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Abstract

It has become increasingly apparent that the extracellular matrix (ECM), which in plants corresponds to the cell wall, can
influence intracellular activities in ways that go far beyond their supposedly passive mechanical support. In plants, growing
cells use mechanisms sensing cell wall integrity to coordinate cell wall performance with the internal growth machinery to
avoid growth cessation or loss of integrity. How this coordination precisely works is unknown. Previously, we reported that
in the tip-growing pollen tube the ANXUR receptor-like kinases (RLKs) of the CrRLK1L subfamily are essential to sustain
growth without loss of cell wall integrity in Arabidopsis. Here, we show that over-expression of the ANXUR RLKs inhibits
growth by over-activating exocytosis and the over-accumulation of secreted cell wall material. Moreover, the
characterization of mutations in two partially redundant pollen-expressed NADPH oxidases coupled with genetic
interaction studies demonstrate that the ANXUR RLKs function upstream of these NADPH oxidases. Using the H2O2-sensitive
HyPer and the Ca2+-sensitive YC3.60 sensors in NADPH oxidase-deficient mutants, we reveal that NADPH oxidases generate
tip-localized, pulsating H2O2 production that functions, possibly through Ca2+ channel activation, to maintain a steady tip-
focused Ca2+ gradient during growth. Our findings support a model where ECM-sensing receptors regulate reactive oxygen
species production, Ca2+ homeostasis, and exocytosis to coordinate ECM-performance with the internal growth machinery.
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Introduction

It is well established that growing animal cells control the

biogenesis, deposition, and remodeling of their extracellular

matrix (ECM). In vivo the ECM contributes to the bulk, shape,

and strength of many tissues and, therefore, plays a central role in

development [1]. However, it is often underappreciated that the

ECM also controls intracellular activities far beyond providing

mechanical stability. For example, the ECM is under continuous

cellular surveillance in order to monitor the loss of adhesion to the

surrounding matrix, which leads to apoptosis. Consequently,

disruption of signaling between the ECM and the cell is associated

with tumorigenicity [2]. Similarly, growing plant cells direct the

deposition of the primary cell wall (CW): the plants rigid,

carbohydrate-rich ECM that resists turgor pressure, yet is flexible

enough to allow cell expansion. Growing plant cells tightly

coordinate the loosening and pressure-driven deformation of the

CW with the addition of new membrane and CW materials

through exocytosis. Thus, the cell must be kept informed about

any environmental changes modifying the CW properties in order

to avoid growth arrest or rupture. To circumvent these

catastrophic scenarios, it has become increasingly evident that

plant cells have developed mechanisms to sense CW integrity,

which relay information about CW performance to the internal

growth machinery. The molecular nature of this relay mechanism,

however, remains largely unknown [3].

Since the first reports on THESEUS1 (THE1 [4]) and

FERONIA (FER [5]), these Arabidopsis receptor-like kinases

(RLKs) of the Catharanthus roseus RLK1-like subfamily (CrRLK1L)

have received increasing attention as putative sensors that

coordinate cellular growth and CW integrity (reviewed in [6–8]).

How this coordination precisely works and which molecular

players of the growth machinery are involved remained elusive,

although Rho GTPases of plants (ROPs) and the production of

NADPH oxidase-dependent reactive oxygen species (ROS) have

emerged as putative downstream components. The role of

NADPH oxidases, the ROS-producing enzymes that, based on

their homology to the catalytic glycoprotein subunit of the

mammalian phagocyte oxidase (gp91phox), are also called ‘‘respi-

ratory burst oxidase homologues (Rboh)’’, has been firmly
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established in various fundamental processes. These include

localized lignin deposition [9], stomatal closure [10], pathogen

responses [11], and root hair growth [12]. NADPH oxidases are

plasma membrane (PM)-bound enzymes with six trans-membrane

domains, an N-terminal region that contains EF-hands, and a C-

terminal oxidase domain responsible for oxidizing O2 to produce

superoxide radicals in the apoplast (reviewed in [13,14]). The

latter can quickly be dismutated, enzymatically or otherwise, into

H2O2 that can freely diffuse back from the apoplast into the

cytosol.

Connections between members of the CrRLK1L and NADPH

oxidase families have been proposed or established for THE1 and

FER, respectively. For example, THE1 has been reported to be a

positive regulator of CW damage-induced ROS production in

seedlings, possibly through RbohD [15], while FER is both a

negative regulator of H2O2 production in unchallenged leaves [16]

and of ROS in guard cells [17]. Furthermore, in root hairs that

elongate by tip-growth, FER is a positive regulator of ROS

production through the ROP2-RbohC pathway [18]. Similar to

the rbohC loss-of-function mutant (also called root hair defective2

[rhd2]), disruption of FER leads to an impairment of ROS

production and defective root hairs that burst [12,18]. Disruption

of the redundant CrRLK1Ls ANXUR1 (ANX1) and ANX2, the two

closest homologues of FER, triggers the rupture of pollen tubes

(PTs), the tip-growing male gametophytes of flowering plants,

resulting in male sterility [19,20]. Similar to fer root hairs, anx1

anx2 double mutant pollen form bulges and burst, failing to

maintain their integrity during growth. This indicates that the

FER and ANX RLKs could be cell-surface receptors that control

CW integrity in tip-growing cells. In PTs, genetic evidence for the

involvement of NADPH oxidases is lacking, but several studies

have revealed a role for ROS during PT growth that remains to be

precisely characterized. For example, it has been shown that either

the use of ROS scavengers or the NADPH oxidase inhibitor

diphenylene iodonium (DPI), or the down-regulation of a NADPH

oxidase, reduces PT growth in tobacco [21]. In addition, the

application of DPI at higher concentrations has also been reported

to induce PT rupture in lily [22].

Because of the difficulty to image the dynamics of ROS

production with good spatial and temporal resolution, and because

of its multi-faceted impacts on CW properties and the activation of

intracellular signaling, it is unknown how NADPH oxidase-

dependent ROS control polar growth [23,24]. It was first reported

that RbohC/RHD2 is required for calcium influx via the

stimulation of Ca2+ channels and for the generation of a tip-

focused gradient of cytosolic free calcium [Ca2+]cyt, which is

essential for polar growth [12,25]. Later, Monshausen and

colleagues reported that, under certain conditions, rbohC root

hairs still display a tip-focused Ca2+ gradient, showing that RbohC

was not essential for its establishment [26]. Moreover, they showed

that artificially increasing or decreasing apoplastic ROS leads to

growth cessation and root hair bursting, respectively, consistent

with a role for ROS in regulating CW properties [27]. Finally,

oscillations in apoplastic ROS levels just behind the tip were

reported during root hair growth and correlated with growth rate,

leading the authors to propose a model in which ROS rigidify the

CW behind the tip, such that growth would be restricted to the tip

[26]. However, due to the irreversible nature of the ROS-sensitive

oxidation of the dye they used, the observed oscillations are

unlikely to reflect the true nature of ROS dynamics [28].

Nonetheless, both models—namely the growth-promoting effect

at the tip related to intracellular Ca2+ signaling and the growth-

inhibiting effect behind the tip by rigidifying the CW—are not

mutually exclusive as they could recruit different forms of ROS at

different times and in different locations.

In this study we show that over-expression of the ANX RLKs

inhibits PT growth by the over-activation of exocytosis and the

over-accumulation of secreted membrane and CW materials.

Genetic interaction studies coupled with a phenotypic character-

ization of loss-of-function mutants of two partially redundant,

pollen-expressed NADPH oxidases, RbohH and RbohJ, demon-

strate that the ANX RLKs function upstream of these NADPH

oxidases. Furthermore, analyses of the genetically encoded H2O2-

sensitive HyPer and Ca2+-sensitive YC3.60 sensors in NADPH

oxidase-deficient pollen revealed that NADPH oxidases generate

tip-localized, pulsating ROS that are responsible—possibly

through activation of Ca2+ channels—for maintaining a steady,

tip-focused Ca2+ gradient.

