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Abstract

STEP (STriatal-Enriched protein tyrosine Phosphatase) is a neuron-specific phosphatase that regulates N-methyl-D-aspartate
receptor (NMDAR) and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking, as well as ERK1/
2, p38, Fyn, and Pyk2 activity. STEP is overactive in several neuropsychiatric and neurodegenerative disorders, including
Alzheimer’s disease (AD). The increase in STEP activity likely disrupts synaptic function and contributes to the cognitive
deficits in AD. AD mice lacking STEP have restored levels of glutamate receptors on synaptosomal membranes and
improved cognitive function, results that suggest STEP as a novel therapeutic target for AD. Here we describe the first large-
scale effort to identify and characterize small-molecule STEP inhibitors. We identified the benzopentathiepin 8-
(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (known as TC-2153) as an inhibitor of STEP with an
IC50 of 24.6 nM. TC-2153 represents a novel class of PTP inhibitors based upon a cyclic polysulfide pharmacophore that
forms a reversible covalent bond with the catalytic cysteine in STEP. In cell-based secondary assays, TC-2153 increased
tyrosine phosphorylation of STEP substrates ERK1/2, Pyk2, and GluN2B, and exhibited no toxicity in cortical cultures.
Validation and specificity experiments performed in wild-type (WT) and STEP knockout (KO) cortical cells and in vivo in WT
and STEP KO mice suggest specificity of inhibitors towards STEP compared to highly homologous tyrosine phosphatases.
Furthermore, TC-2153 improved cognitive function in several cognitive tasks in 6- and 12-mo-old triple transgenic AD (3xTg-
AD) mice, with no change in beta amyloid and phospho-tau levels.
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Introduction

STriatal-Enriched protein tyrosine Phosphatase (STEP)

(PTPN5) is a brain-enriched protein tyrosine phosphatase (PTP)

targeted in part to postsynaptic terminals of excitatory glutama-

tergic synapses [1–4]. Recent studies indicate that STEP is

overactive in Alzheimer’s disease (AD), schizophrenia, and fragile

X syndrome (FXS) [5–9]. The emergent model based on these

findings suggests that the increase in STEP activity interferes with

synaptic strengthening and contributes to the characteristic

cognitive and behavioral deficits present in these disorders.

Elevated levels of STEP activity disrupt synaptic function by

dephosphorylation of STEP substrates [10]. These include
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mitogen-activated protein kinase (MAPK) family members

ERK1/2 and p38 [11,12], the tyrosine kinases Fyn and Pyk2

[13,14], the glutamate receptor GluN2B subunit of NMDARs

(formerly termed NR2B) [6,15,16], and the GluA2 subunit of

AMPAR (formerly termed GluR2) [16–18]. STEP dephosphory-

lates the kinases at regulatory tyrosine residues within their

activation loop and thereby inactivates them. Dephosphorylation

of GluN2B promotes internalization of GluN1/GluN2B receptors,

whereas dephosphorylation of GluA2 promotes internalization of

GluA1/GluA2 receptors.

To test the hypothesis that the observed overexpression of STEP

disrupts synaptic strengthening in AD, we crossed STEP KO mice

with the 3xTg-AD and Tg2576 AD mouse models. Six-month-old

progeny null for STEP displayed significant decreases in

biochemical and cognitive deficits, despite continued elevated

levels of Ab [16,19]. These data validated STEP as a target for

drug discovery. Herein we describe the search for small-molecule

STEP inhibitors. We performed a high throughput screen that

culminated in the identification of the benzopentathiepin 8-

(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochlo-

ride (known as TC-2153) as a novel STEP inhibitor. TC-2153

exhibited specificity for STEP in vitro, in cell-based assays, and in
vivo, and also reversed cognitive deficits in 6- and 12-mo-old

3xTg-AD mice.

Results

Initial High Throughput Screening for STEP Inhibitors
We initially screened ,150,000 compounds from the Labora-

tory for Drug Discovery in Neurodegeneration library using para-

nitrophenyl phosphate (pNPP) as the target substrate (see Text S1

for more information on assay development and secondary

screens). Eight compounds were selected for further characteriza-

tion based on chemical structure and IC50 values, which ranged

between 1 mM and 9.7 mM (Table S1), and studies of these

molecules indicated potent inhibition of STEP activity in neuronal

cultures and cortical tissue after intraperitoneal (i.p.) injections in

WT mice. However, following resynthesis of several of the lead

compounds, we found that they all exhibited essentially no

inhibitory activity towards STEP (Figure S1). We therefore tested

the possibility that a ‘‘contaminant’’ in the commercial prepara-

tions of the lead compounds was inhibiting STEP activity. To

address this issue, we performed preparative HPLC on Compound

3 and tested eluted fractions for activity against STEP in the pNPP

assay (Figure 1A). Compound 3 appeared as a major peak

(fraction 7) on the reverse-phase HPLC preparation and had no

inhibitory activity against STEP compared to a second peak that

appeared as a late minor peak (fraction 32) that was a potent

inhibitor of STEP. Given the high apparent lipophilicity of the

unknown, the supplied material was extracted with hexane and

recrystallized from methanol. Small pale yellow needle-shaped

crystals (0.5–1 cm in length) were obtained in approximately 1%

yield. The isolated crystalline material displayed the same HPLC

retention, UV absorbance, and STEP inhibitory properties as the

initially collected late-eluting peak. The crystalline compound was

characterized by X-ray crystallography and found to be sulfur (S8)

(Figure 1B).

S8 is poorly soluble in aqueous solution and cannot easily be

modified to improve physicochemical properties, redox activity,

binding affinity, and selectivity. We therefore sought to identify

more conventional inhibitor structures that would improve

solubility and enable further refinement through analog prepara-

tion and evaluation. We identified the benzopentathiepin core

structure present in a number of natural products as the most

promising for further investigation (Figure 1B). Natural products

incorporating the benzopentathiepin core motif have been

reported to have antifungal and antibacterial activity in cell

culture as well as cytotoxicity against human cancer cell lines

[19,20]. Moreover, amino-substituted derivatives such as varacin

and TC-2153 have reasonable solubility in aqueous solution

[21,22]. TC-2153 reportedly has a low level of acute toxicity

(LD50.1,000 mg/kg) and was proposed to cross the blood brain

barrier as evidenced by anxiolytic and anticonvulsant effects in

mice [23]. We therefore chose to evaluate the STEP inhibitory

activity of TC-2153. We first compared the inhibitory activities of

S8 and TC-2153 against recombinant STEP using pNPP assays at

several concentrations of the inhibitors. Both S8 and TC-2153

inhibited STEP potently, with IC50s of 17.260.4 nM and

24.660.8 nM, respectively (Figure 1C–D).

STEP Inhibition Increases the Tyr Phosphorylation of STEP
Substrates in Cortical Neurons and in Vivo

We treated cortical neurons for 1 h with S8 or TC-2153 and

determined the Tyr phosphorylation of residues that STEP

dephosphorylates on GluN2B (Y1472), Pyk2 (Y402), and ERK1/2

(Y204/187). For S8, there was a significant increase in the Tyr

phosphorylation of all three STEP substrates at doses above

0.05 mM, with 1 mM showing maximum inhibition (Figure 2A and

Figure S2A for representative blots) (1 mM dose, pGluN2B,

1.3360.08, p,0.05; pPyk2, 1.4960.12, p,0.05; pERK1/2,

1.6760.14, p,0.01). For TC-2153, there was also a significant

increase in the Tyr phosphorylation at these sites (Figure 2B and

Figure S2B for representative blots) (1 mM dose, pGluN2B,

2.0760.15, p,0.001; pPyk2, 1.8160.21, p,0.001; pERK1/2,

2.3960.18, p,0.001). The decrease in Tyr phosphorylation in the

presence of the highest dose of TC-2153 (10 mM) may be due to

off-target effects on positive regulatory PTPs. We found similar

inverted-U dose–response curves on Tyr phosphorylation of direct

PTP targets in previous work with PTP inhibitors [24,25].

