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Abstract

The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution.
Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic
potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible
for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find
that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by
positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active
across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA
induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D
assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate
chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to
generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the
physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to
invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a
gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the
chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that
drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient.
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Introduction

Melanoma Metastasis
Melanoma is an unusually aggressive cancer, which often

metastasizes early during tumour development [1]. Tumours that

have not clinically metastasized are frequently curable, but

patients are far less likely to survive if tumours have metastasized

before they are surgically removed, and metastasis is the principal

cause of cancer mortality [2]. The most influential prognostic

factor in predicting metastasis and survival is the thickness of the

tumour (the ‘‘Breslow depth’’) [3]. There is a dramatic increase in

the risk of metastasis with only millimeter increases in Breslow

depth [3]. This characteristic is unlike most solid tumours, in

which the cytological morphology of the tumour cells and the

individual genes mutated in the cancer are more important than

size alone. Metastasis is therefore an important, and under-

medicated, potential target for cancer therapy [4,5].

Melanocyte Migration during Development
One principal reason behind the aggressiveness of melanoma

derives from the developmental history of melanocytes, the

pigment producing cells in the skin that mutate to form

melanomas. During mammalian development melanoblasts, the

melanocyte precursors, emerge from a restricted location at the

neural crest, and migrate rapidly from there throughout the

developing dermis, before maturing into melanocytes on the

basement membrane of the epidermis [6]. Thus a substantial level

of cell migration is required for even skin pigmentation. Even in

adults—for example following treatment for vitiligo—melanocytes

can spread significant distances from the hair follicles to
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repopulate the surrounding skin. The melanocyte lineage is thus

inherently migratory.

However, several questions about melanoma progression

remain unanswered. The first is what drives melanomas to change

from the relatively benign radial growth phase (RGP) to the far

more invasive vertical growth phase (VGP) (see schematic diagram

in Figure 1A). In RGP melanomas, cells only spread horizontally

along the basement membrane, compared to VGP melanoma

cells, which are also capable of spreading both upwards into the

epidermis (Pagetoid spread) and downwards, into and through the

dermis (invasion). This spread raises the related question, of what

drives cells to migrate away from the primary tumour. Simple,

random migration is an extremely inefficient way of dispersing

cells and also unlikely to drive cells to invade through matrix and

basement membranes. Chemotaxis—cell migration directed by

gradients of soluble signalling molecules—is implicated as an

important driver of metastasis by a wide range of data [7,8], and is

considered necessary to drive efficient invasion. In breast cancer,

for example, some tumour cells migrate towards epidermal growth

factor (EGF) [9]. However, EGF gradients have only been inferred

in vivo, never measured, and their sources are usually unclear. In

the case of breast cancer, the EGF is thought to be secreted by

macrophages recruited in a paracrine loop by the tumour [10], but

for other attractants and cell types the sources of chemotactic

signals are not known.

In the melanoma literature, most chemotaxis is attributed to

growth factors such as platelet-derived growth factor (PDGF) and

EGF [11] and the CXCR4 ligand SDF-1 [12], though a wide

variety of potential attractants have been discussed [13]. Gradients

of growth factor or SDF-1 have not been identified in vivo, they

can only be inferred from the cells’ behaviour or pattern of

responses in vitro.

Chemotaxis and Invasion Assays
Chemotaxis assays are typically performed in transwell cham-

bers, in which cells are grown on one side of a membrane filter and

potential attractants are added to the other side. Chemotaxis is

assayed by the number of cells observed on the far side of the filter

after a fixed interval. These assays are subject to a wide range of

artifacts. Cells’ behaviour during chemotaxis cannot be studied,

which makes it extremely difficult to distinguish chemotaxis from

directionless changes in migratory behaviour (i.e., chemokinesis

[14]). Potential attractants form extremely steep and rather short-

lived concentration gradients, unlike the physiological conditions

the assay aims to reproduce. More seriously still, conditions either

side of the filter may be discretely different; cells may grow,

survive, or adhere better on one side of the filter than the other,

giving changes in the numbers of cells that can be artifactually

interpreted as chemotaxis. Direct viewing chambers, such as

Dunn, Zigmond, or Insall chambers, are more laborious to use but

yield a far higher quality of data, with fewer artifacts [15–17]. In

work described here, we use direct-viewing chambers to identify

lysophosphatidic acid (LPA) as a far more potent chemoattractant

for melanoma cells than other previously described attractants. We

have developed and refined two direct-viewing assays to assess

mechanisms of cell dispersal and chemotaxis, allowing us to

distinguish chemotactic from chemokinetic and contact-driven

responses under defined conditions that minimize artifacts.

Furthermore, the use of direct-viewing chambers makes compar-

ison of attractants’ relative efficiencies practical.

The Source of Attractant Gradients In Vivo
The suggested role of chemoattractants in cancer dispersal—

whether growth factors, chemokines, or LPA—raises the crucial

question of how gradients are generated. Chemotaxis will only

work with signals that are presented as gradients—homogeneous

signals contain no directional information—and the steeper the

gradient, the more efficient the chemotaxis. Chemical gradients

are typically effective over distances of less than a millimetre—

limits on the efficiency of diffusion make larger gradients

impractical [18]. Thus for a gradient to be formed there must

be a gradient source that is close to the tumour.

Alternatively, local gradients may be formed from signals that

are widely produced, but are absorbed or broken down locally.

This local depletion mechanism is potentially just as effective as

local production, but less often invoked. In the cancer literature,

only localised sources are typically invoked, for example individual

macrophages within the vasculature attracting cancer cells within

the tumour [10].

If cells that are responding to a stimulus are also responsible for

breaking it down, the result is a self-generated gradient. Under

these conditions the gradient is always oriented away from the

current location of the cells. One such example has been shown

during the development of the zebrafish lateral line primordium

[19–21], in which a dummy receptor locally absorbs an SDF-1

stimulus to set up a gradient that is detected by a different

receptor. In this work we find that melanoma cells self-generate

chemotactic gradients from unlocalised, exogenous LPA. These

gradients tend to direct cells to disperse outwards from tumours,

thus directly promoting metastasis. Furthermore, we measure LPA

gradients across real melanomas in vivo. Since melanomas of

sufficient size both generate their own LPA gradients and respond

to them, chemotaxis-steered spread of melanomas is almost

inevitable.

Results

Density-Dependent Outward Migration of Tumour Cell
To examine the signals that drive the spread of melanoma cells,

we set up 2-D assays for tumour cell spread using a direct-viewing

chemotaxis chamber that allows detailed analysis of cell migration

[15]. The chamber contains two wells, connected by a bridge that

allows diffusion of attractants but not flow. Both cells were

homogeneously filled with complete medium, but cultured

melanoma cells [22] were only seeded in one well, at a range of

different densities.

