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Abstract

Diabetes is a metabolic disorder characterized by hyperglycemia. Insulin, which is secreted by pancreatic beta cells, is
recognized as the critical regulator of blood glucose, but the molecular machinery responsible for insulin trafficking remains
poorly defined. In particular, the roles of cytosolic factors that govern the formation and maturation of insulin granules are
unclear. Here we report that PICK1 and ICA69, two cytosolic lipid-binding proteins, formed heteromeric BAR-domain
complexes that associated with insulin granules at different stages of their maturation. PICK1-ICA69 heteromeric complexes
associated with immature secretory granules near the trans-Golgi network (TGN). A brief treatment of Brefeldin A, which
blocks vesicle budding from the Golgi, increased the amount of PICK1 and ICA69 at TGN. On the other hand, mature
secretory granules were associated with PICK1 only, not ICA69. PICK1 deficiency in mice caused the complete loss of ICA69
and led to increased food and water intake but lower body weight. Glucose tolerance tests demonstrated that these mutant
mice had high blood glucose, a consequence of insufficient insulin. Importantly, while the total insulin level was reduced in
PICK1-deficient beta cells, proinsulin was increased. Lastly, ICA69 knockout mice also displayed similar phenotype as the
mice deficient in PICK1. Together, our results indicate that PICK1 and ICA69 are key regulators of the formation and
maturation of insulin granules.
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Introduction

Diabetes affects hundreds of millions of people worldwide and its

incidence is increasing due to changing lifestyles and an aging

population [1]. There are two major types of diabetes, defined by

the pathogenic process that causes hyperglycemia [2]. In type 1

diabetes, the destruction of insulin-producing beta cells of the

pancreas, mainly by autoimmune processes, results in a gross lack of

insulin that leads to hyperglycemia. Type 2 diabetes, on the other

hand, is the result of both insulin resistance and insulin insufficiency.

Insulin, a peptide hormone secreted by pancreatic beta cells, is a key

regulator of blood glucose. It is synthesized as proinsulin that is

sorted into immature secretory granules (ISGs) in the TGN [3–6].

After budding from the TGN, ISGs go through many changes

during their conversion to mature secretory granules (MSGs),

changes that include the proteolytic cleavage of proinsulin to insulin,

the enrichment of secretory contents, and the removal of unwanted

contents by further sorting and budding from ISGs. After

maturation, a small fraction of MSGs is mobilized and primed on

the plasma membrane to become the readily releasable pool that

undergoes regulated exocytosis [7]. In addition to releasing mature

insulin via MSGs, beta cells also release proinsulin from ISGs and

the elevated ratio of secreted proinsulin to insulin found in patients

with type 2 diabetes indicates that the maturation of insulin granules

is impaired in this form of the disease [8]. Indeed, recent studies

increasingly suggest that impaired insulin trafficking is one of the

events underlying the pathogenesis of type 2 diabetes [9–11].

However, the molecular machinery responsible for insulin traffick-

ing, such as the sorting, budding, and subsequent refinement of

insulin granules, has not been fully elucidated.
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Protein trafficking is an elaborated cellular process that involves

the coordination of different cytosolic factors, membrane and

secreted proteins. PICK1 (protein interacting with C-kinase 1) is a

PDZ (PSD-95/Dlg/ZO1) domain-containing peripheral mem-

brane protein that is known to regulate the trafficking of

membrane proteins, especially of AMPA receptors in the brain

[12,13]. The PDZ domain of PICK1 binds to membrane proteins

and this PDZ–dependent interaction is important for the

subcellular localization and surface expression of AMPA receptors

[14–17]. In addition to the PDZ domain, PICK1 contains a BAR

(Bin/Amphiphysin/Rvs) domain, which is capable of sensing

membrane curvature and facilitating vesicle formation [18]. This

combination of PDZ domain and BAR domain enables PICK1 to

link its membrane cargos to trafficking vesicles, a feature found to

be critical for AMPA receptor trafficking and synaptic plasticity

[17,18].

We recently identified the protein ICA69 (Islet Cell Autoantigen

69 kD) as a major binding partner of PICK1 [19]. ICA69 was first

reported as an autoantigen from type 1 diabetes patients [20].

ICA69 contains a BAR domain at its N-terminus, and a C-

terminal domain (the ICAC domain) with no apparent homology

with other proteins. ICA69’s BAR domain could dimerize with

PICK1’s BAR domain to form a tight heteromeric BAR domain

complex [19]. In neurons, a switch from PICK1-ICA69 hetero-

dimers to PICK1-PICK1 homodimers controls the trafficking of

AMPA receptors between dendrites and synapses [19]. In INS-1

beta cell lines, ICA69 associates with the Golgi and partially with

ISGs [21,22], and ICA69 can act as a Rab2 effector for the early

trafficking and maturation of dense-core vesicles (DCVs) [23,24].

Overexpression of ICA69 in INS-1 cells reduced insulin secretion

[23], while ICA69 knockout (KO) mice were resistant to

cyclophosphamide-accelerated diabetes [25].

Here, we report that PICK1 formed heteromeric complexes

with ICA69 in pancreatic beta cells. PICK1-ICA69 complexes

were restricted to immature insulin granules and were replaced by

PICK1-positive but ICA69-negative complexes when insulin

granules mature. Deficiency of PICK1 or ICA69 in mice led to

diabetes-like phenotypes characterized by glucose intolerance,

insufficient insulin release, and elevated proinsulin secretion. Our

findings suggest that PICK1-ICA69 complexes regulate the

formation and maturation of insulin granules.

Results

PICK1 Is Associated with Insulin Granules
To understand the functions of PICK1 in the pancreas, we first

examined the localization of PICK1 by immunolabeling sections

of mouse pancreas. PICK1 was mainly expressed in islets and

specifically in insulin-positive beta cells (Figure 1A, upper panel),

with only weak or no expression in the glucagon-positive alpha

cells and the somatostatin-positive delta cells (Figure S1A–D).

High-magnification images further showed that PICK1 was

partially co-localized with insulin granules in the beta cells

(Figure 1A, lower panel). To more accurately determine the

subcellular localization of PICK1, we also performed immuno-

staining on cell lines derived from beta cells. In both INS-1E and

MIN6 cells, PICK1 was found to partially overlap with insulin

granules, although the degree of co-localization was highly

variable from cell to cell (Figure 1B). Furthermore, overexpressed

mCherry-PICK1 co-localized with the insulin granule marker

phogrin-GFP and moved together with it in the cytosol of INS-1E

cells (Movie S1). To complement these imaging data with

biochemical evidence, we carried out subcellular fractionation:

in homogenate of INS-1E cells, PICK1, in addition to being

enriched in Golgi fractions, was distributed in insulin fractions

marked by Carboxypeptidase E (CPE) and insulin itself

(Figure 1C). In addition, transmitted electron microscope (TEM)

analysis of immuno-gold labeling on isolated islets from mice

confirmed the localization of PICK1 on both immature and

mature insulin granules (Figure 1D). Together, these data indicate

that PICK1 is associated with insulin granules in beta cells.