We next tested whether S8 and TC-2153 inhibited STEP

activity in WT mice in vivo. Six-month-old male mice (C57BL/6)

Author Summary

A series of recent studies have found that the levels of the
enzyme striatal-enriched protein tyrosine phosphatase
(STEP) are raised in several different neuropsychiatric and
neurodegenerative disorders, including Alzheimer’s disease,
fragile X syndrome, and schizophrenia. STEP normally
opposes the development of synaptic strengthening, and
these abnormally high levels of active STEP disrupt synaptic
function by removing phosphate groups from a number of
proteins, including several glutamate receptors and kinases.
Dephosphorylation results in internalization of the gluta-
mate receptors and inactivation of the kinases—events that
disrupt the consolidation of memories. Here we identify the
benzopentathiepin 8-(trifluoromethyl)-1,2,3,4,5-benzopen-
tathiepin-6-amine hydrochloride (known as TC-2153) as a
novel inhibitor of STEP. We show that the mechanism of
action involves the formation of a reversible covalent bond
between the inhibitor and the catalytic cysteine residue of
STEP, and we demonstrate the activity of TC-2153 both in
vitro and in vivo. TC-2153 shows specificity towards STEP
compared to several other tyrosine phosphatases and
shows no toxicity to cultured neurons. Importantly, the
compound reversed cognitive deficits in a mouse model of
Alzheimer’s disease in a way that did not involve changes in
the usual pathological signs (p-tau and beta-amyloid).

STEP Inhibitor Reverses Cognitive Deficits in AD Mice
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Figure 1. Compound 3 fractionation and initial characterization. (A) Commercially purchased Compound 3 was dissolved in methanol at
10 mg/mL, and 300 mL portions were injected onto a Zorbax (Agilent) 5 mm 300SB-C18 column (0.94625 cm, 3 mL/min 75% methanol/25% pH 4.0
0.1 M ammonium acetate). Thirty-five fractions (3 mL each) were collected, evaporated, and reconstituted in 100 mL of DMSO. Fractions were tested
with pNPP assays to determine inhibition of STEP activity by using 0.1 mL of each fraction and 100 nM of STEP protein in 96-well plates. DMSO alone

STEP Inhibitor Reverses Cognitive Deficits in AD Mice
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were injected with vehicle or S8 (0.5, 1, 3 mg/kg, i.p.) and cortices

were removed and processed 3 h postinjection. S8 led to a

significant increase in the Tyr phosphorylation of GluN2B, Pyk2,

and ERK1/2 (at 1 mg/kg, pGluN2B, 1.3160.11, p,0.05; pPyk2,

1.4660.14, p,0.05; pERK1/2, 1.5760.13, p,0.05) (Figure 2C

and Figure S2C for representative blots). Similar results were

obtained with TC-2153 (1, 3, 6, 10 mg/kg) (at 10 mg/kg,

pGluN2B, 1.6660.28, p,0.01; pPyk2, 1.8060.30, p,0.05;

pERK1/2, 2.5260.16, p,0.01) (Figure 2D and Figure S2D for

representative blots). Together, these results demonstrate that both

S8 and TC-2153 increase the Tyr phosphorylation of three STEP

substrates in intact neurons in culture and in vivo in the cortex of

WT mice.

Specificity of TC-2153 Against Other PTPs in Vitro
In an attempt to evaluate possible selectivity of TC-2153, we

performed activity assays using the catalytic domain of STEP, and

the catalytic domains of two highly related PTPs: He-PTP and

PTP-SL. TC-2153 showed no apparent selectivity among these

PTPs. Several studies have shown that regions outside of the

catalytic domain contribute to the susceptibility of PTPs to the

action of selective inhibitors [26,27]. Thus, we repeated our assays

using several full-length PTPs (Table 1). Indeed, we found TC-

2153 was more potent against the two major isoforms of STEP,

STEP61 (IC50 = 93.361.1 nM) and STEP46 (IC50 = 57.36

1.1 nM), compared to HePTP (IC50 = 363.561.2 nM) and PTP-

SL (IC50 = 220.661.3 nM). It displayed even greater selectivity

over PTP1B (IC50 = 723.961.2 nM) and SHP-2 (IC50 =

6896.061.2 nM). These results suggest TC-2153 shows a degree

of selectivity toward full-length STEP in in vitro assays.

TC-2153 Shows No Apparent Off-Target Effects in STEP
KO Cultures

To further address possible off-target inhibition by TC-2153 in

cells, cortical cultures from either WT or STEP KO mice were

treated with TC-2153. Similar to the rat neuronal cultures, we

observed an increase in the Tyr phosphorylation of STEP

substrates in WT mouse cortical neurons (Figure 3A, black bars).

Consistent with previous findings [12,16,18,28], STEP substrates

have higher basal Tyr phosphorylation levels in STEP KO

cultures. TC-2153 failed to increase the phosphorylation of STEP

substrates in the KO cultures (Figure 3A, grey bar with 0.1 mM

and 1 mM; see Figure S3A for representative blots). To exclude a

possible ceiling effect, we added a generic tyrosine phosphatase

inhibitor, sodium orthovanadate (Na3VO4), which further in-

creased the Tyr phosphorylation of these substrates. These results

suggest that TC-2153 is relatively specific towards STEP

compared to the generic tyrosine phosphatase inhibitor sodium

orthovanadate.

TC-2153 does Not Inhibit Highly Homologous PTPs in
Vivo

There are three highly related PTPs (STEP, HePTP, and PTP-

SL) that all dephosphorylate ERK1/2. Only STEP is found in

cortex, whereas HePTP is present in spleen, and PTP-SL is

present in cerebellum, both tissues that lack STEP. In addition,

ERK1/2 and Pyk2 are dephosphorylated by other tyrosine

phosphatases outside of the CNS. We examined the specificity

of TC-2153 by injecting WT and STEP KO mice with TC-2153

or vehicle, and determined the Tyr phosphorylation of ERK1/2

(Y204/187) and Pyk2 (Y402) in different organs (Figure 3B–G and

Figure S3B for representative blots). There was a significant

increase in pERK1/2 and pPyk2 in the frontal cortex and

hippocampus, but not in the cerebellum or in all tissues tested

outside the brain. These results suggest that TC-2153 does not

target homologous PTPs known to dephosphorylate ERK1/2 and

Pyk2 when tested in vivo.

We also performed toxicity studies with TC-2153 in cortical

cultures (Figure 4). We measured the release of lactate dehydro-

genase (LDH) from the cultures for up to 48 h at various TC-2153

concentrations. Even at the high dose of 100 mM, TC-2153 had

no significant effect on LDH release compared to the positive

controls.

Mechanism of STEP Inhibition by TC-2153
We next examined the mechanism by which TC-2153 inhibited

STEP. Because the catalytic cysteine in PTPs is prone to

sulfhydration, nitrosylation, and oxidative modifications that cause

inhibition of phosphatase activity [27–32], we first examined the

effect of a reducing agent on STEP inhibition by TC-2153. The

addition of reduced glutathione (GSH, 1 mM) decreased the

inhibitory activity of TC-2153 by two orders of magnitude in in
vitro assays (IC50 = 8.7960.43 mM compared to 24.660.8 nM)

(Figure 5A). These results suggested an oxidative mechanism for

the inhibition of STEP. We established that TC-2153 was stable

and did not degenerate in the assay conditions by sensitive 19F

NMR monitoring (Figure S4) and was not acting through

generation of reactive oxygen species (ROS), which was tested

by the addition of catalase or superoxide dismutase to the in vitro
assay (Table S2). To confirm that ROS are also not released in

cortical cultures with TC-2153 treatment, we performed H2O2

colorimetric assay and fluorescence assay with 2,7-dichlorofluor-

escein diacetate (DCF) and did not observe any significant

differences in H2O2 or ROS levels between the TC-2153 treated

compared to nontreated control groups (Figure S5).