Author Summary

Melanoma is feared because it spreads very rapidly when
tumours are relatively small. It is not known why this
metastasis is so efficient and aggressive. In particular, it is
not known what drives melanoma cells to start to migrate
out from the tumour. Here, we have studied the chemical
signals that guide the migration of melanoma cells. We
find that a component of serum, lysophosphatidic acid
(LPA), functions as a remarkably strong attractant for all of
the melanoma cells that we examined. We also observe
that melanoma cells rapidly break down LPA. We conclude
that melanomas create their own gradients of LPA, with
low LPA in the tumour and high LPA outside. Since
melanoma cells are attracted by LPA, this LPA gradient
around the melanomas serves as a signal that drives the
tumour cells out into the surrounding skin and blood
vessels. Finally, we show that such gradients exist in a
mouse model of melanoma. Self-generated LPA gradients
are therefore an intriguing new driver for melanoma
dispersal.

Self-generated LPA Gradients Drive Melanoma Dispersal
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Our initial results were surprising: Cells consistently spread

outwards from the well in which they started, even in uniform

medium without an externally applied gradient (Figure 1B; Movie

S1). This effect was density-dependent; cells plated at 26103 or

66103 cells/well barely migrated, while 26104 cells/well migrated

up to 350 mm in 24 hours (Figure 1C and 1D). This behaviour

strikingly resembles the behaviour of real melanomas, in which the

chance of metastasis is more correlated with tumour thickness than

any other parameter [3].

This type of density-dependent spreading requires individual

cells (or small clusters of cells) to migrate away from the bulk

population. This dispersal occurred in our assays; cells moved

directly away from the well they resided in with unprecedented

accuracy (Movie S1). This directed, non-random migration can

only occur if the moving cells perceive a directional cue from the

bulk population of the cells to spread. We therefore analyzed the

nature of the signal that was directing cells away from the bulk

population. The most probable signalling mechanisms are contact

inhibition of migration [23] or chemotaxis. We therefore

examined these potential mechanisms in turn.

Contact inhibition (of migration, as opposed to the more

frequently described contact inhibition of growth) is an effective

mechanism for short-range dispersal in which cell:cell contact

directs cells away from one another. It has been shown in other

neural crest-derived cell types [24]. However we found no

evidence to suggest it drives cell dispersal in our assays. Movie

S2 shows one example in which cells spread both individually and

while contacting one another. Some cells steer accurately outwards

through multiple cycles of new pseudopods independently of

cell:cell contact. Others continue to migrate outwards when

contacting the cell in front, where contact inhibition predicts these

cells should reverse into the space behind them. Analysis of the

paths of individual cells (Figure S1) shows that cell-cell contact is

not steering cells; the paths of cells that are contacting others, have

recently contacted others, and are not in contact are strikingly

similar. The one apparent example of contact inhibition (Movie

S2, cell 2) changed the cell’s direction but did not improve its

outward accuracy. Thus while these cells may experience contact

inhibition, we considered chemotaxis as the most likely mechanism

steering them away from the main population.

Cells could generate chemotactic gradients to drive dispersal by

either of two mechanisms. They could secrete an autocrine

chemorepellent and migrate away from it. We have previously

shown this to be a key driver of Entamoeba pathogenesis [25], in

which chemotaxis away from ethanol generated by the amoebas

themselves causes cells to migrate from the lumen of the gut into

the walls of the gut and eventually the liver of the patient.

Alternatively, the melanoma cells could locally break down or

consume a chemoattractant that is produced externally, but

spatially homogeneously [26,27], as seen in the zebrafish lateral

line primordium [19,21]. In either case, dense populations of cells

create a gradient that consistently directs migration away from

themselves. We considered that homogeneous attractants would

most likely derive from the serum added to full medium. To find if

dispersal used a repellent or a consumed attractant, we compared

cell dispersal in serum-free and normal medium. Cells in serum-free

medium are healthy and motile in control movies, but do not

migrate away from one another (Figure 1E), demonstrating that the

cells do not secrete chemorepellents. We also compared cells

moving out of fresh medium into serum-free and full medium. Cells

dispersed far more efficiently into the rich medium (Figure 1F),

implying that they are driven by attractants in fresh medium rather

than an inhibitor whose production depends on serum.

To test whether consumption of a component of serum

produces a positive chemotaxis response, we compared migration

in uniform serum to an assay in which cells are exposed to a

gradient between serum-free medium and medium supplemented

with 10% serum (Movie S3). We found that both assays produced

similar directed migratory responses; cells migrated towards the

opposite well with or without a preformed serum gradient

(Figure 1G). This finding further supports the concept that the

outward migration is driven by positive chemotaxis, most likely

towards a chemoattractant globally present in the serum but

depleted around the cells.

We tested this hypothesis using a more traditional chemotaxis

assay, in which cells are spread homogeneously over the field at the

start of the assay, giving the cells the opportunity to move in any

direction [14]. We loaded cells into the chamber in complete

medium that had been conditioned by melanoma cells for 48 hours,

then replaced the medium in one well with fresh medium containing

10% serum. The cells migrated towards the well containing fresh

medium very efficiently (Figure 2A and 2B), showing that an

attractant in fresh medium is consumed by the melanoma cells.

We confirmed that chemoattractants are present in normal

serum by exposing melanoma cells—again homogeneously seeded

in the chemotaxis chamber—to exogenous gradients of serum. In

homogeneous serum-free medium the cells were healthy, and

migrated, but randomly (Figure 2C). When a gradient of serum

was applied, the cells migrated towards the higher concentrations

with unprecedented precision (Figure 2D); their paths are

overwhelmingly oriented up-gradient, in a manner more usually

associated with neutrophils and Dictyostelium [28] than cancer

cells, which typically chemotax less accurately [29]. The high

chemotactic index was maintained throughout a sustained period,

with narrow and accurate confidence interval, and strongly

significant Rayleigh test [30] for directional migration (Figure 2E).

Thus serum contains a remarkably potent chemoattractant for

melanoma cells.

We therefore conclude that melanoma dispersal across the

chamber is driven by positive chemotaxis towards an attractant

that is present in serum. The attractant is broken down by the cells

themselves into a gradient that efficiently disperses cells.

