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Abstract

Social network analysis methods have made it possible to test whether novel behaviors in animals spread through
individual or social learning. To date, however, social network analysis of wild populations has been limited to static models
that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here,
we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition—that
is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to
studying the spread of two novel tool-use variants, ‘‘moss-sponging’’ and ‘‘leaf-sponge re-use,’’ in the Sonso chimpanzee
community of Budongo Forest, Uganda. Chimpanzees are widely considered the most ‘‘cultural’’ of all animal species, with
39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported
by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still
no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of
behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that
diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than
individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an
estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We
conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that
this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern
humans.

Citation: Hobaiter C, Poisot T, Zuberbühler K, Hoppitt W, Gruber T (2014) Social Network Analysis Shows Direct Evidence for Social Transmission of Tool Use in
Wild Chimpanzees. PLoS Biol 12(9): e1001960. doi:10.1371/journal.pbio.1001960

Academic Editor: Frans B. M. de Waal, Emory University, United States of America

Received March 11, 2014; Accepted August 21, 2014; Published September 30, 2014

Copyright: � 2014 Hobaiter et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction at Dryad Digital Repository. Openly available
via http://dx.doi.org/10.5061/dryad.m6s21.

Funding: We are grateful to the Royal Zoological Society of Scotland for providing core funding for the Budongo Conservation Field Station. The fieldwork of CH
was funded by the Leverhulme Trust, the Lucie Burgers Stichting, and the British Academy. TP was funded by the Canadian Research Chair in Continental
Ecosystem Ecology, and received computational support from the Theoretical Ecosystem Ecology group at UQAR. The research leading to these results has
received funding from the People Programme (Marie Curie Actions) and from the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007–2013) REA grant agreement nu329197 awarded to TG, ERC grant agreement nu 283871 awarded to KZ. WH was funded by a BBSRC grant
(BB/I007997/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Abbreviations: LS, leaf-sponge; M, moss; NBDA, network-based diffusion analysis; OADA, order-of-acquisition diffusion analysis; RU1, re-use type 1; RU2, re-use
type 2; TADA, time-of-acquisition diffusion analysis.

* Email: thibaud.gruber@gmail.com

Introduction

Progress in network analysis has made it possible to test whether

the spread of novel behaviors in animal groups has occurred

through individual learning or social transmission [1–5]. This

method has been successfully applied in several species, including

primates [3,6,7]. One particularly relevant example was the social

spread of a novel foraging technique, lobtail feeding, in humpback

whales (Megaptera novaeangliae), detected through Network-

Based Diffusion Analysis (NBDA) [8]. The NBDA technique tests

whether or not a novel behavior spreads along a social network, as

would be expected if social transmission were involved [2,8].

Although powerful, one important limitation of NBDA as it has

been used so far in animal behavior studies is that it treats social

networks as static. Static networks based directly on observations

of the target behavior do not have a time dimension and so do not

take into account the fact that an observation event can only

influence the subsequent, and not the previous, rate of learning of

the novel behavior (see Materials and Methods for an example). In

contrast, if observation conditions allow for documentation of

individuals that have witnessed specific events of the target

behavior, then a dynamic network can be used. Dynamic networks

change to reflect the time course of the observations and are

therefore more powerful than static networks, by tracing which

individuals are likely to have observed the novel behavior across

time.

Here, we developed a novel version of NBDA that relies on

instances of actual demonstrations of the novel behavior across
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time, rather than employing patterns of association as a proxy for

demonstrations. We applied this method to two novel tool-use

behaviors that appeared in the Sonso chimpanzee community of

the Budongo Forest, Uganda (Pan troglodytes schweinfurthii). Our

findings allowed us to directly address one persistent criticism

faced by the hypothesis that chimpanzee behavioral diversity

should be interpreted as cultural: the lack of direct evidence for

social transmission of novel behaviors in the wild [9].

Claims of culture in animals are usually based on excluding

genetic or ecological explanations for group-specific behavioral

variation, the ‘‘exclusion method’’ [10–15]. Although widely used

in animal behavior research, this method is vulnerable to

counterarguments that seek to explain behavioral variation by

genetic factors or with the local ecology [16]. Chimpanzees play a

key role in this literature [10], with substantial indirect evidence

for social transmission of behavioral innovations [17–21]. A good

illustration is the presence or absence of nut-cracking in East and

West African populations and in some neighbouring West African

groups [22]. Studies in the wild have also found that the

environment does play an important role in explaining some

differences, notably by triggering behavioral innovation, the raw

material for subsequent social transmission. However, environ-

mental differences cannot account for all of the observed variation,

suggesting a role for social learning processes [23–27]. In captivity,

the evidence for social learning and transmission of novel behavior

is undisputed, suggesting that the observed behavioral variation in

the wild is an expression of culture in chimpanzees [28–34].

Nevertheless, skepticism has remained, as it is difficult to rule out

an unmeasured ecological variable as the cause of observed group

differences. In addition, to date, there have been no direct

demonstrations of novel behavior spreading socially within a wild

chimpanzee group, and it has remained unclear whether similar

learning mechanisms are at work in humans and other animals,

rendering it hard to draw evolutionary inferences on whether

chimpanzee and human cultures may result from fundamentally

similar or different acquisition processes [16,35–37]. This ambi-

guity could be resolved by testing whether the spread of novel

behavior follows the pathway predicted by social transmission.

Leaf-sponging in chimpanzees is considered a behavioral

universal [10], but there is considerable variation in how this

technique is used in different communities [38]. The behavior is

customary in the Sonso community, where most chimpanzees of

all age classes display the behavior [10]. Sonso chimpanzees

typically manufacture leaf-sponges (LSs) by folding and chewing

leaves in their mouth, subsequently using them in water sources to

drink [39] or, in experimental conditions, to collect honey [21]. In

November 2011, members of the community visited a novel

sponging site, a recently flooded waterhole located in swamp forest

adjacent to a seasonal river. During 6 d of continuous observation,

various individuals were observed to develop two tool behaviors,

novel to the group: ‘‘leaf-sponge re-use’’ and ‘‘moss-sponging.’’