Results

The Functional ANX1-YFP and ANX2-YFP Fusions Inhibit
Pollen Tube Growth

We have previously shown that ANX1-yellow fluorescent

protein (YFP) and ANX2-YFP protein fusions are polarly localized

in the PM at the tip of growing PTs in independent T1 transgenic

Arabidopsis lines [19]. Although in T1 lines, which contain a

mixture of untransformed and transformed pollen grains, no

obvious fertilization-related phenotypes could be detected, in vitro

pollen germination and growth assays of homozygous lines that

carry a single insertion of the constructs in the T3 generation

revealed that ANX1-YFP and, to a lesser extent, ANX2-YFP

inhibit pollen germination and PT growth compared to the wild

type (WT) (Figures 1A, 1B, and S1). To investigate whether these

phenotypes are due to over-expression or non-functionality of the

fusion proteins, we transformed anx1-2/anx1-2 anx2-2/ANX2 and

anx1-1/anx1-1 anx2-1/ANX2 plants with ANX1-YFP and ANX2-

YFP fusions, respectively. In all T1 anx1-2/anx1-2 anx2-2/ANX2

lines expressing ANX1-YFP and anx1-1/anx1-1 anx2-1/ANX2

Author Summary

Tip-growing cells, such as plant root hairs and pollen tubes
or fungal hyphae, are characterized by a tip-focused Ca2+

gradient. These tip-growing cells tightly coordinate the
loosening and pressure-driven deformation of their extra-
cellular matrix (ECM)—the cell wall in plant cells—by
locally adding new membrane and cell wall materials. In
pollen tubes, which grow at amazing speeds to effect
fertilization in plants, a class of kinases called the ANXUR
receptor-like kinases (RLKs) sense perturbations in cell wall
integrity, and their loss leads to pollen tube rupture. Here,
we gain new insights into the mechanism of cell wall
surveillance by these RLKs in the model plant Arabidopsis.
We show that over-expressing ANXUR RLKs over-activates
exocytosis, causing an over-accumulation of secreted cell
wall material that eventually leads to growth arrest.
Moreover, we find that the ANXUR RLKs function upstream
of NADPH oxidases, which are membrane-anchored
enzymes that produce reactive oxygen species (ROS).
Using H2O2- and Ca2+-sensitive reporters, we show that
NADPH oxidases generate tip-localized H2O2 production,
which is required to maintain a steady, tip-focused Ca2+

gradient that is essential for pollen tube growth. We
postulate that ECM-sensing receptors, such as the ANXUR
RLKs, regulate ROS production, Ca2+ homeostasis, and
exocytosis to coordinate the status of the ECM with the
cell’s internal growth machinery.

ANXUR RLKs Regulate ROS and Ca2+ Homeostases
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expressing ANX2-YFP PT rupture was reduced compared to the

corresponding untransformed genotype (Figure S2). Moreover, in

all T3 homozygous lines with good ANX1/2-YFP expression in

the anx1 anx2 double mutant background, pollen germination, PT

rupture, and PT length was indistinguishable from the WT

(Figures 1A, 1B, S1, and S2). Thus, both ANX1-YFP and ANX2-

YFP fusion proteins are functional, and the phenotypes observed

in WT pollen expressing these fusion proteins are due to over-

expression. Hereafter, independent homozygous lines expressing

the ANX-YFP fusion proteins in the anx1 anx2 background will be

called either complemented lines or ANX-YFP in anx1 anx2, while

homozygous lines expressing the same fusion proteins in a WT

background will be referred to as ANX-OX or ANX-YFP in WT.

Pollen of ANX-OX lines germinated poorly and produced

shorter and wider PTs than pollen of either WT or complemented

lines (Figure 1A, 1B, and S1). To check whether these in vitro

phenotypes impact the fitness of PTs in vivo, the male transmission

efficiency (TEM) was assayed for each of the ANX-OX lines. Male

transmission of ANX-YFP fusions was significantly decreased for

all but one ANX2-OX line, showing that PTs over-expressing

ANX-YFP fusion proteins are not as competitive as untransformed

WT PTs (Figure 1C). Interestingly, the difference in the severity of

these phenotypes between ANX1-OX lines or between ANX2-

OX lines nicely correlated with the difference in the level of YFP

fluorescence imaged at the PM of growing ANX-OX PTs

(Figure 1D). The two strongest ANX1-OX lines (#1 and #4)

and one ANX1-YFP complemented line were selected for further

investigations.

Over-expression of ANX1-YFP Triggers Cell Wall
Accumulation and Plasma Membrane Invagination Via
Increased Exocytosis

Time-lapse imaging of YFP fluorescence in growing PTs

6 hours after incubation showed that all PTs of the complemented

line display the previously reported asymmetric distribution of

YFP in the PM at the PT tip [19] and were growing normally

(n.100, Figure 2A, left panels). In contrast, only 43% to 47% of

ANX1 over-expressing PTs grew and exhibited the same YFP

distribution (n.100 PTs, ANX1-OX #4 and #1, respectively).

The remaining ANX1-OX PTs (53% to 57% of all PTs) had

Figure 1. Over-expression of ANX RLKs inhibits pollen germination, pollen tube growth, and decreases male transmission
efficiency. (A) Quantification of PT length after 5 h of in vitro growth for WT, two ANX1-YFP and three ANX2-YFP independent T3 complemented
lines, and four independent T3 ANX1-YFP and ANX2-YFP over-expression lines. Data represent mean values 6 standard error of the mean (SEM) of
three independent experiments with more than 40 PTs per genotype and experiment. Single and double asterisks indicate significant differences
from the WT according to a Student’s t test with p,0.05 and p,0.01, respectively. See also Figure S1A. (B) Overview images of pollen of ANX1-YFP
complemented and over-expression lines grown in vitro for 5 h. Scale bar = 100 mm. (C) TEM of ANX1-YFP and ANX2-YFP for four independent over-
expression lines. For each independent over-expression line, heterozygous T2 plants were crossed as pollen donor to the WT. More than 250 seeds
resulting from each cross were grown on MS plates containing hygromycin and resistance was scored. TEM was calculated as 100*(resistant/sensitive)
in percent. Asterisks denote significant difference from the expected 1:1 ratio for normal transmission with p,0.0001 (two-tailed exact Fisher’s test).
(D) Quantification of YFP fluorescence at the apical PM of growing PTs for each ANX1-YFP and ANX2-YFP over-expression line. Data represent mean
values 6 standard deviation (SD) (n.19 tubes for each line). Asterisks indicate significant difference among each ANX1-YFP or each ANX2-YFP over-
expressing line (one-way ANOVA test, p,0.01).
doi:10.1371/journal.pbio.1001719.g001

ANXUR RLKs Regulate ROS and Ca2+ Homeostases
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ceased to elongate and displayed PM invaginations at the PT tip as

observed with both YFP and the lipophilic dye FM4-64 (Figure 2A,

right panels). Intriguingly, in the ANX1 over-expressing PTs that

had ceased to elongate, the PM at the tip kept growing inwards,

creating tunnel-like structures, instead of outwards as normally

observed for tip-growing cells (Figures 2B and S3A; Video S1).

Invaginations can start early as they were observed even in pollen

grains that did not yet produce a tube (Figure S3B). The PM

invagination phenotype was also observed in ANX2 over-

expressing lines, while we never saw it in any of the ANX1-YFP

or ANX2-YFP complemented lines (n.100 PTs, two independent

lines for each fusion protein). PM invaginations were accompanied

by thick extracellular deposits of CW material (Figure 2A, asterisk),

which were pectinaceous as revealed by Ruthenium red staining

(Figure 2C). This finding indicates that secretion of CW material

still occurred at the site of PM invagination. In addition, detailed

observations of ANX-OX PTs showed that apical CW thickening

occurred before the invagination of the apical membrane.

Since the surface of both the PM and the secreted CW material

increase at the tip, we hypothesize that the balance between

endocytosis and exocytosis rates might be tilted towards exocytosis

at the tip of ANX-OX PTs. This could be achieved by a decrease or

increase in the rate of endocytosis or exocytosis, respectively, or by a

combination of both. For example, CW accumulation and PM

invaginations have also been reported for tobacco PTs that over-

express the phosphatidylinositol-4-phosphate 5-kinases PIP5K4,

PIP5K5, and PIP5K6 [29–31]. The PIP5K-OX phenotypes

originate from an over-initiation of aborted endocytosis in PIP5K-

OX PTs, which show a dramatic inhibition of FM4-64 uptake

[30,31]. To investigate this phenotype further, we conducted two

types of experiments on growing PTs of complemented and ANX1-

OX lines before they start to show PM invaginations and apical CW

accumulation. First, we labeled PTs for 5 min with FM4-64, a styryl

dye that quickly labels the PM and is internalized via endocytosis. In

growing PTs of complemented lines (as in WT), FM4-64 is observed

at the PM and in the apical cytoplasm as an inverted cone that

presumably contains both endocytotic and secretory vesicles

(Figure 3A and Video S2, upper panels). In growing ANX1-OX

PTs, the same distribution was observed (Figure 3A and Video S2,

lower panels), indicating that, in contrast to PIP5K-OX PTs, FM4-

64 uptake and thus endocytosis was not impaired [30,31]. However,

FM4-64 fluorescence intensity at the PM versus the apical cytoplasm

was significantly lower than in complemented PTs, suggesting that

there were globally more endocytotic and secretory vesicles in

ANX1 over-expressing PTs (Figure 3A and 3B; n.25 each,

p,0.01).

As evidenced by Brefeldin A (BFA) treatment, a well-known

inhibitor of exocytosis, ANX1-YFP is inserted at the apical PM via

exocytosis (Figure S4A). Thus, we performed fluorescence

recovery after photobleaching (FRAP) experiments for ANX1-

OX and complemented PTs to analyze exocytosis dynamics in

growing PTs as described previously [31,32]. Photobleaching was

applied to the tip of growing PTs and measurements of the

recovery of YFP fluorescence in the apical PM of the PT tips were

carried out every 4 seconds. For ANX1 complemented PTs, the

relative fluorescence recovery in the PM 10 seconds after

photobleaching (I10sec) reached on average 47%69% of the

maximum relative fluorescence with a PT growth rate of

4.0261.41 mm min21 (n = 18; Figure 3C and 3D, left panels;

Table S1; Video S3). No correlation was observed between I10sec

and the fluorescence intensity pre-bleaching (R2 = 0.0092; Figure

S4B), suggesting that the secretion rate of new ANX1-YFP fusion

protein in the PM is independent of the amount of fusion protein

originally present in the PM. Furthermore, no correlation was

observed between I10sec and PT growth rate (R2 = 0.0001; Figure

S4C), indicating that exocytosis and PT growth rate do not share a

direct linear relationship.