Figure 1. Density-dependent dispersal of melanoma cells. (A) Schematic showing the stages of melanoma spread. (B) WM239A metastatic
melanoma cells dispersing in uniform medium. 26104 cells were introduced into one reservoir of an Insall chamber containing complete medium
with 10% FBS throughout, and observed by time-lapse phase contrast microscopy. See Movie S1. The left side of each image shows the reservoir
containing cells, while the right side is the viewing bridge of the chamber. (C–D) Migration is density-dependent. WM1158 metastatic melanoma cells
were seeded at different densities in full medium with 10% FBS, and observed as before. At 26104 cells/well and above, peak migration distances
increase sharply, as confirmed by the distance at 17 hours (D; graph shows mean 6 SEM). (E) Migration is not driven by production of a repellent.
26104 WM1158 cells were introduced into a chamber in minimal medium without serum and observed at 17 hours as before. Cells survive and
adhere, but do not disperse. (F) Migration is not driven by production of a serum-derived repellent. 26104 WM1158 cells were introduced into a
chamber in minimal medium without serum and observed at 17 hours as before. Cells disperse less efficiently in conditioned medium than in fresh
medium. (G) Migration mediated by chemotaxis up a serum gradient is similar to density-induced migration. Left panel: 26104 WM1158 cells were
introduced into a chamber in the presence of a gradient from 0% FBS around the cells to 10% in the opposite reservoir [15]. The cells rapidly migrate
towards the well containing serum. Right panel: similar assay with 10% serum in both reservoirs. Panels taken from Movies S3 and S1, respectively.
doi:10.1371/journal.pbio.1001966.g001
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Chemotaxis during Tumour Progression
One potential explanation for cancer cells becoming metastatic

is that they evolve chemotactic competence as the tumours

develop [13,31,32], and thus move from unsteered to steered

migration. We therefore examined the ability of a panel of cell

lines isolated from different tumour stages and selected for

physiologically appropriate behaviour (Figure 3A) [22]. Surpris-

ingly, all the lines we examined responded chemotactically to

serum gradients (Figure 3B). Cells from metastases were more

motile than cells from earlier stages (Figure 3C); highly invasive

(VGP) cells were slightly more accurate, but not significantly faster

than the biologically earlier, RGP cells. Cells from more advanced

Figure 2. Dispersal is due to a chemoattractant present in serum. All panels show data from melanoma cells migrating in chemotaxis
chambers as described [15]. (A–B) Cells migrate from conditioned medium towards fresh medium. WM1158 cells were randomly attached to a
coverslip and assembled in a chamber in 48 hour WM1158 cell conditioned medium. The medium in one chamber was replaced with fresh medium,
while the other was left alone. Tracks of individual cells are shown as coloured lines (A). Cells move towards the fresh medium, as shown by the spider
plot (B) showing all cell tracks. (C–D) Example images showing WM239A metastatic melanoma cells after 21 hours in serum-free medium (C) and a
0%–10% FBS gradient (D). Coloured paths show centroid tracks from time 0. (E) Quantitative analysis of chemotactic responses. ‘‘Spider’’ plots (large
panels), rose plots, mean chemotactic index, and Rayleigh test for directionality are shown for cells in serum-free medium and a 0%–10% FBS
gradient (n.100 cells in three independent experiments for both conditions). Spider plots show strong chemotaxis in FBS gradients; in serum-free
medium only random movement is seen. Rose plots show overall movement from 6–12 hours; the proportion of total cells in each sector is shown on
a log scale, with red lines representing the 95% confidence interval. The majority of cells in the FBS gradient move in the direction of the
chemoattractant. Rayleigh tests statistically confirmed this highly significant unimodal directionality. Graphs of chemotactic index were generated
from the same data.
doi:10.1371/journal.pbio.1001966.g002
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tumours responded more robustly, but the progression from

nonmetastatic to metastatic was not marked by the cells newly

acquiring responsiveness—all lines examined were chemotactic

enough to spread away from the tumour efficiently in the

presence of an appropriate gradient. Several lines of data suggest

that genetic and epigenetic changes during progression from

RGP to VGP increase cells’ ability to survive [33]; our data imply

that it is cell survival, rather than chemotactic sensitivity, that

defines the difference. The increase in migratory ability could

modulate cells’ ability to escape from a primary tumour, but our

principal conclusion is that melanoma cells from all stages are

chemotactic.

Identifying the Chemoattractant in Serum
There are multiple reports of chemotaxis driving metastasis of

melanoma and other tumour cells, in particular breast cancer.

Published accounts of chemotactic invasion most often describe

growth factors as the attractants—for example EGF for solid

tumours [34], and EGF, hepatocyte growth factor (HGF), and

stem cell factor (SCF)/KitL for melanoma [13]. However these

attractants were often identified in transwell chambers, which as

earlier discussed are subject to a range of artifacts, in particular

false positive. For example, the positive well might promote

survival, growth, or adhesion of cells that move randomly across

the membrane. Our direct-viewing chambers provide a far more

rigorous analysis. We therefore tested a broad range of attractants

in our assays. To our surprise, no growth factor acted as an

attractant to any measurable degree (Figure 4A); steep or shallow

gradients gave no obvious movement upgradient, and no

significant chemotactic index towards any growth factor tested

(Figure 4B). We therefore conclude that the chemotaxis towards

serum we observed was unlikely to be towards growth factors. This

does not, of course, demonstrate that melanoma cells are never

chemotactic towards growth factors; but it clearly shows the

surprising and efficient chemotaxis towards serum observed earlier

is mediated by another molecule.

EGF and PDGF did increase cells’ speed (Figure 4C), but they

did not provide directional specificity. They therefore acted as

chemokines, regulating overall cell behaviour, rather than as

chemoattractants that could steer the cells.

The striking accuracy of chemotaxis demonstrated by melano-

ma cells towards serum was more reminiscent of neutrophil

chemotaxis towards formyl peptides, or Dictyostelium towards

cAMP, which signal through G-protein coupled receptors

(GPCRs) rather than growth factor receptors like EGFR and

PDGFR. We therefore investigated SDF-1, the ligand for the

GPCR CXCR4, which has been associated with poor prognosis

and malignancy of melanoma [35]; but again, it was not

measurably attractive to cells in our assays (Figure 4B, compare

with strong response to serum).

However, LPA, another well-known component of serum that

signals through GPCRs, was strikingly attractive to melanoma

cells. A gradient from 0 to 1 mM LPA across the chamber

(consistent with the approximate concentration of LPA in serum;

see below) induced chemotaxis almost as effectively as 0%–10%

serum (Figure 4D), yielding a comparable chemotactic index

(Figure 4E). This was a surprise: LPA is more typically described

as an inflammatory mitogen, acting on haematopoietic cells such

as macrophages. It appears frequently in the cancer literature, but

more often as a mitogen and chemokine for cancer cells, acting via

autotaxin, which catalyzes the production of LPA from lysophos-

phatidylcholine [36]. However in our assays the chemotaxis of

melanoma to LPA was again remarkably accurate compared with

the weaker chemotaxis typically seen in cancer cells [37].

LPA Is the Dominant Attractant in Serum in 2-D and 3-D
Assays

To examine whether LPA was the principal attractive

component of serum, we assayed chemotaxis in the presence of

the antagonist Ki16425, which specifically inhibits binding to LPA

receptors 1 and 3 [38]. The effects were again remarkably clear.