PICK1 Forms Tight Complexes with ICA69 in Beta Cells
PICK1 forms heteromeric BAR domain complexes with ICA69

in the brain [19]. To further explore PICK1’s function in

pancreatic beta cells, we examined its association with ICA69

using in vivo co-immunoprecipitation (co-IP). When PICK1 was

pulled down from extracts of isolated islets, ICA69 was robustly

co-immunoprecipitated (Figure 2A). From the other direction,

PICK1 was also readily co-immunoprecipitated with ICA69

(Figure 2B). This suggests that PICK1 and ICA69 strongly

interact with each other in pancreatic beta cells. Furthermore, we

surprisingly found that ICA69 protein was completely missing in

PICK1 KO islets (Figure 2C). This lack of ICA69 was not due to

down-regulated gene transcription, since RT-PCR analysis

showed that ICA69 mRNA levels were similar in the pancreas

of PICK1 KO mice and their wild-type (WT) littermates

(Figure 2E). To further test PICK1’s effect on ICA69 expression,

we transfected GFP-PICK1 into PICK1 KO beta cells and found

that in these cells the ICA69 protein was restored (Figure 2F). We

also measured the level of PICK1 in ICA69 KO mice and found

only a small fraction of PICK1 protein still remained in ICA69

KO islets (Figure 2D). These results support our conclusion that

PICK1 and ICA69 form tight complexes in the pancreatic beta

cells and they mutually depend on each other for normal

expression.

PICK1 and ICA69 Associate with Different Pools of Insulin
Granules

To elucidate PICK1/ICA69’s functions in beta cells, we

examined their subcellular distribution in INS-1E cells relative

to insulin granules by immunocytochemistry. PICK1 and ICA69

Author Summary

Insulin is a key regulator of blood glucose and insufficient
insulin leads to diabetes. Insulin is synthesized as
proinsulin, processed in endoplasmic reticulum and Golgi,
and eventually packaged into insulin granules, a type of
dense core vesicles. Despite its importance, the molecular
mechanisms governing the biogenesis and maturation of
insulin granules are not fully understood. In this study, we
identified two cytosolic proteins, PICK1 and ICA69, as
important regulators of insulin granule biogenesis and
maturation. Both PICK1 and ICA69 have the banana-
shaped BAR domain that can bend the lipid membrane
and help the formation of dense core vesicles. We show
that without PICK1 or ICA69, insulin granules cannot be
properly formed and, as a result, proinsulin cannot be
effectively processed into mature insulin. Mice lacking
functional PICK1 or ICA69 genes have reduced insulin but
increased proinsulin. Consequently, these mice have high
levels of glucose, a prominent feature found in diabetes
patients. These results add to previous findings that PICK1
is important for the generation of proacrosomal granules
found in cells of the testis, and thereby support a wider
role for PICK1 and ICA69 in regulating dense core vesicle
biogenesis and maturation.

PICK1 and ICA69 in Insulin Granule Trafficking
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co-localized at vesicles found mainly around the perinuclear region

in INS-1E cells (Figure 3A, center panels; arrows). While the

PICK1-positive clusters extended out to the middle cytoplasmic

region, where they overlapped with insulin granules (Figure 3A,

left panels; arrowheads), the ICA69 signals were confined to the

region near nuclei. The insulin-positive granules gradually lost

their PICK1 signal as they extended toward the cell periphery

(Figure 3A, left panels; asterisks). Thus, the signal for ICA69,

unlike that for PICK1, rarely co-localized with insulin (Figure 3A,

right panels), indicating that there is no ICA69 on mature

granules. To verify the identity of the puncta that were positive for

both PICK1 and ICA69, we co-stained them with proinsulin. The

PICK1-ICA69 puncta were found to be labeled with proinsulin

(Figure 3D, empty arrowheads), indicating that they represent

immature insulin secretory granules. Next, to study the dynamics

of the association of PICK1/ICA69 with insulin granules, we

stimulated INS-1E cells with high glucose and KCl to elicit insulin

release. This stimulation increased the signals in the cell periphery

Figure 1. PICK1 is expressed in pancreatic beta cells and partially co-localizes with insulin granules. (A) Upper panel: double staining of
PICK1 (red) and insulin (green) on pancreatic cryosection. Scale bar, 100 mm. The lower panel is the magnification of upper panel. PICK1 partially co-
localized with insulin positive granules in beta cells. Scale bar, 10 mm. (B) Double staining of PICK1 (red) and insulin (green) on INS-1E cells (upper
panel) and MIN6 cells (lower panel). Scale bar, 10 mm. (C) Subcellular fractionation of INS-1E cells. PNS, post-nuclear supernatant; SGs, secretory
granules. (D) Immuno-gold labeling of PICK1 on mouse islet beta cell. Arrowheads, ISG (immature secretory granules); arrows, MSG (mature secretory
granules); N, nucleus. Scale bar, 1 mm.
doi:10.1371/journal.pbio.1001541.g001

Figure 2. PICK1 and ICA69 form tight complexes in the pancreas. (A) In vivo co-IP from islet extracts using anti-PICK1 antibody. (B) In vivo co-
IP using anti-ICA69 antibody. (C) Western blotting of homogenates from WT and PICK1 KO islets. GAPDH served as a loading control. (D) Western
blotting of homogenates from WT and ICA69 KO islets. GAPDH served as a loading control. (E) RT-PCR analysis in WT and PICK1 KO pancreas, using b-
actin as an internal control. (F) Primary cultured PICK1 KO islet cells were transfected with GFP-PICK1 (green) and stained for ICA69 (red). Scale bar,
10 mm.
doi:10.1371/journal.pbio.1001541.g002

PICK1 and ICA69 in Insulin Granule Trafficking
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for both insulin and PICK1, but not for ICA69. Consequently,

granules positive only for PICK1 could be clearly separated from

PICK1-ICA69 granules (Figure 3B,C), suggesting that the PICK1

granules are mobilized towards the cell periphery to replenish the

depleted readily releasable pool of insulin granules.