Interestingly, for PTs of both ANX1 over-expressing lines, I10sec

was significantly higher than in the complemented line

(57%610%, p,0.01 for line #1; 57%613%, p,0.05 for line

#4), while their PT growth rate was significantly decreased to

1.3460.68 mm min21 and 1.7860.53 mm min21, respectively

(n = 17 and n = 20 for ANX1-OX lines #1 and #4, respectively,

p,0.01; Figure 3C and 3D right panels; Table S1; Video S3). The

faster fluorescence recovery is unlikely to be due to a secondary

effect of slow PT growth, because all the mutant PTs tested so far

Figure 2. Over-expression of ANX RLKs triggers cell wall
accumulation that leads to a cessation of pollen tube
elongation and plasma membrane invagination. (A) Representa-
tive single median plane images of a normally growing PT of an ANX1-
YFP complemented line (left) and an arrested PT of ANX1-YFP over-
expressing line with apical membrane invagination (right). The different
filters are indicated on the left. Before imaging, PTs were treated for
5 min with germination liquid medium containing FM4-64 (2 mM). Scale
bar = 5 mm. (B) Time-course imaging of the apical PM invagination of an
ANX1-YFP over-expressing PT that ceased to elongate. PTs were treated
as in (A). See also corresponding Video S1. Filters are indicated at the
top. Scale bar = 5 mm. (C) Representative bright-field and YFP fluores-
cence images of ANX1-YFP complemented (left) and over-expressing
(right) PTs treated with 0.01% Ruthenium red, which stains acidic
pectins. Note that staining is restricted to the tip of growing
complemented PT (left, arrow), while it accumulates inwards following
the invaginated apical membrane in the over-expressing PT (right,
arrows). Scale bar = 10 mm.
doi:10.1371/journal.pbio.1001719.g002
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in FRAP experiments, namely DN-ROP1-OX (dominant negative

ROP1), CA-ROP1-OX (constitutively active ROP1), RIC3-OX,

RIC4-OX, and PIP5K6-OX grow slower than controls and show

an inhibition of fluorescence recovery [31,32]. Thus, increased

rates of fluorescence recovery at the apical PM indicate that the

rate of exocytosis is increased at the apical PM of growing ANX1-

OX PTs as compared to controls.

Altogether, our results support the hypothesis that ANX over-

expression tilts the balance of exo- to endocytosis towards more

exocytosis, which progressively leads to CW accumulation. PT

growth slows down as the apical CW thickness increases. When

the latter reaches a certain threshold where the CW is not

deformable anymore, expansion ceases and apical PM grows

inwards due to continuing exocytosis.

Disruption of the Pollen-Expressed NADPH Oxidases
RbohH and RbohJ Triggers Anxur-Like Phenotypes

A better understanding of how the ANX RLKs regulate

exocytosis requires the identification of downstream components

of the ANX-dependent pathway. Recently, FER, which is the

closest homologue of the ANX RLKs in Arabidopsis, has been

shown to function as an upstream regulator of the ROP2/

NADPH oxidase RbohC signaling pathway that controls ROS-

dependent root hair growth [18]. Moreover, down-regulation of a

pollen-expressed NADPH oxidase and application of ROS

scavengers inhibit PT growth in tobacco [21]. Thus, we

hypothesized that pollen-expressed NADPH oxidases could be

downstream components of the ANX RLK pathway that

coordinates CW integrity and PT growth. In Arabidopsis, NADPH

oxidases belong to a family with ten members, two of which,

RbohH (At5g60010) and RbohJ (At3g45810), sharing 81% amino

acid identity, define a subgroup that is preferentially expressed in

pollen (Figure S5C) [13,14]. We isolated two independent single

T-DNA insertional mutants for each of these NADPH oxidases,

namely rbohH-1 (GABI_028G04), rbohH-3 (SALK_136917), rbohJ-

2 (SAIL_31_D07), and rbohJ-3 (SALK_050665), which show little

or no expression of the corresponding gene (Figure S5B). Pollen

germination assays showed that PTs of single rbohJ-2 and rbohJ-3

Figure 3. ANX RLK over-expressing pollen tubes do not exhibit endocytosis defects but display an increased rate of exocytosis. (A)
Representative single median plane images of a normally growing PT of the ANX1-YFP complemented line (top) and a slow growing PT of the ANX1-
YFP over-expressing line (bottom) treated for 5 min with FM4-64 (2 mM). FM4-64 derived fluorescence was quantified in the apical PM (region 1) and
the apical cytoplasm (region 2) for n.25 PTs of each line. Note that there are more endocytotic and secretory vesicles in the apical cytoplasm of over-
expressing PTs. See also corresponding Video S2 and (B). Scale bar = 5 mm. (B) Quantitative analysis of relative FM4-64 fluorescence in the apical PM
versus the apical cytoplasm in growing PTs of one ANX1-YFP complemented and two over-expressing lines. Data are presented as mean values 6

standard deviation (SD) (n.25 each). Double asterisks indicate significant differences from the complemented line according to a Student’s t test
with p,0.01. (C) Representative time-course imaging of FRAP for a complemented (left) and an over-expressing growing PT (right). Refer to Video S3
for more examples. Scale bar = 5 mm. (D) Quantitative analysis of FRAP time-courses of growing PTs of the complemented line (left, n = 18) and two
over-expressing lines (right, n.17 for each). Relative intensity of apical PM-localized ANX1-YFP compared with fluorescence prior to photobleaching
was used to quantify the rate of fluorescence recovery. FRAP signals are shown as mean values 6 SD. The relative intensity after recovery for 10 s
after photobleaching (I10sec) is indicated. See also corresponding Table S1.
doi:10.1371/journal.pbio.1001719.g003

ANXUR RLKs Regulate ROS and Ca2+ Homeostases
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mutant plants behaved like WT (,8.5% bursting), while around

57% of PTs of single rbohH-1 and rbohH-3 mutant plants ruptured

in vitro (Figure 4A). However, this mild PT rupture phenotype did

not significantly reduce seed set or TEM in vivo (Figure 4A; Table

S2). To investigate whether RbohH and RbohJ are redundant,

single mutants were crossed to generate independent double

mutant rbohH-1 rbohJ-2 and rbohH-3 rbohJ-3 plants. First, double

homozygous mutant plants were only rarely found in the progeny

of rbohH-1/RbohH rbohJ-2/rbohJ-2 and rbohH-3/RbohH rbohJ-3/

rbohJ-3 (Table S3). Secondly, PTs of both independent rbohH-1

rbohJ-2 and rbohH-3 rbohJ-3 double mutants ruptured up to 80% in

vitro (Figure 4A and 4B). The remaining germinating grains

produced longer PTs, but they eventually also burst (Figure 4B).

As a consequence, double homozygotes for rbohH-1 rbohJ-2 and

rbohH-3 rbohJ-3 were partially sterile, producing only five to seven

seeds per silique as compared to ,60 seeds in WT or single

mutant plants (Figure 4A and 4C). As evidenced by aniline blue

staining after reciprocal crosses of rbohH rbohJ with WT, this

sterility was due to the double mutant pollen being unable to grow

sufficiently in vivo to reach and fertilize the female gametophytes

(Figure 4D). This was further supported by analyses of male and

female transmission efficiencies (TEs) of the rbohH-1 rbohJ-2 and

rbohH-3 rbohJ-3 mutations, which showed a greatly reduced TEM

while TEF was not significantly affected (Table S2).

Taken together, these results provide compelling evidence that

disruption of both RbohH and RbohJ leads to spontaneous PT

rupture, preventing PTs to reach and fertilize the female

gametophytes in vivo. Interestingly, all the above mentioned

phenotypes are reminiscent of the anx1 anx2 double mutant

phenotype [19,20]. Moreover, our results show partial functional

redundancy between pollen-expressed NADPH oxidases, with

RbohH being able to perfectly substitute for the loss of RbohJ,

while the latter can only partially substitute for the loss of

RbohH.