10 mM Ki16425 blocked cell spread in our original, density-

dependent assay (Movie S4) and chemotaxis towards 10% serum

(Figure 5A; Movie S5), reducing the chemotactic index from more

than +0.4 to zero (Figure 5B). Ki16425-treated cells were

obviously healthy, and moved similarly to untreated cells, with

similar track lengths, showing that the treatment was not making

the cells nonspecifically sick or non-motile. Knockdown of LPAR1

by siRNA had a similar effect (Figure S2A), showing that LPAR1

is the key receptor for this process, and 10 mM Ki16425 also

blocked chemotaxis towards pure LPA (Figure S2B). Again, LPA

chemotaxis is not tumour stage-specific; Ki16425 blocked

chemotaxis in all cell lines from all stages of cancer progression

(Figure 5C). RGP and VGP cell lines were completely inhibited,

and the highly motile metastatic lines were substantially inhibited.

The residual chemotaxis in the presence of inhibitor could

represent either incomplete inhibition by the antagonist, or a

small amount of chemotaxis to another agent. From these data, we

conclude that LPA is overwhelmingly the dominant chemoattrac-

tant in serum for all lines examined.

While chamber-based assays are optimized to allow accurate

and detailed recording, they provide a 2-D view of a process that

more often happens in 3-D tissues in vivo [39]. We therefore

examined the role of LPA in a widely used organotypic tumour

cell invasion model [40]. In this system melanoma cells are added

to the top of a plug of collagen in which fibroblasts are growing,

and over time they migrate vertically downwards into the 3-D

matrix. During the course of the assay, the collagen plug is set so

only its bottom face contacts the medium, at which point

malignant melanoma cells invade downwards [41]. We hypoth-

esized that the melanoma cells were driven by a self-generated

LPA gradient as in Figure 1B, once fresh LPA could only be

supplied from the bottom. This hypothesis is supported by assays

in which the collagen plugs remain submerged, and no invasion is

seen (Figure S3), further rejecting contact inhibition of migration

as a mechanism of invasion. When the gels were treated with

Ki16425, the melanoma cells did not invade downwards into the

gel (despite comparable numbers of cells at the end, showing no

change in growth or survival). Quantitative analysis confirms that

Ki16425 strongly inhibited invasion in both cell lines that were

invasive in this assay (Figure 5D and 5E). Thus LPA is a dominant

steering system for 3-D organotypic assays, as well as for 2-D

chamber assays.

Melanoma Cells Break down LPA to Form Outward-
Facing Gradients

Our earlier data (Figures 1B and 2A, in particular) showed that

melanoma cells disperse by depleting a chemoattractant from

serum. We therefore tested whether melanoma cells are able to

deplete LPA from their surroundings. Full medium with and

without serum was incubated with different densities of melanoma

cells for different times, then LPA was extracted from the

conditioned medium and analyzed by mass spectrometry [42].

This confirms that the melanoma cells effectively break down

LPA; the conditioned medium was depleted in a density-

dependent manner (Figure 6A) and in a timescale that correlates

with the medium conditioning experiments in Figure 2A and 2B.

One advantage of using mass spectrometry is the identification of

Self-generated LPA Gradients Drive Melanoma Dispersal
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Figure 3. Chemotaxis of cells from different melanoma stages. (A) Chemotaxis of a panel of six cell lines from different melanoma stages
(RGP, green; VGP, purple; metastatic, red) up a 0%–10% FBS gradient was measured as above (n$45 cells per cell line). (B) Chemotactic index of cells
from different stages. Data from (A) were collated by melanoma stage. Chemotaxis improves as the stage of melanoma progresses, although even
the earliest RGP cells show clear chemotaxis. (C) Speeds of cells from different stages. Data from (A) were collated by melanoma stage. Metastatic
lines are conspicuously faster (p-values from unpaired t-tests), although again the speed of RGP and VGP cells is still relatively high for non-
haematopoietic cells.
doi:10.1371/journal.pbio.1001966.g003
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molecular subspecies. The biological activity of LPA is known to

vary with its structure [43,44]. In particular, there is a strong

correlation between biological activity and the degree of poly-

unsaturation, and also acyl chain length [45]. Melanoma cells

broke down the biologically active species more rapidly than the

others (Figure 6B), ensuring that the most active species also

formed the steepest gradients.

The Role of Growth Factors
The results we have obtained conflict with the established

dogma that growth factors are primary melanoma chemoattrac-

tants [13]. To reconcile these accounts with our data, we

examined the role of growth factors during chemotaxis towards

LPA. As shown previously (Figure 4C), EGF and (particularly)

PDGF increased the basal speed of cells. Gradients of EGF and

PDGF, and mixtures of both, enhanced the accuracy of

chemotaxis to LPA (Figure 7); LPA, EGF, and PDGF together

in serum-free minimal medium were as effective as 10% serum.

Most tellingly, however, when cells were presented with LPA and

growth factor gradients oriented in opposite directions, they

chemotaxed towards the LPA not the growth factors; if anything

they migrated towards the LPA with enhanced efficiency

(Figure 7B, bottom two lines). Thus when examined in the high

levels of detail afforded by our chambers, the growth factors are

potentially important accessory factors that increase cell speed and

efficiency of chemotaxis, but they do not themselves act as

chemoattractants.

These results are reminiscent of observations of development in
vivo, in which the growth factor SCF promotes migration but not

direction of melanoblast migration [46]. It is possible that the

melanoma chemotaxis to growth factors observed in other work

[13] is due to changes in speed alone, which as discussed earlier

can cause a false positive in transwell assays. It has also been

shown that growth factors can cause cancer cells to secrete LPA

[47], which could also provide an element of indirect chemotaxis

in many types of assay.

LPA Gradients in Tumours In Vivo
We have clearly shown that LPA is a potent chemoattractant for

melanoma cells of all biological stages. To determine whether this

chemotaxis was an important driver of melanoma chemotaxis in
vivo, we investigated whether the tissue surrounding real

melanomas contained LPA gradients that would direct cells out

of tumours. Mice that are heterozygotes for the driver mutation

BrafV600E (the most prevalent driver of human melanomas) and

deletion of the tumour suppressor PTEN develop sporadic

melanomas (Figure 8A) genetically and cytologically comparable

to human tumours (Figure 8B). We took punch biopsies from the

tissue in and across melanomas (Figure 8C) from several mice,

extracted total lipids, and examined LPA levels using mass

spectrometry. In all non-ulcerated melanomas we examined, LPA

levels were low inside the tumour, higher at the edges, and higher

still in the tissues immediately outside the tumour (Figure 8D).

Cells at the edges of the tumour are therefore experiencing an

outward-oriented LPA gradient tending to drive them out into

surrounding tissues and vasculature.

We further examined the LPA species in the tissue. Forms that

are strongly associated with signalling, in particular 18:2-LPA and

20:4-LPA [48], formed the steepest gradients (Figure 8E), while

gradients of non-signalling forms such as 18:0-LPA were flatter.

This finding further supports the idea that the gradients of LPA

are specifically produced as signals targeted at LPA receptors.

This study is, to our knowledge, the first time a chemotactic

gradient has been directly measured around tumours in vivo.