Proinsulin is packaged into ISGs in the Golgi. The association of

granules positive for PICK1 and ICA69 (P-I granules) with

proinsulin prompted us to examine the relationship between the P-

I granules and the Golgi. PICK1 and ICA69 were enriched in the

TGN region of INS-1E cells, labeled by the TGN marker TGN38

(Figure 3E, left panels). However, they did not fully overlap with

each other. Instead, PICK1 and ICA69 signals lined up on the two

sides of the TGN38-positive structures (Figure 3E, left lower

panels), suggesting that they could be vesicles budding off from the

TGN. To test this, we treated INS-1E cells with Brefeldin A (BFA),

a drug that blocks vesicle budding from the Golgi [26]. Exposure

of INS-1E cells to BFA for 5 min significantly increased the

association of both PICK1 and ICA69 with TGN38 (Figure 3D,

middle panels), and with treatment for 10 min, PICK1 and ICA69

almost completely overlapped with TGN38 (Figure 3E,F). To

distinguish whether the P-I granules were from the trans- or cis-

Golgi, we labeled PICK1 together with TGN38 and GM130,

which mark the trans- and cis-Golgi, respectively. While PICK1

closely associated with both TGN38 and GM130 before BFA

Figure 3. PICK1 and ICA69 associate with insulin granules at three maturation stages. (A) Triple staining of insulin (green), PICK1 (red), and
ICA69 (blue) on INS-1E cells. Arrowheads, PICK1-insulin co-clusters without ICA69; arrows, PICK1-ICA69 co-clusters; asterisks, insulin granules without
PICK1 and ICA69. Scale bar, 10 mm. (B) Triple staining as in (A) after glucose/KCl-stimulation. Arrows, PICK1-ICA69 co-clusters; arrowheads, PICK1-
insulin co-clusters. Scale bar, 10 mm. (C) Co-localization quantification of PICK1 with insulin under different conditions from (A) and (B). Data are
represented as mean 6 SD; n = 31 cells from four independent experiments. **p,0.01. NS, non-significant. (D) Triple staining of proinsulin (green),
PICK1 (red), and ICA69 (blue) on INS-1E cells. Empty arrow heads, PICK1-ICA69-proinsulin co-clusters. (E) Triple staining of PICK1 (red), ICA69 (blue),
and TGN38 (green) before (09) and after BFA treatment (5 and 109). Scale bar, 10 mm. (F) Co-localization quantification of PICK1 or ICA69 with TGN38
from (E). Data are represented as mean 6 SD; n = 40 cells from three independent experiments. ***p,0.001. (G) Triple staining of PICK1 (red), TGN38
(green), and GM130 (blue) on INS-1E cells without BFA treatment (09) or with BFA treatment (59). Scale bar, 10 mm.
doi:10.1371/journal.pbio.1001541.g003
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treatment, it co-localized only with TGN38 after exposure to BFA

(Figure 3G). These results suggest that PICK1-ICA69 complexes

first assemble on the TGN and then bud off to form ISGs.

Here we also examined the relationship of P-I granules with

early endosomes and the ER (endoplasmic reticulum). As shown in

Figure S2, PICK1 in INS-1E cells did not co-localize with markers

for these organelles (EEA1 and Bip/Calnexin for early endosomes

and ER, respectively). Because clathrin is well-known for its role in

vesicle budding from the TGN and exists on ISGs [27], we

double-stained PICK1 with clathrin heavy chain (Clathrin-HC)

and clathrin adaptor proteins AP-1, AP-2, and AP-3. PICK1 only

slightly overlapped with clathrin and AP-1 at the perinuclear

region and showed no co-localization with AP-2 or AP-3 (Figure

S3A–D), suggesting that vesicle budding from the TGN mediated

by PICK1-ICA69 is clathrin-independent.

PICK1 KO Mice Have Impaired Glucose Tolerance and
Lower Serum Insulin

The localization of PICK1-ICA69 complexes in beta cells,

coupled with our finding that PICK1 KO mice weighted less than

their WT littermates (Figure 4A), led us to examine metabolic

parameters in PICK1 KO mice. We first measured the daily food

and water intake and found that they were both significantly

higher in PICK1 KO mice than in control mice (Figure 4B,C). We

then evaluated the body composition and energy expenditure

consumption and found these parameters were similar in PICK1

KO and WT mice (Figure S4). The body temperature of PICK1

KO mice, however, showed a slight increase comparing to that of

WT mice (Figure S4). PICK1 KO mice also displayed similar

levels of nonesterified fatty acids (NEFAs) and cholesterol, but

reduced triglyceride and melanocortin (Table S1). We then

evaluated the blood glucose in PICK1 KO mice. Compared to

controls, PICK1 KO mice showed a small increase in the basal

blood glucose level in both feeding and fasting states (Figure 4D,E).

This difference became more obvious when we challenged the

mice with high glucose, with the PICK1 KO mice now displaying

significantly higher blood glucose levels in the intraperitoneal

glucose tolerance test (IGTT) (Figure 4F). Because either insulin

deficiency or insulin resistance can lead to glucose intolerance, we

performed the insulin tolerance test (ITT) to distinguish the two

possibilities. No significant difference was found in the insulin

sensitivity of peripheral tissues between WT and PICK1 KO mice

(Figure 4H), suggesting that the glucose intolerance was not due to

insulin resistance. We also checked the insulin downstream

signaling in periphery tissues, including liver, muscle, and adipose

tissues. Our results found that the phosphorylated Akt and

GSK3b, which reflect downstream signaling of insulin, were not

much different in PICK1 KO mice compared to controls (Figure

S5B–D). This is not surprising given the finding that PICK1 is not

expressed in these tissues (Figure S5A). These results further

confirm that glucose intolerance is not due to insulin resistance.

Thus, to test whether PICK1 KO mice have insulin deficiency, we

measured the serum insulin level using enzyme-linked immuno-

sorbent assay (ELISA). The basal insulin level in the fasting state

was a little lower in PICK1 KO mice than in WT mice

(Figure 4G), but notably, stimulation with glucose significantly

increased the serum insulin concentration in WT mice but only

slightly in PICK1 KO mice (Figure 4I). These results indicate that

PICK1 KO mice have impaired glucose tolerance because of

insulin insufficiency.

To address the cause of insufficient insulin in PICK1 KO mice,

we first examined pancreatic islets by Haematoxylin and Eosin

(H&E) staining. The morphology and structure of islets from

PICK1 KO mice were indistinguishable from that of WT mice

(Figure 5A). Quantification from serial sectioning further showed

that PICK1 KO and WT mice had similar number of islets

(Figure 5B), although the average islet size was increased and the

islet/pancreas area was slightly larger in PICK1 KO mice

(Figure 5C–E). These results suggested that insulin deficiency in

PICK1 KO mice is not due to the reduction of islet mass.

PICK1 KO Beta Cells Produce Less Insulin but More
Proinsulin

Since PICK1 is expressed in both pancreatic beta cells and the

brain, we tested whether a lower insulin level in PICK1 KO mice

is resulted directly from the protein’s deficiency in beta cells or

from a secondary effect of PICK1 deficiency in the brain. To do

this, islets were isolated from PICK1 KO mice and their glucose-

stimulated insulin secretion was measured. Basal insulin secretion

from PICK1 KO islets was slightly lower than that from control

islets, but the glucose-stimulated insulin secretion was significantly

reduced compared to WT (Figure 6A). This result indicates that

PICK1 deficiency directly affects insulin release from beta cells.

Insulin secretion is a process that involves multiple steps, and to

ask which of these might be defective in PICK1 KO mice, we used

high KCl to stimulate insulin release. High potassium concentra-

tion depolarizes the cell membrane and bypasses the need for

glucose metabolism followed by the inactivation of ATP-sensitive

K+ channels. High potassium-induced release of insulin was also

much lower in PICK1 KO islets (Figure 6B), indicating that

defects in the trafficking of insulin granules, rather than the glucose

metabolism, are responsible for the diminished insulin release in

PICK1 KO mice.