To evaluate the mode of inhibition, we incubated STEP with

TC-2153, subjected the sample to dialysis to remove excess

inhibitor, and monitored enzyme activity (Figure 5B). After 24 h

of dialysis, STEP remained inhibited, suggesting that TC-2153

acts as an irreversible inhibitor under the conditions used. Using

the progress curve method [29], inhibition was also found to be

irreversible and the second order rate of inactivation was

determined (Figure 5C). A kobs was determined for pNPP in the

presence of varying initial inhibitor concentrations (n$4). Values

were then analyzed with nonlinear regression to obtain the

kinetic constants: kinact = 0.017660.0007 s21; Ki = 115610 nM;

kinact/Ki = 153,000615,000 M21s21. However, STEP activity

could be recovered following incubation with GSH or DTT

(Figure 5D). Aliquots of STEP were incubated with DMSO

control or TC-2153 and were then added to assay buffer

containing 1 mM GSH, 1 mM DTT, or water control and

allowed to incubate for up to 1 h prior to testing for enzymatic

activity. STEP activity was rapidly recovered by both reductants,

with DTT showing a greater recovery of activity (75% recovery

was used as a control. Shown in the insert is a representative chromatogram (UV absorbance detection, 350 nm). Peaks A, B, and C indicate early
unretained material, Compound 3, and the unknown compound. (B) Structure of S8, the benzopentathiepin core, and 8-(trifluoromethyl)-1,2,3,4,5-
benzopentathiepin-6-amine hydrochloride (known as TC-2153). (C and D) Dose–response curves for S8 and TC-2153. (C) The IC50 for S8 was
determined to be 17.260.4 nM (mean 6 s.e.m., n = 4). (D) The IC50 for TC-2153 was determined to be 24.660.8 nM (mean 6 s.e.m., n = 4).
doi:10.1371/journal.pbio.1001923.g001

STEP Inhibitor Reverses Cognitive Deficits in AD Mice
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after 1 h, where DMSO control represents 100% activity)

compared to GSH (29% recovery after 1 h).

We then performed LCMS analysis to determine the intact

protein mass of STEP and STEP+TC-2153. Our intact protein

analyses suggest a covalent adduct to STEP. Although we were

able to obtain the accurate mass for STEP, we were unable to

mass spectrally resolve the heterogeneous mixture of intact STEP+
TC-2153 and its covalent adducts with sufficient accuracy to fully

interpret the results. Therefore, we next used high-resolution

tandem mass spectrometry to focus upon whether TC-2153 might

Figure 2. S8 and TC-2153 increases the Tyr phosphorylation of STEP substrates in neuronal cultures and in vivo. Cortical neuronal
cultures were treated with (A) S8 and vehicle (Veh) or (B) TC-2153 and vehicle (0.05, 0.1, 1, and 10 mM) for 1 h. Phosphorylation of GluN2B (Y1472), Pyk2
(Y402), and ERK1/2 (Y204/187) were significantly higher after treatment of cultures with S8 (A) or TC-2153 (B) (*p,0.05, **p,0.01, ***p,0.001, one-way
ANOVA with post hoc Bonferroni test). Data represent the phospho-signal normalized to total protein and then to GAPDH (mean 6 s.e.m., n = 4).
C57BL/6 mice (3–6 mo) were injected with (C) S8 (0.5, 1, 3 mg/kg, i.p.) or (D) TC-2153 (i.p., 1, 3, 6, 10 mg/kg, i.p.) and were sacrificed 3 h later. Cortices
were microdissected and lysates spun down to P2 fraction and prepared for Western blotting. Tyrosine phosphorylation status was probed with
phospho-specific antibodies to pGluN2B: Tyr1472, pPyk2: Tyr402, and pERK1/2: Tyr204/187 (*p,0.05; **p,0.01; one-way ANOVA with post hoc
Bonferroni test). Data represent the phospho-signal normalized to the total protein signal and then to GAPDH (mean 6 s.e.m., n = 3).
doi:10.1371/journal.pbio.1001923.g002

STEP Inhibitor Reverses Cognitive Deficits in AD Mice
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modify the active site cysteine of STEP. For these experiments, we

used WT STEP as well as a STEP mutant in which the catalytic

cysteine was changed to serine. Greater than 90% of the primary

amino acid sequences were identified by LC-MS/MS for WT

STEP or for the STEP mutant, following in-gel tryptic digestion of

STEP from nondenaturing (native) preparations. We initially

analyzed the catalytic cysteine at position 472 of STEP in the

absence of TC-2153 and found a disulfide bridge between Cys465

and Cys472 that presumably forms following tryptic digestion given

the positions of Cys465 and Cys472 in the three-dimensional X-ray

crystal structure of STEP [30]. This modification was not observed

when the catalytic site cysteine (Cys472) was mutated to serine.

Incubation of WT STEP with TC-2153 resulted in the presence of

a de novo trisulfide within the Cys465/Cys472 bridge, which was

not observed for WT STEP alone or when the catalytic site

cysteine (Cys472) was mutated to serine (Figure 5E and Figure S6).

The precursor monoisotopic mass of the trisulfide-containing

peptide had a mass error of 4 ppm (,0.011 Da) based on

theoretical mass calculation, which is within the 5 ppm external

mass calibration expected for MS/MS data collected by the linear

ion trap instrument used. These results indicate that the active site

cysteine is likely modified by TC-2153 and suggest that following

tryptic digestion a sulfur from the benzopentathiepin core is

retained, giving rise to the trisulfide identified by mass spectrom-

etry.

TC-2153 Reduces Cognitive Deficits in 3xTg-AD Mice
We next tested the efficacy of TC-2153 to reverse cognitive

deficits in an AD mouse model. We first used the Y-maze to

evaluate spatial working memory function in 3xTg-AD mice. AD

or WT mice were injected with vehicle or TC-2153 (10 mg/kg,

i.p.) 3 h prior to the test. Spontaneous alternations and total arm

entries were calculated. There was no significant change in arm

entries in TC-2153–treated mice, suggesting no drug-induced

effect on general motor activity (Figure 6A). The main effect of

genotype [F(1, 29) = 5.240, p,0.05], treatment [F(1, 29) = 5.895,

p,0.05], and Genotype 6 Treatment interaction [F(1,

29) = 9.751, p,0.01] were significant for spontaneous alternations,

with the AD mice making more incorrect choices (i.e., fewer

alternations) (Figure 6B). Compared to their respective vehicle

controls, TC-2153 increased percentage alternation in the AD

mice (TC-treated, 71.1364.58 versus Veh-treated, 58.9462.46,

p,0.05), but not in WT mice (TC-treated, 73.4563.19; Veh-

treated, 74.9862.19, p.0.05).

We next investigated whether TC-2153 improved performance

in the novel object recognition (NOR) task. WT or 3xTg-AD mice

had no significant differences in baseline locomotor activity as

measured during the habituation phase. Mice received an acute

injection of vehicle or TC-2153 (10 mg/kg) 3 h prior to the

training phase. Twenty-four h later, mice were subjected to the test

phase. Discrimination indexes (DIs) were compared for group

differences in object memory. The main effect of genotype [F(1,

23) = 4.342, p,0.05], treatment [F(1, 23) = 5.895, p,0.01], and

Genotype 6 Treatment interaction was significant [F(1,

23) = 4.362, p,0.05]. Post hoc analysis indicated that the DI in

the AD-TC group was significantly higher than those of the AD-

Veh group (TC-treated, 0.35460.094 versus vehicle-treated, 2

0.25960.104, p,0.001). In the WT groups, the DI in the TC-

2153–treated mice did not differ from the Veh-treated mice

(vehicle-treated, 0.16660.057; TC-treated, 0.30460.095, p.0.05)

(Figure 6C).

We then tested the effects of TC-2153 in the reference memory

version of the Morris water maze (MWM). A three-way ANOVA

analysis revealed a significant Genotype 6Treatment 6Training

Day interaction (p,0.05). Daily injection of TC-2153 3 h prior to

training reversed memory deficits in 3xTg-AD mice on days 5 and

6 of the acquisition phase (p,0.01) (Figure 6D). The longer escape

latency of 3xTg-AD mice injected with vehicle was not attributed

to slower swimming speed, as no significant differences were found

between groups (p.0.05; two-way ANOVA) (Figure 6E). To

confirm memory status, the number of entries in a circular zone

located around the previous platform location (target zone) and in

the opposite quadrants was evaluated during the probe trial 24 h

after the last acquisition day. A three-way ANOVA analysis

revealed a significant Genotype 6 Treatment 6 Quadrant

interaction (p,0.004). The 3xTg-AD mice treated with TC-

2153 spent as much time as WT mice in the target zone, whereas

AD mice injected with vehicle showed no preference for the target

zone (Figure 6F). All groups had similar escape latencies during

the cued trial when the platform was visible, indicating the absence

of sensorimotor or motivational deficits to escape from water (WT-

Veh, 15.161.7 s; WT-TC, 15.661.7 s; AD-Veh, 15.363.0 s; AD-

TC, 16.062.3 s; mean 6 s.e.m.; p.0.05; two-way ANOVA).