There are a number of situations where the presence of a gradient

has been inferred from cellular behaviour, most prominently in the

paracrine loops shown by Segall and others [10]. However, such

gradients must by definition be local and tend to be transient. The

gradients we observe in melanomas are clear, large-scale, and

provide a convincing driver for cell dispersal, and one highly

plausible explanation of why melanomas above a certain size, and

hence Breslow thickness, always tend to be metastatic.

Discussion

In this work, we have shown that LPA is a potent chemoat-

tractant for melanoma cells in general, and that outward-oriented

gradients of LPA are self-generated by melanoma cells. Because

self-generated gradients are always oriented away from tumours,

this combination provides a plausible mechanism for driving

tumour cell dispersal. We do not exclude other mechanisms; it has

for example been proposed that LPA regulates cadherin levels

[49], which would not be visible in our assays. Growth factor

chemotaxis may be visible under the appropriate conditions

(though, as discussed previously, many data are from transwell

assays, which are artifact-prone and unreliable). Likewise, we do

not exclude other mechanisms than chemotaxis. Contact inhibition

of migration occurs in many cell types derived from the neural crest

and so is probably found in melanoma, and defects in cell growth

and survival in inappropriate locations are of course important

factors. But the mechanism we have found that overwhelmingly

dominates the dispersal in our assays is robust and is apparently

active in a high proportion of melanomas. It is therefore likely to be

a particularly important mediator of tumour cell dispersal. We

hypothesize that similar mechanisms will be common in cancer

metastasis.

The Source of LPA
The source of LPA around melanomas is unknown. In many

tumours, including melanoma, expression of autotaxin and thus

autocrine production of LPA has been associated with tumour

progression [50]. This LPA production appears to be a mechanism

for promoting melanoma growth, rather than driving chemotaxis

and invasion. LPA generated by the tumour itself would be found

Figure 4. Identification of LPA, rather than growth factors, as the principal attractant in serum. (A) WM239A cells were exposed to
gradients of low (light) and high (dark) concentrations of several growth factors and the chemokine SDF-1 in combination with SFM. Spider and Rose
plots with Rayleigh tests are shown (n.40 cells for each condition). Concentrations tested were EGF (6.25 and 25 ng/ml), PDGF (25 and 100 ng/ml),
HGF (10 and 30 ng/ml), SCF (10 and 100 ng/ml), and SDF-1 (100 and 300 ng/ml). None shows obvious chemotaxis. (B) Quantification of data from (A).
Serum gradients promote strong chemotaxis (p,0.0001, unpaired t-test), but gradients of all growth factors tested show no significant chemotactic
index (p$0.40). (C) Growth factors enhance cell speed. Data quantitated from the cells in Figure 3A. Directionless cell speed was measured by
totalling the distance moved between time points. EGF and PDGF stimulate cells in serum-free minimal medium to speeds comparable with serum
gradients. Single asterisk: Different from SFM alone, p,0.001, unpaired t-test; double asterisk: p,0.0001). (D) LPA and serum drive comparably
efficient chemotaxis. WM239A cells were examined in a chamber responding to 0%–10% FBS and 0–1 mM LPA. The spider plot shows similar cellular
responses to the two gradients. (E) Quantitative analysis of chemotaxis towards LPA and serum. Chemotactic index was calculated from three
experiments including that shown in (D). Cells respond comparably to both conditions. Bars show SEM.
doi:10.1371/journal.pbio.1001966.g004
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Figure 5. LPA responses are essential for serum chemotaxis in 2-D and 3-D assays. (A) LPA receptor antagonist Ki16425 blocks chemotaxis
to serum. Chemotaxis of WM239A cells was compared with and without 10 mM Ki16425. Inhibitor-treated cells showed no chemotaxis despite
essentially normal random migration. (B) Quantitative analysis of Ki16425 activity. Data from three experiments, including the one in (A). The
chemotactic index of inhibitor-treated cells is essentially zero. (C) Melanoma cell lines from all stages chemotaxing up a 10% serum gradient with and
without Ki16425. Colours represent melanoma stage. In RGP and VGP cells, chemotaxis is totally blocked, while in metastatic lines it is substantially
inhibited. Bars show SEM. (D–E) 3-D organotypic assays. The cell lines WM98-1 and WM1158 are shown 6Ki16425. LPA receptor antagonist greatly
inhibits invasion. In (D), invasion index is calculated as the percentage of total cells on the organotypic matrix that invaded beyond ,30 mm as a ratio
of cells on top of the matrix (n.1,000 cells per condition). (E) shows haematoxylin and eosin-stained vertical sections through gels, showing
downward invasion of melanoma cells.
doi:10.1371/journal.pbio.1001966.g005
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at a higher level in the tumour than outside it, which would oppose

outward dispersal and thus metastasis. Rather, we find that the

melanoma cells in culture and in tissues break down externally

generated LPA, making outward-facing gradients. LPA is there-

fore more likely to be generated through inflammatory process-

es—haematopoietic cells, in particular, are a principal source of

LPA in tissues [51] —or by inducing LPA production from

stromal cells. In metastatic breast cancer xenografts, expression of

LPA receptor promotes cell growth and metastasis, but the LPA is

made locally by platelets, which are in turn recruited by many

tumours [52]. Platelets are also a rich source of growth factors

[53]. Our data therefore implicate inflammation in initiating

melanoma spread. This finding has important implications for

therapy. Interventions that promote inflammation without remov-

ing the entire tumour could be extremely dangerous—diagnostic

punch biopsies, in particular, could promote a wave of metastasis

Figure 6. Melanoma cells preferentially break down signalling
forms of LPA. (A) LPA concentration over 48 hours during condition-
ing of media, both with and without 10% FBS by melanoma cells
(WM239A). FBS conditioned media demonstrates density-dependent
depletion of LPA as measured by mass spectrometry. LPA remained
negligible throughout 48 hours of serum-free conditioning by the same
cells. Representative graph. (B) Analysis of LPA subspecies during
melanoma cell conditioning demonstrates bioactive isoforms were
depleted more rapidly by melanoma cells in both samples. Two
representative graphs are shown to illustrate quantitative variability but
qualitative consistency.
doi:10.1371/journal.pbio.1001966.g006 Figure 7. Growth factors potentiate LPA chemotaxis. (A) Growth

factors enhance cells’ response to LPA gradients. Figure shows plots of
the WM239A paths chemotaxing in gradients of LPA, LPA+EGF+PDGF,
and conflicting gradients of LPA versus EGF+PDGF. (B) Chemotactic
indices of cells in (A) and other conditions. Growth factor gradients if
anything increase the efficiency of LPA chemotaxis, even when applied
in a gradient in the opposite direction. Bars show SEM.
doi:10.1371/journal.pbio.1001966.g007
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in response to LPA released by inflammation. From a therapeutic

perspective, data from epidemiological studies suggests the anti-

inflammatory drug aspirin can protect against metastasis [54].