Figure 4. rbohH rbohJ mutant pollen display anxur-like phenotypes. (A) Quantification of pollen germination and PT rupture percentages (top
histogram) and seed per siliques (bottom histogram) for WT, single, and double rboh as well as anx1 anx2 mutant plants. Data are mean 6 standard
error of the mean (SEM) of three independent experiments with more than 150 pollen grains or ten siliques per genotype and experiment. (B)
Representative overview images of WT and rbohH rbohJ pollen grown in vitro for 5 h. Up to 80% of germinated pollen from rbohH rbohJ ruptured
with clear traces of cytoplasmic content that was released into the medium (top right), while the remaining germinated grains produce PTs that will
burst later on (bottom right, arrowheads) as opposed to WT PTs that grow normally (bottom left). Scale bar = 50 mm. (C) Photographs of siliques from
WT, rbohH rbohJ, and anx1 anx2 plants. Scale bar = 500 mm. (D) Representative images of aniline blue staining of a WT pistil pollinated with WT pollen
(left), a rbohH rbohJ pistil with WT pollen (middle), and a WT pistil with rbohH rbohJ pollen (right). Eighteen hours after manual pollination, WT PTs
(left and middle panels) had grown through the entire pistil to reach the female gametophytes. In contrast, most of the rbohH rbohJ mutant PTs
(right) were arrested in the transmitting tract. White arrows indicate the tip of the longest PT. Scale bar = 5 mm.
doi:10.1371/journal.pbio.1001719.g004
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ANX1 Over-expression Phenotypes Depend on
Functional RbohH and RbohJ NADPH Oxidases

To test whether RbohH and RbohJ are indeed downstream

effectors of the ANX RLK-dependent pathway, the strong ANX1-

OX line (#4) was crossed to rbohH-1 rbohJ-2 double mutant plants.

Partially male sterile plants homozygous for rbohH-1 rbohJ-2 and

homozygous for ANX1-YFP were retrieved in the F2 generation.

Intriguingly, rbohH-1 rbohJ-2 pollen strongly expressing ANX1-

YFP behaved exactly like rbohH-1 rbohJ-2 pollen with germination

and PT rupture rates of ,70% and 82%, respectively (Figure 5A).

Furthermore, none of the growing PTs (n.100) of rbohH-1 rbohJ-2

plants homozygous for ANX1-YFP displayed CW accumulation

or PM invagination, phenotypes observed in ANX1-OX PTs. To

independently confirm these results, we directly transformed

rbohH-1 rbohJ-2 mutant with ANX1-YFP fusion. Four indepen-

dent, partially male sterile rbohH-1 rbohJ-2 transgenic lines

homozygous for ANX1-YFP were recovered in the T2 generation.

Again, neither CW accumulation nor PM invagination was

observed in growing PTs (n.100 PTs for each), which eventually

ruptured similar to the rbohH-1 rbohJ-2 PTs without the ANX1-

OX construct. Furthermore, FRAP analyses also showed that the

fast recovery rate at the apical PM observed in ANX1-OX PTs

was suppressed in the rbohH rbohJ background as I10sec for rbohH

rbohJ PTs over-expressing ANX1-YFP was similar to the

complemented line (45%69%, n = 23; Figure 5B and 5C; Table

S1). Interestingly, a few rbohH rbohJ PTs over-expressing ANX1-

YFP did not recover 80% of the initial fluorescence, a

phenomenon that was never observed in controls or ANX1-YFP

over-expressing PTs (Figure S6), indicating that exocytosis may

become defective in these rbohH rbohJ ANX1-OX PTs.

In summary, these results demonstrate that ANX1-OX

phenotypes are dependent on functional RbohH and RbohJ and,

consequently, that these pollen-expressed NADPH oxidases are

positive downstream effectors of the ANX RLK-dependent

pathway.

NADPH Oxidases RbohH and RbohJ Are Responsible for
H2O2 Production at the Tip of Growing Pollen Tubes

To check whether disruption of RbohH and RbohJ impairs the

production of ROS, we made use of the fluorescent ROS-sensitive

dye 5-(and 6-)chloromethyl-29,79-dichlorodihydrofluorescein diac-

etate (CM-H2DCFDA) to stain PTs of WT and rbohH rbohJ double

mutants. Fluorescence quantification of the apical cytoplasm in

growing PTs treated for 5 minutes with 2 mM CM-H2DCFDA

showed that PTs of the rbohH-1 rbohJ-2 and rbohH-3 rbohJ-3 double

mutants displayed only 25% of the CM-H2DCFDA-derived

fluorescence signal observed in WT PTs (p,0.01; Figure S7A

and S7C). These low levels of CM-H2DCFDA-derived fluores-

cence were not due to a defect in dye uptake, as mutant and WT

PTs exhibited the same level of fluorescence derived from the

ROS-insensitive dye fluorescein diacetate (FDA) (Figure S7B and

S7D). These results show that ROS production is indeed impaired

in rbohH rbohJ PTs as expected for NADPH oxidase mutants [12].

However, because CM-H2DCFDA oxidation is sensitive to

different reactive oxygen and nitrogen species, sensitive to light,

and irreversible, this dye cannot be used to monitor ROS

production over time in growing PTs. Thus, we generated stably

transformed Arabidopsis lines with PT expression of the genetically

encoded YFP-based ratiometric sensor HyPer, which has been

shown to faithfully report H2O2 production in bacteria, animal,

and plant cells [33,34]. Curiously, in growing WT PTs expressing

cytosolic HyPer (n = 27), the HyPer activity measured as the ratio

of F488/F405 was stronger in the shank of PTs than at the tip

(Figure 6A and 6B). We hypothesized that this strong shank

activity could either be due to the presence of H2O2-producing

organelles, such as mitochondria and/or peroxisomes in this

region, an artifact of HyPer due to its pH sensitivity, or a

combination of both. Indeed, it was shown that HyPer’s activity

artificially increases when the pH increases [33] and that PTs

display a pH gradient with an acidic tip and a alkaline shank [35].

Interestingly, at the tip of growing PTs, HyPer activity displayed

Figure 5. ANX1-YFP over-expression phenotypes are dependent on functional RbohH and RbohJ. (A) Quantification of pollen
germination and PT rupture for rbohH-1 rbohJ-2, ANX1-YFP in WT (line #4), ANX1-YFP in anx1-2 anx2-2 (complemented line), and ANX1-YFP in rbohH-
1 rbohJ-2 plants. Data are mean 6 standard error of the mean (SEM) of three independent experiments with more than 150 pollen grains per
genotype and experiment. (B) Representative time-course imaging of FRAP for a rbohH-1 rbohJ-2 PT expressing ANX1-YFP. Scale bar = 5 mm. (C)
Quantitative analysis of FRAP time-courses for growing PTs of ANX1-YFP in rbohH-1 rbohJ-2 (n = 24). Relative intensity of apical PM-localized ANX1-
YFP compared with fluorescence prior to photobleaching was used to quantify the rate of fluorescence recovery. FRAP signals are shown as mean
values 6 standard deviation (SD). The relative intensity after recovery for 10 s after photobleaching (I10sec) is indicated. See also corresponding Table
S1.
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irregular oscillations originating from the tip periphery (Figures 6B

and S8A; Video S4). However, oscillations of HyPer activity did

not seem to correlate with growth rates (Figure S8B). In growing

rbohH-1 rbohJ-2 PTs, HyPer activity was 16 and 18 times lower at

the tip and in the shank, respectively, as compared to the WT

(n = 22, p,0.001; Figure 6A and 6C). This indicates that

membrane-bound RbohH and RbohJ are responsible for most

of the H2O2 production revealed by the HyPer sensor. Moreover,

since HyPer activity in the shank was also strongly reduced in

rbohH-1 rbohJ-2 double mutant PTs (Figure 6A and 6C), the strong

activity in the shank of WT PTs is likely due to propagation of the

tip-derived H2O2 in the alkaline shanks, which artificially increases

HyPer activity.

To investigate if Rboh localization is consistent with the Rboh-

dependent H2O2 production observed at the tip-periphery, we

transformed partially sterile rbohH-3 rbohJ-3 plants with a green

fluorescent protein (GFP)-RbohH fusion. Forty-four independent

T1 transgenic lines out of 50 displayed rescue of sterility with WT-

like elongated siliques (e.g., for three independent T1 lines with

good GFP expression, the average of seeds per silique was 40.863.8,

40.9611.1, and 43.466.9 as opposed to 6.263.5 in untransformed

rbohH-3 rbohJ-3, n = 12 siliques per plant). In vitro pollen growth

assays confirmed that the rbohH rbohJ bursting phenotypes were

rescued by GFP-RbohH (Figure S8C) and that GFP-RbohH

localized polarly to the plasma membrane at the tip of growing PTs

(Figure S8D, left panels). These results show that GFP-RbohH

protein fusion is functional and that its localization is consistent with

both ANX1-YFP localization (Figure 2A, left panels) and Rboh-

dependent H2O2 production at the tip periphery (Figure S8A).

Furthermore, unlike the rbohH rbohJ complemented plants, in WT

plants expressing the GFP-RbohH fusion, PM invagination and

over-accumulation of CW material were also observed (Figure S8D,

right panels), although these phenotypes appeared milder and less

frequent than in ANX1-OX PTs.