Both behaviors spread partially through the group (Figure 1 and

2). We defined ‘‘moss-sponging’’ (M) as the production of a sponge

consisting entirely of moss or a mixture of leaves and moss. Moss-

sponging, while rare, has been previously documented in one

other chimpanzee community [40] and one bonobo community

[13]. We defined ‘‘leaf-sponge re-use’’ (RU1) as utilizing a

previously fabricated and used sponge that had been discarded
on a previous visit, in contrast to standard leaf-sponging where an

individual collects leaves from a branch. A second, more common

type of leaf-sponge re-use (RU2) consisted of infants obtaining a

sponge directly from an older relative by begging or scrounging

(see Materials and Methods). RU1 has been previously reported in

one other chimpanzee community but only in infants and juveniles

[38].

The Sonso chimpanzees have been under continuous observa-

tion for the last 20 years, with regular observations of LS and RU2

but no recorded observations of RU1 or M, suggesting that we

observed the initial spread or ‘‘diffusion’’ of two innovations to

their tool repertoire [41].

The two novel behaviors emerged in an unusual ecological

context, the discovery of a waterhole that had been repeatedly

flooded by the river. By analyzing in parallel the spread of the two

behaviors and comparing the two groups of individuals who

learned them, we could determine whether the environment alone

could explain the spread or whether there was an added effect of

social learning. To this end, we monitored the exact party

composition of all individuals present at the waterhole, which

allowed us to identify who observed whom performing the novel

behaviors and to construct the corresponding social network

models. The different models were fitted to the data by maximum

likelihood and tested against models with no social transmission,

using corrected Akaike’s Information Criterion for small sample

size (AICc). We included potentially confounding factors (age,

gender) to investigate their effects on learning rates (see Materials

and Methods) [7,8]. We considered a number of functional forms

(see Materials and Methods) for the relationship between the

number of observations and the rate of learning within the models

fitted to the order in which individuals learned each behavior

(Order-of-Acquisition Diffusion Analysis, OADA) and models

fitted to the times at which they learned (Time-of-Acquisition

Diffusion Analysis, TADA). Here, we only present the results from

the best dynamic network order of acquisition model (see

Supporting Information for details of all models fitted). In the

best model, the number of observations of the target behavior had

a log-linear relationship with the rate at which that behavior was

learned; that is, each observation increased it by a specific ratio.

We used an information theoretic approach using AICc to

compare the predictive power of dynamic and static networks

and assess the evidence for social transmission.

Results

Our analysis starts with the alpha male NK extracting water

from the waterhole and fabricating a moss-sponge (M, November

Author Summary

Chimpanzees are widely considered as the most ‘‘cultural’’
of all animals, despite the lack of direct evidence for the
spread of novel behaviors through social learning in the
wild. Here, we present a novel, dynamic network-based
diffusion analysis to describe the acquisition patterns of
novel tool-use behavior in the Sonso chimpanzee com-
munity of Budongo Forest, Uganda. We find strong
evidence for social transmission of ‘‘moss-sponging’’ (the
production of a sponge consisting of moss) along the
innovators’ social network, demonstrating that wild chim-
panzees learn novel tool-use behaviors from each other
and supporting the more general claim that some of the
observed behavioral diversity in wild chimpanzees should
be interpreted as ‘‘cultural.’’ Our model also estimated
that, for each new observation, naı̈ve individuals enhanced
their chances of developing moss-sponging by a factor of
15. We conclude that group-specific behavioral variants
can be socially learned in wild chimpanzees, addressing an
important critique of the claim of culture in our closest
relatives.

Social Learning of Tool Use in Wild Chimpanzees
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14, 2011; 9:05 a.m.), while being observed by the adult dominant

female NB. Over the following 6 d period, the waterhole was

revisited regularly and we observed a further seven individuals

fabricating and using moss-sponges (M). For six of them, we could

establish that they had observed M before (see ‘‘Audience’’

criterion in Materials and Methods). For the seventh individual,

the dominant adult female KW, we could not confirm this, and we

treat her as having independently innovated M (November 16,

2011; 9:07 a.m.), although this happened less than 1 min after

having re-used another chimpanzee’s discarded moss-sponge

(Figure 1).

Also on the 14th, subadult male FK retrieved and used a

discarded LS (RU1). A further eight individuals developed the

RU1 behavior, but four of them did so apparently without

having observed another individual performing this behavior

(Figure 2).

Figure 1. Visualization of the static interaction networks for the moss-sponging behavior for all 30 individuals. Graphs are laid out
using the Fruchterman–Reingold weighted algorithm. Labels on the nodes indicate the identity of individuals (see Supporting Information).
Individuals with large label size developed the behavior, whereas individuals with small label size did not. Numbers under the large label indicate the
order of acquisition of the behavior. The width of the arrows linking individuals is proportional to the number of times an interaction event was
recorded between any two individuals and represented according to the convention ‘‘XRY’’ means that Y was observed by X. Dashed line indicates
potential product-based social learning by individual KW who re-used a moss-sponge. Data were deposited in the Dryad repository: http://dx.doi.org/
10.5061/dryad.m6s21.
doi:10.1371/journal.pbio.1001960.g001
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Neither MS nor RU1 had previously been recorded in the

Sonso community, and we employed NBDA to analyze the

patterns of transmission over the 6-d period. The dynamic

network NBDA had 12.36more support than the static network

NBDA. Therefore, we report estimates of the effect of social

transmission from this model, although results were qualitatively

similar for both models (see Supporting Information). For both

dynamic and static networks, there was most support for models

with social transmission of moss-sponging but not RU1 (dynamic,

Total Akaike weight, Swi = 0.754; static, Total Akaike weight,

Swi = 0.801), in particular when comparing the support for these

models to the support of models with no social transmission of

either behavior (dynamic, 600,0006; static, 18,0006; Table 1).