The increased speed of the metastatic cells may be important,

but may also be an artifact of selection. It remains unclear whether

the increased speed of migration is clinically important, or whether

Figure 8. LPA gradients across melanomas in vivo. (A) TYR::CreERT2BRAFV600E/+PTENlox/+ mice, a genetically appropriate melanoma model, were
treated with tamoxifen as described in [56], grown until melanomas spontaneously developed. Dashed box shows the region used for the samples
shown in Figure 1C. (B) Haematoxylin and eosin-stained biopsies of murine melanomas demonstrating the dispersal of cells from a representative
tumour from Figure 5A, with cells spreading directly away from the tumour. Upper image 2.56magnification; lower image 206magnification from
dashed box above, showing melanoma cells invading toward the muscle layer (D, dermis; M, muscle layer). (C) Biopsies from mouse melanomas.
Several sites in a linear distribution were biopsied using a 6 mm punch biopsy tool within 5 minutes of the mouse being sacrificed and immediately
frozen in liquid nitrogen. The positions of biopsies used for LPA measurement are indicated (too few distant samples were obtained for a significant
measurement). Bar shows 5 mm. (D) LPA concentration gradients across the margin of a melanoma. Four melanomas were sampled at three sites in a
line as shown in (A) (A, tumour body; B, tumour edge; C, skin surrounding tumour). Total LPA per mg tissue was quantified by mass spectrometry
after weighing the tissue specimens and extracting the LPA. Outward-directed gradients of LPA were found across the margin of all the melanomas
tested. Bars show SEM. (E) Analysis of LPA subspecies. 18:2-LPA, 20:4-LPA and 22:6-LPA show a clearer gradient than 16:0-LPA, which is though to be
less active as a signalling molecule.
doi:10.1371/journal.pbio.1001966.g008

Self-generated LPA Gradients Drive Melanoma Dispersal

PLOS Biology | www.plosbiology.org 12 October 2014 | Volume 12 | Issue 10 | e1001966



the fastest strains will metastasize earlier, and thus be the first to be

identified. Our data suggest that even less invasive cells move

rapidly and accurately enough to metastasize, but our assays may

miss factors that retard cell migration.

We have shown that cultured melanoma cells from throughout

tumour evolution are chemotactic towards LPA in transwell

assays. A recent paper has reported the opposite, that LPA is a

chemorepellent for B16 cells [37]. This seems a cell-line specific

effect, as these highly derived and divergent cells do not express

the LPAR1 and LPAR3 receptors, which are usually highly

expressed and dominate LPA chemotaxis in our assays (Figure

S2A).

We have found that melanomas generate their own chemotactic

gradients from homogeneous LPA that is exogenously provided.

LPA chemotaxis is an essential feature driving melanoma invasion

in 3-D organotypic assays. We have also shown that real tumours

create a chemotactic gradient of LPA in vivo. Taken together,

these lines of evidence suggest a model of chemotaxis towards self-

generated LPA gradients is a major driving force for melanoma

dispersal (Figure 9). One unforeseen advantage of this model is

that it also provides a simple unifying explanation for upward or

pagetoid spread, which is a hallmark of the invasive VGP stage

melanoma.

In Vivo Models
We have measured actual LPA gradients in animals with

experimentally induced melanomas. We have also shown that all

the melanoma cells we tested perform chemotaxis towards LPA

gradients, in both 2-D and 3-D assays. It is thus reasonable to

conclude that LPA gradients are sufficient signals to mediate

melanoma cell dispersal.

To test whether LPA is necessary for melanoma metastasis in
vivo will be very difficult. Our hypothesis is that LPA gradients

drive intravasation from the tumour towards local blood vessels.

Many widely used metastasis assays, for example tail-vein

injection, completely miss this step. Slower assays, for example

subcutaneously injected xenografts, metastasize impractically

slowly, and to nonphysiological targets, in particular the lymph

nodes. Pharmacological approaches, for example blockade of the

LPA signalling system by LPA antagonists, are confounded by

the importance of LPA to the vascular and haematopoietic

systems. A mouse model of melanoma that metastasizes through

a physiological route and can be crossed with inducible LPA

receptor knockouts does not currently exist; when it is developed,

such a model will be the ideal system for testing our model in
vivo.

The Gradient, Not the Signal, Is the Information
The most important message from this work is that it is the

gradient of LPA—not the presence of LPA per se—that contains

the information. LPA is a very prevalent molecule. It is present at

high levels in serum, and may be generated within tumours by

cancer cells or exogenously by, for example, platelet activation.

Interestingly, cells ahead of the main group do not respond even

when an external gradient is applied (in Movie S3, for example).

Presumably these cells reach a region where LPA levels are

homogeneously high, at which point there is little or no guidance

information available to them. Likewise, if too few cells are used

in the spread cell assay, no chemotaxis is observed, suggesting

that LPA breakdown is important even in classical chamber

assays. We suspect that LPA is not a chemoattractant for low

densities of cells, because they cannot break it down rapidly

enough to form an appropriate local gradient. In our invasion

assays, LPA becomes an attractant when—counterintuitively—

cells are present at high enough densities to break down most of

it. This means that the LPA gradient is self-generated by the

melanoma.

Self-generated gradients are currently highly topical. Recent

papers showing the detailed roles of the CXCR4 and CXCR7

receptors (which respond to and deplete SDF-1, respectively)

during the formation of the zebrafish lateral line have caused a

spike in interest, but other methods whereby cells drive creation of

attractant gradients then respond to them occur in multiple

systems, especially during embryonic development [26,27,55,56].

More generally self-generation provides a means whereby cells can

maintain a directional cue over distances that are far too large for

premade gradients. Furthermore, with externally formed gradi-

ents, the information that specifies the gradient must come from

somewhere else. If an external gradient attracts cells during

development, the secret to understanding the process lies with

understanding where and by whom the attractant is being made.

Self-generated gradients are different; there is no need for external

information. The gradient is generated as an emergent property of

the interaction between the cells and their environment.

Thisconclusion is perhaps the most interesting feature of this

work. In LPA chemotaxis during melanoma metastasis, there is no

need for any other cell type to set up a local gradient. The

melanoma cells first generate a gradient—once the tumour is thick

enough—and then respond to it by migrating away. Thus the

melanoma drives its own metastasis.

Methods

Ethics
All mice used were control cohorts from other studies. Before

they were humanely killed, all mice had reached the primary or

secondary end-points of their designated study.

Cell Lines
All melanoma cell lines used are listed by biological stage of

derivation and were transferred from the Wellcome Trust

Functional Genomics Cell Bank (Biomedical Sciences Research

Centre, St. George’s, University of London).

Cells were maintained in Roswell Park Memorial Institute

(RPMI, Invitrogen) 1640 medium, supplemented with 10% fetal

bovine serum (FBS) (PAA Labs), 2 mM L-Glutamine (Gibco,

Invitrogen), and 1% penicillin and streptomycin (Gibco, Invitrogen).

siRNA constructs were obtained from QIAGEN and transfected

as per instructions. WM239A cells were challenged twice with

siRNA, 48 hours apart, then used in the assay 48 hours after the

second transfection.

