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Abstract

In higher eukaryotes, most mRNAs that encode secreted or membrane-bound proteins contain elements that promote an
alternative mRNA nuclear export (ALREX) pathway. Here we report that ALREX-promoting elements also potentiate
translation in the presence of upstream nuclear factors. These RNA elements interact directly with, and likely co-evolved
with, the zinc finger repeats of RanBP2/Nup358, which is present on the cytoplasmic face of the nuclear pore. Finally we
show that RanBP2/Nup358 is not only required for the stimulation of translation by ALREX-promoting elements, but is also
required for the efficient global synthesis of proteins targeted to the endoplasmic reticulum (ER) and likely the
mitochondria. Thus upon the completion of export, mRNAs containing ALREX-elements likely interact with RanBP2/Nup358,
and this step is required for the efficient translation of these mRNAs in the cytoplasm. ALREX-elements thus act as
nucleotide platforms to coordinate various steps of post-transcriptional regulation for the majority of mRNAs that encode
secreted proteins.
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Introduction

In eukaryotic cells, mRNA synthesis and processing occur in the

nucleus while the translation of mRNA into protein is restricted to

the cytoplasm. Although these various mRNA metabolic steps take

place in distinct compartments, these events are biochemically

coupled [1,2]. For example, the 59 cap binding complex and the

spliceosome collaborate to deposit the transcription export

(TREX) complex on the 59 end of a newly synthesized transcript

[3]. TREX then recruits the TAP/p15 heterodimer, which

ultimately allows the mRNA to be exported from the nucleus

into the cytoplasm [4,5].

Despite the fact that the vast majority of transcripts contain

introns and should therefore use the splicing-dependent export

mechanism, we previously demonstrated that most mRNAs that

encode secreted proteins contain RNA elements that promote an

alternative mRNA nuclear export (ALREX) pathway that is

independent of both splicing and a 59 cap structure [6]. In

addition, these ALREX-promoting sequences are found within the

signal sequence coding region (SSCR) at the 59 end of the ORF.

SSCRs from vertebrates (and to a lesser extent in invertebrates)

tend to contain long stretches of nucleotide sequence that lack

adenine. This depletion in adenines is due to the enrichment in

both amino acids that are encoded by adenine-poor codons and

synonymous codons lacking adenine. Indeed, ALREX activity can

be inhibited when nucleotides within the SSCR are silently

substituted for adenines, so that the encoded amino acid remains

unaltered [6].

Recently, we demonstrated that SSCR-containing genes tend to

lack introns in their 59 UTR (i.e., upstream of the SSCR) [7].

When SSCRs were present in genes that contained 59 UTR

introns, these SSCRs were not as depleted of adenines, and did not

promote the export of a reporter mRNA [7]. These results

suggested that the 59 most element in a transcript, be it an intron

or SSCR, dictates whether the mRNA is exported by either the

splicing or ALREX pathway. This model is supported by the

observation that ALREX-promoting elements only potentiate

export when present near the 59 end of a reporter transcript [8].

Interestingly, the incorporation of silent adenine mutations into

the ALREX-promoting SSCR not only inhibited nuclear export,

but also induced the formation of cytoplasmic stress granules (SGs)

into which the mutated mRNAs partially accumulated [6].

Typically, these cellular structures form in response to an

accumulation of cytoplasmic transcripts that fail to initiate proper
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translation [9,10]. This observation suggested that the ALREX-

promoting element might influence not only export, but also other

downstream events, such as how the mRNA is localized in the

cytoplasm and how efficiently the translation-initiation complex is

assembled onto the transcript.

Here we provide evidence that ALREX-promoting elements

potentiate translation. Furthermore, our data indicate that these

RNA elements associate with the zinc finger repeats (ZFRs) of

RanBP2, a large protein found on the cytoplasmic face of the

nuclear pore complex. We then demonstrate that the depletion of

RanPB2 not only prevents the normal potentiation of translation

by ALREX-promoting sequences, but also inhibits the global

synthesis of secreted and likely mitochondrial proteins.

Results

ALREX-Promoting SSCRs Enhance Protein Production
Previously, we investigated the function of ALREX-promoting

SSCRs in mediating mRNA localization of the fushi tarazu mRNA

(ftz), a reporter transcript that has been used to study mRNA

splicing [11] and nuclear export [6,12,13]. We also found that

ALREX-promoting SSCRs promote the translation of the ftz

reporter mRNA into protein (AFP, unpublished observations).

However, these initial observations were uninformative as they

could not determine whether ALREX-promoting SSCRs contain

an RNA element that potentiates protein production in a manner

independent of codon effects. Indeed, there is a correlation

between (1) the frequency with which a codon is present in the

genome (i.e., ‘‘codon usage’’), (2) the amount of cognate tRNA that

is present in the cytoplasm, and (3) the number of copies of that

tRNA gene [14–16].

To disrupt features that promote ALREX, such as adenine

depletion, while simultaneously controlling for codon usage effects,

we altered constructs that had ALREX-promoting SSCRs by

mutating leucine codons so that they now encoded isoleucine.

While leucine codons are relatively adenine-poor, all of the

isoleucine codons contain at least one adenine. Moreover,

isoleucine and leucine have almost the same hydrophobicity and

the substitution of one for the other is unlikely to alter the strength

of the encoded signal sequence [17–19]. We chose to alter two

constructs, MHC-ftz and insulin (INS)-ftz, which contain ALREX-

promoting SSCRs derived from the mouse major histocompati-

bility H2kb gene and the human insulin gene, so that each had two

leucine-to-isoleucine mutations (creating the 2Ile-MHC-ftz and

2Ile-INS-ftz constructs; see Figure 1A, 1B, and Table S1). In each

construct, the substituted codons had similar usage frequencies as

the original ones (Figure 1A and 1B) [20]. We then transfected

cells with plasmids containing these various ftz constructs and

monitored ftz protein production 18–24 h later. Note that the ftz

reporter contains sequences that code for HA and FLAG epitopes,

as described previously [6], and can be used to detect the protein

by immunoblot. To control for transfection efficiency and gel

loading, we co-transfected the cells with plasmids containing the

Histone 1B (H1B)-GFP gene, and immunoblotted for green

fluorescent protein (GFP) and a-tubulin.

We found that cells expressing MHC-ftz mRNA produced about

twice as much ftz protein when compared to those expressing 2Ile-

MHC-ftz mRNA (Figure 1C). We obtained the same result when we

compared INS-ftz to 2Ile-INS-ftz (Figure 1D). Strikingly, the total

steady state levels (Figure 1E and 1F) and cytoplasmic/nuclear

distributions (Figure 1G and 1H) of the two mutant mRNAs were

almost identical to their wild-type counterparts. In contrast, no protein

could be detected when the ftz construct lacked an SSCR (c-ftz)

(Figure 1C), and very little protein was expressed from the parathyroid

hormone (PTH)-ftz and prion protein (PRP)-ftz constructs (Figure 1D;

Table 1), which contain SSCRs derived from the parathyroid hormone

and prion protein genes. Both of these genes have an intron in their 59

UTR, and as we previously documented, their SSCRs are adenine-

rich (Table S1), and lack ALREX activity (Figure 1H; Table 1) [7].

Interestingly, these two mRNAs migrated more slowly, when

compared to INS-ftz on a denaturing gel (Figure 1F). This last

observation suggests that mRNAs with weak ALREX activity have

longer poly(A)-tails and is consistent with reports that poorly exported

mRNAs are hyper-polyadenylated [21,22].

The difference in protein levels between cells expressing

reporter genes with normal and mutant ALREX-promoting

SSCRs could potentially have been caused by alterations in the

translocation, processing or steady state level of the resulting

proteins. However, all of the detectable translational products, for

both MHC-ftz and 2Ile-MHC-ftz, were glycosylated indicating that

both were efficiently translocated into the endoplasmic reticulum

(ER) lumen (Figure S1A). This is not surprising as signal sequences

containing either leucine or isoleucine serve equally well to

promote translocation [17]. Moreover, since the various protein

products differ only in their signal sequence, which is cleaved

(Figure S1A–S1C), the various SSCR-containing ftz constructs all

produce the exact same final processed polypeptide. In agreement

with this, these two protein products had similar half-lives (Figure

S1D–S1F). Thus the final difference in protein levels was not due

to changes in translocation, processing, or protein stability.

In support of the idea that the mutations inhibit translation, SG

formation was up-regulated in cells expressing the mutant forms of

ftz as compared to those expressing their wild-type counterparts

(Figure 1I–1L). When controlling for transfection efficiency, mRNA

distribution and mRNA levels, 54% (66%, p,0.00001) less protein

was produced from 2Ile-MHC-ftz than from MHC-ftz mRNA.