Insulin secretion occurs by a biphasic process of regulated

exocytosis: a rapid first phase is generally believed to represent the

exocytosis of insulin granules from the readily releasable pool,

while a slow second phase is thought to involve the recruitment of

insulin granules from the reserved pool to the readily releasable

pool [7]. When we measured the time course of glucose-stimulated

insulin secretion from isolated islets, the islets from PICK1 KO

mice showed a biphasic pattern of insulin release, like their WT

littermates, but the level of insulin release was reduced during the

whole process (Figure 6C). This demonstrated that both the first

and second phases of insulin secretion are impaired in PICK1 KO

beta cells.

The poor secretion of insulin seen above could have been due to

abnormal exocytosis or lower intracellular insulin content. We

thus measured total insulin in islets, and found that the total insulin

level in PICK1 KO islets was significantly reduced relative to

control (Figure 6D). After normalizing secreted insulin against

total insulin, the percentage of insulin release from PICK1 KO

islets became indistinguishable from that of WT islets (Figure 6E).

This suggests that lower insulin release from PICK1 KO islets is

largely due to the reduced amount of insulin in beta cells. To

understand what caused the lower insulin in PICK1 KO beta cells,

we measured the proinsulin level in islets. Surprisingly, both

glucose-stimulated proinsulin secretion and total proinsulin

content were found to be much higher in PICK1 KO islets

(Figure 7A,B). And as a consequence, the relative ratio of total

proinsulin to insulin was significantly elevated in PICK1 KO than

that of WT (Figure 7C). The normalized ratio of secreted

proinsulin to total proinsulin, however, was almost the same in

WT and PICK1 KO mice, indicating again that the exocytotic

machinery is not defective in PICK1 KO mice (Figure 7D). To

confirm this result, we performed immunoblotting of proinsulin

and insulin using whole islet lysate from PICK1 KO mice.

Consistent with ELISA results, we found an increase of proinsulin

and a reduction of mature insulin in PICK1 KO islets, comparing

PICK1 and ICA69 in Insulin Granule Trafficking
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to that of wild-type mice (Figure 7E,F). Furthermore, ultrastruc-

tural examination of beta cells from WT and PICK1 KO islets by

electron microscope (EM) directly revealed that more ISGs were

present in PICK1 KO beta cells and that the ISG/MSG ratio was

over 50% higher in PICK1 KO beta cells compared to controls

(Figure 7G,H). Taken together, these results indicate that the

conversion of proinsulin to insulin is impaired in the absence of

PICK1 and ICA69.

Mice Lacking ICA69 Phenocopy PICK1 KO Mice
PICK1 forms tight complexes with ICA69 and PICK1 KO

mice lacked ICA69 in beta cells. To further elucidate ICA69’s

involvement in regulating glucose homeostasis together with

PICK1, we examined the phenotype of ICA69 KO mice.

ICA69 KO mice in the nonobese diabetic genetic background

still develop diabetes, but the disease could not be accelerated by

cyclophosphamide [25]. To compare ICA69 KO with PICK1 KO

Figure 4. PICK1 KO mice are diabetic due to insulin deficiency. (A) Body weight (n = 34, *p,0.05). (B) Daily food intake (n = 14, *p,0.05). (C)
Daily water intake (n = 16, * p,0.05). (D) Feeding basal glucose (n = 14, p = 0.6). (E) Fasting basal glucose (n = 16, p = 0.17). (F) Intraperitoneal glucose
tolerance test (IGTT) and its area under curve (AUC) analysis (n = 16, *p,0.05, **p,0.01). (G) Fasting basal insulin (n = 20, p = 0.47). (H) Insulin tolerance
test (ITT) and its AUC analysis. The basal glucose level at 0 min was normalized as 100 (n = 20). (I) Glucose-stimulated insulin secretion (GSIS) and its
AUC analysis (n = 8, *p,0.05, **p,0.01). (A–I) Data are represented as mean 6 SEM.
doi:10.1371/journal.pbio.1001541.g004

PICK1 and ICA69 in Insulin Granule Trafficking
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mice, we extensively backcrossed (.10 generations) ICA69 KO

mice with C57BL/6 mice to obtain ICA69 KO mice with the

same genetic background as PICK1 KO mice. These ICA69 KO

mice displayed similar glucose metabolic defects as the PICK1 KO

mice, with decreased body weight, increased food/water intake,

and impaired glucose tolerance due to insulin deficiency

(Figure 8A–I). Isolated islets from ICA69 KO mice also showed

reduced insulin and elevated proinsulin content (Figure 8J–N),

suggesting that the deficiency of ICA69, like that of PICK1,

hindered insulin’s maturation. These similarities between the

PICK1 KO and ICA69 KO mice, coupled with the other results

of this study, strongly support the notion that PICK1 and ICA69

form tight complexes to cooperatively regulate the trafficking of

insulin granules.

Discussion

The present study revealed the PICK1-ICA69 BAR domain

complex as a novel molecular machinery that controls the

trafficking of insulin granules. Deficiency of this machinery leads

to insufficient insulin that may contribute to the pathogenesis of

diabetes. At the subcellular level, the PICK1-ICA69 BAR domain

complexes dynamically associate with insulin secretory granules.

PICK1-ICA69 heteromeric complexes are mainly localized on the

immature proinsulin granules, while PICK1-positive but ICA69-

negative complexes, which could be PICK1-PICK1 homomeric

complexes, associate with mature insulin granules (Figure 9).

When insulin granules further mature, PICK1 eventually disap-

pears from the mature insulin granules. Consistent with the

distribution of PICK1 and ICA69, defects of these two proteins

impair the maturation of insulin, but not the final exocytotic steps

of insulin secretion.

PICK1 contains a PDZ domain and a BAR domain. The PDZ

domain of PICK1 interacts with membrane proteins such as

GluA2. The BAR domains are known to form banana-shaped

dimers that sense curved membrane on vesicles [28,29]. The

unique combination of PDZ and BAR domain on PICK1 makes it

capable of coupling membrane proteins to trafficking vesicles [13].