There were no differences in thigmotaxic swimming patterns

between any of the tested groups (Figure S7). Taken together,

these results demonstrate that TC-2153 significantly improved

cognitive functioning in 6-mo-old 3xTg-AD mice.

We next determined whether inhibition of STEP in 12-mo-old

3xTg-AD mice affected beta amyloid or phospho-tau levels. We

first needed to confirm that TC-2153 was effective in attenuating

cognitive deficits at 12 mo, as these mice have more robust

increases in phospho-tau and Ab levels. We tested the mice with

the NOR task and once again found a significant improvement of

memory in AD mice treated with TC-2153 during the choice

phase (10 mg/kg, i.p.; TC-2153-AD, familiar versus novel, p,

0.05). TC-2153 did not affect cognitive function in WT mice

(Figure S8A). There were no significant changes in Ab or

phospho-tau levels after administration of TC-2153 (Figure

S8B–C).

Discussion

STEP function is disrupted in several neurological disorders in

addition to AD, including FXS [9], Parkinson’s disease [31], and

schizophrenia [8]. The increase in STEP expression in these

illnesses is due to either an increase in its translation (in FXS) or a

decrease in its degradation (in AD, Parkinson’s disease, and

schizophrenia). In contrast, STEP levels or activity are lower in

several other disorders, including stress-related conditions [32,33],

excessive EtOH consumption [34], and cerebral ischemia [35].

Thus, the current model is that STEP activity must be within an

optimal range and that either high or low levels of STEP disrupt

Table 1. Selectivity of TC-2153 in Vitro.

PTP Accessiona IC50 (nM)b

STEP61 NP_001265167 93.361.1

STEP46 [62] 57.361.1

HePTP AAH01746 363.561.2

PTP-SL NP_002840 220.661.3

PTP1B NP_002818 723.961.2

SHP-2 AAA36610 6,896.061.2

afrom NCBI database; bcalculated using GraphPad Prism 5. mean 6 s.e.m.
(n = 3).
doi:10.1371/journal.pbio.1001923.t001
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synaptic plasticity. Disruption in STEP function has also been

implicated in seizures [36], ethanol abuse [37], amphetamamine-

induced stereotypies [38], and Huntington’s disease [39,40],

although the basis for these changes remain to be determined.

In terms of STEP dysfunction, most is known about its role in

AD. Ab binding to the a7 nicotinic receptor leads to calcium

influx and calcineurin activation [6]. Calcineurin activates protein

phosphatase 1 (PP1), which dephosphorylates a regulatory serine

residue within the STEP substrate-binding domain, enabling

STEP to interact with and dephosphorylate its substrates [41]. In

addition, STEP is normally ubiquitinated and degraded by the

proteasome after NMDAR stimulation [15], and Ab inhibition of

the proteasome [42,43] results in a build-up of active STEP [7].

Based on these results, STEP was genetically lowered by crossing

STEP KO mice with triple transgenic mice to produce progeny

that still had the AD mutations, but were null for STEP [16].

These progeny had improved cognitive function and led to the

current study to discover STEP inhibitors.

We initially developed an HTS assay for STEP using the

generic phosphatase substrate pNPP and screened ,150,000

compounds to identify STEP inhibitors. However, when lead

compounds were resynthesized, they had significantly lower

activity against STEP, suggesting that an impurity in the

commercial substances was likely inhibiting STEP activity. We

isolated and identified this ‘‘contaminating’’ compound as

elemental sulfur in the form of octasulfur (S8), which led in turn

to the identification of the lead compound TC-2153. It should be

noted that we did not include the reductant DTT in the initial

library screen, in contrast to many screens for PTP inhibitors [44].

This allowed us to discover S8 and identify TC-2153 as a potent

inhibitor of STEP and the mechanism of action by which TC-

2153 inhibits STEP.

The specificity of TC-2153 in in vitro, as well as cell and animal

models, was explored. Interestingly, TC-2153 was more selective

in in vitro assays against full-length STEP, but showed little

specificity when tested against the truncated phosphatase domains

of the PTPs. Although the exact mechanisms need to be clarified,

these results are consistent with other recent findings with PTP

inhibitors [45,46].

TC-2153 treatment of neuronal cultures and WT mice

increased the Tyr phosphorylation of STEP substrates. These

results are consistent with previous studies of STEP KO mice that

showed that a loss of STEP results in an increase in the Tyr

phosphorylation of all STEP substrates identified to date

[10,12,14,28]. The Tyr phosphorylation of the three STEP

substrates tested was not significantly changed by TC-2153 in

STEP KO neuronal cultures, but was increased by the general

PTP inhibitor sodium orthovanadate, indicating that a ceiling

effect did not explain the results.

Similarly, administration of TC-2153 to WT mice led to an

increase in the Tyr phosphorylation of the STEP substrates

ERK1/2 and Pyk2 in the hippocampus and frontal cortex (where

STEP is present). However, treatment of WT mice with TC-2153

did not increase the Tyr phosphorylation of these two substrates in

regions with no STEP expression (i.e., the cerebellum and organs

outside of the CNS). An important finding was that treatment of

STEP KO mice did not increase the Tyr phosphorylation of these

substrates over baseline levels in the hippocampus and frontal

cortex. The Tyr phosphorylation of ERK1/2 and Pyk2 did not

alter in the cerebellum or in organs outside of the CNS (regions

were STEP is not expressed). These results suggest a significant

degree of in vivo specificity for inhibition of STEP by TC-2153,

although additional studies are needed to expand on these initial

findings.

These results are consistent with an emerging body of research

that suggests that oxidative regulation of the catalytic cysteine

residue of PTPs is an important regulatory mechanism in vivo that

links tyrosine phosphorylation signaling and the redox status of

cells [47,48]. PTPs contain a catalytic cysteine with an SH-group

that exists in a thiolate state (S–) and facilitates removal of

phosphate groups from substrates. The pKa values of these

cysteine residues are in the range of 4–6, making these sites more

likely to be oxidized compared to other cysteines that typically

have pKa values in the range of 8–9 [49,50]. Thus, a high

reducing environment in cells, either through reduced production

of reactive oxygen species or elevated activity of reactive oxygen

scavengers, is proposed to decrease PTP oxidation and increase

PTP activity. In contrast, a high oxidizing environment would

increase PTP oxidation, reduce PTP activity, and increase tyrosine

kinase signaling [49,51,52]. Although all PTPases are likely to

modulate qualitatively in a similar fashion by cell redox status,

several studies have shown that PTPs can be differentially

inhibited by oxidation. For example, stimulation of T-cell

receptors results in a selective oxidation of SHP2, but not SHP1,

whereas both PTPs show similar sensitivity to oxidation in vitro. In

contrast, SHP1 is more prone to oxidation than SHP2 after

treatment of EOL-1 cells with H2O2 [26].

Whether STEP is regulated in cells by a similar balance of

reactive oxygen species and oxygen scavengers, and whether this

might explain the sensitivity of STEP to TC-2153, is under

investigation. In the initial studies presented here, we explored the

mechanism for STEP inhibition. Irreversible inhibition in the

absence of reducing conditions was suggested for TC-2153, as

dialysis did not restore activity. However, enzyme activity could be

recovered by incubation with DTT or GSH, consistent with

enzyme inactivation by oxidative modification of the active site

cysteine. Moreover, the inhibitory activity of TC-2153 was

considerably reduced by addition of DTT or GSH to the assay

buffer. The oxidative mechanism for inactivation observed for

TC-2153 is in agreement with established oxidative mechanisms

for regulating PTP activity in vivo [53–55]. In support of this,

mass spectroscopy analysis indicated that the catalytic Cys residue

(Cys472) was modified by a trisulfide bridge that included Cys465,

but only in the presence of TC-2153.