Similar results were obtained for INS-ftz and 2Ile-INS-ftz (Table 1).

In conclusion, these results strongly suggest that ALREX-

promoting SSCRs act as an RNA element that enhances protein

production from a reporter mRNA. In addition, our data indicate

that the incorporation of a few silent adenine mutations has a

Author Summary

About one-fifth of the protein-coding genes in the human
genome code for secreted and/or membrane-bound
proteins. In the nucleus these genes are transcribed into
messenger RNAs (mRNAs), which are then exported to the
cytoplasm. These mRNAs are then transported to the
surface of the endoplasmic reticulum where they are
translated into proteins destined for the secretory path-
way. Most of these mRNAs contain signal sequence coding
regions (SSCRs), which code for short hydrophobic
polypeptides that target the newly synthesized proteins
for translocation across the endoplasmic reticulum mem-
brane. Previously, we found that many SSCRs also act as
RNA elements that promote the efficient nuclear export of
mRNAs. Here we present evidence that upon the comple-
tion of nuclear export, SSCR-containing mRNAs interact
with RanBP2/Nup358, a large protein found on the
cytoplasmic face of the nuclear pore. This interaction is
mediated by direct binding between the SSCR and zinc
finger repeats found within RanBP2/Nup358, and is
ultimately required for the efficient translation of SSCR-
containing mRNAs into secretory and/or membrane-
bound proteins. Our work demonstrates that SSCRs act
as nucleotide platforms that recruit various factors to the
mRNA throughout its life to regulate distinct events, such
as nuclear export and translation.

RanBP2 Promotes the Translation of Secretory mRNAs
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much more dramatic impact on translation (Figure 1C and 1D)

than on mRNA export (Figure 1G and 1H). This finding is

consistent with our previous observations that many silent

adenines had to be incorporated into ALREX-promoting SSCRs

before we could observe effects on mRNA export [6,7].

ALREX-Promoting SSCRs Stimulate the Production of a
Natural Protein

Next we monitored the production of calreticulin (CALR), a

protein chaperone that resides in the lumen of the ER [23]. The

CALR gene lacks a 59 UTR intron and has an SSCR that is highly

depleted of adenines. Within the first 55 nucleotides of the human

CALR ORF, there is a tract of 43 nucleotides that lacks adenine,

which is above average for the typical human SSCR [6].

To detect the expression of this protein, we inserted a sequence

that codes for HA epitope into the 39 end of the ORF. We also

created a mutant form of the CALR-HA gene where four leucine

codons were substituted for isoleucine codons that had similar

usage frequencies (4Ile-CALR-HA; Figure 1M; Table S1). In

agreement with our ftz reporter construct results, cells transfected

Figure 1. ALREX-promoting SSCRs promote translation. (A) For each codon in the MHC, 2Ile-MHC SSCRs (x-axis), the frequency with which it
appears in the human genome per 1,000 codons (‘‘Freq/1000’’; y-axis) was plotted. Note that the two leucine-to-isoleucine mutations are circled. (B)
Codon analysis of Ins, 2Ile-Ins SSCRs as in (A). (C–L) U2OS cells were co-transfected with plasmids that contained various versions of the ftz gene, and a
second plasmid that either contained (‘‘+’’) or lacked (‘‘2’’) the H1B-GFP gene. As a control, cells were transfected with a plasmid lacking the ftz gene
(‘‘Vector’’). The cells were then analyzed 18–24 h post-transfection. (C–D) Cell lysates were separated by SDS-PAGE and were probed with antibodies
against the HA epitope, GFP, and a-tubulin. (E–F) RNA was extracted from the cell lysates, separated on a denaturing agarose gel, and analyzed by
Northern blotting using [32P]-labeled probes directed against ftz and GFP transcripts. (G–H) The percentage of total mRNA found in the cytoplasm
and nucleus as determined by the distribution of ftz mRNA by FISH staining. Each bar represents the average and standard error between three
separate experiments (each experiment consisting of the average of at least 30 cells). (I–L) For cells expressing the indicated version of ftz, the
percentage of cells (y-axis) with various numbers of SGs (x-axis) was plotted. Note that the SGs were detected by Tia1 immunostaining, but almost
always contained an enrichment in ftz mRNA. For each graph, .160 cells (I–J) and .580 cells (K–L) were analyzed. Note that while .15% of 2Ile-INS-
ftz expressing cells had SGs, this number dropped to ,1% in cells expressing INS-ftz. (M) For the first 17 codons (x-axis) in the wild type and 4Ile
mutant CALR gene, the frequency with which it appears in the human genome per 1,000 codons (y-axis). Note that the four leucine-to-isoleucine
mutations in 4Ile-CALR are circled. (N–P) U2OS cells were co-transfected with plasmids that contained either version of the HA-tagged CALR gene, and
a second plasmid that either contained (‘‘+’’) or lacked (‘‘2’’) the H1B-GFP gene. As a control, cells were transfected with a plasmid lacking the CALR
gene (‘‘Vector’’). The cells were analyzed 18–24 h post-transfection. (N) Cell lysates were separated by SDS-PAGE and were probed with antibodies
against the HA epitope, GFP, and a-tubulin. (O) RNA was extracted from the cell lysates, separated on a denaturing gel and analyzed by Northern
blotting analysis using [32P]-labeled probes directed against CALR and GFP RNA. (P) The percentage of total mRNA found in the cytoplasm and
nucleus as determined by the distribution of CALR mRNA by FISH staining.
doi:10.1371/journal.pbio.1001545.g001
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with plasmids containing the CALR-HA cDNA gene produced

more protein than those transfected with 4Ile-CALR-HA

(Figure 1N). Since the two protein products differ only in their

signal sequences, which are cleaved during processing, we could

again rule out that the difference in levels was due to changes in

protein stability. Furthermore, we could also rule out that the

change in protein production was due to differences in the level

(Figure 1O) or cytoplasmic/nuclear distribution (Figure 1P) of

CALR-HA mRNA.

From these experiments we conclude that ALREX-promoting

SSCRs can potentiate the translation of a natural mRNA. When

controlling for transfection efficiency, mRNA distribution and

mRNA levels, 57% (613%, p,0.005) less protein was produced

from 4Ile-CALR-HA than from CALR-HA mRNA. Confirming our

results with the ftz reporter construct, we again observed that the

disruption of the ALREX-element had a more pronounced effect

on translation than on mRNA export.

ALREX-Promoting Elements Require a Nuclear Factor in
order to Stimulate ftz Protein Synthesis

When the translation of MHC-ftz and 2-Ile-MHC-ftz was

monitored using an in vitro reticulocyte extract, both mRNAs

produced the same amount of protein (Figure S1C). From this

result we concluded that there is no inherent difference in the

translatability of these two mRNAs and that reticulocyte lysate,

which is derived from enucleated cells, may lack factors that are

required for the efficient translation of transcripts harboring

ALREX-elements. Indeed, ALREX-elements are likely to associ-

ate with nuclear factors that promote mRNA export and then

accompany the transcript to the cytoplasm where they may help to

potentiate translation. To test this idea, we microinjected in vitro

synthesized and polyadenylated MHC-ftz mRNA into either the

cytoplasm or nucleus of cells, and after various time points, we

visualized ftz mRNA by fluorescence in situ hybridization (FISH).

Cytoplasmic or nuclear microinjection was confirmed by co-

injecting fluorescently labeled 70 kDa dextran, which is too large

to passively cross the nuclear pores. When injected into the

cytoplasm, but not the nucleus, MHC-ftz mRNA accumulated in

aggregates that were positive for Tia1, a general marker for SGs

(Figure 2A–2B) [24]. In general, SGs are thought to form under a

variety of conditions, including the accumulation of mRNA with

defective or incompletely assembled translation initiation com-

plexes [25,26]. Since these SGs were also enriched in eIF3B

(Figure 2C), a translation initiation factor, it is likely that the

mRNAs that were injected into the cytoplasm assembled

incomplete translation-initiation complexes, rather than simply

aggregating non-specifically. Interestingly, mRNA that was

injected into the cytoplasm appeared to be stable, as the FISH

signal remained strong for up to 9 h post-injection (unpublished

data).