The BAR domain of PICK1 can form homomeric complexes and

crosslinks the membrane protein that binds to the PDZ domain, as

demonstrated in PICK1’s capability to cluster GluA2 in a PDZ-

dependent manner [14]. ICA69, on the other hand, contains a

Figure 5. Normal islet structure in PICK1 KO mice. (A)
Representative images of H&E staining from WT and PICK1 KO mice
pancreas. Scale bar, 100 nm. (B) Quantification of the islet number
(n = 3, p = 0.74). (C) Quantification of islet/pancreas area (n = 3, p = 0.05).
(D) Quantification of islet size (n = 3, *p,0.05). (E) Quantification of islet
size distribution (n = 3). (A–E) Data are represented as mean 6 SEM.
doi:10.1371/journal.pbio.1001541.g005

Figure 6. Decreased insulin secretion and total content in
PICK1 KO mice. (A) Glucose-stimulated insulin secretion from isolated
islets (n = 10, *p,0.05). (B) KCl-stimulated insulin secretion from isolated
islets (n = 9, *p,0.05). (C) Time-course of glucose-stimulated insulin
secretion from isolated islets and its AUC analysis (n = 10, *p,0.05,
**p,0.01). (D) Total insulin content in isolated islets (n = 16, *p,0.05).
(E) Normalized glucose-stimulated insulin secretion from isolated islets
(n = 8). (A–E) Data are represented as mean 6 SEM.
doi:10.1371/journal.pbio.1001541.g006

PICK1 and ICA69 in Insulin Granule Trafficking

PLOS Biology | www.plosbiology.org 7 April 2013 | Volume 11 | Issue 4 | e1001541



BAR domain but no PDZ domain. ICA69’s BAR domain forms

heteromeric complexes with PICK1’s BAR domain and prevents

the formation of PICK1 homomeric complexes [19]. It is

conceivable that the PICK1-ICA69 heterodimer and PICK1-

PICK1 homodimer may have different geometry and lipid-

binding preferences. As a result, they may be involved in the

formation of different trafficking vesicles. Indeed, the transition of

the PICK1-ICA69 heteromeric complex to the PICK1-PICK1

homomeric complex in beta cells marks the conversion from

proinsulin granules to mature insulin granules. The exit of ICA69

from the complex enables PICK1 to form homomeric complex

and increase its PDZ binding slots. This provides a potential

mechanism to enrich membrane proteins on insulin granules that

are needed for maturation (Figure 9). It should be noted that the

PDZ binding partners of PICK1 in beta cells have not been

identified and the detailed mechanism controlling the transition

from heteromeric complex to homomeric complex remains to be

elucidated.

The roles of PICK1 and ICA69 in insulin trafficking provide the

basis to understand the glucose intolerance and insulin maturation

defects found in PICK1 and ICA69 KO mice. Loss of PICK1 and

ICA69 leads to impaired conversion from proinsulin to mature

insulin, and consequently high proinsulin and low insulin in the

KO mice. Interestingly, elevated ratio of proinsulin to insulin is a

feature found in type 2 diabetes patients, and increasing evidence

supports that abnormal insulin trafficking is a key event underlying

the disease [8–11]. This suggests that PICK1 and ICA69 could be

involved in the pathogenesis of diabetes, but it remains to be

examined whether abnormalities of PICK1 and ICA69 are indeed

present in type 2 diabetes, and what exact roles they may play in

the disease.

PICK1 and ICA69 KO mice display a subtle but interesting

metabolic phenotype characterized by increased food/water

intake and reduced body weight. We, however, could not detect

significant changes in body composition and the energy expendi-

ture measured by oxygen consumption. It is possible that the small

changes in the fat deposition or energy expenditure measurements

were obscured by higher experimental variations. This is

supported by the slightly elevated body temperature of PICK1

KO mice (Figure S4G). High fat diet induced obesity makes the

alterations in energy homeostasis more pronounced. It would be

interesting to see what happens to the fat deposition and energy

expenditure of PICK1 KO mice under high fat diet treatment in

future studies.

PICK1- and ICA69-mediated vesicle trafficking is not limited to

insulin granules. Our previous work found that PICK1 is involved

in the trafficking of proacrosomal granules, a type of dense core

vesicle in the spermatocytes, and PICK1 deficiency in mice leads

to abnormal acrosome formation in sperm and male infertility

[30]. A study by Holst et al. demonstrated that PICK1 and ICA69

are also important for the trafficking of growth hormone vesicles in

the pituitary gland [31]. There are some minor differences among

these two studies; notably, Holst et al. reported no difference in

food and water intake, while we found a small increase of food and

water intake in PICK1 KO mice. In addition, Holst et al. found

PICK1 KO mice had a more sensitive response to insulin, while

we did not observe any significant difference. This could be due to

the difference in genetic background, as the PICK1 KO mice were

backcrossed separately in the two labs. Nevertheless, these

differences are minor and both of these studies provided clear

evidence supporting PICK1’s role in DCV trafficking. Together,

these findings suggest that PICK1 and ICA69 may represent parts

of a common molecular machinery governing the formation and

maturation of DCVs and this machinery is conserved in brain,

testis, pancreas, and possibly other neuroendocrine tissues.

Materials and Methods

Antibodies
The anti-ICA69 rabbit polyclonal antibody was generated

against a peptide corresponding to residues 468–480 (IGKTDKE-

HELLNA) of rat ICA69. The anti-PICK1 guinea pig polyclonal

antibody was raised against the C-terminal 100 amino acids of

mouse PICK1 (PC100), while anti-PICK1 rabbit polyclonal

Figure 7. Increased proinsulin secretion in PICK1 KO islets is due to impaired insulin maturation. (A) Glucose-stimulated proinsulin
secretion from isolated islets (n = 10, *p,0.05, ***p,0.001). (B) Total proinsulin level in isolated islets (n = 16, *p,0.05). (C) Proinsulin–insulin ratio in
isolated islets (n = 16, **p,0.01). (D) Normalized glucose-stimulated proinsulin secretion from isolated islets (n = 5). (E) Immunoblotting of proinsulin
and insulin from PICK1 KO and wild-type islets. GAPDH served as a loading control. (F) Quantification of proinsulin–insulin ratio in (E) (n = 4, *p,0.05).
(G) Ultrastructure of PICK1 KO beta cells. Arrows, immature granules; arrowheads, mature granules. Scale bar, 1 mm. (H) Immature/mature secretory
granule (SG) ratio in WT and PICK1 KO beta cells (n = 37, 48, ***p,0.001). (A–H) Data are represented as mean 6 SEM.
doi:10.1371/journal.pbio.1001541.g007

PICK1 and ICA69 in Insulin Granule Trafficking

PLOS Biology | www.plosbiology.org 8 April 2013 | Volume 11 | Issue 4 | e1001541



Figure 8. Defective glucose metabolism in ICA69 KO mice. (A) Body weight (n = 11, **p,0.01). (B) Daily food intake (n = 8, **p,0.01). (C) Daily
water intake (n = 8, **p,0.01). (D) Feeding basal glucose (n = 6, p = 0.17). (E) Fasting basal glucose (n = 11, p = 0.36). (F) Fasting basal insulin (n = 8,
p = 0.21). (G) Intraperitoneal glucose tolerance test (IGTT) (n = 11, *p,0.05). (H) Insulin tolerance test (ITT). The basal glucose level at 0 min was
normalized as 100 (n = 7). (I) Glucose-stimulated insulin secretion (n = 8, *p,0.05). (J) Total insulin level in isolated islets (n = 5, *p,0.05). (K) Total
proinsulin level in isolated islets (n = 12, *p,0.05). (L) Proinsulin/insulin ratio in isolated islets (n = 6, *p,0.05). (M) Immunoblotting of proinsulin and
insulin in ICA69 group islets. GAPDH served as a loading control. (N) Quantification of proinsulin/insulin ratio in (M) (n = 4, *p,0.05). (A–N) Data are
represented as mean 6 SEM.
doi:10.1371/journal.pbio.1001541.g008
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antibody was against the N-terminal 29 amino acids (PN29) of