Calcium Homeostasis Is Impaired in Growing rbohH rbohJ
Double Mutant Pollen Tubes

ROS and H2O2 have been shown to regulate calcium-

permeable channels, e.g., in protoplast of root hairs [12] and

pear pollen [36], and a tip-focused Ca2+ gradient is essential for

polar growth [37]. Therefore, we crossed WT plants expressing

the genetically encoded FRET-based Ca2+-cameleon YC3.60 in

Figure 6. H2O2-sensitive HyPer sensor ratiometric imaging shows that RbohH and RbohJ are responsible for H2O2 production at the
tip of growing pollen tubes. (A) Quantification of HyPer ratio (F488/F405) at the tip and further back in the shank of growing WT (n = 27) and rbohH-
1 rbohJ-2 (n = 22) PTs. Data are shown as the mean of ratios over 90 seconds6standard deviation (SD). Double asterisks indicate significant
differences from the WT according to a Student’s t test with p,0.01. (B) Representative images of a growing WT PT expressing cytosolic HyPer and
the corresponding histogram displaying the ratios (F488/F405) at the tip (blue line) and behind the tip (red line) over 90 s, as well as the travelled
distance of the PT tip (green line). The blue and red parentheses indicate where the circles of 4 mm diameter were positioned for measurements at
the tip and behind the tip, respectively. See corresponding Video S4. Scale bar = 5 mm. (C) Representative images of growing rbohH-1 rbohJ-2 PT
expressing cytosolic HyPer. See (B) for details.
doi:10.1371/journal.pbio.1001719.g006
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PTs [38] with the anx1-2 anx2-2 and rbohH-1 rbohJ-2 double

mutants, and partially male sterile anx1-2 anx2-2 and rbohH-1

rbohJ-2 plants homozygous for YC3.60 were recovered in

subsequent generations. Cytosolic Ca2+ concentrations ([Ca2+]cyt,

measured as FCFP/FVenus) were monitored over time at the PT tip

and behind the tip when possible, and compared to YC3.60-

expressing WT PTs grown and imaged under the same conditions.

First, we attempted to study Ca2+ dynamics in anx1 anx2 bulges

before bursting, young growing WT PTs, and arrested WT bulges.

Bulges of anx1 anx2 never produced a growing tube, and only two

out 17 burst during imaging. Interestingly, for both anx1 anx2

bulges that eventually burst, a sudden increase of [Ca2+]cyt was

observed (Figure S9A, white arrow) before the first visible sign of

rupture (Figure S9A, black arrow; Video S5). However, before

bursting, [Ca2+]cyt in non-growing anx1 anx2 bulges was on

average lower than at the tip of growing WT PTs but similar to the

arrested WT bulges (Figure S9B). Because one cannot conclude if

the decreased levels of [Ca2+]cyt in anx1 anx2 are due to the lack of

ANX RLKs or rather to an indirect effect of arrested growth, we

focused on studying Ca2+ dynamics in growing WT PTs and rbohH

rbohJ pollen grains, which produce a few growing PTs that

eventually burst.

In steadily growing WT PTs, the tip-focused Ca2+ gradient (i.e.,

higher [Ca2+]cyt at the PT tip compared to behind the tip) was

always observed and quite stable (n = 46; Figures 7A, 7C, S10A,

and S10D; Video S6). Furthermore, as reported previously for in

vitro grown Arabidopsis PTs [38,39], but unlike lily PTs [40], we did

not observe regular oscillations for either the PT growth rate or

[Ca2+]cyt (Figure 7A). In growing rbohH rbohJ PTs (n = 30),

[Ca2+]cyt was significantly lower than in the WT (p,0.001 for

both tip and behind the tip regions; Figure 7B and 7C; Video S6).

However, the tip-focused Ca2+ gradient and the PT growth rate

were on average similar to that of WT PTs (Figure 7B and 7C;

p = 0.054 for gradient, p = 0.84 for growth rate). But both the tip-

focused Ca2+ gradient and the PT growth rate were significantly

less steady over time in the rbohH rbohJ double mutant than in the

WT, as evidenced by a significantly higher variance

(p = 4.1280N10213 and p = 0.008737 for [Ca2+]tip/[Ca2+]behind

and growth rate, respectively; Figure S10A–S10F). The steady

and jerky growth rate of WT and rbohH rbohJ PTs, respectively,

Figure 7. Ca2+-sensitive cameleon YC3.60 ratiometric imaging shows that [Ca2+]cyt levels are decreased and less steady in growing
rbohH-1 rbohJ-2 pollen tubes. (A) Representative images of growing WT PTs expressing cytosolic YC3.60 and the corresponding histogram
displaying the ratios (FCFP/FVenus) at the PT tip (blue line) and behind the tip (red line) over 90 seconds, as well as the travelled distance of the PT tip
(green line). On the ratiometric image, the blue and red parentheses indicate where the circles of 4 mm diameter were positioned for measurements
at the PT tip and behind the tip, respectively. See also corresponding Video S6. Scale bar = 5 mm. (B) Representative images of growing rbohH-1 rbohJ-
2 PTs expressing cytosolic YC3.60. For details, see (A). (C) Quantification of YC3.60 ratio (FCFP/FVenus) at the PT tip (blue bars) and just behind the tip
(red bars), as well as the tip-focused Ca2+gradient (ratio at the tip/ratio behind the tip; orange bars) and growth rates (green bars) of growing WT
(n = 46) and rbohH-1 rbohJ-2 (n = 30) PTs. Data are shown as the mean of ratios or growth rates over 90 seconds 6standard deviation (SD). Double
asterisks indicate significant differences from the WT according to a Student’s t test with p,0.01. (D) Titration curve for YC3.60.
doi:10.1371/journal.pbio.1001719.g007
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were quite obvious during live-imaging of growing FM4-64 stained

PTs (Video S7).

These results indicate that disruption of the pollen-expressed

NADPH oxidases RbohH and RbohJ does not abolish the tip-

focused Ca2+ gradient but results in PTs that display (i) overall

lower [Ca2+]cyt levels, and (ii) unstable tip-focused Ca2+ gradients

and growth rates. Finally, increasing the external [Ca2+] in the

germination medium from 5 mM to 15 mM or 30 mM,

significantly decreased the rupture of rbohH rbohJ PTs, while

lowering the external [Ca2+] had the opposite effect (p,0.05;

Figure S11). These findings indicate that supplementing Ca2+

externally can partially stabilize the growth of rbohH rbohJ PTs.

Conversely, decreasing external [Ca2+] strongly, increases the

frequency of PTs that rupture in the WT (Figure S11), consistent

with a pioneering report from the 1980s [41].

Discussion

The Pollen-Expressed NADPH Oxidases RbohH and RbohJ
Are Downstream Components of the ANX RLK-
Dependent Cell Wall Integrity Pathway

In tip-growing root hairs, FER and RbohC/RHD2 have been

proposed to function in the same pathway based on the facts that:

(i) fer and rbohC/rhd2 display similar phenotypes with stunted,

collapsed, and bursting root hairs, and (ii) that roots and root hairs

of fer and one FER-OX line accumulate less and more ROS than

WT, respectively [12,18]. Similarly, we show here that two

independent rbohH rbohJ double mutants display anx-like pheno-

types, i.e., PTs that burst, preventing them from growing to

fertilize the female gametophytes (Figure 4). Consequently, both

anx1 anx2 and rbohH rbohJ mutant plants are nearly male sterile. In

addition, over-expression of both ANX1-YFP and GFP-RbohH

triggers over-accumulation of membrane and CW materials

(Figures 2 and S8D, right panels). Furthermore, we provide strong

genetic evidence for the NADPH oxidases to function downstream

of the ANX RLKs, by showing that the phenotypes observed in

ANX-OX lines are abolished in the rbohH rbohJ mutant

background (Figure 5). Therefore, the CrRLK1L-NADPH

oxidase signaling module appears to be conserved in tip-growing

cells. However, it is unlikely that the CW integrity pathway in

pollen is a carbon copy of the root hair pathway, as the biological

functions, growth habits and patterns, CW compositions, and

growth environments are quite different between these tip-growing

cells [42]. For example, in root hairs FER has been shown to

positively regulate RbohC-dependent ROS production through

ROP2-signaling [18]. In PTs, however, it remains unclear whether

ANX RLKs also activate the NADPH oxidases RbohH and

RbohJ through ROP-signaling, because over-activation of ROP-

signaling leads to growth depolarization but does not trigger CW

accumulation, PM invagination, or increased apical exocytosis

[32,43,44], as we observed it in ANX1-OX lines (Figures 2 and 3).