We next investigated whether the injected MHC-ftz mRNAs

were translated. Since too few cells are microinjected in a single

experiment to allow for biochemical analysis, we instead

monitored the expression of protein by immunofluorescence

against the HA and FLAG epitopes, which are encoded within

the ftz ORF. When MHC-ftz mRNA was microinjected into the

cytoplasm, few of those cells produced detectable levels of ftz

protein (Figure 2D). In contrast, most cells whose nuclei were

injected with the same mRNA expressed protein after about 3 h

(Figure 2E). As expected, all expressed protein co-localized with

the ER marker Trapa (unpublished data), as previously reported

[6]. When we quantified the total intensity of the FLAG and HA

immunostain signals 3 h post-injection, there was a 10- to 15-fold

increase in protein production when the mRNA was microinjected

in the nucleus (Figure 2F). Interestingly, when we monitored this

expression over time, cells whose cytoplasm was injected with

MHC-ftz mRNAs eventually expressed protein, but only after a 2–

3 h delay when compared to those that received MHC-ftz mRNAs

in the nucleus (Figure 2G). We speculated that the delay in

expression was due to the fact that over time these mRNAs were

slowly accumulating a factor that cycled between the nucleus and

the cytoplasm. Remarkably, when MHC-ftz mRNA was pre-

incubated with HeLa nuclear extract and then injected into the

cytoplasm, efficient protein production was restored (Figure 2F–

2H). When c-ftz mRNA was injected either into the nucleus or

cytoplasm, with or without nuclear extract, no translational

product was ever detected (unpublished data). These observations

suggest that ALREX-promoting elements potentiate translation by

recruiting one or more nuclear factors to the translational start site.

Identification of Nuclear Proteins That Associate with
ALREX-Promoting Elements

Since HeLa nuclear extract appeared to potentiate translation,

and would also be enriched in putative nuclear export factors, we

wanted to determine whether any proteins in these extracts

directly associate with ALREX-promoting elements. Using elec-

trophoretic mobility shift assays (EMSAs), we observed the

formation of a complex between nuclear extract factors and

[32P]-labeled RNA fragments from the Ins and MHC SSCRs

(Figure 3A and 3B). Complex formation was detected when we

tested a mutant form of the Ins SSCR containing seven silent

adenine substitutions (7A-Ins; Figure 3A; see Table S1 for the

sequence of this mutant). In contrast, very little complex was

formed with an RNA fragment derived from the beginning of the

Table 1. Analysis of various SSCR-containing ftz constructs.

Protein Levels mRNA Levels
Fraction of the Total mRNA in
the Cytoplasm

Avg ± Avg ± Avg ±

INS-ftz 1.00 0.00 1.00 0.00 0.68 0.01

2Ile-INS-ftz 0.63 0.07 1.01 0.03 0.68 0.02

PTH-ftz 0.10 0.06 1.01 0.40 0.38 0.02

PRP-ftz 0.01 0.00 0.90 0.45 0.41 0.01

Each data point consists of the average and standard error of three independent experiments. Protein levels were determined by densitometry analysis of immunoblots,
mRNA levels were determined by densitometry analysis of northern blots, and the fraction of the total mRNA was determined as in Figure 1G and 1H. In each
experiment, the protein and mRNA levels were normalized to that of INS-ftz.
doi:10.1371/journal.pbio.1001545.t001
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b-globin (bG) ORF (Figure 3A and 3B), which does not promote

export [27]. To test for specificity, we formed complexes between

HeLa nuclear extracts and the Ins SSCR as in Figure 3A, but in

the presence of cold competitor RNA. Unlabeled Ins SSCR was a

more effective competitor than either the 7A-Ins mutant or the bG

RNA fragment (Figure 3C). From these experiments we concluded

that one or more factors in HeLa nuclear extracts specifically

associate with ALREX-promoting elements. Our data indicate

that the addition of adenines decreases, but does not abolish, the

ability of HeLa factors to interact with ALREX-promoting

elements. This result is consistent with the observation that

adenine substitutions only partially inhibit ALREX (Figure 1 G

and 1H) [6,7].

To isolate these interacting proteins from HeLa nuclear extracts

we incubated these with biotinylated RNA fragments that were

immobilized on streptavidin-conjugated magnetic beads. Bound

proteins were eluted by treating the beads with RNAse A

(Figure 3D, lanes 1–4). Since RNA-binding factors can protect

the biotinylated transcripts from digestion, we then treated the

beads with SDS at high temperature to denature any remaining

proteins (Figure 3D, lanes 5–8). Several Ins SSCR-interacting

factors were detected by silver stain. Importantly, these proteins

were less abundant when the purification was performed with the

7A-Ins mutant RNA, and almost completely absent with bG RNA.

Note that these proteins also associated specifically with the Ins

SSCR under less stringent conditions, but were partially obscured

by non-specific RNA-binding proteins (Figure S2). Since the

nonspecific proteins bound equally well to beads with either the Ins

SSCR, the 7A-Ins mutant, and bG RNAs, but not to the beads

alone, we are somewhat confident that equal amounts of RNA

were used in all pulldowns. Bands were excised and identified

using mass spectrometry as being RanBP2/Nup358 (henceforth

termed RanBP2), Importinb, RanGAP1, Ran, and Ubc9. When

proteins from RNAse A and SDS eluates were precipitated with

trichloroacetate and analyzed by mass spectroscopy, we could also

detect TAP, RCC1, and Importina in the Ins purified fraction, but

not the other fractions. Since these proteins could not be readily

visualized on a silver-stained gel (Figure 3D), we believe that their

binding to the Ins SSCR is either very weak or indirect. We also

detected a large number of SUMO peptides in the trichloroace-

tate-precipitated fraction. Interestingly, RanBP2 is a known E3

SUMO ligase, which transfers SUMO from Ubc9 (an E2 SUMO

ligase) to substrates such as RanGAP1 [28]. Moreover RanBP2,

which is present on the cytoplasmic face of the nuclear pore, forms

a stable complex with Ubc9 and sumoylated RanGAP1 [29,30].

RanBP2 also interacts with most of the other identified proteins,

including Ran [31,32], TAP [33,34], and Importinb [35].

To validate our findings, we assessed the association of HeLa

extract proteins to the RNA-coated beads by immunoblot. To

ensure that the binding was specific, we washed the beads

extensively with high salt buffer. Indeed, RanBP2, RanGAP1, and

Ran bound exclusively to Ins, but not 7A-Ins, bG RNAs, or to the

beads alone (Figure 3E). When the fractions were probed with

mAb414, an antibody that recognizes several nucleoporins

[36,37], only RanBP2 was detected in the Ins SSCR pulldown

(Figure 3F). In contrast, Nup62 and Nup153 failed to associate

Figure 2. ALREX-promoting elements require a nuclear factor in order to stimulate ftz protein synthesis. (A–C) The cytoplasm (A,C) or
nuclei (B) of COS-7 cells were microinjected with in vitro synthesized, capped, and polyadenylated MHC-ftz mRNA and FITC-labeled 70 kDa dextran.
After 2 h cells were fixed and stained by FISH using probes against ftz mRNA and by immunofluorescence using antibodies directed against Tia1 (A–
B) or eIF3B (C). Each row represents a single field of cells. Note that in cytoplasmically injected cells the MHC-ftz mRNA accumulated in cytoplasmic
aggregates that are enriched in Tia1 and eIF3B (see overlays in (A and C)). (D–E, H) NIH-3T3 cells were microinjected with FITC-labeled 70 kDa dextran
and in vitro synthesized, capped, and polyadenylated MHC-ftz mRNA, which was either untreated (D–E) or pre-incubated with HeLa nuclear extract
(H). The cells were incubated for 3 h then fixed and stained by immunofluorescence using antibodies directed against the FLAG epitope. Each row
represents a single field of cells that were microinjected into the cytoplasm (D,H) or nucleus (E) as determined by the distribution of 70 kDa dextran.
Note that when MHC-ftz mRNA is introduced directly into the cytoplasm it is translated only if it was pre-incubated with nuclear extract. Scale
bar = 20 mM. (F–G) NIH-3T3 cells were microinjected with MHC-ftz mRNA and FITC-labeled 70 kD dextran, alone or with HeLa nuclear extract (‘‘+NE’’),
in the nucleus or cytoplasm. Cells were fixed, then immunostained for either FLAG (F–G) or HA (F) epitopes. (F) The total integrated intensity of FLAG
and HA immunofluorescence was quantified for cells, 3 h post-injection. (G) The percentage of microinjected cells expressing ftz protein, as measured
by the appearance of FLAG immunofluorescence, was quantified for each time point post-injection. Each data point/bar in (F–G) consists of an
average of three experiments, each of which consisting of .100 cells. Error bars represent the standard deviation between experiments.
doi:10.1371/journal.pbio.1001545.g002
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with the RNA (Figure 3F, lane 1) despite the fact that they are

present in this extract (Figure 3F, lane 5).

From these results we conclude that the Ins SSCR interacts with

RanBP2 and several RanBP2-associated proteins.

The Zinc Finger Repeats of RanBP2 Interact Directly with
the Ins SSCR

Since all of the proteins that associated with the Ins SSCR are

known to bind to RanBP2, it is highly probable that the RNA is

making contact to one subunit of a large complex. We expressed

and purified five His-tagged, and one GST-tagged, fragments of

RanBP2. Each fragment corresponded to a different region of the

protein (Figure 4A and 4B, tagged proteins that react positively on

an immunoblot with anti-His antibodies are denoted by asterisks).