mouse PICK1 (PN29). The following antibodies were pur-

chased: anti-PICK1 mouse monoclonal antibody from Neuro-

Mab; anti-insulin, anti-glucagon, and anti-b-tubulin mouse

monoclonal antibodies from Sigma; anti-insulin guinea-pig

polyclonal antibody for immunoblotting from Abcam; anti-

proinsulin mouse monoclonal antibody from Abcam (immuno-

staining) or R&D systems (immunoblotting); anti-somatostatin

rabbit polyclonal antibody from Invitrogen; anti-TGN38, anti-

GM130, anti-CPE, anti-EEA1, anti-Bip, anti-calnexin, anti-

clathrin-HC, anti-a-adaptin, anti-c-adaptin, and anti-d-adaptin

mouse monoclonal antibodies from BD-Biosciences; and anti-

AKT(total), anti-GSK3b(total), and anti-GSK3b(S9) rabbit

polyclonal antibodies from Cell Signaling. The anti-AKT(S473)

was generated and tested by Prof. Aimin Xu. Secondary

antibodies conjugated with horseradish peroxidase (HRP) were

purchased from Amersham, those conjugated with Alexa Fluor-

488 or -647 were from Molecular Probes, and Rhodamine

RedX-linked antibodies were from Jackson Laboratory. [Note:

The insulin antibody used in this study (Sigma, I2018, Clone

K36aC10) reacts with both insulin and proinsulin. In our hands,

this antibody recognized sharp puncta in the cytoplasm, but its

labeling was diffuse in the perinuclear and Golgi regions,

suggesting that it may better represent signals from mature

insulin granules than those from proinsulin. The mouse anti-

proinsulin antibody (Abcam, ab8301, Clone 3A1) is specific for

proinsulin and does not recognize insulin or C-peptide.]

Cell Cultures and Transfection
INS-1E cell culture and transfection. INS-1E cells (gener-

ously donated by Dr. Pierre Maechler, University Medical Center,

Geneva, Switzerland) were cultured in a humidified atmosphere

containing 5% CO2 in a complete medium composed of

RPMI1640 (Invitrogen) supplemented with 10% fetal bovine

serum, 1 mM sodium pyruvate, 50 mM 2-mercaptoethanol, 2 mM

glutamine, 10 mM HEPES, 100 U/mL penicillin, and 100 mg/

mL streptomycin. These cells were transiently transfected using

Lipofectamine 2000 reagent (Invitrogen) following the manufac-

turer’s instructions.

MIN6 cell culture. MIN6-B1 cells (generously donated by

Dr. Philippe Halban, University Medical Center, Geneva,

Switzerland) were cultured in DMEM supplemented with 15%

fetal bovine serum, 25 mM glucose, 71 mM 2-mercaptoethanol,

2 mM glutamine, 100 U/mL penicillin, and 100 mg/mL strepto-

mycin.

Primary pancreatic cell culture and transfection. After

isolation and recovery, pancreatic islets were treated with 0.5%

Trypsin in PBS for 5 min at 37uC. The dispersed cells were

cultured in RPMI 1640 medium and used 5–6 d after plating.

Transient transfections were again performed using Lipofectamine

2000 reagent according to the manufacturer’s instructions.

Live Imaging
INS-1E cells were transfected with mCherry-PICK1 and

phogrin-GFP on Day 3 after culturing. Imaging was performed

Figure 9. A model illustrating the roles of PICK1 and ICA69 in insulin granule trafficking. In this proposed model, PICK1 and ICA69 form
heteromeric BAR domain complexes that are capable of sensing membrane curvatures and phospholipids on the membranes of the TGN. In addition,
the PDZ domain of PICK1 may bind to membrane proteins on the insulin granules. This aids the formation of proinsulin immature secretory granules
(ISGs) from the TGN with both PICK1 and ICA69 (P-I granules). The P-I granules gradually lose ICA69 as they mature and become PICK1 only granules
(P-P granules). With more PDZ domains, the PICK1 homomeric complexes can bind to more membrane proteins and enrich secretory cargos in the
mature insulin granules.
doi:10.1371/journal.pbio.1001541.g009
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at 37uC with 5% CO2 2 d later. Time-lapse images were acquired

with a Nikon TE2000E-PFS microscope equipped with a Tokai

Hit INU-NI-F1 temperature, humidity, and CO2 chamber.

Images were acquired at 2-s intervals with 200 ms exposures.

Data acquisition and image processing were performed using

MetaMorph (Universal Imaging) and Image J software (NIH).

Co-Immunoprecipitation
About 100 isolated islets were solubilized using 1% Triton X-

100 with the protease inhibitor cocktail (Roche) for 30 min at 4uC.

Anti-PICK1 or anti-ICA69 sera were pre-incubated with Protein

A Sepharose (GE Healthcare) for 1–2 h at 4uC. The clarified

supernatant of the islet lysates were then added to the beads. The

mixtures were then incubated for 2–3 h at 4uC. After washing, the

immunoprecipitates were eluted from the beads and resolved by

SDS-PAGE for analysis by Western blotting. For peptide-block

controls, sera were pre-incubated with PICK1 N29 peptide or

ICA69 C-terminal peptide for 2 h. Anti-PICK1 mouse monoclo-

nal antibody was used for Western blotting to eliminate the IgG

background in IP samples.

Subcellular Fractionation
Four 100-mm dishes of INS-1E cells were washed once with ice-

cold PBS and scraped in 5 mL ice-cold PBS with 1 mM

phenylmethylsulphonyl fluoride (PMSF). Cells were homogenized

in 5 mL Buffer A (0.3 M sucrose, 1 mM EDTA, 1 mM MgSO4,

10 mM MES-KOH, pH 6.5) on ice, and the homogenate was

centrifuged at 1,000 g for 5 min to remove unbroken cells and

nuclear debris. The postnuclear supernatant (PNS) was collected

and loaded on top of a discontinuous Optiprep (Sigma) gradient

composed of five layers (2 ml 30%, 2 ml 23.4%, 2 ml 17.6%, 2 ml

13.2%, 2 ml 8.8%) in a SW40 tube, and the sample was

centrifuged at 100,000 g for 75 min. About 600 mL for each

fraction was collected for Western blotting analyses.

Western Blotting of PICK1 Pancreatic Tissue and
Proinsulin/Insulin

Pancreases were homogenized in a homogenizing buffer

(10 mM Tris-Cl, 320 mM sucrose, pH 7.4) to obtain total protein

extracts. Protein concentrations were determined by Coomassie

assays (Pierce, Rockford, IL). Equal amounts of proteins (,20 mg/

lane) were resolved by SDS-PAGE and analyzed by Western

blotting using anti-PICK1, anti-ICA69, and anti-b-tubulin anti-

bodies. To detect proinsulin/insulin, the islet lysates were

subjected to the nonreducing Tricine (16%)/Urea (8M) SDS-

PAGE and analyzed by Western blotting.