The estimated social transmission effect for moss-sponging was an

14.96 increase in learning rate for each observation of an

informed individual performing moss-sponging (95% C.I., 4.7 to

88.2; Table 2), corresponding to an estimated 84.5% acquiring

moss-sponging by social transmission (excluding the innovator).

Figure 2. Visualization of the static interaction networks for the RU1 behavior for all 30 individuals. Graphs are laid out using the
Fruchterman–Reingold weighted algorithm. Labels on the nodes indicate the identity of individuals (see Supporting Information). Individuals with
large label size developed the behavior, whereas individuals with small label size did not. Numbers under the large label indicate the order of
acquisition of the behavior. The width of the arrows linking individuals is proportional to the number of times an interaction event was recorded
between any two individuals and represented according to the convention ‘‘XRY’’ means that Y was observed by X. Data were deposited in the
Dryad repository: http://dx.doi.org/10.5061/dryad.m6s21.
doi:10.1371/journal.pbio.1001960.g002
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However, this is conservative: One individual (KW) acquired

moss-sponging without any evidence of first observing another

individual; thus, NBDA assumes she could not have done so with

social transmission. However, KW acquired M after re-using

another chimpanzee’s sponge that contained moss, suggesting

social learning mediated through the products of the moss-

sponging behavior, a pathway the network was not intended to

capture. With KW’s acquisition excluded, the effect of an

observation is estimated to be a 21.26 increase in learning rate

(95% C.I., 4.2 to 679), corresponding to an estimated approximate

99.1% acquiring M by social transmission. An additional analysis

suggests that it is highly unlikely that the social transmission effect

for M is an artifact caused by differential exposure to the waterhole

(see Supporting Information).

Though we cannot rule out social transmission of RU1 (see

Table 2), effects were weaker than for M (Swi = 0.246; compared

with the same social effect, Swi = 0.0003; Table 1). The social

effect on moss-sponging was conservatively (i.e., with KW

included) estimated to be 11.36 stronger than the social effect

on RU1 (95% C.I., 4.67 to 72.24). The estimated social

transmission effect for RU1 was only an increase of 1.076 for

each observation (95% C.I., 0.58 to 2.48), corresponding to an

estimated approximate 3.1% acquiring RU1 by social transmis-

sion. Taken together, our results demonstrate a social transmission

effect for M and a weak social transmission effect for RU1.

Discussion

We have applied a novel form of network analysis to investigate

the spread of two novel tool-use behaviors with the same function,

which has produced evidence for social learning. The observed

patterns of diffusion indicated that visiting a new resource jointly

was not sufficient to explain the spread of M by individual

learning, but that individuals influenced each other during

acquisition. Our analyses also made it unlikely that some unknown

variable influenced both the network structure and the rate at

which individuals acquired M. In contrast, we found strong

evidence for a social effect on the diffusion of M and a weak one

for RU1, indicating that social learning plays a role in the

transmission of novel behaviors in wild chimpanzees.

What factors could have favored the emergence of the two novel

behaviors? In our case, moss-sponging was unlikely to have been

invented because of a scarcity of leaves, which were widely available

(see Supporting Information). Moreover, Sonso chimpanzees have

regularly been observed manufacturing LS at other clay-pits,

presumably to access minerals (Reynolds V, Lloyd AW, English CJ,

Lyons P, Dodd H, et al., Budongo Forest chimpanzees’ sodium

resources: New adaptations, unpublished manuscript), but no moss-

sponging has ever been documented, despite moss also being widely

available. Similarly, although chimpanzees routinely abandon LSs

in and around tree holes throughout the forest, RU1 has never been

observed (although RU2 is common). A possible factor is that this

site appeared to attract larger groups and foster greater competition

than that which has usually been observed at water sources,

potentially because of unusually high mineral levels (Reynolds V,

Lloyd AW, English CJ, Lyons P, Dodd H, et al., Budongo Forest

chimpanzees’ sodium resources: New adaptations, unpublished

manuscript). It is plausible that the high levels of competition at the

new site favored innovation of moss-sponging. However, increased

physical proximity alone could not explain the subsequent spread of

the behavior in the group, as both moss and leaves were collected

within 5 m from the waterhole, and leaf-sponging remained more

Table 1. Total Akaike weight (support) for different models of social transmission of moss-sponging (M) and LS re-use (RU1),
assuming (a) a static network and (b) a dynamic network.

Social Transmission Model Total Akaike Weight (Swi)

(a) Static Network (b) Dynamic Network

1. Asocial learning 1.3861025 1.1261026

2. Same social transmission effect 0.096 0.0002

3. Different social transmission effect 0.397 0.246

4. Social transmission of M only 0.603 0.754

5. Social transmission of RU1 only 1.2761025 6.3761027

doi:10.1371/journal.pbio.1001960.t001

Table 2. Estimates of (a) social transmission effects for LS re-use (RU1) and moss-sponging (M) variants, giving the multiplicative
effect on learning rate of each observation (16, no effect); (b) the ratio of social transmission effects between M and RU1; and (c)
the estimated number of acquisitions that were by social transmission, excluding the innovation event.