We found that the zinc finger domain (ZFD) fragment, which

contains all eight of the RanBP2 ZFRs (see Figure 4B), was able to

form a complex with [32P]-labeled Ins RNA by EMSA (Figure 4C

and 4D). In contrast, none of the other fragments were able to

form a complex (Figure 4C and 4D). In addition we did not detect

binding between [32P]-labeled Ins SSCR and either purified

bacterially expressed RanGAP1 or Importinb alone, or in the

presence of GTP-bound Ran (unpublished data). The ZFD also

formed a complex with the MHC SSCR, but not the bG RNA

(Figure 4E). Although, the mutant 7A-Ins SSCR associated with

purified ZFD (Figure 4E), this RNA showed reduced affinity as

compared to wild-type Ins SSCR in competition assays (Figure 4F

and 4G). From these results we conclude that RanBP2 has the

ability to bind directly to the Ins and MHC SSCRs through its

ZFRs.

Ran and the Ins SSCR Interact with the ZFD in a Mutually
Exclusive Manner

Interestingly, the eight ZFRs from RanBP2 are highly related to

repeats found in Nup153 and ZRanB2. Indeed, the ZRanB2 zinc

fingers bind directly to single-stranded RNA in a sequence-specific

manner [38]. Although the zinc fingers from RanBP2 and Nup153

had not been previously reported to interact with RNA, they were

shown to directly associate with both GDP- and GTP-bound Ran

[39]. Interestingly, structural and biochemical analysis indicates

that the RanBP2 and Nup153 zinc fingers interact with Ran using

the same analogous surface that the ZRanB2 repeats employs to

bind RNA [38,39]. This raised the possibility that the Ins SSCR

and Ran may compete for binding to the RanBP2 ZFRs. In

agreement with this idea, GST-tagged Ran, loaded with either

GTP or GDP (Figure 4H), effectively prevented the ZFD protein

fragment from associating with the Ins SSCR (Figure 4I, lanes 2

and 3). In contrast, BSA, which does not associate with the Ins

SSCR (see Figure 4D), had no effect on complex formation

(Figure 4I, lane 1). From these results we conclude that the binding

of the Ins SSCR and Ran to ZFD is mutually exclusive. Our results

Figure 3. Identification of ALREX-element associating proteins from HeLa nuclear extract. (A–B) Various [32P]-labeled RNA fragments,
either 82 (Ins SSCR, 7A-Ins SSCR, and the 59 end of the bG ORF) or 86 (MHC SSCR) nucleotides long, were incubated with or without HeLa nuclear
extract (‘‘NE’’) and separated on a non-denaturing polyacrylamide gel and visualized by autoradiography. (C) [32P]-labeled Ins SSCR RNA was mixed
with increasing amounts of various unlabeled RNA fragments, then incubated with NE. The reactions were separated on a non-denaturing
polyacrylamide gel and visualized by autoradiography. (D–F) Streptavidin-coated magnetic beads, bound with either various biotinylated RNAs (each
76 nucleotides long) or without any RNA (‘‘No RNA’’), were used to isolate proteins from HeLa nuclear extract. Proteins were eluted by first treating
the beads with RNase A (D, lanes 1–4), followed by denaturation in SDS at 90uC for 5 min (D, lanes 5–8). (D) Silver stained gel of the eluted proteins.
Bands identified by mass spectrometry are indicated on the right. (E–F) Eluted proteins and NE were analyzed by immunoblots using an antibody that
recognizes, RanBP2, RanGAP1, Ran, or FG-repeat Nucleoporin proteins (mAb414).
doi:10.1371/journal.pbio.1001545.g003
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are consistent with the idea that the ZFD uses a similar surface to

bind to both molecules, although we cannot exclude the possibility

that Ran-binding may induce a conformational change in the

ZFD that ultimately alters a different RNA binding-site.

The Number of RanBP2 Zinc Fingers Correlates with the
Average Length of SSCR-Specific Adenine-Less Tracts
across Metazoans

Adenine depletion is a hallmark of ALREX-promoting elements

[6,7]. We previously capitalized on this fact to estimate the size of

ALREX-promoting elements in various organisms by measuring

the longest tract of adenine-less sequence within the first 69

nucleotides of ORFs that encode signal sequences [6]. Indeed, the

average length of adenine-less sequence per SSCR varied greatly

between species [6]. We speculated that this variation between

organisms might correlate with the number of zinc fingers present

in their respective copy of RanBP2. To test this idea, we expanded

our analysis to 36 different metazoans where we calculated the

average length of the longest tract of adenine-less sequence within

the first 99 nucleotides of the ORFs that encode signal sequences,

and compared this to the number of zinc fingers encoded by that

organism’s RanBP2 gene. As a control we computed the average

length of the longest tract of adenine-less sequence in a stretch of

99 nucleotides selected randomly within each ORF. In addition

we also analyzed genes that code for signal sequences from

Dictyostelium discoideum and Saccharomyces cerevisiae, two organisms

that do not contain any known RanBP2 orthologs. Overall, we

observed a general correlation between the number of RanBP2

ZFRs and the length of adenine-less tracts in SSCRs (Figure 5A

and 5B; Table S2). Critically, SSCRs from D. discoideum and S.

Figure 4. The RanBP2 zinc fingers directly interact with ALREX-elements. (A) Various His-tagged (TPR, tricopeptide repeat region; RBR1/2,
ran binding domain-containing regions 1/2; C-Term, carboxy-terminal domain) or GST-tagged (E3, E3 SUMO ligase domain) fragments of the RanBP2
gene were expressed in bacteria and purified. The proteins were separated by SDS-PAGE and stained with Coomassie blue. In cases where multiple
bands appear, proteins that are detected on anti-His-tag immunoblots are denoted by asterisks. (B) Domain structure of RanBP2. Note that this
protein contains four type 1 Ran binding domains (RanBD1), eight ZFRs, an E3 ligase domain, a cis-trans prolyl-isomerase domain, and several FG
repeats. (C–D) [32P]-labeled Ins SSCR RNA was incubated with purified proteins, separated on a non-denaturing polyacrylamide gel, and then
visualized by autoradiography. Note that the ZFD forms a complex with the Ins RNA. (E) Various [32P]-labeled RNA fragments were incubated with the
ZFD protein, separated on a non-denaturing polyacrylamide gel, and then visualized by autoradiography. (F) [32P]-labeled Ins SSCR RNA was
incubated with or without the ZFD protein fragment in the absence or presence of various unlabeled RNAs. The complexes were separated on a non-
denaturing polyacrylamide gel and then visualized by autoradiography. (G) Graph of the amount of [32P] INS-containing complexes (y-axis) in the
presence of various amounts of unlabeled RNAs (x-axis). Each point is the average and standard deviation of two independent experiments. (H)
Coomassie stain of bacterially expressed ZFD and GST-tagged Ran before and after loading with GTP or GDP. In order to estimate the levels of Ran
and ZFD proteins, various amounts of BSA were also loaded on the gel. (I) ZFD was preincubated with either BSA or Ran loaded with GDP or GTP,
then incubated with [32P]-labeled Ins SSCR RNA. The complexes were separated on a non-denaturing polyacrylamide gel and then visualized by
autoradiography.
doi:10.1371/journal.pbio.1001545.g004
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cerevisiae did not contain long adenine-less tracts when compared to

control sequences (Figure 5A and 5B). Since RanBP2 has yet to

have been documented outside of metazoans, our data suggest that

the selective pressure necessary to effectively deplete adenines from

SSCRs arose only after the appearance of RanBP2 at the base of

the metazoan tree (Figure 5C). Even more interesting is the case of

Pediculus humanus (commonly referred to as the human head louse),

which did not display any significant increase in length of adenine-

less tracts in their SSCRs and whose RanBP2 gene lacked ZFRs.

In contrast, six other invertebrates (including aphids) had both a

significant increase in the length of the adenine-less tracts in their

SSCRs and versions of RanBP2 that contained ZFRs. Thus, it is

likely that the lineage from which P. humanus arose, lost both

features relatively recently (i.e., after this lineage had diverged

from aphids, Figure 5C).

This analysis indicated that these two features (i.e., zinc fingers

within RanBP2 and SSCR-specific adenine depletion) not only

correlated, but are either both present or absent in all organisms

analyzed thus far. We thus concluded that adenine-less tracts and

the zinc fingers of RanBP2 display an evolutionary relationship

towards each other. This finding strongly indicates that a major

role of the RanBP2 ZFRs is to recognize adenine-less tracts in

ALREX-promoting SSCRs.