Genotyping PCR and RT-PCR
Mice were genotyped by PCR using a 3-primer design: 59

TCACTTGCCAGAGGAGAAAACTG 39, 59 AAAAATAGG-

CGTATCACGAGGC 39, and 59 CACTCGCAGCTTGTTCT-

GATCTG 39. The WT PCR product is a 400 bp band while the

mutant band is 200 bp.

Pancreas from WT and PICK1 KO mice were used for RT-

PCR analysis. Pancreatic total RNA was extracted with TRIzol

reagent (Invitrogen) as described in the manufacturer’s instruc-

tions, and cDNAs were prepared by reverse transcription using

First-strand cDNA Synthesis kit (Fermentas). PCR was done with

Platinum Taq DNA Polymerase (Bioline). The primer pairs for

mouse ICA69 were forward 59AAGGATGACCTCTTG-

CTGTTGAATG 39 and reverse 59 ATAGCGATAGAAA-

CAGGGCCTTGAC 39. Those for mouse b-actin were forward

59 TGAGAGGGAAATCGTGCGTG 39 and reverse 59

TGCTTGCTGATCCACATCTGC 39.

Immunocytochemistry
INS-1E cells, MIN6 cells, or primary cultured islet cells were

fixed by 4% paraformaldehyde plus 4% sucrose in PBS for 20 min

at room temperature. The cells were then permeabilized by 0.2%

Triton X-100 in PBS for 10 min, blocked with 10% normal

donkey serum (NDS) in PBS for 1 h, and then sequentially probed

for 1 h each with primary antibodies and fluorescent secondary

antibodies diluted in 3% NDS (all at room temperature). After

washing with PBS, coverslips were mounted with Permafluor

(Immunon). For the treatment with high glucose and KCl, INS-1E

cells on day 5 were first pre-incubated in 3.3 mM glucose/KRBH

for 30 min, and then cells were transferred to 16.8 mM glucose

and 70 mM KCl or further incubated in 3.3 mM glucose for

60 min. For the treatment with Brefeldin A (BFA), INS-1E cells

were treated with 2 mg/mL BFA (Sigma) or vehicle control of

absolute ethanol at various time points as mentioned in the results.

For the treatment with high glucose, primary cultured beta cells on

day 6 were washed with KRBH buffer once and then incubated in

16.8 mM glucose for 30 min. Cells were examined using a Nikon

Eclipse TE2000 inverted fluorescence microscope or Zeiss

LSM510 confocal laser scanning microscope under a 606 or

1006 Plan Apochromatic oil lens (NA = 1.4).

Immunohistochemistry
Pancreases were first fixed with 4% paraformaldehyde and 4%

sucrose in PBS for at least 4 h at 4uC and then cryo-protected by

incubation in gradient sucrose-PBS solutions at 4uC (10% sucrose

1 h, 20% sucrose 1 h, and 30% sucrose overnight). Cryosections

of 10 mm thickness were used for immunohistochemical analysis.

Sections were rinsed with PBS, permeabilized, and blocked with

10% normal goat serum plus 0.2% Triton X-100 in PBS for 1 h at

room temperature and then incubated overnight with primary

antibodies at 4uC in a humidified atmosphere. After gently

washing thrice with PBS and incubating with fluorescent

secondary antibodies for 1 h at room temperature, sections were

dehydrated and mounted with Vecta Mount solution (Vector

Labs).

Haematoxylin and Eosin (H&E) Staining and Islet
Morphology Analysis

Pancreases were fixed with 4% paraformaldehyde and 4%

sucrose in PBS for 24 h at 4uC. After dehydration, samples were

embedded in paraffin and serial paraffin sections were obtained at

100-mm intervals from each pancreas. In all, 12 sections (7 mm

thick) were used for quantification. Standard H&E staining was

performed, and the slides were mounted using Vecta Mount

solution. The islet/pancreas area, the islet number/mm2, and the

average size of islets were determined by the MetaMorph image

acquisition software.

Transmission Electronic Microscopy
TEMs were performed as previously [30]. Briefly, isolated islets

were fixed with 2% glutaraldehyde overnight at 4uC, dehydrated,

and then embedded in Spurr’s resin (Electron Microscopy Science,

Hatfield, PA). Ultrathin sections (70 nm) were cut on an ultratome

(Leica, Reichert Ultracuts). Spur sections were directly poststained

with aqueous uranyl acetate/lead citrate. The observations were

performed with a Hitachi H-7650 transmission EM operating at

80 kV, and pictures were taken with a Hitachi AMT –XR 40
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CCD camera. The secretory granule size, area, and number were

quantified by the Image J software.

For immunolabeling, isolated islets were fixed in 0.25%

glutaraldehyde and 1.5% paraformaldehyde in 50 mM Caco

buffer. Thereafter, the samples were dehydrated through a graded

ethanol series and then embedded in Lowicryl Resin HM20

(Electron Microscopy Science, Hatfield, PA). Ultrathin sections

(70 nm) were blocked in 3% BSA for 20 min at room temperature

and probed with mouse anti-PICK1 antibody for 3 h. After

washing in 1% BSA, sections were exposed for 1 h to anti-mouse

IgG secondary antibodies conjugated to 10 nm gold particles

(Electron Microscopy Science) and then washed in 1% BSA. The

sections were post-stained with aqueous uranyl acetate/lead

citrate.

Analysis of Metabolic Parameters
Body weight. The body weights of WT or KO mice were

measured at ages between 6 to 8 mo.

Food and water intake. Body weights of 6–8-mo-old mice

were measured before tests and the 24 h intake of food and water

was recorded for 4 d to calculate the average values of consumed

food (g) or water (g)/kg body weight/day.

Body composition. The body composition was measured by

Bruker LF90 MiniSpec analyzer.

The energy expenditure measurement. The mice were

adapted in the metabolic cages (CLAMS, Columbus Inc.) for 24 h

before the measurement. The O2 consumption and RER were

recorded automatically for 72 h.

Measurement of Basal Glucose and Insulin Levels
For the fasting condition, 4–6-mo-old mice were starved for

16 h and blood was collected from the tail vein. Basal glucose

levels were measured by a glucometer (One Touch Ultra,

LifeScan), and basal insulin levels were measured by an Ultra-

Sensitive Mouse Insulin ELISA kit (Crystal Chem.). In the feeding

condition, mice given a normal diet were tested at 9:00 am and

blood glucose levels were measured by the glucometer.

IGTT
We starved 4–6-mo-old mice for 16 h or overnight before being

administered an intraperitoneal injection of glucose (1.5 g/kg

body weight). Blood was drawn from the tail vein before and 15,

30, 60, 90, and 120 min after injection to measure glucose levels

using the glucometer.

ITT
We fasted 4–6-mo-old mice for 4–5 h prior to the ITT test.