(a) Social Transmission (Multiplicative
Effect Per Observation) (b) Ratio: M Effect/RU1 Effect (c) % of Events by Social Transmission

RU1 1.076(0.58–2.48) — 3% (0%*–19%)

Moss-sponging KW included 14.936(4.67–88.24) 2.426(4.67–72.24) 85% (80%–86%)

Moss-sponging KW excluded 21.176(4.19–679) 15.906(3.00–230) 99% (92%–100%)

Estimates are model-averaged estimates, with unconditional confidence intervals in parentheses. For M, estimates are given both with KW included (conservative
estimate) and excluded (see text for explanation).
*Note that the lower 95% C.I. limit for the social effect on RU1 is ,1, meaning each observation decreases the rate of learning; we set this situation to be zero events by
social transmission.
doi:10.1371/journal.pbio.1001960.t002

Social Learning of Tool Use in Wild Chimpanzees
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frequent than moss-sponging (see Supporting Information), possibly

due to chimpanzees’ conservatism [42–45]. The emergence of RU1

may reflect increased opportunities for encountering other chim-

panzees’ leave-sponges. This interaction with discarded sponges

could be interpreted as a kind of social learning, not influenced by

direct observations, but akin to local or stimulus enhancement [46].

However, it is unclear what specific information could be retrieved:

a discarded re-used sponge does not yield the information that it has

been or may be ‘‘re-used’’ relative to a sponge that has only been

used once. Only in the re-use of a moss-sponge by KW did some

information appear to be gained: that moss can be employed as a

sponging material, as she subsequently developed moss-sponging. In

contrast, our NBDA analysis showed that the subsequent diffusion

of moss-sponging occurred along the innovators’ social network.

Although ecological factors may have provided favorable conditions

for the initial innovation of moss-sponging, this cannot explain why,

in the absence of social transmission, eight chimpanzees converged

on the solution within 6 d. Instead, it seems likely that while its

innovation was ecologically driven, the spread through the group

was a result of social transmission, paralleling findings in early

hominins [47].

Our study adds new evidence supporting the hypothesis that

some of the behavioral diversity seen in wild chimpanzees is the

result of social transmission and can therefore be interpreted as

cultural, especially when considered together with previous results

from the wild [10] and captivity [48]. Our findings were made

possible by employing a novel version of the NBDA that can

incorporate information about the time course of the recorded

observations. In doing so, our model captures a key aspect of social

learning—that is, who observed the novel behavior at what time

and from whom. In previous static versions of NBDA, for example

in humpback whales, long-term association patterns were used to

infer who had observed whom [8]. Our dynamic model requires

fully habituated individuals that can be closely observed [49];

however, where this is possible, it is more powerful, as is

demonstrated by the fact that dynamic networks were more

supported than corresponding static networks.

Previous studies of vervet monkeys [50,51] and captive

chimpanzees [52] have found an influence of the model’s rank

on diffusion of behavior. Although our small sample size did not

allow us to analyze rank effects, moss-sponging was first invented

by the alpha male before spreading to two other individuals. And

similarly, the second inventor, KW, was dominant over all the

individuals who learned moss-sponging from her [53]. As all

individuals appeared to develop the behavior directly after having

observed it, it was not possible to make inferences on whether

dominant individuals transmitted the behavior more effectively

than others. Nevertheless, it is interesting to note that the social

learning effect was less marked in RU1, which was first

demonstrated by lower ranking individuals.

Although our results suggest social learning of moss-sponging

via direct observation, the nature of the social learning mechanism

remains unclear [54,55]. Chimpanzees display a range of social

learning mechanisms, including emulation and imitation [28–34],

similarly to some monkey species [54,55]. Teaching and imitation

are often said to be central in the diffusion of human culture

[35,36,56,57], but other social learning mechanisms can also

generate behavioral traditions [31,58]. For example, early

hominins who contributed to the Oldowan technology (2.6 mya)

may have relied on emulative processes rather than imitation

[47,59–61], in contrast to the later Acheulean technology [62,63].

However, as our results do not allow us to identify the precise

learning mechanism employed during the social transmission of

moss-sponging, it remains possible that this may vary from those

on which humans rely to transmit their culture. Until the precise

nature of these learning mechanisms is established, questions will

remain about potential evolutionary discontinuity in the transmis-

sion of ‘‘cultural’’ behavior [36].

Nevertheless, although social learning mechanisms are impor-

tant, our data support a growing literature that refutes a strong

distinction between individual and social learning. Both rely on the

same basic understanding of physical cognition and only differ in

the presence or absence of a task-related social memory [64]. How

existing techniques were modified and what was transmitted may

have been equally important in the first stages of human evolution.

In our view, further progress in the study of animal culture must go

beyond the surface behavioral level, as is usually practiced, and

address the cognitive and neural processes involved during

innovation and social transmission [65]. For instance, both re-

use and moss-sponging appear to be modifications of existing

behaviors, rather than fully novel innovations. Observers may

have been aided by an already existing mental representation

when acquiring the novel behavior [66,67] that they updated after

observing knowledgeable individuals [68,69]. Studying these

processes in more detail in our closest relative and other animals

may thus inform our understanding of early hominin culture and

the evolutionary processes that eventually led to modern human

cultures [70–72].

Materials and Methods

Ethics Statement
Permission to conduct this research was given by the Uganda

Wildlife Authority (UWA), the Ugandan National Council for

Science and Technology (UNCST), and the National Forestry

Authority (NFA).

Study Site and Subjects
The Budongo Conservation Field Station was established in

1990 in the Budongo Forest Reserve, which lies in the western Rift

Valley in Uganda (1u350–1u550 N, 31u180–31u420 E) at a mean

altitude of 1,050 m. The 793 km2 Reserve includes 482 km2 of

continuous medium-altitude semideciduous forest cover. The

Sonso community has been under continuous observation since

the early 1990s with individuals individually known and habitu-

ated to human observers for about 20 y [39].

During data collection in November 2011, the Sonso study

community of chimpanzees consisted of 68 named individuals.