RanBP2 Is Required for the Potentiation of Translation by
ALREX-Promoting SSCRs

We next examined whether RanBP2 was required for the

efficient translation of mRNAs containing ALREX-promoting

SSCRs. To accomplish this we transiently transfected reporter

constructs into U2OS cells treated with lentiviral-delivered

shRNAs directed against RanBP2. We found that cells depleted

of RanBP2 (Figure 6A) did not efficiently produce MHC-ftz

protein when compared to control cells (Figures 6B and 6C). In

contrast, the expression of PTH-ftz and H1B-GFP protein was

relatively unaffected (Figures 6B and 6C). Interestingly, we also

observed a drop in the production of 2Ile-MHC-ftz. This result is

not surprising when considering that the RanBP2 zinc-finger

repeats bind to ALREX-promoting sequences that had adenine

mutations, albeit at a lower level than wild-type sequences (see

Figure 4F and 4G). The decrease in MHC-ftz and 2Ile-MHC-ftz

protein synthesis could not be attributable to changes in the total

level ftz mRNAs, which remained unaffected (Figures 6D and 6E),

or to changes in the distribution of MHC-ftz mRNA between the

cytoplasm and the nucleus (Figure 6F).

This last finding was quite surprising given the fact that RanBP2

was shown to be required for the efficient nuclear export of bulk

mRNA in insect and mouse cells [33,40]. In contrast, it had also

been reported that RanBP2 depletion had no effect on the

distribution of poly(A) mRNA in the human HeLa cell line [41]. In

line with this last experiment we found that the cytoplasmic/

nuclear ratio of poly(A) mRNA was unaffected by the depletion of

RanBP2 in human U2OS cells (Figure 6G). On the other hand,

depletion of the two RNA helicases, UAP56 and URH49, by

shRNA treatment (Figure 6H) caused a pronounced block in

mRNA nuclear export (Figure 6G) as described previously [42].

Thus it is likely that RanBP2 plays at most a minor role in mRNA

nuclear export in human cells. This might be due to the presence

of RanBP2 paralogs, which appear to be primate specific [43].

Curiously, these paralogs lack the ZFRs and are thus unlikely to

participate in ALREX-mediated events.

We next evaluated the production of protein from a more

‘‘natural’’ transcript. As expected, the depletion of RanBP2 also

inhibited the production of CALR-HA, but not 4Ile-CALR-HA

protein without a significant change in mRNA level (Figure S3A–

S3C). To confirm these results, we depleted RanBP2 with a second

shRNA construct (‘‘RanBP2 shRNA2’’; Figure S3D). In these cells

we again observed a consistent reduction in the production of

MHC-ftz and CALR-HA protein without a significant change in

mRNA levels (Figure S3E–S3H). In contrast, the levels of PTH-ftz

and H1B-GFP proteins were relatively unaffected. Finally we found

that the depletion of RanBP2 using either of the two shRNAs

inhibited the synthesis of INS-ftz protein (Figure S3I and S3J).

To ensure that our results were not due to some pleiotropic

effect, we depleted RanBP2 with a third lentiviral-delivered

shRNA (i.e., shRNA3) that is complementary to a region in the

39 UTR. Three days after infection we rescued the knockdown

cells by transfecting a plasmid that contains a GFP-RanBP2

construct that lacks the endogenous UTRs and thus was resistant

to depletion (Figure 6I). In parallel we transfected control plasmids

containing either a version of GFP-RanBP2 that lacks the last six

zinc fingers (RanBP2D6ZFR) or H1B-GFP. With these various

GFP vectors we co-transfected a plasmid containing MHC-ftz.

Since, only a subset of the MHC-ftz expressing cells also co-

expressed the GFP-RanBP2 constructs (Figure S4), we monitored

individual cells for ftz protein levels by immunofluorescence

against the HA epitope. Since GFP-RanBP2 expression was very

low we also immunostained cells with an antibody against GFP. In

cells transfected with MHC-ftz alone, RanBP2 depletion by

shRNA3 resulted in a decrease in protein expression by

approximately 2-fold (Figure 6J, ‘‘mock’’). Co-expression of

GFP-RanBP2 rescued the level of ftz protein, whereas co-

expression of GFP-RanBP2D6ZFR, had no effect (Figure 6J).

Note that even in the shRNA3-treated cells, those that express

Figure 5. Adenine depletion in SSCRs correlates with the
number of RanBP2 zinc fingers across metazoans. (A–B) For each
organism, the ORFs from at least 500 genes encoding secreted proteins
were analyzed (for individual values see Table S2). The average length
of the longest adenine-less track within the first 99 nucleotides or a
random stretch of 99 nucleotides was analyzed. (A) For each organism,
the average adenine-less track lengths (y-axis) were plotted against the
number of ZFRs (x-axis) in the RanBP2 gene. (B) The ratio of adenine-
less track lengths in the first 99 nucleotides versus a random stretch of
99 nucleotides (y-axis) was plotted against the number of ZFRs in the
RanBP2 (x-axis) within each species. A trend line and the corresponding
coefficient of determination (R2) was also included. Note that for one
metazoan species, P. humanus (human head lice), there is neither
adenine depletion nor ZFRs within RanBP2. Also note that non-
metazoans (D. discoideum and S. cerevisiae) lack both the SSCR-specific
adenine depletion and the RanBP2 gene. (C) A phylogenetic tree
depicting the likely loss of both adenine depletion and RanBP2 zinc
fingers in the lineage that gave rise to P. humanus.
doi:10.1371/journal.pbio.1001545.g005
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Figure 6. RanBP2 is required for ALREX-mediated translation enhancement. (A) U2OS cells were infected with lentivirus containing shRNA1
directed against RanBP2 or control virus. Four days post-infection, cell lysates were collected, separated by SDS-PAGE on a 6% acrylamide gel, and
immunostained for RanBP2 or a-tubulin. (B–E) U2OS cells were infected with lentivirus that delivered shRNA1 against RanBP2 or control virus. Three
days post-infection, cells were transfected with plasmids containing various ftz constructs and H1B-GFP. 18–24 h post-transfection the level of protein
was analyzed by immunoblot (B, quantification in C) and mRNA by northern blot (D, quantification in E). Each bar represents the average and
standard error of six independent experiments. *, p,0.025; **, p,0.01. (F) Three days post-infection, U2OS cells were transfected with plasmid
containing MHC-ftz. 18–24 hr post-transfection the amounts of MHC-ftz mRNA found in the cytoplasm and nucleus was determined by FISH. One bar
represents an average of three experiments, each of which consists of 20–30 cells. Error bars represent the standard deviation between the three
experiments. (G) U2OS cells were treated with various lentiviruses. Four days post-infection, cells were fixed and stained for poly(A) mRNA by FISH.
The average levels of poly(A) mRNA in the cytoplasm or nucleus were plotted. One bar represents an average of three experiments, each of which
consists of 20–30 cells. Error bars represent the standard deviation between the three experiments. (H) UAP56 and URH49 were simultaneously
depleted in U2OS cells by lentiviral mediated delivery of shRNAs. Four days post-infection, cell lysates collected, separated by SDS-PAGE, and
immunostained for these two proteins and for a-tubulin. (I–K) U2OS cells were infected with lentivirus containing shRNA directed against the 39 UTR
of RanBP2 (shRNA3) or control virus. (I) Three days post-infection, cells were transfected with plasmids containing GFP-RanBP2, or GFP-RanBP2D6ZFR
or without plasmid (‘‘Mock’’). After allowing expression for 48 h, cell lysates were collected and detected by immunoblot using antibodies against
GFP, RanBP2, and a-tubulin. Note that the GFP-RanBP2 constructs do not contain the endogenous UTRs and are resistant to depletion by shRNA3. (J–
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GFP-RanBP2, express much more ftz protein than neighboring

cells that express ftz alone (Figure 6K, compare the level of ftz

protein in the cells expressing GFP-RanBP2, which are denoted by

arrows, to the cell expressing ftz alone, which is indicated by an

arrowhead). In contrast, expression of GFP-RanBP2D6ZFR had

no effect on ftz protein levels (Figure 6K).