In summary, we have discovered that the pentathiepin TC-2153

potently inhibits STEP activity. Although the results from the

STEP KOs and the biochemistry are suggestive of a direct action

of TC-2153 on the STEP active site, we cannot exclude an

indirect mechanism in vivo. An important finding is that the new

platform represented by TC-2153 reverses cognitive deficits in

Figure 3. TC-2153 selectively inhibits STEP. (A) TC-2153 failed to increase tyrosine phosphorylation of STEP substrates in STEP KO cortical
neurons. WT and STEP KO cultures were treated with TC-2153 (0.1 and 1 mM), vehicle (0.1% DMSO), or sodium orthovanadate (Na3VO4, 1 mM) for 1 h.
Phosphorylation of GluN2B Y1472, Pyk2 Y402, and ERK1/2 Y204/187 was normalized to total protein level and then to GAPDH as loading control (*p,

0.05, **p,0.01 one-way ANOVA with post hoc Bonferroni test, compared with veh-treated controls, n = 4). (B–G) TC-2153 increased the
phosphorylation of ERK1/2 Y204/187 and Pyk2 Y402 in frontal cortex and hippocampus, but not in cerebellum, spleen, kidney, or pancreas, all tissues
that do not have STEP. Mice were injected i.p. with TC-2153 (10 mg/kg; n = 4) or vehicle (n = 4) and were sacrificed 3 h later. Changes are expressed as
the mean 6 s.e.m. of pERK1/2 and pPyk2 normalized to total protein level and then to GAPDH (*p,0.05, **p,0.01; two-way ANOVA follow by
Tukey’s H.S.D. test).
doi:10.1371/journal.pbio.1001923.g003
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6- and 12-mo-old 3xTg-AD mice, a reflection of the suggested role

of STEP in the initial synaptopathology of AD [6,16,56]. The

administration of TC-2351 did not affect the Ab and tau brain

pathology of the mice, although the question of the efficacy of TC-

2153 at advanced stages of pathology remains open. Longitudinal

studies with TC-2153 as well as administration of TC-2153 to

other AD models will help address this question. Longitudinal

studies will also address the long-term preventive effects of STEP

inhibition on cognitive decline. Finally, it is important to

determine whether TC-2153 is effective in other animal models

of neuropsychiatric diseases in which STEP activity is elevated and

these studies have begun.

Figure 4. TC-2153 does not induce neuronal cell death. Cortical cells were incubated with TC-2153 (1, 10, and 100 mM) for 1 h along with
positive controls: glutamate (100 mM), SDS (0.02%), and Triton-X-100 (0.15%) (A), and at multiple time points (1 h, 3 h, 24 h, and 48 h) (B). Bovine LDH
was used as a LDH-positive control. The media was collected and analyzed for LDH. The assay quantitatively measures LDH, a stable cytosolic enzyme
that is released upon cell lysis. Released LDH in culture supernatants is measured with a 30-min coupled enzymatic assay, which results in the
conversion of a tetrazolium salt (INT) into a red formazan product. The amount of color formed is proportional to the number of lysed cells.
doi:10.1371/journal.pbio.1001923.g004
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Figure 5. TC-2153 targets the active site cysteine of STEP. (A) STEP activity was measured with pNPP and IC50s were 24.660.8 nM and
8.7960.43 mM in the absence and presence of 1 mM GSH (mean 6 s.e.m., n = 2). (B) STEP (200 nM) and TC-2153 (1 mM) (or DMSO control) were
incubated for 60 min to inhibit enzymatic activity prior to dialysis. Aliquots were tested against pNPP (mean 6 s.e.m., n = 4). (C) The progress curve
method was used to determine the second-order rate constant: kinact/Ki = 153,000615,000 M21s21 (mean 6 s.e.m., n = 4). (D) STEP (200 nM) and TC-
2153 (5 mM) were incubated for 10 min and then incubated with GSH or DTT (1 mM each) or water (no reductant) for 0, 15, 30, or 60 min, and the
enzymatic activity of STEP was measured using the pNPP assay (mean 6 s.e.m., n = 4). (E) Detection of trisulfide bridge formation between C465 and
C472. The peptide sequence in (1) illustrates the trisulfide bridge along with the b and y-ion assignments detected in the MS/MS fragmentations
spectrum (see Figure S6). (2) compares the 3D elution profile of the trisulfide peptide (mass = 2,746.242 Da). The trisulfide bridge (modified) peptide
is only detected in the WT STEP in the presence of TC-2153. The corresponding disulfide (non-modified) peptide (mass = 2,714.254 Da) was detected
in WT STEP (see Figure S6).
doi:10.1371/journal.pbio.1001923.g005
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Materials and Methods

Ethics Statement
The Yale University Institutional Animal Care and Use

Committee approved all proposed use of animals. All animal

work was carried out in strict accordance with National Institutes

of Health (NIH) Guidelines for the Care and Use of Laboratory

Animals.

Reagents
pNPP, 2-(N-morpholino) ethanesulfonic acid (MES), sodium

orthovanadate, ATP, and all buffer components were purchased

from Sigma-Aldrich (St. Louis, MO). Malachite Green reagent kit

was purchased from Bioassay system (Hayward, CA). 6,8-difluoro-

4-methylumbelliferyl phosphate (DiFMUP) and EnzChek phos-

phatase assay kit were purchased from Invitrogen (Carlsbad, CA).

The 96- and 384-well clear polypropylene plates were purchased

from VWR (Radnor, PA), and 384-well white plates were

purchased from Nalge Nunc International (Rochester, NY). Full-

length STEP46 was used in the initial library screen. STEP46

cDNA was cloned into pGEX2T and transformed into BL21

(DE3) E. coli cells. STEP (20 mg) was purified on a glutathione

sepharose column to immobilize the GST-tagged protein [14].

The column was loaded, washed, and bound protein eluted using

Fast Protein Liquid Chromatography. For some of the biochem-

ical experiments, we purified WT TAT-STEP46 and TAT-

STEP46 (C to S) proteins, the latter containing a mutation at its

catalytic cysteine within the active site that renders the enzyme

inactive [15]. The assay development for the HTS is shown in

Figure S9, biochemical characterization of STEP is in Figure S10,

and the synthesis of TC-2153 (benzopentathiepin 8-(trifluoro-

methyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride) is

described in detail in Figure S11.

Cell-Based Assay
Primary cortical neurons were isolated from Sprague Dawley

rat embryos (E18) (Charles River Laboratories, Wilmington, MA)

as previously described [15]. In some experiments, cortical

neurons were made from WT and STEP KO mouse embryos

(E18). Neurons were allowed to grow for 18–21 d in CO2

incubator before addition of compounds at indicated doses for 1 h.

Immediately following treatments, neurons were lysed in Radio-

Immuno Precipitation Assay (RIPA) buffer supplied with protease

inhibitor cocktail (Roche Applied Science, Indianapolis, IN) and

phosphatase inhibitors (NaF and Na3VO4). All experiments

were replicated four times with four independent batches of

cultures.

In Vivo Work
Wild-type, male C57BL/6 mice (3–6 mo) were used for all

studies. An initial dose–response curve was carried out using S8

(0.5, 1, and 3 mg/kg, i.p.) or TC-2153 (1, 3, 6, and 10 mg/kg,

i.p.). Pilot studies were conducted to optimize the time after i.p.

injection when STEP substrates showed maximum Tyr phosphor-

ylation (1–3 h). Cortical tissues were dissected out 3 h postinjec-

tion and processed for subcellular fractionation. We homogenized

brain tissue in buffer containing (in mM): 10 Tris-HCl, pH 7.6,

320 sucrose, 150 NaCl, 5 EDTA, 5 EGTA, 20 NaF, 1 Na3VO4,

and protease inhibitors (TEVP). Homogenates were centrifuged at

800 6 g to remove nuclei and large debris (P1). Synaptosomal

fractions (P2) were prepared from S1 by centrifugation at 9,200 6
g for 15 min. The P2 pellet was washed twice and was

resuspended in TEVP buffer. In some experiments, mice were

injected with S8 (1 mg/kg, i.p.) or TC-2153 (3 mg/kg, i.p.), and

cortex, cerebellum, and spleen were removed to test for the in vivo
inhibition of the highly related PTPs, HePTP, and PTP-SL [57–

60].