NADPH Oxidases RbohH and RbohJ Are Responsible for
ROS and Pulsating H2O2 Production at the Tip of
Growing Pollen Tubes

Our understanding of the role of NADPH oxidase-derived ROS

signaling in plant development and in responses to abiotic and

biotic stresses has improved tremendously over the past few years

[13,14,27]. Production of different ROS species has been imaged

in different plant tissue and cell types, but because of the

irreversible oxidation of the different dyes used (e.g., diaminoben-

zidine tetrahydrochloride, nitro blue tetrazolium [NBT],

H2DCFDA and derivatives) meaningful information about the

dynamics of ROS production is still scarce [45]. GFP-based,

genetically encoded sensors such as roGFPs and HyPer, which

display reversible changes in fluorescence to alterations in redox/

ROS levels, have been successfully developed and tested in plant

cells [45]. However, none of them have been assayed in a mutant

background affecting ROS-producing enzymes. Here, we used the

cytoplasmic H2O2-selective HyPer sensor expressed in PTs in a

rbohH rbohJ NADPH oxidase-deficient mutant background to gain

more insights into H2O2 production in tip-growing cells. HyPer

activity displayed irregular oscillations at the tip of growing WT

PTs (Figures 6B and S8). HyPer oscillations are unlikely due to pH

oscillations reported for the tip of growing PTs, because (i) pH at

the tip varies [35] in a range where HyPer is not really pH-

sensitive [33], and (ii) HyPer activity is completely abolished in

growing rbohH rbohJ mutant PTs (Figure 6A and 6C). Moreover,

HyPer activity originated from the periphery of the growing tip

(Figure S8A), which is consistent with (i) the tip-preferential PM

RbohH localization (Figure S8D, left panels) and the reported PM

localization of other NADPH oxidases [9,46], (ii) the NADPH

oxidase activity reported at the PM [47,48], and (iii) the

extracellular, tip-localized O2
.2 distribution revealed by NBT

staining of PTs [21,48].

NADPH Oxidases Fine Tune Calcium Homeostasis
The exact mechanism by which NADPH oxidase-dependent

ROS regulate polar growth is still not fully understood. One

reason for this is that quantitative information with good temporal

and spatial resolution is difficult to obtain from growing CrRLK1L

and/or NADPH-oxidase mutant cells (root hairs or PTs), owing to

their rapid loss of cellular integrity. On one hand, the NADPH

oxidase RbohC has been proposed to generate ROS that activate

Ca2+-permeable channels at the PM to establish the tip-focused

Ca2+ gradient and to promote expansion at the tip of root hairs

[12,25]. On the other hand, a tip-focused Ca2+ gradient was

observed in rbohC root hairs under certain conditions, indicating

that RbohC was not essential to generate the Ca2+ gradient, but

rather plays a role in restricting growth to the tip by rigidifying the

CW behind the tip [26]. On the basis of our results we propose a

third alternative. Unlike anx1 anx2, a small but appreciable

number (,20%) of germinating rbohH rbohJ pollen grains are able

to produce longer tubes in vitro that, however, will eventually burst,

too. We took advantage of this opportunity to study [Ca2+]cyt

dynamics with a good spatial and temporal resolution on growing

NADPH oxidase-deficient PTs. First, the tip-focused Ca2+

gradient, visualized by the ratio between [Ca2+]tip/[Ca2+]behind,

was clearly visible in growing rbohH rbohJ PTs, confirming that

NADPH oxidases are not required to generate the Ca2+ gradient.

However, unlike steadily growing WT PTs, which maintain a

constant Ca2+ gradient over time (Figure S10A, S10D, and S10E),

rbohH rbohJ PTs displayed a very unstable gradient, which could

sometimes be steep but was abolished a few seconds later (Figure

S10B, S10D, and S10E). This was correlated with more variable

growth rates in rbohH rbohJ mutant compared to steadily growing

WT PTs. Moreover, the global cytosolic Ca2+ levels were

significantly lower in the growing rbohH rbohJ mutant PTs

compared to WT PTs (Figure 7C). An increase in external

[Ca2+] partially rescued the rupture of rbohH rbohJ PTs, while

lowering the external [Ca2+] increased PT rupture in both the

mutant and WT (Figure S11). This is in agreement with previous

studies, which showed that lowering external [Ca2+] or limiting/

blocking Ca2+ influx causes PTs and root hairs to burst [41,49].

The data reported here are consistent with NADPH oxidase-

dependent ROS activating Ca2+-permeable channels for Ca2+

influx [12,36]. However, we propose that these yet unidentified
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channels do not generate the tip-focused Ca2+ gradient on their

own; rather, they fine tune the Ca2+ gradient by stabilizing it to

sustain steady growth of Arabidopsis PTs. It is noteworthy that

different types of PM-localized Ca2+ channels have been

characterized recently in tip-growing cells [37,50]. Among these,

the Cyclic-Nucleotide-Gated Channel (CNGC) family is of

particular interest, because single cngc18 or double cngc7 cngc8

mutant PTs spontaneously rupture after germination or produce

kinky PTs that often burst as well [51,52]. Thus, CNGCs

constitute good candidates for Ca2+ channels that are regulated

by the CrRLK1L-NADPH oxidase signaling module at the PM.

Annexins are also possible candidates as ANN1 has recently been

shown to function as a ROS-activating Ca2+ transporter in root

cells [53].

ANX RLKs Regulate Exocytosis at the Apical Plasma
Membrane of Pollen Tubes

One of the many roles proposed for the tip-focused Ca2+

gradient is to facilitate and stimulate exocytosis at the site of

growth [54,55], where the exocyst complex has been shown to

function [56]. Increasing external [Ca2+] leads to root hair and PT

growth inhibition and CW thickening [41,49]. However, in this

case it is not clear whether the accumulation of secreted CW

material is due to an increase of the exocytosis rate or to

uncoupling of exocytosis (that otherwise remains the same) from

growth. Interestingly, we found that ANX over-expressing PTs

grow slower than controls and also display CW accumulation

(Figure 2). By performing FRAP analyses in the apical membrane

of growing PTs of WT, anx1 anx2, and rbohH rbohJ plants

expressing the ANX1-YFP fusion protein, we show that the rate of

exocytosis is significantly increased in ANX1-OX PTs compared

to controls. In contrast, for some of the rbohH rbohJ mutant PTs

that have low calcium levels and an unsteady Ca2+ gradient, the

recovery was impaired during our analysis. In agreement, the

Ca2+channel blocker LaCl3, which has been shown to trigger the

rupture of root hairs [49], appears to inhibit FRAP at the PT tip

[32].

A Model for the CrRLK1L-NADPH Oxidase Signaling
Pathway

Altogether our data are consistent with the following sequence

of events: ANX RLKs positively regulate the NADPH oxidases

RbohH and RbohJ, possibly through ROP signaling, to period-

ically produce ROS. Subsequently, ROS activate Ca2+-permeable

channels for calcium influx to fine tune the tip-focused Ca2+

gradient, which in turn sustains secretion at the apical tip enabling

PTs to elongate steadily without a loss of CW integrity.

Perturbations of the pathway by over-expressing ANX RLKs

would lead to a NADPH oxidase-dependent over-production of

ROS and Ca2+ influx at the PT tip, which in turn would increase

the secretion rate of membrane and CW materials, progressively

leading to growth cessation and membrane invagination. Con-

versely, disrupting the ANX RLKs or NADPH oxidase would

abolish NADPH oxidases-dependent ROS production and impair

the opening of ROS-activated Ca2+-permeable channels, thus

limiting the cell’s ability to buffer [Ca2+]cyt variation that is

required to maintain a steady tip-focused Ca2+ gradient. Conse-

quently, the Ca2+ gradient and exocytosis at the PT tip would

become erratic and, if not stabilized by compensatory mecha-

nisms, the CW thickness would decrease until turgor pressure

would lead to PT rupture. Finally, our model does not exclude

that, in parallel to the signaling events described above, NADPH

oxidase-dependent ROS and/or Ca2+ could directly alter CW

properties, thereby affecting PT tip-growth. To investigate this

possibility, direct measurements of the impact of ROS on CW

properties during tip-growth would need to be established. We are

confident that combining the continuously improving polar

growth models and techniques to measure mechanical properties

of growing cells [57,58] with genetic approaches, will soon

uncover some of the remaining mysteries of the fascinating

coordination between CW integrity and polar growth.

Materials and Methods

Ruthenium Red, FM4-64, CM-H2DCFDA, and FDA
Imaging

After 3 h to 5 h of in vitro incubation on solid germination

medium, 100 ml of liquid germination medium containing 0.01%

Ruthenium red (Sigma, R-2751) or 2 mM of either FM4-64

(Molecular Probes, Invitrogen, T3166), CM-H2DCFDA (Molec-

ular Probes, Invitrogen, C6827), or FDA (Sigma, F7378) were

applied for 5 min to PTs, then washed away with fresh dye-free

medium before imaging. PTs stained with Ruthenium red were

imaged with a Leica DM6000 (Leica Microsystems). PTs stained

with either FM4-64, CM-H2DCFDA, or FDA were imaged with a

Leica SP2 or SP5 confocal microscope. For FM4-64 stained PTs,

the apical PM region was defined as the first 2.5 mm along PM at

the apex. A circle (2.5 mm in diameter) 3 mm away from tip was

chosen for measurement of apical cytosol intensity. Relative

localization of the FM4-64 dye on the PM versus the apical cytosol

was calculated to illustrate the degree of FM4-64 internalization.

For CM-H2DCFDA and FDA stained PTs, a circle (4 mm in

diameter) 3 mm away from tip was chosen to measure apical

cytosol intensity. All dye-derived fluorescence intensities were

measured using the ImageJ 1.47d software after background

subtraction. PTs of different genotypes were all imaged and

quantified under the same conditions.