Following Reynolds [39], we defined age groups as infants (0–4 y),

juveniles (5–9 y), subadults (m, 10–15 y; f, 10–14 y), and adults (m,

16+ y; f, 15+ y). Using these categories, the group composition was

30 adults (10 males and 20 females), 15 subadults (4 males and 11

females), 13 juveniles (4 males and 9 females), and 10 infants (3

males and 7 females).

Procedure
Data Collection and Site Location. Data were collected on

November 14–19, 2011, between 7 a.m. and 5 p.m., at a socially

contested waterhole between the roots of two trees (Cynometra
alexandrii and Mimusops bagshawei) located in an area of recently

flooded swamp forest approximately 5 m from a seasonal river

(Figure S1). The hole contained high mineral levels compared with

other nearby water sources, such as the river (Na, K, Ca, Mn, Cl)

(Reynolds V, Lloyd AW, English CJ, Lyons P, Dodd H, et al.,

Budongo Forest chimpanzees’ sodium resources: New adaptations,

unpublished manuscript). All observed cases of leaf-tool fabrication

and use were recorded using a hand-held high-definition

camcorder (Panasonic HD60) [73].

Social Learning of Tool Use in Wild Chimpanzees
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Sponge Material. Although leaf-sponging was focused on the

waterhole, there were a number of additional stagnant puddles

within a 3-m radius where individuals used LS tools and drank

directly (Figure S2). Leaves used to manufacture sponges were

identified as Lasiodiscus mildbraedii, Lychnodiscus cerospermus,
and Agromolera subspecies. Mosses were collected in the water-

hole area when chimpanzees were absent. Species were identified

as Pilotrichella cuspidate, Racopilum africanum (Mitt), and

Pinnatella minuta (Mitt). Additionally, two liverwort species,

Plagiochila strictifolia (Steph) and Plagiochila pinniflora (Steph),

were identified. These primitive plants looked similar to flattened

mosses and may have been part of the moss-sponges.

Definitions. Following Whiten et al. [11], LS is ‘‘wad of

leaves/vegetation chewed and used to collect water, then squeezed

in mouth.’’

Moss-sponge, following Lanjouw [40], is defined as follows:

‘‘chimpanzees collected moss off the bark of the trees, loosely

rolled it into a bundle, generally not bigger than a few centimeters

wide.’’ Moss-sponge was inserted into the mouth at least once

before sponging. In both previous cases, the sponges appeared

exclusively composed of moss despite leaves being freely available.

In Sonso, moss may be combined, but not necessarily, with leaves

in the initial fabrication or added to an existing LS (Videos S1 and

S2).

Fabrication is the removal/collection of leaves or moss and

fabrication of sponge in mouth, but sponge is not subsequently

dipped into water, for example, as access to the sponging location

is blocked by another individual.

Use is defined as dipping of sponge into water and insertion at

least once into mouth to suck the water.

Re-use (type 1 and 2) is defined as follows: We coded as re-use

type 1 (Video S3) the recovery of a used sponge that had been

fabricated by another individual (or possibly by the same

individual on a previous visit to the sponging location) and

discarded. We distinguished this from re-use 2, a commonly

observed behavior in which infants beg or scrounge for sponges

made by their mother or older maternal siblings, as this is done

while the older relative is using the sponge, as opposed to after

they have discarded it (Video S4). In Sonso, RU2 appears limited

to immature individuals and has never been recorded in mature

individuals. Similarly, in West African chimpanzees (P. t. verus),
both RU1 and RU2 are observed, but the behavior is only

displayed by infants and juveniles [38].

Drinking is defined as drinking directly with the mouth from the

water source.

Coding. Video files were uploaded to an Apple MacBook Pro

using iMovie and edited into discrete clips for analysis. We coded

the following variables for all occurrences of leaf-tool fabrication,

(re-)use, and direct drinking: date, individual identity, party

composition, specific audience (individuals within 1 m), fabrication

of sponge (removal of material and fabrication of sponge in mouth,

collection of discarded sponge from the ground), use of sponge for

drinking (sponge dipped in water and back to mouth at least once),

sponge material (leaf or moss), and location (sponging-hole or

puddle).

Audience. Individuals within 1 m of the model while the

model was fabricating the sponge, but excluding individuals with

either their head turned fully away or with their view obstructed

by the environment (for example, sitting behind a tree-buttress or

with their head inside the waterhole), were considered to be

‘‘potential observers.’’

A second more restrictive definition was also applied for the

‘‘specific audience’’ in which individuals had to be within 1 m of

the model and were considered to have actively looked at the

model while the sponge was fabricated. This specific audience

included individuals who were seen to shift their eye gaze to the

model or to track the model’s movements with their head

movements or who had their head facing the model 645u (as per

[74]).

Network Reconstruction. A separate network was con-

structed for M and RU1. In each case, a directed edge was

considered to exist between two individuals, from X to Y if there

was at least one registered occurrence of X observing Y

performing the RU1 or M behavior prior to X acquiring the

relevant behavior themselves. The latter criterion was included as

behavior can only be transmitted by observations that occur prior

to acquisition of behavior and such that a positive result could not

be indicative of homophily—that is, individuals who acquire a

behavior being subsequently attracted to one another and thus

observing each other more. The weight of the directed edge, aYX,

was equal to the number of such occurrences.

For the dynamic social network, the edges were allowed to vary

over time. Here, aYX(t) was taken to be the number of times X had

observed Y performing the target behavior prior to time t. We also

considered a binary dynamic network, where aYX(t) was taken to

be 1 if X had observed Y performing the target behavior prior to

time t, and 0 otherwise. We included this to allow for the

possibility that a single observation of the target behavior may be

sufficient for a maximal social transmission effect to occur.

Statistical Analysis
To analyze the spread of the behaviors, we entered information

about all individuals who used at least one tool at the tree-hole in

NBDA models (N = 30). We ran an OADA [2] treating M and

RU1 as independent diffusions included in the same model,

allowing us to test for difference in the social transmission effect.