Insall Chamber Chemotaxis Assay
Insall chambers were manufactured and used as described [15].

The chambers were drilled in advance with a 1.3 mm drill bit

using an overhead drill press. During drilling, the chamber was

secured in a small machine vice sitting inside a V-block at 45u and

a hole was drilled into each ‘‘rabbit ear’’ of the outer well to allow

reverse filling. Cells were starved in PBS for 12 hours then seeded

at a density of 5.56104 cells/ml in CGM. Each cover slip was

coated with 2 ml of the seeding suspension. After seeding cells, the

six-well dish was shaken in the x and then y planes for 5 seconds

each and placed in a CO2 incubator at 37uC on top of a shock

absorbent base to prevent vibration induced patterns of cell

accumulation.

VALAP sealant (vaseline, lanolin, and paraffin) was prepared by

combining the three components together in a weight ratio 1:1:1
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and melting at 100uC on a heat block. A fine artist’s paint brush

was used to apply the VALAP.

Cover slips were treated with human fibronectin (BD Biosci-

ences) 1 mg/ml throughout, generating an adsorbed concentra-

tion of 4.17 mg/cm2 in the range of 1–5 mg/cm2 as suggested by

the manufacturer. Following fibronectin coverslips were passivated

with 0.5% (w/v) heat-treated BSA solution in PBS.

Chemoattractants were added to serum-free RPMI medium as

required. Addition of 5 mM HEPES to the media in the sealed

chamber is essential to buffer the pH of the media throughout the

experiment. LPA (Sigma) was dissolved in a 1:1 ratio of distilled

water: absolute ethanol to generate a 1 mM stock solution and

stored at 220uC. To use this as a chemoattractant, BSA was

diluted to a final concentration of 0.05% (w/v) to SFM-H (SFM-

HB) and then 1 ml LPA was added to 1 ml to generate a 1 mM

LPA solution. EGF (Peprotech), PDGF, BB Homodimer (Calbio-

chem), HGF/Scatter Factor (Peprotech), and SDF-1a/CXCL12

(Peprotech) were dissolved in PBS to a stock concentration of 10–

100 mg/ml, stored at 220uC and used as indicated.

Ki16425 (Cambridge Bio) was stored in absolute ethanol at a

stock concentration of 10 mM as per the manufacturer’s

instructions. In Insall chamber assays, cells were pre-incubated

for 5 minutes with a 10 mM solution before combining with

reagents in the chamber at the same concentration.

Time-lapse Microscopy
We used a Nikon TE2000-E inverted time-lapse microscope

equipped with a motorised stage (Prior) and Perfect Focus System

(PFS) to prevent focal drift due to thermal fluctuations. The entire

microscope was enclosed in a plexiglass box, humidified and

maintained at 37uC with 5% CO2. The Insall chamber

experiments did not require the addition of supplementary CO2.

Our microscope system was driven by Metamorph software

(Molecular Devices) and the x, y positions were manually selected

and pre-loaded.

Image Processing
Images were processed using ImageJ (http://rsb.info.nih.gov/

ij/), if necessary using the Image stabilizer plugin (http://www.

kangli.org/code/Image_Stabilizer.html) to correct for drift. Cells

were tracked using MtrackJ (http://www.imagescience.org/

meijering/software/mtrackj/) to follow the path of the cell nucleus

For consistency, we attempted to track a minimum of 40 cells in

every chamber assay; in most cases this was sufficient to ensure

statistical significance. The following criteria were used for

deciding which cells to track: cells that moved more than 1 cell

length in 24 hours; cells that tracked continuously until the end of

the experiment or until the cell migrated off the bridge or rounded

up in preparation for mitosis; cells were excluded that migrated

onto the bridge during the experiment; avoided tracking post-

mitotic cells.

Figure 9. Schematic model of self-generated LPA gradients in
melanoma. Like all schematics, this model is intended to clarify the
underlying mechanism rather than as a detailed description. In small
tumours, the rate of LPA breakdown is insignificant compared to the
rates of synthesis and diffusion. Thus although the concentration of LPA
is high, there is no gradient, and thus no directional signal. As the
tumour becomes thicker—corresponding to an increased Breslow
depth—the concentration of LPA at the centre of the tumour drops as
the rate of breakdown increases and the distance that LPA must diffuse
increases. This generates an LPA gradient that is low inside the tumour
and high outside, driving cells to migrate out from the tumour into the
surroundings.
doi:10.1371/journal.pbio.1001966.g009
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We developed an Excel spreadsheet (written by DMV and

AJM-M) to facilitate the processing, analysis, and quantification.

This spreadsheet automatically produces spider plots, speed, and

chemotaxis index data over time. A time window was selected

(e.g., 6–12 hours for melanoma cells) and values zeroed within this

window to produce end-point data. Chemotaxis index (cosh) plots

are presented as mean 6 standard error of the mean (SEM). Cosh
is a function of the distance migrated in the direction of the

gradient divided by the euclidian distance (the linear distance

between the start and end position of the cell). These data were

also processed in the Circstat toolbox for MATLAB by GK [30].

This process generated rose and polar plots with 95% confidence

intervals and a Rayleigh test.

Conditioned Media Preparation for Chemotaxis Assays
Conditioned media were generated as follows. A sub-confluent

10 cm petri dish of WM239A cells was washed 36with PBS then

cells were split in a 1:5 ratio into five new 10 cm petri dishes and

combined with fresh CGM to a final volume of 10 ml.

Conditioned medium was then harvested from one dish per

time-point, staggered between 0–48 hours (Marked T0, T6, etc.).

All 10 ml was aliquoted into 1061 ml eppendorf tubes. The

samples were immediately frozen on dry ice before storing at 2

80uC. The cells in each dish were then counted. When needed

aliquots of conditioned media were thawed at 37uC and

centrifuged for 10 min using a lab top centrifuge, then filtering

with a sterile 0.2 mm filter.

Organotypic Invasion Assay
Collagen gels were prepared by combining 2 mg/ml rat tail

collagen solution, 106 Minimum Essential Medium (MEM,

Invitrogen), and 0.22 M NaOH in a ratio 8:1:1. The pH was

finely adjusted to pH 7.2 with the 0.22M NaOH. One volume of

FBS containing 7.56105 primary human skin fibroblasts (passage

5–7) was immediately combined with 10 ml of the gel mixture on

ice. After pipetting well, 2.5 ml of the gel and cell mixture was

added to each 35 mm petri dish. The gels were then placed in a

humidified incubator with 5% CO2 to set for 15–30 minutes. A

further 1 ml MEM was added to each petri dish and the gels were

carefully detached to enable gel contraction in the same incubator.

The media was changed every 3 days. After 6–7 days the gels

measured approximately 1.5 cm in diameter and were transferred

to a 24-well dish ready for tumour cell seeding. 1–26105 tumour

cells were then counted and allowed to seed on the surface of

each gel. The gel was carefully transferred with forceps to an

elevated stainless steel grid (Sigma, screens for CD-1, size: 40

mesh) and placed in a 6 cm petri dish and this was denoted day 0.