FRAP Imaging and Analyses
Growing PTs expressing ANX1-YFP in an anx1-2 anx2-2

(complemented line), WT (ANX-OX, lines #1 and #4), and

rbohH-1 rbohJ-2 backgrounds were used for FRAP analyses with

the same imaging and quantification parameters. The apical

region of PTs was photobleached using 100% power of a 514-nm

laser (Leica SP5), and the recovery of fluorescence was monitored

every 4 s in the following 2 min. The apical PM region was

defined on the bright-field pictures at every time frame as the first

2.5 mm along PM at the apex, and fluorescence intensities were

measured with ImageJ 1.47d software after background subtrac-

tion. Relative intensity of PM-localized ANX1-YFP compared

with fluorescence before photobleaching was used to quantify the

speed of fluorescence recovery. See Table S1 for curve fitting.

Ratiometric Imaging of HyPer and YC3.60 and Relative
Analyses

Fluorescence in growing PTs of WT and rbohH-1 rbohJ-2

expressing either HyPer or YC3.60 were acquired (Leica SP2

confocal microscope) and quantified (ImageJ 1.47d) in the exact

same conditions. For HyPer, fluorescence was acquired with the

sequential mode and excitation at 488 nm and emission between

500–540 nm for F488 and excitation at 405 nm and emission

between 500–540 nm for F405. Two circular regions of interest

(ROIs; 4 mm in diameter), one 0.5 mm, the other 20 mm away

from the apex were drawn for measurement of apical cytosol and

far behind the tip intensities, respectively, for each single time

point of each PT. For YC3.60, excitation was 458 nm then

emission 469–501 nm for FCFP and 522–554 nm for FVenus. Two
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circular ROIs (4 mm in diameter), one 0.5 mm, the other 10 mm

away from the apex, were drawn for measurement of apical

cytosol and behind the tip intensities, respectively, for each single

time point of each PT. All ratiometric measurements, i.e., F488/

F405 and FCFP/FVenus, were determined with ImageJ 1.47d and its

Ratio ROI Manager plugin after background subtraction.

Ratiometric pictures were generated with the plugin Ratio Stack

after median filtering. The YC3.60 titration curve (Figures 7D)

was obtained as described before [38].

All primers used in this study are listed in Table S4. Additional

protocols are described in Text S1.

Supporting Information

Figure S1 Over-expression of ANX RLKs inhibits pollen
germination and increases pollen tube width. (A) Quan-

tification of pollen germination rate after 5 h of in vitro growth for

WT, two and three independent ANX1-YFP and ANX2-YFP T3

complemented lines, respectively, as well as four independent T3

ANX1-YFP and ANX2-YFP over-expression lines. Data are

representative of three experiments with more than 150 pollen for

each genotype. The corresponding PT length measurements are

displayed in Figure 1A. (B) Quantification of PT width after 5 h of

in vitro growth for WT, one ANX1-YFP, and one ANX2-YFP T3

complemented lines, as well as three independent T3 ANX1-YFP

and ANX2-YFP over-expression lines. Data represent mean values

6 standard error of the mean (SEM) of three independent

experiments with more than 40 PTs per genotype and experiment.

Double asterisks indicate statistically significant differences from

the WT according to a Student’s t test with p,0.01.

(TIF)

Figure S2 ANX1-YFP and ANX2-YFP fusion proteins
complement the anx1 anx2 pollen tube rupture pheno-
type. Quantification of pollen germination rate and PT rupture

after 5 h of in vitro growth for WT, anx1-2 anx2-2, anx1-2/anx1-2

anx2-2/ANX2, 6, and 5 independent T1 lines of ANX1-YFP in

anx1-2/anx1-2 anx2-2/ANX2 and ANX2-YFP in anx1-1/anx1-1

anx2-1/ANX2, respectively, as well as two and three independent

T3 homozygous ANX1-YFP in anx1-2 anx2-2 and ANX2-YFP in

anx1-1 anx2-1 complemented lines, respectively. More than 150

pollen were analyzed per genotype.

(TIF)

Figure S3 ANX RLK over-expression triggers plasma
membrane invagination. (A) Median plane confocal image of

an ANX1-YFP over-expressing PT, in which the apical membrane

grows inwards. Filters are indicated on the left. Scale bar = 5 mm.

(B) Single plane confocal image of plasma membrane invagination

in an ANX1-YFP over-expressing pollen grain.

(TIF)

Figure S4 BFA treatment disrupts the enrichment of
ANX1-YFP at the apical plasma membrane. (A) Represen-

tative median plane sections of anx1 anx2 complemented PTs

expressing ANX1-YFP with (right) or without (left) BFA treatment.

Note that the YFP-derived fluorescence is much weaker in the

apical membrane-derived region of interest of the BFA-treated

PTs compared to that of non-treated PTs (left). The same regions

of interest (ROIs) were used for FRAP experiments. No

correlation between relative fluorescence recovery 10 s after

photobleaching and original amount of fluorescent protein in the

apical plasma membrane (B) nor with PT growth rate (C).

(TIF)

Figure S5 Structure and expression of Rboh genes in
Arabidopsis. (A) The genomic organization of the pollen-expressed

NADPH oxidase genes RbohH and RbohJ and positions of the rbohH-

1, rbohH-3, rbohJ-2, and rbohJ-3 T-DNA insertions. The orientation of

the left border sequence of the respective T-DNAs is represented by

black arrows. The positions of the primers used to genotype the

mutants are indicated. (B) RT-PCR analyses of cDNAs from open-

flowers show no RbohH transcripts in the T-DNA insertion lines

rbohH-1 and rbohH-3. There are much less or no RbohJ transcripts in

the T-DNA insertion lines rbohJ-2 and rbohJ-3, respectively. UBC21

(At5g25760) was used as a control. Amplification was performed for

30 cycles for UBC21 and for 35 cycles for RbohH and RbohJ. (C)

Multiple alignments of Arabidopsis Rboh proteins were performed with

ClustalW 1.83 and the phylogenetic tree was reconstructed with

MEGA4 using the protein sequence parsimony method (bootstrap

test, 1,000 replicates). Black and grey circles at nodes indicate

bootstrap values of more than 900 and between 800 and 900,

respectively. The HsNOX5 was used as outgroup. The tree was then

combined with the relative gene expression of Arabidopsis Rboh family

members in various plant tissues according to the Genevestigator

microarray database using the Meta-Profile Analysis tool, Anatomy

Profile [59].

(TIF)

Figure S6 Distribution of pollen tubes of ANX1-YFP in
anx1 anx2, in wild-type (over-expressor line #1 and #4),
and rbohH rbohJ backgrounds relative to the time
required to recover 80% of the initial fluorescence.
Unlike PTs from complemented and over-expressor lines, some

rbohH rbohJ PTs expressing ANX1-YFP were not able to recover

80% of the initial fluorescence at the apical plasma membrane.

(TIF)

Figure S7 rbohH rbohJ pollen tubes display decreased
levels of ROS-sensitive CM-H2DCFDA-derived fluores-
cence compared to the wild type. (A) Single median plane

images of growing WT and rbohH rbohJ PTs stained with the ROS-

sensitive CM-H2DCFDA dye and imaged with the same settings.

Scale bar = 5 mm. (B) Single median plane images of growing WT

and rbohH rbohJ PTs stained with the ROS-insensitive FDA dye

and imaged with the same settings. The scale is the same as in (A).

(C) Quantification of ROS-sensitive CM-H2DCFDA-derived

fluorescence in a circle with 4 mm diameter at the tip of growing

WT and rbohH rbohJ PTs. Data are mean 6 standard error of the

mean (SEM) of three independent experiments with more than

eight PTs per genotype and experiment. Double asterisks indicate

significant differences from the WT according to a Student’s t test

with p,0.01. (D) Quantification of ROS-insensitive FDA-derived

fluorescence in a circle with 4 mm diameter at the tip of growing

WT and rbohH rbohJ PTs. Data are mean 6 SEM of three

independent experiments with more than eight PTs per genotype

and experiment.

(TIF)

Figure S8 Pulsating H2O2-sensitive HyPer activity at the
tip of growing wild-type pollen tubes correlates with
GFP-RbohH localization. (A) Time-course ratiometric imaging

of the tip of growing WT PT expressing cytosolic HyPer and the

corresponding histogram (B) displaying the ratio (F488/F405) at the

tip (blue line) over 90 s, as well as the PT growth rates (green line).

Scale bar = 5 mm. (C) In vitro PT growth assay showing that the

GFP-RbohH protein fusion complements the rbohH rbohJ PT

bursting phenotype in T1 rbohH-3 rbohJ-3 heterozygous for GFP-

RbohH. Left, rbohH-3 rbohJ-3 pollen. Right, pollen of a

representative T1 rbohH-3 rbohJ-3 line expressing GFP-RbohH.

(D) Representative single median plane images of a normally

growing PT of a GFP-RbohH complemented line (left) and an

arrested PT of an GFP-RbohH over-expressing line with apical
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membrane invagination (right) and over-accumulation of CW

material (asterisk). The different filters are indicated. Before

imaging, PTs were treated for 5 min with germination liquid

medium containing FM4-64 (2 mM). Scale bar = 5 mm.