Western Blotting
Samples were prepared and resolved by SDS-PAGE, trans-

ferred to nitrocellulose membrane, and incubated with phospho-

specific antibodies (anti-pY204/187 ERK1/2, anti-pY402 Pyk2, anti-

pY1472 GluN2B) or total protein antibodies (anti-ERK2, anti-

Pyk2, and anti-NR2B) overnight at 4uC. All antibodies used are

listed in Table S3. Immunoreactivity was visualized using a

Chemiluminescent substrate kit (Pierce Biotechnology, Rockford,

IL) and detected using a G:BOX with the image program

GeneSnap (Syngene, Cambridge, UK). All densitometric quanti-

fications were performed using the Genetools program.

Isolation and Identification of S8 as Active Constituent of
Compound 3

Compound 3 was extracted with hexane and the residue

obtained after rotary evaporation, then recrystallized from

methanol. Small pale yellow needle-shaped crystals (0.5–1 cm)

were obtained in approximately 1% yield. The isolated crystalline

material displayed the same HPLC retention, UV absorbance, and

STEP inhibitory properties as the initially collected late-eluting

peak. The crystalline compound was characterized by the X-Ray

Crystallographic Facility of the Yale University Department of

Chemistry and found to be sulfur (S8).

General Procedures for Determination of Inhibitor IC50

Reaction volumes of 100 mL were used in 96-well plates. We

added 75 mL of water to each well, followed by 5 mL of 206buffer

(stock, 1 M imidazole HCl, pH 7.0, 1 M NaCl, 0.02% Triton-X

100). We added 5 mL of the appropriate inhibitor dilution in

DMSO, followed by 5 mL of phosphatase (stock, 0.2 mM, 10 nM

in assay). The assay plate was then incubated at 27uC for 10 min

with shaking. The reaction was started by addition of 10 mL of

106pNPP substrate (stock, 5 mM, 500 mM in assay), and reaction

progress was immediately monitored at 405 nm at a temperature

of 27uC. The initial rate data collected were used for determina-

tion of IC50 values. For IC50 determination, kinetic values were

obtained directly from nonlinear regression of substrate–velocity

curves in the presence of various concentrations of inhibitor using

one site competition in GraphPad Prism v5.01 scientific graphing

software. The Km value of pNPP in this system was determined to

be 745 mM and was used in the kinetic analysis.

For experiments with catalase or superoxide dismutase (SOD),

10 mL of the appropriate enzyme stocks (catalase, 800 U/mL

stock, 80 U/mL in assay; SOD, 1,000 U/mL stock, 100 U/mL in

assay) were added prior to addition of the inhibitor and STEP.

For the experiments with glutathione reducing agent, 10 mL of

glutathione (stock, 10 mM, 1 mM in assay) or water control was

added before the inhibitor stocks, and only 65 mL of water was

added initially to maintain the 100 mL assay volume. Once the

inhibitor stocks were added, the assay plate was allowed to

incubate 10 min at 27uC with shaking. This was followed by

addition of phosphatase (stock, 0.4 mM, 20 nM in assay) and

another 10-min incubation at 27uC prior to addition of pNPP

substrate.

Selectivity of TC-2153 Against STEP in Vitro
Purification of GST-tagged STEP61 and STEP46 constructs was

as previously described [13,14]. The GST-SHP-2 construct was a

generous gift from Dr. A. M. Bennett (Yale University). The
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GST-PTP1B construct was purchased from Addgene (Cambridge,

MA). Constructs were transformed into BL21 (DE3) E. coli cells.

Fusion proteins were purified on a glutathione sepharose column. Full-

length HePTP and PTP-SL proteins were purchased from Abnova

(Taipei, Taiwan). All proteins were dialyzed in 1,000-fold volume of

buffer, which was repeated three times. Assays were carried out in 96-

well plates with 10 nM of each phosphatase and various doses of TC-

2153 in triplicates. After 10 min preincubation of enzyme and

inhibitor at 27uC, 500 mM of pNPP was added and incubated for

30 min. Absorbance was taken at 405 nm using a Biotek plate reader.

Percent of inhibition by TC-2153 at each dose was calculated and

plotted using GraphPad Prism v5.01 to obtain IC50.

Determination of TC-2153 Stability in Imidazole Buffer
To monitor the stability of TC-2153 in the imidazole buffer,

20 mL of 20 mM TC-2153 stock in DMSO was added to an

Eppendorf tube. The solution was diluted to 400 mL (1 mM TC-

2153 final concentration, 5% final DMSO) with either water or

the pH 7.0 imidazole buffer. The tube was allowed to incubate at

ambient temperature with shaking for 1 h. The mixture was

diluted with 150 mL of DMSO-d6 and transferred to an NMR

tube containing a capillary of trifluoroacetic acid as an external

standard (276.55 ppm). The stability of the compound in the

buffer was confirmed by observing no differences in the sensitive
19F-NMR spectra (Figure S4). As a control for compound

modification, the experiment was repeated with the addition of

1 mM GSH in the incubation buffer.

Dialysis
STEP was diluted into 16 assay buffer with either inhibitor or

DMSO control (final volume, 2.9 mL; final concentration, 1 mM

STEP, 5 mM TC-2153; 50 mM imidazole HCl, pH 7.0, 50 mM

NaCl, 0.001% Triton-X 100, 5% v/v DMSO). The samples were

shaken at room temperature for 1 h to inhibit STEP. Each sample

was then transferred to a separate Thermo Scientific Slide-A-

Lyzer dialysis cassette with a 10,000 MW cutoff and 0.5–3.0 mL

sample volume and was dialyzed into 1 L of 16assay buffer over

24 h in a 4uC cold room. Aliquots of approximately 100 mL were

removed from the dialysis cassette at 0, 4, and 24 h time points.

Protein concentration was determined by reading absorbance at

280 nm compared to a standard curve for STEP. The samples

were diluted to 100 nM in 100 mL of 16 assay buffer. The

reaction was started by addition of 10 mL of 106pNPP substrate

(stock, 20 mM, 1.81 mM in assay; total assay volume, 110 mL),

and reaction progress was immediately monitored at 405 nm at a

temperature of 27uC. The initial rate data collected were used to

determine enzyme activity standardized to the DMSO control

zero time point.

Recovery of STEP Activity by Reducing Agents
STEP was diluted to 200 nM in water, and aliquots of this stock

were mixed with DMSO (5% by volume) or TC-2153 (5 mM final

concentration, 5% DMSO by volume) and incubated at ambient

temperature on a shaker for 10 min. Each sample was aliquoted

out and 50 mL was transferred to wells of a 96-well microtiter plate

containing 40 mL of 26 assay buffer with added reductant (GSH

or DTT, 1 mM final concentration) and shaken for 0, 15, 30, or

60 additional minutes at ambient temperature. The reaction was

started by addition of 10 mL of 106 pNPP substrate (stock,

20 mM, 2 mM in assay; total assay volume, 100 mL), and reaction

progress was immediately monitored at 405 nm at a temperature

of 27uC. The initial rate data collected were used to determine

enzyme activity standardized to the DMSO controls.

Determination of Inhibition Constants
The second-order rate constant of inactivation for TC-2153 was

determined under pseudo–first-order conditions using the progress

curve method [29]. Assay wells contained a mixture of the

inhibitor (800, 400, 200, 100, 50, 0 nM) and 745 mM of pNPP

(Km = 745 mM) in buffer (50 mM imidazole pH 7.0, 50 mM

NaCl, 0.01% Triton-X 100). Aliquots of STEP were added to each

well to initiate the assay. The final concentration of STEP was

10 nM. Hydrolysis of pNPP was monitored spectrophotometri-

cally for 30 min at an absorbance wavelength of 405 nm. To

determine the inhibition parameters, time points for which the

control ([I] = 0) was linear were used. A kobs was calculated for

each inhibitor concentration via a nonlinear regression of the data

according to the equation P = (vi/kobs)(1-exp(-kobst)) (where P,

product formation; vi, initial rate; t, time) using Prism 5

(GraphPad). Because kobs varied hyperbolically with [I], nonlinear

regression was performed to determine the second-order rate

constant, kinact/Ki, using the equation kobs = kinact[I]/([I] + Ki (1 +
[S]/ Km)). Assays were done in quadruplicate on two separate

occasions. The average and standard deviation of the assays is

reported.