We next examined the association of MHC-ftz with polysomes

using sucrose gradient centrifugation. Consistent with our analysis

of translational product, MHC-ftz mRNA was associated with

fewer ribosomes in RanBP2-depleted cells (Figure 7A–7C). In

contrast, the distributions of H1B-GFP mRNA (Figure 7A, 7B, and

7D) and ribosomal rRNA (Figures 7A,7B, and S5) in the gradients

were relatively unaffected. Since active translation is required for

the efficient localization of MHC-ftz mRNA to the ER [44], we

next examined the distribution of this mRNA on this organelle. In

order to accomplish this we extracted cells with digitonin, a

detergent that selectively permeabilizes the plasma membrane and

thus removes cytoplasmic mRNAs that are not anchored to the

ER [44,45]. By analyzing the level of MHC-ftz mRNA in

unextracted and extracted cells by FISH, we calculated that the

amount of ER-bound MHC-ftz mRNA was reduced in cells

depleted of RanBP2 (Figure 7E). Finally we assessed the

association of MHC-ftz mRNA with SGs by co-staining this

transcript with Tia1. RanBP2-depleted cells transfected with

plasmids encoding MHC-ftz mRNA had an increase in SG

formation when compared to transfected control cells (Figure 7F).

As seen previously, the vast majority of these SGs were enriched in

MHC-ftz mRNA. To determine how fast these SGs formed, we

microinjected plasmids into these cells and monitored the

distribution of newly made mRNA levels. 20 min post injection

we halted the further production of mRNA by adding a-amanatin

and we then monitored the distribution of newly synthesized

mRNA by FISH. Indeed, SGs appeared in RanBP2-depleted cells

that expressed MHC-ftz mRNA after only 2 h post-injection

(Figure 7G). Moreover the newly expressed mRNAs accumulated

in these SGs. These observations are consistent with the idea that

in RanBP2-depleted cells, there is a buildup of MHC-ftz mRNAs

with defective translation-initiation complexes that very quickly

aggregate into SGs [9].

From these results we conclude that RanBP2 is required for the

potentiation of translation by ALREX-promoting SSCRs. Further-

more, in cells depleted of RanBP2 we observed a decrease in the

amount of MHC-ftz transcripts that are associated with the ER and

polysomes, and a corresponding increase of this mRNA in both

monosomes and SGs, suggesting that these cells have a defect in

translation-initiation that is specific for ALREX-containing mRNAs.

RanBP2 Is Required for the Efficient Global Production of
ER-Targeted Proteins

Previously we estimated that about 70% of all human genes that

encode proteins targeted to either the ER or mitochondria,

contain ALREX-promoting elements [7]. We thus decided to

test the rate of protein synthesis in these various subcellular

compartments. Newly synthesized proteins were labeled by

feeding [35S]-methionine/cysteine to either control, or RanBP2-

depleted cells. After 15 min, the cells were lysed, and the nuclear,

ER/mitochondrial, and cytoplasmic fractions were isolated by

differential centrifugation and analyzed for [35S] incorporation

(Figure 8A) and protein composition by immunoblot (Figure 8B).

In agreement with our previous bioinformatic analysis, the amount

of newly synthesized protein in the ER/mitochondrial fraction

decreased by half in cells depleted of RanBP2. We also detected a

slight decrease in the amount of newly synthesized proteins in the

nuclear and cytosolic fractions (Figure 8A), and this is likely due to

the fact that a small but substantial fraction of non-secretory

mRNAs contain features associated with ALREX (CC and FPR,

unpublished observations). We also immunoprecipitated proteins

from these cell lysates and determined that the amount of newly

synthesized BiP, a lumenal ER chaperone that contains an

adenine-depleted SSCR (see Table S1), significantly dropped in

RanBP2 depleted cells (Figure 8C and 8D). In contrast the levels of

a-tubulin remained unchanged. In agreement with our findings

that RanBP2 is required for the translation of secretory mRNAs,

we observed a small but statistically significant decrease in ER-

associated mRNA after RanBP2 depletion (Figure 8E). As

expected, the depletion of RanBP2 also generally promoted the

general formation of SGs as detected by Tia1 staining; however,

this was not seen in every experiment and the number of granules

per cell was highly variable (unpublished data). In contrast, SGs

were never detected in control cells.

In summary we conclude that RanBP2 is required for the

efficient translation of mRNAs that encode secreted and mem-

brane-bound proteins. Our data also suggest that cells depleted of

RanBP2 accumulate mRNAs with defective translation initiation

complexes, although the overall level of these defective complexes

is likely very low and near the critical amount necessary to form

SGs. In support of this, we did not detect a significant increase in

ribosomal rRNA associated with the monosomal fraction after

RanBP2 depletion (Figure 7A and 7B).

Discussion

In this study, we provide the first evidence that ALREX-

promoting SSCRs act as a platform to coordinate both nuclear

export and translation by recruiting factors to the 59 end of the

transcript. Our data suggest that once export is completed, this

platform directly binds to the ZFRs of RanBP2, a large

nucleoporin present on the cytoplasmic face of the nuclear pore.

This interaction is required for downstream events, which likely

includes the assembly of a competent translation initiation

complex (Figure 9). Our data indicate that these events are

critical for the proper translation of many mRNAs that encode

secretory, and likely mitochondrial proteins. Our results may

explain previous studies that reported that the presence of a signal

sequence enhances protein synthesis (for example [46]), and that

the translation rate for ER-bound transcripts was much greater

than those found in the cytoplasm [47].

K) Three days post-infection, cells were co-transfected with plasmids containing MHC-ftz and either GFP-RanBP2, GFP-RanBP2D6ZFR, or H1B-GFP and
allowed to express for 48 h. Cells were immunostained using anti-GFP and anti-HA primary antibodies, and the appropriate fluorescent secondary
antibodies. (J) For cells co-expressing GFP and MHC-ftz, the HA-immunofluorescence intensity was tabulated, averaged, and then normalized to the
level of expression in mock, control shRNA-treated cells expressing MHC-ftz. Each bar represents the average and standard error between four
independent experiments, each of which consists of 30–50 cells. Examples of cells depleted of endogenous RanBP2 with shRNA3 and expressing
various GFP-RanBP2 constructs and MHC-ftz are shown in (K). Each row is a single field co-immunostained for GFP and HA. Note that cells expressing
GFP-RanBP2 (top row, arrows), express higher levels of MHC-ftz than neighboring cells that express MHC-ftz alone (top row, arrowheads). In contrast,
cells expressing GFP-RanBP2D6ZFR (bottom row, arrows) express about as much MHC-ftz protein as cells expressing MHC-ftz alone (bottom row,
arrowheads). Un-transfected cells are denoted by asterisks. Scale bar = 20 mM.
doi:10.1371/journal.pbio.1001545.g006
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It is still unclear how ALREX-promoting elements enhance

mRNA export through the pore before these mRNAs encounter

RanBP2. Our data suggest that it is unlikely that the nuclear

transport complex TAP/p15 binds directly to the element, as

purified TAP/p15 heterodimers do not associate with either the

Ins or MHC SSCRs in vitro (unpublished data). It is possible that

other proteins that contain RanBP2-like zinc fingers can bind to

the ALREX-promoting elements, as these are known to interact

with adenine-poor motifs. For example, each of the two RanBP2-

like zinc fingers of ZRanB2 interacts with a GGU triplet [48], and

the RanBP2-like zinc finger of TLS recognizes GGUG [48,49].

One obvious candidate ALREX-element binding protein is

Nup153, whose zinc fingers share the highest degree of similarity

to those of RanBP2. However, in our experiments we did not

detect any association of this protein with the Ins SSCR in HeLa

nuclear extracts (Figure 3F). In line with these results, the number

of Nup153 ZFRs does not appear to correlate with adenine

depletion across genomes (unpublished data). In particular, the P.

humanus Nup153 ortholog has five zinc fingers, without any SSCR-

specific adenine depletion. Identification of other proteins that

associate with ALREX-promoting elements will be critical for our

understanding of the molecular mechanisms that drive the

ALREX pathway.

Since RanBP2 is thought mainly to reside on the cytoplasmic

face of the nuclear pore, it is likely that this protein only interacts

with mRNAs after they have been exported. This interaction may

be required to remodel the messenger ribonucleoparticle (mRNP)

complex after it has emerged from the nuclear pore. The idea is

supported by recent observations of single mRNA molecules [50].

These studies demonstrated that after their nuclear export, a

subset displayed extended dwell times in a region that was 100–

150 nm away from the nuclear pore, a region that is occupied

mainly by RanBP2 and presumably its paralogs. In addition to its

ZFD, RanBP2 may have additional RNA-interacting domains

[51], and thus also impact the translation of supplementary

subclasses of mRNA. Furthermore, other factors that have been

implicated in both nuclear export and translation, such as Dbp5

and Gle1, are also thought to be present on the cytoplasmic face of

the nuclear pore [52,53]. Thus it is likely that many critical mRNP

remodeling events may occur in this region.

