Nonhuman hominidae (e.g.,
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striatal neurons derive from local cells within the parenchyma [23], perhaps in addition to
those from the subventricular zone.

That substantial adult striatal neurogenesis is seen only in humans, and possibly some non-
human primates, makes it challenging to study this process in commonly used experimental
animals. However, blocking the Notch signaling pathway in astrocytes in the intact striatum of
mice triggers neurogenesis in the otherwise intact striatum [23], potentially offering a suitable
model to assess the functional role of adult striatal neurogenesis in an experimentally more
tractable organism.

Neurogenesis in the Adult Neocortex?
The potential addition of neurons to the adult mammalian neocortex has been a source of
controversy. In rodents and nonhuman primates, some reports have suggested that
neurogenesis continues in the adult neocortex [16, 24, 25]. Other studies have not detected
neurogenesis in this region under physiological conditions [26–28], or have argued for a tran-
sient existence of adult-born cortical neurons [29]. In humans, we showed that neocortical
neurogenesis is restricted to development [30] and found that cortical neurons are as old as
the individual even after stroke [31]. Klempin and colleagues demonstrated that cells
expressing the commonly used neuroblast marker doublecortin (DCX) in the mouse piriform
cortex (part of the olfactory cortex) were strictly postmitotic [32], and expression of
neuroblast markers alone can only be regarded as an indication of potentially ongoing
neurogenesis.

Evolutionary Perspectives on Adult Neurogenesis
What could explain the divergent patterns of adult neurogenesis in distinct regions of the
mammalian brain? New neurons, as well as changes in the proportion and organization of par-
ticular brain structures, offer a selective advantage to individuals by giving them the cognitive
adaptability necessary to conquer diverse ecological niches [33]. In general, increasing the size
of a brain region enhances the associated functional domains [34]. A decrease in olfactory abili-
ties with evolution is well documented and linked to a reduced dependence on olfaction. This
functional regression is associated with a decrease in OB volume across phylogenetic groups,
and most extremely in humans (Fig. 2A) [34]. In contrast, relative hippocampal volumes re-
main rather constant across species, which supports the notion that hippocampal memory
seems to be necessary for the success of an organism, regardless of its environmental niche
(Fig. 2B) [34]. The neostriatum, comprising the caudate nucleus and the putamen, is a phyloge-
netically new component of the brain. Over the course of evolution, the striatum enlarged in
parallel with the cerebral cortex; it is particularly well developed in higher mammals, including
humans (Fig. 2C). This proportional increase of the striatum with evolution implies a heavier
reliance on movement coordination, cognition, and emotions.

Indications of the extent of adult neurogenesis in a specific brain region can be inferred
from the expression level of markers for immature neurons. In mice, mRNA expression of
DCX is much higher in the OB than in the hippocampus and striatum (Fig. 3A). In contrast, in

chimpanzee, gorilla). The proportional volume of the OBs decreases across primate species. Humans
display the most pronounced reduction in OB volume. Hippocampal volumes appear to maintain their
proportions across species, whereas proportional striatal volumes increase with evolution. The proportions of
regional brain volumes are calculated as proportions of medulla volumes, because no grade shifts in the
relationship between medulla volume and body size are observed [34]. Volumetric measurements are from
Stephan et al. [48].

doi:10.1371/journal.pbio.1002045.g002
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Figure 3. Expression levels of the neuroblast markerDCX in the OB, hippocampus, and striatum of
adult mice (A) and humans (B) normalized to the expression levels in the non-neurogenic adult
cerebellum. In mice, DCX expression is much higher in the OB than in the hippocampus and striatum. In
humans, only background levels are detected in the OB, whereas higher DCX expression levels are reached
in the human hippocampus and striatum. mRNA expression was measured by in situ hybridization,
expression profiling, and RNA sequencing. Data are from geo (GSE 2361, GSE 45878, GSE 46706, GSE
1133, GDS1490, GDS182) and from the Allen Brain Atlas. The data points for the human OB show pooled
values for several donors.

doi:10.1371/journal.pbio.1002045.g003
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humans, only background levels are detected in the OB. DCX expression levels are comparable
in the human hippocampus and in the putamen; they reach the highest values in the caudate
nucleus and in the nucleus accumbens (which is part of the ventral striatum) (Fig. 3B). When
taking into account additional markers of immature neurons, genes associated with neuronal
migration show the highest expression in the striatum in adult humans, as compared to other
brain regions (Fig. 4).

These observations are in line with the evolutionary changes in volume and functional per-
formance of the OB, hippocampus, and striatum described above. In the human hippocampus,
DCX transcript levels correlate closely with the number of neuroblasts [35], which in turn
shows a strong association with the number of newly generated neurons [4]. Estimates of the
extent of neurogenesis based on DCX expression support the lack of detectable adult OB neuro-
genesis in humans [13] and the comparable neuronal turnover rates in the adult human hippo-
campus and striatum [4, 22].

Potential Functions for Adult Neurogenesis in Humans
There is continuous generation of hippocampal neurons throughout life in humans, to an ex-
tent comparable to adult neurogenesis in the mouse. Therefore, the level of neurogenesis in the
adult human hippocampus may be sufficient to contribute to brain function, and might have
similar functions in cognitive adaptability as in rodents [4].