We used the R script model for NBDA Version 1.2.11 available at

http://lalandlab.st-andrews.ac.uk/freeware.html.

NBDA is based on survival analysis models and so assumes that

the spread of the behavior is a stochastic process and that a naı̈ve

individual, i, has at any time a given learning rate, li tð Þ, for each

behavior pattern in question. We included a number of potentially

confounding variables: x1, age (in years); x2, time spent in the

community (in years); x3, sex (0/1 for female/male, respectively).

These data were extracted from the Sonso community official list

of individuals downloaded at http://www.budongo.org/. There is

little support for an important effect of any individual-level

variable (see Table S2). We considered both conventional NBDA

models with the static social network and expanded the approach

to include the dynamic network described above. For the static

network NBDA, there are two functional forms for inclusion of

individual-level variables in an NBDA [2], a model in which the

interaction between social transmission and the individual-level

variables is taken to be additive:

li tð Þ~l0 tð Þ s
X30

j~1

aijzj tð Þzexp b1x1zb2x2zb3x3ð Þ
" #

1{zi tð Þð Þ,

and one in which it is taken to be multiplicative:

li tð Þ~l0 tð Þ s
X30

j~1

aijzj tð Þz1

" #
exp b1x1zb2x2zb3x3ð Þ½ � 1{zi tð Þð Þ,

where l0 tð Þ is a baseline rate function, which in OADA remains

unspecified; s is the effect of social transmission per occasion i
observed j; bk is the multiplicative effect of individual-level
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variable k on the log scale; and zi(t) is an indicator variable that

takes the value 1 if i has acquired the behavior by time t and 0

otherwise. Both additive and multiplicative models were fitted:

Findings were similar for each, but the multiplicative model had

slightly better support (see Table S1), as reported in the main text.

The log-likelihood for acquisition event l, occurring at time tl, at

which individual m acquired the behavior is:

log Llð Þ~log ln tlð Þð Þ{log
X30

m~1

lm tlð Þ
 !

:

The log-likelihood for the whole diffusion is calculated by

summing across all acquisition events. In a reanalysis, we excluded

the M acquisition event for KW (see main text) by simply

excluding this acquisition event from the likelihood function.

Proportion of acquisitions that were by social transmission was

estimated for the best model (with no individual-level variables) by

calculating for each acquisition event l.1:

s
X30

j~1

aijzj tlð Þ
" #,

s
X30

j~1

aijzj tlð Þz1

" #
:

Here, the numerator is the rate of social transmission relative to

the rate of asocial learning at time of the l-th acquisition event, and

the denominator is the total rate of learning relative to the rate of

asocial learning. Therefore, the whole equation gives the

probability that event l occurred by social transmission, predicted

by the model. By averaging across all acquisition events except the

initial acquisition, we obtain the estimated proportion of events

(excluding the innovation) that occurred by social transmission.

A static network based on observations does not fully allow for

the time course of observations. To illustrate, one can imagine a

group of three individuals: A, B, and C. A learns the behavior first.

Next, B observes A performing the behavior three times and then

learns the behavior. Finally, C observes A performing the behavior

three times and subsequently learns the behavior last. A static

network would represent the network as having links of strength 3

from A to both B and C, so an NBDA model based on such a

network would predict that B and C were equally likely to learn

second. In fact, we would expect B to be more likely to learn

second, because B observed A performing the behavior first. A

dynamic network allows us to incorporate this information into the

NBDA.

We considered a number of different functional forms for the

dynamic network. First, we considered a model in which each

successive observation of the target behavior had a linear

relationship with the rate of learning. As with the static network

NBDA, we considered models in which the interaction with

individual-level variables was taken either to be additive or to be

multiplicative. These models are identical to those given above,

except aij is replaced with aij(t). We also considered a form where the

effect of each successive observation of the target behavior had a

linear effect on the log scale, on the rate of learning—that is, each

successive observation multiplied the rate of learning by exp(s):

li tð Þ~l0 tð Þexp s
X30

j~1

aij tð Þzb1x1zb2x2zb3x3

 !
1{zi tð Þð Þ:

We refer to this as the log-linear model. Here a single

observation adds s to the linear predictor [inside the exp() term]

having the effect of multiplying the rate of learning by a factor of

exp(s). We also considered a version of the log-linear model in

which the interaction with individual-level variables was additive:

li tð Þ~l0 tð Þ exp s
X30

j~1

aij tð Þ
 !

zexp zb1x1zb2x2zb3x3ð Þ
" #

1{zi tð Þð Þ,

but this had less support than the multiplicative version (see Table

S1).

For our dynamic network, the log-linear model is equivalent to

including the number of observations of the target behavior prior

to time t as a time-varying covariate in a Cox model [75]. This

allowed us to use the survival package [76] to fit the models in the

R statistical environment [77] to include a random (or frailty)

effect to account for the fact that each diffusion included the same

individuals. However, the random effect was estimated to be

negligible and had no effect on the results, corresponding to the

fact that each behavior diffused through a different subset of the

group (with the exception of KW). Consequently, we dropped the

random effect from the analysis. The model using the binary

dynamic network is specified using the same equation as the log-

linear model. The likelihood function given above for the static

network NBDA is valid for all models given here.

Analogously to the linear model, the proportion of acquisitions

that were by social transmission was estimated for the best log-

linear model (with time in population included) using the dynamic

network by calculating for each acquisition event l.1:

exp s
P30

j~1

aij tð Þzb2x2

 !
{exp b2x2ð Þ

exp s
P30

j~1

aij tð Þzb2x2

 ! :

Here the numerator is the estimated rate of learning at the time

of acquisition of the behavior minus the rate that would be

expected under asocial conditions, and so can be thought of as the

rate of social transmission. The denominator is the total rate of

learning at the time of acquisition, so the fraction gives the

probability the event occurred by social transmission. Averaging

across all acquisition events except the initial innovation gives the

estimated proportion of acquisitions that were by social transmis-

sion, excluding the innovation, which is known not to have

occurred by social transmission.