Since it is likely that the first translating ribosome would disrupt

the association between the SSCR and RanBP2, it is likely that

this protein must enhance the translatability of the mRNA before

the pioneer round of translation [54]. This is reminiscent of the

exon junction complex (EJC), which is known to stimulate the

translatability of any associated mRNA and whose binding to the

transcript is also displaced by translating ribosomes [55]. The EJC

accomplishes this in part by promoting the phosphorylation of

translation factors [56]. Recently, the EJC has been shown to

associate with certain motifs that are found in the first exon [57],

Figure 7. Depletion of RanBP2 shifts MHC-ftz from polysomes to monosomes. U2OS cells were infected with lentivirus that delivered
shRNA1 against RanBP2 or control virus. (A–D) Three days post-infection, cells were transfected with plasmids containing MHC-ftz and H1B-GFP. 18–
24 h post-transfection 0.6 ml of cell lysates were layered onto a 10.5 ml sucrose gradient (25%–45%) and centrifuged at 200,000 g for 2.5 h. Ten
equal fractions were manually collected (the top of the gradient is on the left), RNA was purified and separated by electrophoresis on a denaturing
agarose gel. The distributions of 18S and 28S rRNA were analyzed by ethidium bromide staining (see Figure S5 for quantification) and the distribution
of ftz and GFP mRNA were analyzed by Northern blot (A–B). Note that monosomes are found predominantly in fractions 3–4. (C–D) The levels (y-axis)
of the two mRNAs in each fraction (x-axis) were analyzed by densitometry analysis and plotted. Each data point is the average and standard error of
three independent experiments. (E–F) Three days post-infection, cells were transfected with plasmids containing MHC-ftz, which was allowed to
express for 18–24 h. (E) Cells were either immediately fixed to visualize cytoplasmic and nuclear mRNA, or briefly permeabilized with digitonin to
remove all cytoplasmic mRNA that was not anchored to the ER, and then fixed as described previously [44,67]. MHC-ftz mRNA was visualized by FISH
staining and the fraction of fluorescence intensity associated with each compartment was calculated for at least 30 cells in a single experiment. Each
bar represents the average and standard error between three separate experiments. (F) Transfected cells were fixed to visualize MHC-ftz mRNA by
FISH and Tia-1 by immunofluorescence. The percentage of cells (y-axis) with various numbers of SGs (x-axis) was plotted. Each bar represents the
average and standard error of three independent experiments. (G) Four days post-infection cells were microinjected with plasmids containing MHC-
ftz. After 20 min further mRNA synthesis was halted by the addition of a-amanitin, and cells were then fixed 2 h later. Cells were stained for MHC-ftz
mRNA and Tia-1 and SGs were tabulated as in (F). *, p,0.025; **, p,0.01.
doi:10.1371/journal.pbio.1001545.g007
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which resemble sequences that are enriched in ALREX-promot-

ing SSCRs [7]. Experiments are currently underway to determine

the exact contribution of the EJC to the translation of mRNAs

containing ALREX-promoting SSCRs.

Although RanBP2 is not known to be associated with any

kinases, it does have the ability to sumoylate proteins. Indeed a

large proportion of known sumoylated proteins have RNA-binding

activity [58–60]. Interestingly, it has been reported that the

sumoylation of the cytoplasmic cap-binding protein, eIF4E,

potentiates translation initiation [61]. Indeed, RanBP2 and eIF4E

appear to cross regulate one another and thus impacting overall

gene expression [62]. We have tried to recapitulate the potenti-

ation of translation using in vitro translation systems, such as

reticulocyte lysate; however, we could not detect any change

between MHC-ftz and 2Ile-MHC-ftz (Figure S1C). This is not

surprising as these lysates lack RanBP2 (Figure S6). Unfortunately,

adding HeLa nuclear extracts to reticulocyte lysates inhibits

translation of all tested mRNAs (unpublished data). Experiments

are now underway that aim to dissect the exact mechanism by

which RanBP2 potentiates translation by performing a detailed

domain analysis of this protein using an in vivo assay.

Finally it is possible that RanBP2 may play some role in

delivering mRNAs to their ultimate destinations. Interestingly, in

photoreceptor cells of the retina, it has been reported that RanBP2

can accompany vesicles that pinch off from the nuclear envelope

to be delivered to the cell periphery, which contains both ER and

Figure 8. RanBP2 is required for the efficient translation of secretory proteins. (A–B) U2OS cells were treated with various lentiviruses, then
4 d post-infection cells were incubated in media containing [35S]-methionine/cysteine for 20 min. The cells were lysed and subfractionated by
differential detergent treatments and centrifugation steps to produce three fractions: one enriched in nuclear proteins, a second containing ER and
mitochondrial proteins, and the remaining cytoplasmic proteins. (A) The ratio of [35S]-incorporation to total protein from each fraction was measured
and normalized to control cells. Each bar represents the average and standard error of three independent experiments. Note that radioactive
incorporation into the fractions was blocked when cells were pre-treated with the translation inhibitor homoharingtonine (HHT) 15 min prior to [35S]-
methionine/cysteine labeling, demonstrating that the fractions do not contain free (i.e., unincorporated) labeled amino acids. (B) Various cell fractions
from knockdown and control cells were analyzed by immunoblot using antibodies against either Trapa (a resident ER protein), F1 ATPase a (a
mitochondrial protein), a-tubulin (a cytoplasmic protein), and lamin A/C (a nuclear protein). (C–D) U2OS cells were treated with various lentiviruses,
then 4 d post-infection cells were incubated in media containing [35S]-methionine/cysteine for 20 min. Cells were lysed and BiP and a-tubulin were
immunoprecipitated with specific antibodies. The precipitates were then separated by SDS-PAGE and visualized by autoradiography. Band intensities
were measured by densitometry, then normalized to control cells and the average and standard error between three independent experiments were
plotted (D). (E) U2OS cells were treated with various lentiviruses, then 4 d post-infection cells were either immediately fixed to visualize cytoplasmic
and nuclear poly(A) mRNA, or briefly permeabilized with digitonin to remove all cytoplasmic mRNA that was not anchored to the ER, and then fixed.
Poly(A) mRNA was visualized by FISH staining with fluorescent oligo-dT probes and the fraction of fluorescence intensity associated with each
compartment was calculated for at least 30 cells in a single experiment. Each bar represents the average and standard error between three separate
experiments.
doi:10.1371/journal.pbio.1001545.g008

Figure 9. A general model of ALREX-regulated processes. (1)
mRNAs containing ALREX-promoting SSCRs are packaged into mRNPs
and exported by an unknown mechanism. (2) The exported mRNAs
transiently interact with RanBP2 at the cytoplasmic face of the nuclear
pore. This interaction likely causes some alteration within the mRNP. (3)
Ultimately, this interaction promotes the translation of these mRNAs
into secretory proteins at the surface of the ER.
doi:10.1371/journal.pbio.1001545.g009
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mitochondria [63]. In other studies, RanBP2 has also been

reported to interact with kinesins [64,65] and dynein [65]. Further

investigations will need to be performed to determine if RanBP2

plays a direct role in delivering secretory mRNAs to the ER.

Materials and Methods

Identification of ALREX-Binding Proteins
100 ml HeLa nuclear extract (7 mg/ml), which was prepared as

previously described [66], was pre-cleared with streptavidin-coated

magnetic beads (Dynabeads, Invitrogen), mixed with 10 ml

denatured E. coli tRNA (20 mg/ml, Sigma), 10 ml salmon sperm

DNA (11 mg/ml, Sigma), 5 ml of RNase-free BSA (20 mg/ml,

Ambion), 250 ml of 26binding buffer (0.1% TritonX-100, 1.2 M

NaCl, 10 mM MgCl2, 2 mM DTT), and incubated with 20 ml of

beads that were pre-bound with 10 mg of Ins, 7A-Ins and bG

biotinylated RNA (see the methods section in Text S1 for

biotinylated RNA synthesis) for 1 h at 4uC with gentle rotation.

The beads were then washed five times by incubation with 500 ml

of 16 binding buffer (0.1% TritonX-100, 600 mM NaCl, 5 mM

MgCl2, 1 mM DTT; Figure 3E). The beads were then isolated,

treated with 10 ml of RNase solution (0.1% TritonX-100, 100 mM

NaCl, 1 mg/ml RNase A, Sigma) for 15 min at room tempera-

ture. The supernatant was removed (Figure 3E, lanes 2–5) and the

beads were mixed with 20 ml of 26 Laemmli sample buffer and

incubated at 90uC for 5 min and separated by SDS-PAGE on a

4%–20% gradient gel. The gel was either silver stained

(SilverQuest, Invitrogen) or transferred to nitrocellulose for

immunoblotting (see the methods section in Text S1 for details).

All silver-stained protein bands were cut and identified by

microcapillary liquid chromatography tandem mass spectrometry

(Taplin Mass Spectrometry Facility, Harvard Medical School).