CGM was added to cover the grid and was then carefully

aspirated to leave a meniscus around the base of each gel, thereby

generating an air-liquid interface. Three gels were loaded onto

each grid and the medium was changed three times weekly. In

experiments using Ki16425, the gels with adherent cells were pre-

incubated for 5 minutes with 10 mM Ki16425 in the CGM before

raising the gels to the air-liquid interface. 10 mM Ki16425 was

maintained in the CGM throughout the experiment with thrice

weekly media changes as before. A typical experiment lasted 7–12

days.

At the end of the invasion assay, each gel was divided into two

with a scalpel, fixed in 4% formaldehyde at 4uC and sectioned

before being stained with haematoxylin and eosin.

Murine Melanoma Tissue
We used the inducible Tyr::CreERT2 BRAFV600E/+ PTENlox/2

melanoma model [57], in which the melanomas were all generated

in mixed background mice from 6–12 weeks of age. Animals were

treated with 2 mg tamoxifen topically to shaved back skin daily for

5 days. There was no discernable phenotype until naevi or

primary melanomas started developing 6–8 weeks after induction

predominantly on the treated area. Typical grooming behaviour

spread the tamoxifen to other parts of the skin and/or was ingested

leading to activation in other cutaneous regions. All mice used

were control cohorts from other studies. Before they were killed, all

mice had reached the primary or secondary end-points of their

designated study.

Suitable mice were identified with at least one and up to four

tumours, ideally located on the back. The smallest tumour size was

464 mm to enable at least two areas to be sampled. Skin

containing the tumours was rapidly dissected off the back and

pinned slightly taut to paper overlying a corkboard. Sterile Punch

Biopsy tools (Stiefel) were used to punch circular samples from the

tumour and surrounding skin. The size of punch biopsy depended

on the tumour size and varied from 3–6 mm in diameter. Samples

were taken at various locations across the tumour and were coded

as follows: within the tumour (A), across the margin (B), 5 mm

from the margin (C), and 10 mm from the margin (D). Samples

were immediately snap frozen in liquid nitrogen and transferred to

a 280uC freezer for storage.

Control samples of normal appearing skin in the same

melanoma model activated with tamoxifen were used to calculate

the basal level of LPA. Each section of mouse skin underwent a

series of nine punch biopsies (A, B, and C in three replicate series).

Liquid Chromatography-Mass Spectrometry
Mice and human melanoma/skin samples (1–20 mg) were

pulverised after thoroughly cooling with liquid nitrogen. The

pulverised powder was suspended in 750 ml water then used for

LPA extraction. For cell culture media samples, 750 ml of cell

culture media was used for LPA extraction. Media or tissue

samples were spiked with 50 ng of 17:0-LPA as an internal

standard before extraction. LPA was extracted with 1 ml n-

butanol three times at room temperature.

The combined LPA extract was dried under vacuum with

SpeedVac (Thermo) and re-dissolved in 60 ml chloroform/

methanol/water 2:5:1. 14 ml was injected for liquid-chromatogra-

phy with tandem mass spectrometry (LC-MS/MS) analysis. For

LC-MS/MS analysis, we used a Thermo Orbitrap Elite system

(Thermo Fisher) hyphenated with a five-channel online degasser,

four-pump, column oven, and autosampler with cooler Shimadzu

Prominence HPLC system (Shimadzu) for lipids analysis. High

resolution/accurate mass and tandem MS were used for molecular

species identification and quantification. The identity of the lipid

subspecies was further confirmed by reference to appropriate lipids

standards. All the solvents used for lipid extraction and LC-MS/

MS analysis were LC-MS grade from Fisher Scientific.

The final amount of LPA (ng) is presented as a concentration

per 750 ml of conditioned media analysed or per mg tissue. The

data are represented graphically plotting mean 6 SEM for the

concentration of LPA versus conditioning time (for conditioned

media samples); and distance from tumour margin (for tumour

samples). Samples were normalised to position ‘‘A’’ for compar-

ison between tissue samples.

Supporting Information

Figure S1 Paths of cells with and without cell:cell
contacts. Distances are shown in microns. Cells that are

contacting one or more other cells are represented as red dots.

Cells that are moving without cell:cell contacts are represented as
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green dots. There is no visible difference in directional accuracy or

speed between the cells with and without contacts.

(PDF)

Figure S2 Inhibition of LPA chemotaxis. (A) Serum

chemotaxis is blocked by siRNA inhibition of LPAR1. Assays

were performed exactly as in Figure 1G, using WM239A cells that

had been transfected with a non-silencing RNA (left) or siRNA

against LPA Receptor 1 (LPAR1; Qiagen flexitube GeneSolution,

catalogue number GS1902; right). (B) LPA chemotaxis is blocked

by LPA receptor antagonists. WM1158 cells were assayed as

described for Figure 4D, in the presence of the LPAR1/3

antagonist Ki16425 (right panel) or a comparable amount of

ethanol vehicle (left panel).

(PDF)

Figure S3 3-D organotypic assay performed while
collagen plugs remained submerged in medium. The cell

line WM98-1 that is highly chemotactic towards serum in 3-D

organotypic assays, fails to perform chemotaxis if the gels are kept

submerged throughout the 14 day assay period, despite growing

on top of the plug.

(PDF)

Movie S1 Outward migration of densely packed mela-
noma cells in the absence of a gradient. Both wells are filled

with complete medium containing 10% FBS, but WM239A cells

are only inoculated in the left well. See Figure 1A for details. Time

stamps and scale bar are shown for reference.

(MOV)

Movie S2 Outward migration is not dependent on
contact inhibition. See Figure 1D for details. WM1158 cells

chemotax equally effectively whether or not they are contacting

their neighbours. Time stamps and scale bar are shown for

reference.

(MOV)

Movie S3 Outward migration up a serum gradient.
WM239A cells are inoculated in the left well in medium without

serum, then the right well was filled with medium containing 10%

FBS. See Figure 1G for details. Time stamps and scale bar are

shown for reference.

(MOV)

Movie S4 Effects of the LPA inhibitor Ki16425 on
density-dependent dispersal. The movie shows two experi-

ments, without (left) and with (right) 10 mM Ki16425. In each case

both wells contains medium with 10% FBS as in Movie S1. Cells

were introduced into the left lane at time zero. Time stamps and

scale bar are shown for reference.

(MOV)

Movie S5 Effects of the LPA inhibitor Ki16425 on serum
chemotaxis. The movie shows two experiments, without (left)

and with (right) 10 mM Ki16425. WM239A cells were spread

evenly on coverslips in chemotaxis chambers. In each case the left

hand well contains medium without serum and the right hand well

contains medium with 10% FBS. See Figure 4A for details. Time

stamps and scale bar are shown for reference.

(MOV)
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