(TIF)

Figure S9 Ca2+2 sensitive cameleon YC3.60 ratiometric
imaging shows that [Ca2+]cyt levels are decreased in
anx1 anx2 bulges compared to young, growing wild-type
pollen tubes but are similar to arrested wild-type
bulges. (A) Representative ratiometric images of young growing

WT PT, arrested WT bulge, and bursting anx1 anx2 bulge

expressing cytosolic YC3.60. On the ratiometric images, the black

circles represent the region of interests of 4 mm diameter used for

measurements at the PT tip. At time = 76 s, a white arrow

indicates a sudden increase of [Ca2+]tip in anx1 anx2 before the

bulge actually bursts (black arrow at time = 84 s). Note how

external Ca2+ enters the anx1 anx2 bulge once it has ruptured. See

also corresponding Video S5. The calibration bar is the same as in

Figure 7A. Scale bar = 5 mm. (B) Quantification of YC3.60 ratio

(FCFP/FVenus) at the tip of young, growing WT PTs, arrested WT

bulges, and anx1 anx2 bulges before rupture (n.15 for each

category). Data are shown as the mean of ratios over 90 s6stan-

dard deviation (SD). Double asterisks indicate significant differ-

ences from the growing WT PTs according to a Student’s t test

with p,0.01.

(TIF)

Figure S10 Tip-focused Ca2+ gradient and pollen tube
growth rates are less stable in rbohH-1 rbohJ-2 than in
the wild type. Representative images of growing WT (A) and

rbohH-1 rbohJ-2 (B) PTs expressing cytosolic YC3.60 and the

corresponding histograms displaying the ratio of [Ca2+]tip/

[Ca2+]behind (i.e., tip-focused Ca2+ gradient, orange line) over

90 s, and the travelled distance of the PT tip (green line). Note

how both the tip-focused Ca2+ gradient and the PT growth rate

are more stable in WT compared to the mutant. Scale bar = 5 mm.

(C) Histogram of the variance of [Ca2+]tip in M2 of WT (green)

and rbohH-1 rbohJ-2 (red). The variance of the [Ca2+]tip is

significantly elevated in mutant PTs compared to the WT

(p = 2.8N10210; Wilcoxon sum rank test). (D) Histogram in

arbitrary units of the ratio of the YC3.60 of [Ca2+]tip/[Ca2+]behind

in growing PTs of WT (green) and rbohH-1 rbohJ-2 (red). (E)

Histogram of the variance (arbitrary units) of the ratio of

[Ca2+]tip/[Ca2+]behind in growing PTs of WT (green) and rbohH-

1 rbohJ-2 (red). The variance of the ratio of [Ca2+]tip/[Ca2+]behind

is significantly increased in mutant pollen tubes (p = 4.1280N10213,

Wilcoxon sum rank test), indicating that the tip-focused Ca2+

gradient is less stable in the mutants than in the WT. (F)

Histogram of the variance of the growth rates in (mm/s)2 for WT

(green) and rbohH-1 rbohJ-2 (red) PTs. Note that the variance of the

growth rates is significantly higher in mutant PTs compared to the

WT (p = 0.008737, Wilcoxon one-sided rank-sum test), indicating

that rbohH-1 rbohJ-2 PT growth is unstable compared to PT

growth of the WT.

(TIF)

Figure S11 External Ca2+ partially suppresses pollen
tube rupture of rbohH rbohJ mutants. (A) Quantification of

the germination rate of pollen from WT, rbohH-1 rbohJ-2, and

rbohH-3 rbohJ-3 plants on different Ca2+-containing media. Data

are mean 6 standard error of the mean (SEM) of three independent

experiments with more than 150 pollen grains per genotype and

experiment. Single asterisks indicate statistically significant differ-

ences from the corresponding control at 5 mM [Ca2+] (indicated by

#) according to a Student’s t test with

p,0.05. (B) Quantification of PT rupture from WT, rbohH-1 rbohJ-2,

and rbohH-3 rbohJ-3 plants on different Ca2+-containing media. Data

are mean 6 SEM of three independent experiments with more than

150 pollen grains per genotype and experiment. Single asterisks

indicate statistically significant differences from the corresponding

control at 5 mM [Ca2+] (indicated by #) according to a Student’s t

test with p,0.05. (C) Representative images of WT (top) and rbohH

rbohJ (bottom) pollen grains grown in vitro for 5 h on 0 (left) and

15 mM [Ca2+] (right). Scale bar = 5 mm.

(TIF)

Table S1 Parameters of fluorescence recovery after
photobleaching (FRAP) at the apical plasma membrane
of growing pollen tubes for ANX1-YFP in different
backgrounds.
(DOCX)

Table S2 Segregation analysis of rboh mutations by
PCR-based genotyping or scoring herbicide resistance
of the progeny resulting from reciprocal crosses with the
wild type (Col-0).
(DOCX)

Table S3 Segregation analysis of rboh mutations by
PCR-based genotyping in the progeny after self-fertil-
ization.
(DOCX)

Table S4 Oligonucleotides used in this study.
(DOCX)

Text S1 Supporting protocols.
(DOCX)

Video S1 Time-course imaging of plasma membrane
invagination in an ANX1-YFP over-expressing pollen
tube that ceased to elongate. Top, bright-field; middle, YFP-

derived fluorescence; bottom, FM4-64-derived fluorescence. The

focal plane was adjusted between the different frames to focus on

the apical membrane growing inwards. Dt = 40 s. Scale

bar = 5 mm.

(AVI)

Video S2 Representative time-course imaging of com-
plemented (top) and ANX1-YFP over-expressing pollen
tubes (bottom) treated for 5 min with FM4-64 (2 mM).
Dt = 0.56 s. Scale bar = 5 mm.

(AVI)

Video S3 Time-course imaging of representative FRAP
experiments on two complemented (top) and two ANX1-
YFP over-expressing (bottom) pollen tubes. Bleaching

time-stamp occurs at t = 0 s. Green arrow time-stamps appear

when 80% of the initial fluorescence is recovered in the apical

plasma membrane. Note that ANX1-YFP over-expressing PTs

grow slower but recover their fluorescence faster that comple-

mented lines. Dt = 4 s. Scale bar = 5 mm.

(AVI)

Video S4 Time-course imaging of growing wild-type
pollen tube expressing the cytosolic H2O2-sensitive
HyPer. Top and middle panels show the fluorescence collected

between 500 and 540 nm after excitation at 488 nm and 405 nm,

respectively. Bottom panel shows the corresponding ratiometric

image (F488/F405). Note the oscillating HyPer activity at the tip of

the growing PT. Dt = 3.26 s. Scale bar = 5 mm.

(AVI)

Video S5 Time-course ratiometric imaging of a young,
growing wild-type pollen tube, an arrested wild-type
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bulge, and a bursting anx1 anx2 bulge. Dt = 4 s. The

calibration bar is the same as in Figure 7A. Scale bar = 5 mm. At

time = 76 s, a white arrow indicates a sudden increase of [Ca2+]tip

in anx1 anx2 before the bulge actually bursts (black arrow at

time = 84 s).

(AVI)

Video S6 Time-course ratiometric imaging of three
growing wild-type (left) and three rbohH rbohJ pollen
tubes expressing the cytosolic Ca2+-sensitive YC3.60.
Dt = 3.26 s. Scale bar = 5 mm.

(AVI)

Video S7 Time-course imaging of FM4-64 stained wild-
type and rbohH rbohJ pollen tubes growing steadily and
unsteadily, respectively. Dt = 1 s. Scale bar = 5 mm.

(AVI)
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oxygen species produced by NADPH oxidase are involved in pollen tube
growth. New Phytol 174: 742–751.

22. Cárdenas L, McKenna ST, Kunkel JG, Hepler PK (2006) NAD(P)H oscillates in
pollen tubes and is correlated with tip growth. Plant Phys 142: 1460–1468.

23. Knight MR (2007) New ideas on root hair growth appear from the flanks. Proc

Natl Acad Sci U S A 104: 20649–20650.

24. Lee YJ, Yang Z (2008) Tip growth: signaling in the apical dome. Curr Opin
Plant Biol 11: 662–671.

25. Wymer CL, Bibikova TN, Gilroy S (1997) Cytoplasmic free calcium

distributions during the development of root hairs of Arabidopsis thaliana.
Plant J 12: 427–439.

26. Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S (2007)

Oscillations in extracellular pH and reactive oxygen species modulate tip
growth of Arabidopsis root hairs. Proc Natl Acad Sci U S A 104: 20996–21001.

27. Swanson S, Gilroy S (2010) ROS in plant development. Physiol Planta 138:

384–392.

28. Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S (2009) Ca2+ regulates
reactive oxygen species production and pH during mechanosensing in Arabidopsis

roots. Plant Cell 21: 2341–2356.

29. Ischebeck T, Stenzel I, Heilmann I (2008) Type B phosphatidylinositol-4-
phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth

by regulating apical pectin secretion. Plant Cell 20: 3312–3330.
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