We used an information theoretic approach using Akaike’s

Information Criterion corrected for sample size (AICc) to allow for

model selection uncertainty. This allowed us to estimate the

support for each variable/model of social transmission, calculate

model-averaged estimates of effects, and construct unconditional

confidence intervals using profile likelihood methods [78].

Time of Acquisition Diffusion Analysis
Because the TADA can have more statistical power than

OADA [2], we fitted TADA models to check the robustness of our

findings. The times of learning entered into the models were the

cumulative time across days, including only times at which the

group was present at the waterhole—to allow for the fact that the

rate of learning would be zero when the group was not present at
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the waterhole. We fitted models assuming a constant baseline

function l0 tð Þ~l0, and models allowing for the possibility that

l0 tð Þ might systematically increase or decrease over time [79]. We

also fitted models in which the baseline rate differed between M

and RU1, to allow for differences in the asocial rate of learning.

For the TADA analysis, the best model was the standard linear

form of NBDA: Here we report the results of this set of models,

though other functional forms gave similar results. For many

models, the estimated Hessian matrix could not be inverted, so we

could not reliably extract standard errors, meaning we could not

calculate confidence intervals allowing for model selection

uncertainty [78]. Consequently traditional confidence intervals

are reported for TADA—that is, conditional on the best model

containing the relevant parameter.

There was stronger evidence for social transmission of RU1

(same social effect as for M, Swi = 0.289; different social effects,

Swi = 0.268) though still more support for social transmission of

moss-sponging only (Swi = 0.443). For moss-sponging, s was

estimated at 42.5 (95% C.I. = 6.74–814). corresponding to

84.3% (77.5%–85.6%) of acquisition events by social transmission,

excluding the innovator. For leaf-sponging re-use, s was estimated

to be 1.18 (95% C.I. = 0–6.78) corresponding to 22.3% (0%–

36.4%) of acquisition events occurring by social transmission. The

difference in s parameters (M – RU1) was estimated to be 41.3

(95% C.I. = 5.16–800). Therefore, the results of the TADA are

qualitatively similar to the results of the OADA. In the main text,

we present the results of the OADA as it makes fewer assumptions

about the underlying baseline rate: although we can allow for a

systematically increasing baseline rate using TADA, it is difficult to

allow for a fluctuating rate, caused by changing conditions in the

environment—for example, temperature changes affecting moti-

vation to drink [33]. Consequently, we suspect OADA is likely to

be more reliable in uncontrolled conditions.

Strict Observation Criterion
To assess the robustness of our findings to the judgments we

made about who observed whom, we repeated both OADA and

TADA analyses using static and dynamic networks based on a

stricter criterion of recording observation (see above). Overall the

strict network had 0.436 less support than the less strict network

for OADA, and slightly more support for TADA (1.26). In both

cases, the Akaike weights showed a similar pattern of support using

each observation criterion (see Table S1 and Figures S4 and S5).

Note that both (a) recording of nonobserving individuals as

observers and (b) failure to record observers will obscure any

existing relationship between the observation network and the

pattern of diffusion. This has two consequences: First, a stricter

observation criterion does not necessarily mean a more accurate

estimate of s parameters, as it may reduce cases of a but at the

potential cost of increasing cases of b. Second, in either case, the

effect of such errors in recording will be a tendency to

underestimate social transmission effects, so the reported social

transmission of M could not be the result of a bias arising from

errors in recording who observed whom.

Controlling for Exposure to the Waterhole
A potentially confounding variable is the different level of

exposure each chimpanzee had to the waterhole. A priori, it

seemed possible that chimpanzees that interacted with the

waterhole more frequently would be more likely to acquire both

behavior patterns than chimpanzees that interacted with the water

hole less frequently. If this exposure was correlated with

observation of others performing M, this could create a spurious

social transmission effect. To an extent, the different level of social

transmission for M and RU1 weakens the case for this

explanation, as we would expect an exposure effect to operate

similarly on both behavior patterns. Nonetheless, we ran

additional analyses to allow for the potential effects.

We calculated an exposure score for each chimpanzee for each

behavior pattern as being the rate at which each chimpanzee

interacted with the waterhole—that is, initiated bouts of normal

leaf-sponging behavior. If a chimpanzee did not acquire the

behavior pattern in question (M or RU1), exposure was calculated

over the whole period for which we observed the chimpanzees at

the waterhole ( = number of interactions/total observation time).

For chimpanzees that acquired a behavior pattern, the corre-

sponding exposure score was calculated over the time preceding

acquisition of that behavior (e.g. = number of interactions prior to

acquiring M/time at which M was acquired), as exposures

experienced after acquiring M (for example) cannot exert a causal

effect on the acquisition of M.

We first added exposure score as a predictor to the best model

for the OADA reported in the main text, with exposure

constrained to have the same effect on both M and RU1. This

model had 0.436 less support, the effect of exposure was estimated

to be small, and the estimate of the social transmission parameter

remained very similar (s = 2.79). We then wished to allow for the

possibility that exposure might affect only M, thus resulting in a

spurious social transmission effect for M. This model had 3.926
more support than the previous best OADA model. However,

contrary to expectations, the effect of exposure was estimated to be

negative with a 9.3% reduction in rate of acquisition for one

standard deviation difference in exposure score (see Figure S6).

Most importantly, the effect of social transmission was estimated to

be slightly higher in this model (s = 3.00), suggesting that

differential exposure to the waterhole is unlikely to have resulted

in a spurious social transmission effect for M.

Supporting Information

Figure S1 Location of the waterhole between the roots of the

two trees (photo by Nina Hänninen, with permission).