Mass Spectrometry
To explore the protein modification(s) of STEP upon TC-2153

inhibition, reduced and nonreduced gel-purified STEP (WT or

C472S mutant) proteins were analyzed by high-resolution tandem

mass spectrometry. Briefly, purified STEP WT or C-S mutant

proteins (10 mg each) were incubated with vehicle (1% DMSO) or

TC-2153 (10 mM in 1% DMSO) in assay buffer (50 mM

imidazole, pH 7.0) at room temperature (25uC) for 30 min.

Samples were resolved on 8% SDS-PAGE or nondenaturing

PAGE, and proteins were visualized by Coomassie Blue staining.

Gel bands were excised and kept at 280uC until use. Excised gel

bands corresponding to the mutant and WT STEP with and

without TC-2153 were in-gel trypsin digested under native

conditions (w/o reducing agent) overnight. Peptides were extract-

ed from the digested samples with 80% acetonitrile containing

0.1% trifluoroacetic acid, and then dried under SpeedVac.

Samples were then reconstituted in minimum solution containing

0.1% TFA, and loaded onto a RP C18 nanoACQUITY UPLC

column (1.7 mm BEH130 C18, 75 mm6250 mm, with a 5 mm

Figure 6. TC-2153 improves cognitive deficits in 3xTg-AD mice. WT and 3xTg-AD mice (male, 6 mo old) were treated with vehicle or TC-2153
(10 mg/kg, i.p.) and tested in the Y-maze, NOR, and MWM tasks. (A and B) Y-maze, number of arm entries and percentage spontaneous alternations
were calculated (*p,0.05, paired t test, AD-TC versus AD-Veh) (WT, n = 20/group; AD, n = 11/group). (C) NOR, the DI of each group was calculated
(***p,0.001, AD-TC versus AD-Veh) (WT, n = 9/group; AD, n = 16/group). (D) MWM, the 3xTg-AD mice injected with vehicle (n = 6) showed longer
escape latency before finding the hidden platform (3 trials/day; 60 s; 30 m intertrial interval) when compared to AD mice treated with TC-2153 (n = 7)
or WT mice injected with vehicle (n = 12) or TC-2153 (n = 13) (three-way ANOVA). * and + represents a statistical significant variation between AD-Veh
mice and AD-TC or WT-Veh, respectively. (E) Swim speed at each training day was not significantly different between groups (three-way ANOVA). (F)
Number of entries in a circular zone positioned around the previous platform location and in the opposite quadrants. * represents a statistical
significant variation between AD-TC mice and other groups for the target quadrant. + indicates a difference for the target and opposite quadrant
within each group. Data are mean 6 s.e.m. *,+ p,0.05; **,++ p,0.01; ***,+++ p,0.01.
doi:10.1371/journal.pbio.1001923.g006
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Symmetry C18 2G-V/M Trap [180 mm620 mm]). Eluted

peptides were directly infused into an Orbitrap Elite LC MS/

MS system running data-dependent acquisition. Acquired data

were processed utilizing Progenesis LCMS software (Nonlinear

Dynamics) and MASCOT Search engine with user-defined

possible modification(s) search criteria.

Behavioral Analysis
A previous study showed that genetic reduction of STEP

significantly reversed cognitive deficits in 6-mo-old 3xTg-AD mice

[16]. Here we were interested in testing whether pharmacologic

inhibition of STEP with TC-2153 had a similar beneficial effect in

this AD mouse model. We also wanted to test whether TC-2153

had any effects on cognition in WT mice. Mice completed all tests

in the following order: Y-maze alternation, NOR, and MWM. For

all behavioral tests, WT or 3xTg-AD mice were randomly

allocated to treatment with either vehicle or TC-2153.

Open Field Activity
To assess locomotor activity and exploratory behavior, mice

were placed in a square box (60660660 cm) and habituated for

5 min. Mice were treated with vehicle or TC-2153 (10 mg/kg,

i.p.) 3 h prior to the exploration phase of the experiment. A video

camera mounted directly above the box recorded the trials and

ANY-maze software analyzed the distance traveled and time spent

in the center of the box.

Y-Maze Alternation Task
A crossover design was used in the Y-maze and NOR tasks,

such that mice initially treated with vehicle (or TC-2153) were

retested following a 15-d drug-free period and received TC-2153

(or vehicle). The Y-maze apparatus consisted of three dark gray

arms (4264.8620 cm). Each mouse was treated with vehicle or

TC-2153 (10 mg/kg, i.p.) 3 h prior to the experiment, after which

they were placed at the end of one arm (the designated ‘‘start

arm’’) and allowed to freely explore the maze for 5 min. The total

number of arm entries was recorded, as was the number of entries

representing alternation behavior (i.e., sequential entry into all

three arms). All four paws of the mouse had to enter an arm for it

to count as an arm entry. Percentage spontaneous alternation =

(number of alternations)/(total arm entries – 2). A crossover design

was used after a drug-free period of 15 d, with groups previously

treated with vehicle then receiving TC-2153 and vice versa. A

total number of 20 WT and 11 AD mice were used in the Y-maze

task.

NOR Task
Mice were first habituated to the task by allowing them to

explore an empty white open field box (60 cm660 cm) for 5 min.

Twenty-four hours later, mice were treated with vehicle or TC-

2153 (10 mg/kg i.p.) 3 h prior to the sample phase. After the

elapsed time, the mice completed the sample phase in which they

were placed into the open field box with two identical objects

located in the right and left corners. Mice were allowed to freely

explore until they had accumulated a total of 30 s of object

exploration (i.e., contact with the object with the nose and/or front

paws), at which point the trial ended. The time spent with each

object was recorded. Mice that were unable to complete the 30 s

exploration within 20 min during the sample phase were excluded

from the study (WT = 1 and AD = 3). Twenty-four hours later,

mice completed the choice phase that was conducted in an

identical manner to the sample phase except that one of the

objects was substituted by a novel object and trial duration was set

at 5 min. No drug treatments were given during the choice phase.

Fifteen WT mice from the initial cohort were used to optimize the

novel object conditions (to identify object pairings of inherent

equal interest). Location of the novel object (left or right side) was

counterbalanced to minimize possible bias. A crossover design was

used, with a different set of objects after a 15-d drug-free period.

DI was used to evaluate the effects of the TC-2153 compound on

object memory in 6-mo-old 3xTg-AD mice. The DI was

calculated for each subject by using the following formula: DI

= (time spent exploring novel object – time spent exploring

familiar object)/(total time spent exploring both objects). A DI of 0

is indicative of chance performance (i.e., no preference for one

object compared to another), whereas a positive index (ranging

from 0 to 1) indicates preference for novel object compared to

familiar. In order to achieve greater statistical power, a second

cohort of AD mice (n = 7) was run in the novel object test using a

crossover design. Any value lower or higher than two times

standard deviation away from the mean was considered an outlier

and was excluded from the study (AD = 1). A total number of 9

WT and 16 AD mice were used in the NOR task.

MWM
The reference memory version of the MWM task was

performed as described previously [61]. A crossover design was

not used in the MWM task, as the mice were randomly assigned to

each treatment condition and can be exposed to the task only

once. Briefly, animals were trained to swim in a 1.4 m diameter

pool to find a submerged platform (14 cm in diameter) located

1 cm below the surface of water (24uC), rendered opaque by the

addition of nontoxic white paint. Animals were pseudo-randomly

started from a different position at each trial and used distal visual-

spatial cues to find the hidden escape platform that remained in

the center of the same quadrant throughout all training days.