Figure 4. Transcriptome-based expression trajectories of genes associated with neuronal migration in the human striatum compared to other
brain regions. Y-axis, first principal component (PC) value for gene expression. Expression levels of 100 genes reported to be associated with neuronal
migration are taken into account (see Kang et al. for details on the statistical methods for the principal component analysis and exhaustive list of genes
included). X-axis, subject age in years. Data from Kang et al. [35].

doi:10.1371/journal.pbio.1002045.g004
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The functional significance of adult striatal neurogenesis remains to be established. Even
though the longevity of the adult-born neurons argues for a probable functional integration, it
is still to be determined whether the extent of postnatal neurogenesis may be sufficient to be
utilized for therapeutic purposes (Box 1). However, low rates of neurogenesis under homeo-
static conditions can be increased in response to pathological conditions, and the continuous
addition of small numbers of new neurons to the injured striatum over long periods can add
up to a significant amount of cells [36]. Furthermore, even a limited number of new neurons
can potentially have a substantial functional impact, provided they integrate at critical points
in the existing circuitry. Newly generated neurons possess unique properties (e.g., enhanced
synaptic plasticity) that allow them to perform special tasks for a limited time after their birth
[37, 38].

Which human- or primate-specific striatal functions could necessitate postnatal neurogen-
esis? The human striatum is now recognized to play a key role for higher cognitive functions,
in particular “cognitive flexibility”, the ability to adapt behavioral goals in response to changing
contextual demands [39, 40]. Striatal amphetamine-induced dopamine release predicts

Box 1. Adult Neurogenesis and Striatal Disorders
The identification of a subset of neurons that is renewed in the adult human striatum
raises the question whether this process can be taken advantage of for therapeutic pur-
poses. A wide variety of disorders may affect the striatum, among which are acquired
conditions such as stroke, but also genetically inherited disorders such as Huntington’s
disease. Increasing the generation or promoting the survival of new neurons might offer
an attractive possibility in some cases.

In response to stroke, striatal neurons are generated from the subventricular zone in
rodents and nonhuman primates [21, 49–52]. At least in mice, new neurons are also gen-
erated by local astrocytes within the striatum after stroke [23]. Two groups showed an in-
crease in proliferation and neuroblast production after stroke in the human
subventricular zone [53, 54], which may indicate increased adult neurogenesis in this sit-
uation. However, it is still unclear whether neuroblasts generated after stroke can survive
and give rise to mature neurons in the human striatum. Retrospective birth-dating will
allow quantification of the extent of neurogenesis after striatal stroke and to discern
whether this process can be utilized to provide novel treatment options.

Huntington’s disease is a neurodegenerative disorder that primarily affects striatal
neurons. Increased cell proliferation and neuroblast production have been reported in
the subventricular zone of Huntington’s disease patients [55, 56]. However, postnatally
generated striatal neurons are depleted in advanced stages of the disease [22]. It is con-
ceivable that Huntington’s disease triggers an increase in proliferation to compensate the
loss of striatal neurons, but that the neuroblasts die before producing differentiated neu-
rons, or give rise to mature neurons that undergo apoptosis shortly after their
generation.

Along with stroke and Huntington’s disease, a number of other disorders and condi-
tions also interfere with striatal neuron function, including Parkinson’s disease, schizo-
phrenia, and addiction. Certain subtypes of neurons in the striatum appear to be more
resistant to disease [57, 58]. Investigating how striatal neurogenesis is affected in patho-
logical situations and which factors promote the renewal of striatal neurons may facilitate
the development of therapeutic approaches.
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individual differences in cognitive flexibility [41]. In children, striatal volume was shown to be
associated with neurocognitive performance [42, 43]. Primates possess a number of unique
cognitive specializations, some of them being supported by the striatum. In nonhuman pri-
mates, the relative striatal volume correlates with the rate of social play behavior across species,
suggesting a coevolution of traits [44].

The striatum also has a decisive function in the planning and modulation of movement,
which poses the question whether postnatal neurogenesis in the striatum might be required for
certain human- or primate-specific motor tasks. In Huntington’s disease, striatal atrophy—
which parallels neuronal loss—begins many years before movement abnormalities appear, and
the decrease of the striatal volume predicts when motor onset will occur [45].

In addition to the coordination of cognitive and motor functions, the striatum is involved in
reward, motivation, and pleasure. In animals, the mesolimbic reward system reinforces biologi-
cally vital behaviors, such as eating, sex, or caring for offspring. Over the course of evolution,
additional factors became important for successful survival. Humans have the ability to experi-
ence pleasure and reinforcing behaviors from more abstract stimuli, such as art or money,
which also implicate the mesolimbic striatal area. People differ widely in their willingness to
postpone immediate gratification to pursue long-term goals, i.e., how much they discount de-
layed rewards. Neural activity in the ventral striatum when subjects are asked to think about
the future predicts delay discounting [46]. The mesolimbic striatal system also mediates emo-
tion associated with art; specifically, reward value for music can be coded by activity levels in
the nucleus accumbens, whose functional connectivity with auditory and frontal areas in-
creases as a function of increasing musical reward [47].

Currently, we can only speculate about the potential functions of adult striatal neurogenesis.
Striatal adult neurogenesis may have evolved to provide specific types of neural plasticity in hu-
mans and possibly in nonhuman primates. Strategies to modulate postnatal neurogenesis in
the striatum of nonhuman primates and evaluate the cognitive, motor, and emotional response
might help to uncover what new neurons do in old brains.
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