(TIF)

Figure S2 Broad view of the two trees (right, individual NB) and

the puddles (left, individual OK) at the sponging location (photo by

Catherine Hobaiter).

(TIF)

Figure S3 Proportion of individuals using different techniques at

the waterhole (November 14–19). Drink, drink directly from the

hole; Alternative, proportions of moss and re-use 1 combined.

(PDF)

Figure S4 Visualization of the interaction networks for the moss-

sponging behavior for all 30 individuals, in the case of the specific

audience, using a stricter observation criterion (see Materials and

Methods). Graphs are laid out using the Fruchterman–Reingold

weighted algorithm. Labels on the nodes indicate the identity of

individuals. Individuals with large label size developed the

behavior, whereas individuals with small label size did not.

Numbers under the large label indicate the order of acquisition of

the behavior. The width of the arrows linking individuals is

proportional to the number of times an interaction event was

recorded between any two individuals and represented according

to the convention ‘‘XRY’’ means that Y was observed by X.

Dashed line, potential product-based social learning by individual

KW who re-used a moss-sponge. Data were deposited in the

Dryad repository: http://dx.doi.org/10.5061/dryad.m6s21.

(TIF)
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Figure S5 Visualization of the interaction networks for the RU1

behavior for all 30 individuals, in the case of the specific audience,

using a stricter observation criterion (see Materials and Methods).

Graphs are laid out using the Fruchterman–Reingold weighted

algorithm. Labels on the nodes indicate the identity of individuals.

Individuals with large label size developed the behavior, whereas

individuals with small label size did not. Numbers under the large

label indicate the order of acquisition of the behavior. The width

of the arrows linking individuals is proportional to the number of

times an interaction event was recorded between any two

individuals and represented according to the convention

‘‘XRY’’ means that Y was observed by X. Data were deposited

in the Dryad repository: http://dx.doi.org/10.5061/dryad.m6s21.

(TIF)

Figure S6 Boxplot showing the rate of interaction with the

waterhole—that is, initiation of bouts of normal leaf-sponging

(exposure) for chimpanzees that did and did not acquire moss-

sponging behavior. For those that did, the rate of interaction is

calculated prior to their acquisition of moss-sponging.

(EPS)

Figure S7 Location of the sponging site on the Budongo

Conservation Field Station Grid System.

(TIF)

Table S1 Akaike weights for different social learning models

assuming static or dynamic networks; with a linear, binary, or log-

linear relationship with the rate of learning; with an additive or

multiplicative interaction with individual level variables; and in which

there was (a) equal social transmission for M and RU1, (b) differing

levels of social transmission for M and RU1, (c) social transmission for

M only, and (d) social transmission for RU1 only, compared with the

Akaike weight for an asocial model. Akaike weights do not sum to 1

because a model with no individual-level variables qualifies as both an

additive and multiplicative model. However, each cell represents the

same number of models so the weights are directly comparable

between cells. The upper panel corresponds to the analysis presented

in the main text: Here the two cells with highest support account for

75% of the total support between them. Akaike weights are similar

when KW’s M acquisition event is excluded. The lower panel

corresponds to the analysis based on the strict observation criteria and

shows a similar pattern of results.

(DOC)

Table S2 Summary of results for individual-level variables, from

the log-linear model using the dynamic network. Effects are given

on the log scale with Wald confidence intervals calculated using

the unconditional standard error.

(DOC)

Table S3 Pearson’s correlation between techniques used by the

chimpanzees and with days spent at the waterhole. LS, leaf-sponge;

M, moss; RU1, re-use 1; ALT, alternative technique (M and RU1

combined); D, drink; DAY, days passed. To investigate whether the

use of alternative techniques (M, RU1) was correlated to a decrease

in available LS material, we ran Pearson’s correlations using

frequency of individual users per day per technique, and of each

technique versus days passed, including drinking. If increased direct

drinking were correlated with decreased users of LS, this may

indicate an environmental constraint on tool production. There was

no evidence of a correlation between the number of chimpanzees

exhibiting the new techniques and the number of days passed (see

Figure S3), suggesting that material availability did not influence

tool choice. Furthermore, we found no correlations across days

between the number of cases of LS and cases of either RU1, M, or

RU1 and M combined, showing that selection of the techniques, old

and new, were not associated. * In order to control for the varying

number of individuals at the site per day, these tests are of number of

individuals using the technique/total number of individuals,

correlated against the number of days past. Degrees of freedom = 4

in all cases. All p values are two-tailed.

(DOC)

Table S4 List of Sonso individuals who manufactured at least

one leaf-based tool at the waterhole in the course of the 6 d with

individual information as of November 2011. Individual identity

code, age (expressed in years), sex (F, female; M, male), age class,

family (code of the mother), and tenure (time spent within the

community expressed in years) are provided. Note that age and

tenure estimates for individuals over 20 y are estimates and should

be treated as 63 y.

(DOC)

Movie S1 Innovation of the Moss-sponging behavior. NK

gathers some moss on the tree trunk, while being observed by

NB. He will then proceed to add some leaves to his sponge before

leaf-sponging (video by Catherine Hobaiter).

(WMV)

Movie S2 Diffusion of the Moss-sponging behavior. NB gathers

moss and adds it to her existing LS, before resuming leaf-sponging;

she is observed by individual HL, who will display the behavior

when she gets access to the waterhole (video by Catherine

Hobaiter).

(MOV)

Movie S3 RU1 behavior. Individual KZ (right of the screen)

picks an LS from the ground while his mother KW is extracting

water from the waterhole. He then chews the used LS before leaf-

sponging himself at the waterhole (video by Catherine Hobaiter).

(MOV)

Movie S4 RU2 behavior. Individual KS extracts an LS from his

mother’s mouth before using it at the waterhole (video by

Catherine Hobaiter).

(MOV)
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