Training measures included escape latency to reach the platform,

swim speed, and thigmotaxis. When animals failed to find the

platform, they were guided to it and remained there for 10 s

before removal. At 24 h after the acquisition phase, the platform

was removed and a probe trial of 90 s was given to evaluate the

number of entries in a circular zone (three times the platform

diameter) positioned around the previous platform location (target

zone) and in the opposite quadrants. To assess visual deficits and

motivation to escape from water, the probe test was followed by a

cued task (60 s; three trials per animal) during which the platform

was visible. The visible platform was moved to different locations

between each trial. After each trial, animals were immediately

placed under a warming lamp to dry to prevent hypothermia. The

experimenter was blind to mouse genotype when administering

TC-2153 or vehicle to AD mice (AD-TC, n = 7; AD-Veh, n = 6) or

WT mice (WT-TC, n = 13; WT-Veh, n = 12). Behavioral data

from training, probe, and cued trials were acquired and analyzed

using the ANY-maze automated tracking system (Stoelting, IL,

USA).

Data Analysis
A two-way analysis of variance (ANOVA) with genotype as the

between-subject factor and treatment as the within subject factor

was used for the Y-maze and object recognition tasks. Percent

alternation (Y-maze) and DI (object recognition) were the

dependent measures. Post hoc analyses were carried out using

Bonferroni’s multiple comparison tests as appropriate (GraphPad

Prism, La Jolla, CA). In an older (12 mo) cohort of WT and 3xTg-

AD mice, the exploration time (NOR task) did not meet the

assumption of normality and equal variance, and raw data

(seconds) were converted using square-root transformation
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followed by t test. For the MWM training and probe sessions, a

three-way repeated measures ANOVA with two between-subject

(Genotype, Treatment) and one within-subject (training day or

quadrant) factor was used. Escape latency (training) and number of

entries (probe) were the dependent measures (StatView, Cary,

NC). Swim speed and escape latency during the probe and cued

trials, respectively, were analyzed using a two-way ANOVA with

genotype and treatment as the between-subject factors. Post hoc

analyses were conducted on significant results. For cell-based

assays, one-way ANOVA with post hoc Bonferroni test was used

to determine statistical significance. All data were expressed as

mean 6 s.e.m.

Supporting Information

Figure S1 Compounds were resynthesized and found to be

inactive against STEP in the pNPP assay. Dose–response

inhibition of STEP activity by commercial or resynthesized

compounds was measured in the pNPP assay. Curves were

obtained by fitting data to a second-order polynomial model.

(TIF)

Figure S2 Representative Western blots for histograms shown in

Figure 2.

(TIF)

Figure S3 Representative Western blots for histograms shown in

Figure 3.

(TIF)

Figure S4 TC-2153 stability in imidazole buffer. TC-2153

dissolved in water (A) and pH 7.0 imidazole buffer (B) were

incubated for 1 h. For each experiment, the compound purity was

determined using sensitive 19F-NMR, which is a sensitive

technique for monitoring compound purity. As a control for

monitoring modification of TC-2153, the compound was also

incubated with 1 mM GSH in pH 7.0 imidazole buffer for 1 h (C),

with compound modification clearly observed by 19F-NMR due to

the appearance of multiple new peaks at a different chemical shift.

(TIF)

Figure S5 TC-2153 treatment does not generate ROS in

cortical neuronal cultures (18 d in vitro). (A) H2O2 levels remain

unchanged with 0.1, 1, or 10 mM TC-2153 treatment or with

200 U/ml superoxide dismutase (SOD) and catalase treatment. (B)

ROS level, measured with the DCF fluorescence, is not increased

with the indicated TC-2153 treatment.

(TIF)

Figure S6 MS/MS verification for the presence of a trisulfide

peptide between C465 and C472 in TAT-STEP. The upper MS/

MS spectrum shows the peaks observed for the fragmentation of

the trisulfide peptide and assignments of the b- and y-ions. The

inverted lower MS/MS spectrum shows the corresponding

fragmentation of a peptide with a disulfide (from WT STEP in

the absence of TC-2153), which has a mass difference of 32 Da

(corresponding to a sulfur mass) from the trisulfide peptide. Peaks

labeled in the lower spectrum with ‘‘*’’ are 32 Da less

(corresponding to a Sulfur mass difference in the fragment ions)

than their counterpart y-ions in the upper mass spectrum. The

inset details the 32 Da mass differences for the y24++ fragment

between the disulfide and trisulfide. Peaks labeled as ‘‘#’’ in the

lower MS/MS spectrum does not have a mass shift between the

modified and nonmodified peptide fragments because they do not

contain the two cysteines that form the di- and tri-sulfide bridge.

(TIF)

Figure S7 No excessive and persistent thigmotaxic problem in

3xTg-AD mice in the MWM. There was no significant difference

in percent time spent in zone A at the periphery of the tank as well

as in zone B and C between 3xTg-AD and WT mice following

treatment with vehicle or TC-2153 (three-way ANOVA).

(TIF)

Figure S8 TC-2153 has no effect on Ab or phospho-tau levels in

12-mo-old 3xTg-AD mice. (A) Three hours prior to training, WT

and 3xTg-AD mice were given vehicle or TC-2153 (10 mg/kg,

i.p.). Time spent with either a novel or familiar object was

recorded using ANY-maze software. Square-root transformation

was used to meet the assumptions of normality and equal variance

of the raw data. All histograms are presented as means 6 s.e.m.

Student’s t test was applied to determine significance differences

(*p,0.05; WT-Veh, n = 10; WT TC, n = 11; AD-Veh, n = 22;

AD-TC, n = 19). (B) Cortical homogenates from vehicle or TC-

2153–treated WT or 3xTg-AD mice were immunoprecipitated

using 6E10 antibody and blotted with 6E10 antibody. CTFs and

Ab are indicated by arrowheads. Representative 7PA2-CM (Ab-

enriched conditioned medium) immunoprecipitation is shown on

right panel. Data are presented as means 6 s.e.m. Quantification

of Ab levels showed no significant difference in vehicle or TC-

2153–treated 3xTg-AD brain samples (Student’s t test, p.0.05;

n = 3). (C) Cortical membrane fractions of vehicle or TC-2153–

treated WT or 3xTg-AD mice were probed with p-tau (AT180)

and total tau (HT7) antibody. Data are presented as means 6

s.e.m. Quantification of p-tau levels showed no significant

difference in vehicle or TC-2153–treated 3xTg-AD brain samples

(Student’s t test, p.0.05; n = 6).

(TIF)

Figure S9 Assay development. (A) Determination of Km for

pNPP with STEP. We reacted 200 nM STEP with different

concentrations of pNPP. The OD405 was read at 5 min after the

reaction was initiated. The Km was determined to be 170 mM

(n = 5). (B) Determination of Km for DiFMUP with STEP. We

reacted 200 nM STEP with different concentrations of DiFMUP.

The fluorescence was read at 5 min after reactions started. Km was

determined to be 18.3 mM. The DiFMUP final concentration used

in confirmatory screening was 20 mM. (C) Z’ factor from

representative plates from the primary screen for STEP inhibitors.

The majority of the plates were between 0.7 and 0.9, indicating a

robust assay.

(TIF)

Figure S10 Characterization of STEP. (A) pH dependency of

STEP. Enzyme activity was assayed in buffers with varying pHs.

(B) Salt dependency of STEP. Activity was assayed in the presence

of increasing concentration of NaCl. (C) DMSO tolerance of

STEP. STEP activity was determined in the presence of increasing

concentrations of DMSO. (D) Stability of STEP at room

temperature. STEP was left at room temperature for indicated

time periods prior to initiation of the reaction by addition of pNPP

substrate.

(TIF)

Figure S11 Synthesis of TC-2153. Scheme of large-scale

synthesis of TC-2153.

(TIF)

Table S1 Eight compounds were selected for further character-

ization based on chemical structure and IC50 values.

(DOCX)

Table S2 In vitro inhibition of STEP by TC-2153. No change

was observed in vitro in the activity of STEP or inhibition by
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TC-2153 when changing the buffer from pH 7.0 to pH 6.0. As it

is physiologically relevant, further studies were conducted at

pH 7.0. The addition of the antioxidant enzymes catalase and

superoxide dismutase had no effect on the inhibition of STEP by

TC-2153. Reduced glutathione decreased the inhibitory activity of

TC-2153 by two orders of magnitude.

(DOCX)

Table S3 Primary and secondary antibodies used in this study.

(DOCX)

Text S1 Supplemental methods and results.

(DOC)
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