Expression and Purification of RanBP2 Fragments and
Ran

The RanBP2 TPR domain (amino acid residues 1–601), RBR1

(residues 514–1,245), ZFD (residues 1,335–1,829), RBR2 (residues

1,832–2,553), C-Term (residues 2,765–3,138) were amplified from

the pBSK-RanBP2 [28] and cloned into pET28a vector (Novagen)

using restriction-free cloning with the addition of N-terminal His-

tag.

Electromobility Shift Assays
[32P]-labeled RNA was incubated with Hela cell nuclear extract

(0.44 mg/ml final protein concentration), RanBP2 fragments, or

BSA (120 ng/ml) in 1.56 w buffer (16 w buffer: 150 mM

KAcetate, 5 mM MgAcetate, 20 mM HEPES [pH 7.4]) with

10 mg/ml denatured yeast tRNA at room temperature for 15 min.

For the competition EMSA experiments, unlabeled RNA was first

mixed with tRNA and radiolabeled RNA, then incubated with

nuclear extract or recombinant proteins. For the Ran competition

assay, 170 ng/ml BSA or GST-Ran was pre-incubated with

50 ng/ml RanBP2 ZFD, then incubated with labeled RNA. RNA-

protein complexes were resolved by native PAGE (TBE, 3.5%,

5%, and 10% acrylamide; acrylamide/bisacrylamide ratio of

19:1). Radiolabelled RNA was visualized using a Typhoon

phosphoimager (GE Healthcare).

Cell Biological Methods
Cell culture, transfection, microinjection, extraction, fixation,

FISH, and immunofluorescence were performed as previously

described [6,13,67]. For more information see the methods section

in Text S1.

Supporting Information

Figure S1 The translational products of the MHC-ftz
and 2Ile-MHC-ftz mRNAs are translocated into the ER
where they are processed into identical protein prod-
ucts. (A–B) Lysates were collected from U2OS cells expressing

MHC-ftz, 2Ile-MHC-ftz, or a version of this protein translated

from a mutant frame-shifted MHC-ftz (FS-MHC-ftz). This last

construct contains a point insertion before, and a point deletion

after the SSCR, thus encoding a cytoplasmic version of the ftz

protein (see [6] and Table S1). The lysates were first treated with

Endo H, which removes ER-specific N-linked glycosylation, or

PNGase, which removes all N-linked glycosylation. The lysates

were then denatured and separated by SDS-PAGE, and probed

with antibodies against the HA epitope (A–B), and against a-

tubulin as a loading control (A). An image of colored molecular

weight standards is included in (A). Note that after either Endo H

or PNGase treatment, the mobility of all of the MHC-ftz and 2Ile-

MHC-ftz proteins increased. This is to be expected as the mature

ftz polypeptide has two consensus glycosylation sites. In contrast

FS-MHC-ftz protein was unaffected by PNGase treatment. From

these data we concluded that MHC-ftz, but not FS-MHC-ftz, is

present in the ER lumen where it is glycosylated. Also note that the

mobility of deglycosylated MHC-ftz is greater than that of FS-

MHC-ftz despite the fact that the two protein products should

have similar molecular weights, suggesting that the former is

processed by signal peptidase. (C) In vitro transcribed and capped

mRNAs were translated in vitro using reticulocyte lysate in the

presence of [35S]-methionine/cysteine. Samples were separated by

SDS-PAGE, and newly synthesized proteins were detected by

autoradiography. An image of colored molecular weight markers

(MWMs) was included as a reference. Note that reticulocyte lysate

does not contain ER-derived microsomes, thus the resulting ftz

protein products are expected to be unprocessed and unmodified.

Also note that the molecular weight of these in vitro synthesized

proteins (.17 kD) was greater than the final deglycosylated in vivo

translated forms (see PNGase and Endo H treated samples in (A),

which are ,17 kD). This observation indicates that in cells,

MHC-ftz and 2Ile-MHC-ftz are proteolytically processed, likely by

signal peptidase. (D–F) To calculate the half-life of the two protein

products, U2OS cells that were transfected with plasmids that

contained either the MHC-ftz or 2Ile-MHC-ftz genes (18–24 h

post-transfection) were treated with cyclohexamide (CHX) for

indicated time points. Cell lysates were collected and separated by

SDS-PAGE, then probed with antibodies against the HA epitope

and a-tubulin. (D) The amount of ftz protein (y-axis) at each time

point (x-axis) was analyzed by densitometry and then normalized

to the initial protein level and plotted. Each data point represents

the average and standard deviation of three independent

experiments. (F) Each bar represents the average and standard

error of the half-lives derived from three independent experiments.

(TIF)

Figure S2 Identification of ALREX-element associating
proteins from HeLa nuclear extract. Streptavidin-coated

magnetic beads, bound with various biotinylated RNAs (each 76

nucleotides long) or without any RNA (‘‘No RNA’’), were used to

isolate ALREX-element associating proteins from NE under low

salt conditions (i.e., 200 mM NaCl instead of the 600 mM used in

Figure 3E–3G). Beads were treated with RNase A and then

proteins were denatured in SDS at 90uC for 5 min. Eluted

proteins were separated on a 4%–20% gradient gel and silver

stained. ALREX-interacting proteins (RanBP2, Importinb, Ran-

GAP1, and Ran) are indicated. Note that under these conditions,

many non-specific proteins are present in the RNA-coated beads
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at similar levels, but not in the uncoated beads. These observations

indicate that the RNA-coated beads contained similar amounts of

bound oligonucleotides. The position of molecular weight markers

in kDa are indicated on the right.

(TIF)

Figure S3 RanBP2/Nup358 is required for ALREX-
mediated translation enhancement. (A–C) U2OS cells

treated with shRNA1 against RanBP2 or control lentiviruses.

Three days after infection the cells were transfected with plasmids

containing various CALR-HA constructs and H1B-GFP. The level

of protein and mRNA was analyzed by densitometry analysis of

HA and GFP immunoblots (A–B), and ftz and GFP northern blot

(C). Each bar represents the average level and the standard error

between five independent experiments. (D) U2OS cells treated

with either shRNA2 against RanBP2 or control virus. Four days

post-infection the cell lysates were collected and analyzed by

immunoblot for RanBP2 and a-tubulin. (E–J) U2OS cells treated

with either shRNA1 or shRNA2 against RanBP2 or control virus,

were transfected with various ftz (E–F, I–J) or CALR-HA (G–H)

constructs along with H1B-GFP. Protein and mRNA levels were

then analyzed by densitometry analysis of immunoblots (E, G, I)

and northern blots (F, H, J). Each bar represents the average level

and the standard error of protein (E, G) or mRNA (F, H) levels

between three independent experiments.

(TIF)

Figure S4 Level of co-expression of GFP-RanBP2 and
MHC-ftz constructs in control and knockdown U2OS
cells. Cells were treated with lentiviruses that delivered RanBP2

shRNA3 or control shRNA. Three days post-infection cells were

co-transfected with plasmids containing MHC-ftz and either GFP-

RanBP2 (A) or GFP-RanBP2D6ZFR (B). 48 h post-transfection

cells were fixed and immunostained for HA and GFP using

specific antibodies. Cells expressing detectable levels of either

protein alone or together were tabulated. For each experiment, the

expression of at least 400 cells was tabulated.

(TIF)

Figure S5 Densitometry analysis of ribosome intensi-
ties in sucrose gradients. For each polysome gradient,

ribosomal rRNA was visualized as in Figure 7A and 7B and the

intensity of the 28S rRNA and 18S rRNA bands were calculated

by densitometry analysis. The fraction of the ribosomal rRNAs in

each sucrose gradient fraction was then averaged between

experiments. Each data point represents the average and standard

error between three independent experiments.

(TIF)

Figure S6 Rabbit reticulocyte lysate does not contain
RanBP2/Nup358. Rabbit reticulocyte lysates, and lysates from

U2OS cells treated with shRNA1 against RanBP2 or control

lentiviruses for 4 d, were separated by SDS-PAGE and immuno-

blotted for RanBP2 and a-tubulin.

(TIF)

Table S1 Constructs used in this study. Nucleotides and

encoded amino acid sequences for all ftz and CALR constructs

used in this study. Also included are the nucleotides and encoded

amino acid sequences of human BiP. Note that all nucleotide and

amino acid substitutions in 2Ile-MHC, 2Ile-INS, 7A-INS, and

4Ile-CALR are in bold.

(XLS)

Table S2 Analysis of SSCR-specific adenine depletion in
metazoans. The mean and standard error of the mean of the

longest A-less tract in the first 99 nucleotides in ORFs encoding

signal sequences. As a control a random 99 nucleotides from each

ORF was analyzed. Also listed are the number of ZFRs in that

organism’s RanBP2 ortholog, and the total number of ORFs

analyzed.

(XLS)

Text S1 Additional supplemental materials and meth-
ods.

(DOC)
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