Human regular insulin (0.1 U/mL in saline; Roche) was

intraperitoneally injected into each mouse (0.75 U/kg body

weight), and blood glucose levels were measured by the glucometer

at 0 min (before injection) and 15, 30, 60, 90, and 120 min after

injection.

Glucose-Stimulated Insulin/Proinsulin Secretion Assay
Insulin secretion assays on mice. We fasted 10–12-mo-old

WT and KO mice for at least 16 h, and followed by injection with

glucose (1.5 g/kg body weight) as described for the IGTT assay.

Blood (.20 ml) from the tail vein was collected before and 10, 20,

and 30 min after injection. The blood was spun at max speed in a

tabletop centrifuge for 10 min at 4uC and the supernatant serum

was collected. The insulin concentrations in these samples were

measured by an insulin ELISA kit using mouse insulin as the

standard.

Insulin secretion assays on isolated islets. We sacrificed

10–12-mo-old mice by cervical dislocation. For islet isolation, the

common bile duct was cannulated and injected with 3 mL cold

HBSS medium containing 1 mg/mL collagenase V (Sigma). The

distended pancreas was incubated in a water bath at 37uC in

1 mg/mL collagenase V in HBSS for 10–13 min. The islets were

separated on Histopaque 1077 (Sigma) density gradients and then

hand-picked under a dissecting microscope to ensure that the islet

preparation was pure. After overnight culture in RPMI 1640

containing 11 mM glucose, islets of similar size from WT and

PICK1 KO mice were handpicked and pre-incubated for 1 h in

KRBH buffer containing 3.3 mM glucose. Groups of 15 islets

were incubated in 1 mL KRBH buffer containing 3.3 mM glucose

for 1 h more and then transferred to 1 mL KRBH buffer

containing 16.8 mM glucose for another hour. After incubation,

the KRBH buffer was collected and spun down at 500 g for 5 min.

The supernatant was stored at 220uC, and the insulin concen-

tration was later measured by an insulin ELISA kit. Total insulin

content was extracted by acid-ethanol (70% ethanol +0.18 M

HCl) at 4uC for 12 h. For KCl stimulation assays, after the pre-

incubation step, 15 islets were incubated in 1 mL KRBH buffer

containing 4.8 mM KCl for 30 min and then in 1 mL KRBH

buffer containing 30 mM KCl for another 30 min. The superna-

tant was collected for insulin concentration measurement. For

time-course experiment, 15 islets were pre-incubated in KRBH

buffer containing 3.3 mM glucose for 1 h. The islets were then

incubated in 1 mL KRBH buffer containing 16.8 mM glucose for

2 min. At different time points, the islets were transferred to 1 mL

fresh KRBH buffer containing 16.8 mM glucose for 2-min

incubation. Supernatants from different time points were collected

to measure insulin concentrations and to generate time-course

curves.

Proinsulin secretion on isolated islets. Isolated islets were

treated with glucose as in insulin secretion assays. Secreted and

total proinsulin content was measured using rat/mouse proinsulin-

specific ELISA kits (Mercodia).

Statistical Analyses
All data are presented as mean 6 SEM, and p values are from

two-tailed Student’s t tests. Values of p,0.05 were considered as

statistically significant.

Supporting Information

Figure S1 PICK1 is mainly expressed in pancreatic beta cells

but not alpha or delta cells. (A) Immunostaining of PICK1 (red) on

WT and PICK1 KO pancreatic cryosections. DAPI was used to

label nucleus. Guinea pig anti-PICK1 antibody recognizes

nonspecific signals at the periphery region of islets (arrows). Scale

bar, 100 mm. (B) Double staining of PICK1 (red) and insulin

(green) on cultured islet cells. PICK1 is highly expressed in the

insulin-positive pancreatic beta cells. Scale bar, 10 mm. (C) Double

staining of PICK1 (red) and glucagon (green) on cultured islet cells.

PICK1 is weakly expressed in the glucagon-positive pancreatic

alpha cells compared with neighboring glucagon-negative cells.

Scale bar, 10 mm. (D) Double staining of PICK1 (red) and

somatostatin (green) on cultured islet cells. No PICK1 expression

could be detected in the somatostatin-positive pancreatic delta

cells compared with neighboring somatostatin-negative cells. Scale

bar, 10 mm. DAPI was used to label nucleus.

(TIF)

Figure S2 PICK1 vesicles are related to Golgi structures but not

early endosomes or ER. Double staining in INS-1E cells for (A)
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PICK1 (red) and EEA1 (green), (B) PICK1 (red) and Bip (green),

and (C) PICK1 (red) and calnexin (green). (A–C) Scale bar, 10 mm.

(TIF)

Figure S3 The relationship between PICK1 and clathrin and its

adaptors. Double staining in INS-1E cells of (A) PICK1 (red) and

Clathrin-HC (green), (B) PICK1 (red) and c-adaptin (green), (C)

PICK1 (red) and a-adaptin (green), and (D) PICK1 (red) and d-

adaptin (green). Scale bar, 10 mm.

(TIF)

Figure S4 Unaltered body composition and energy expenditure

in PICK1 KO mice. (A) Fat mass percentage and (B) lean mass

percentage was measured by NMR system (12-wk-old male mice;

n = 6). (C–D) Oxygen (O2) consumption. (E–F) Respiratory

exchange rate (RER) was measured using metabolic cages for

48 h. (Light, 7 am–7 pm; Dark, 7 pm–7 am; 12-wk-old male mice,

n = 6). (G) Body temperature, as measured by anal temperature at

9 am daily (12-wk-old male mice; n = 6). (A–G) Data are

represented as mean 6 SEM, Student’s t test.

(TIF)

Figure S5 Insulin effects on PICK1 KO target tissues. (A)

Western blotting of PICK1 in adipose, muscle, and liver tissue

lysates. WT brain tissues were used as a PICK1-positive control.

GAPDH served as a loading control. (B–D) Twelve-week-old male

mice were fasted overnight and sacrificed after receiving a single

intraperitoneal injection of insulin (0.5 U/kg body weight). The

adipose (B), liver (C), and soleus muscle (D) tissues were collected

and homogenized, followed by Western blotting analysis using

antibodies as indicated. Data are expressed as fold changes relative

to the baseline control (time = 0 min) and represented as mean 6

SEM, n = 4; NS, not significant.

(TIF)

Movie S1 Live imaging of PICK1-containing insulin granules in

INS-1E cells. INS-1E cells were transfected with mCherry-PICK1

(red) and phogrin-GFP (green), and live imaging was performed

2 d after transfection (as mentioned in Materials and Methods).

PICK1 and phogrin formed co-clusters and moved together in the

cytosol of INS-1E cells.

(AVI)

Table S1 Changes of serum melanocortin and lipid profile.

Groups of male mice were fasted overnight and sacrificed the next

morning for serum collection. Melanocyte-stimulating hormone a
(MSH-a), triglycerides, cholesterol, and NEFAs were measured.

**p,0.01, Student’s t test.

(DOC)
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