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Abstract

Conventional wisdom holds that the best way to treat infection with antibiotics is to ‘hit early and hit hard’. A favoured
strategy is to deploy two antibiotics that produce a stronger effect in combination than if either drug were used alone. But
are such synergistic combinations necessarily optimal? We combine mathematical modelling, evolution experiments, whole
genome sequencing and genetic manipulation of a resistance mechanism to demonstrate that deploying synergistic
antibiotics can, in practice, be the worst strategy if bacterial clearance is not achieved after the first treatment phase. As
treatment proceeds, it is only to be expected that the strength of antibiotic synergy will diminish as the frequency of drug-
resistant bacteria increases. Indeed, antibiotic efficacy decays exponentially in our five-day evolution experiments. However,
as the theory of competitive release predicts, drug-resistant bacteria replicate fastest when their drug-susceptible
competitors are eliminated by overly-aggressive treatment. Here, synergy exerts such strong selection for resistance that an
antagonism consistently emerges by day 1 and the initially most aggressive treatment produces the greatest bacterial load,
a fortiori greater than if just one drug were given. Whole genome sequencing reveals that such rapid evolution is the result
of the amplification of a genomic region containing four drug-resistance mechanisms, including the acrAB efflux operon.
When this operon is deleted in genetically manipulated mutants and the evolution experiment repeated, antagonism fails
to emerge in five days and antibiotic synergy is maintained for longer. We therefore conclude that unless super-inhibitory
doses are achieved and maintained until the pathogen is successfully cleared, synergistic antibiotics can have the opposite
effect to that intended by helping to increase pathogen load where, and when, the drugs are found at sub-inhibitory
concentrations.
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Introduction

Our arsenal of antimicrobials boasts a wide diversity of drugs

and we continue to invest in the search for new ones [1]. Yet

bacteria adapt so readily to their ambient environment that all

antibiotics in clinical use have bacteria that resist them [2,3]. A

Staphylococcus aureus infection traced in vivo yielded over thirty de novo

mutations from a 12-week therapy, each mutation conferring an

increase in drug resistance [4]. With such a rapidly evolving foe

and antibiotic discovery programmes waning substantially [3],

determining optimisation principles that maintain the efficacy of

the antibiotic repertoire already in our possession represents one of

the keenest challenges confronting the scientific community.

And yet drug-resistance evolution has been called ‘conceptually

uninteresting’ [5]. This view is the result of assuming a fixed

timeline: a pathogen is treated with antibiotics, resistance traits

emerge, sweep through the population and fix. The more efficient

the drug, the greater selection for resistance and the sooner

resistance fixes. The only mitigating action we can take is hit early,

hit hard and kill drug-susceptible cells before they accumulate, so

the old argument goes [6].

Bacteria are hardest hit by multi-drug combinations. Developed

for over 70 years [1,7,8], combinations are key in our fight against

microbes [9], viruses [10] and cancers [11]. Combinations said to

be synergistic, where two drugs hit the pathogen much harder

than each drug alone, are highly prized [1,12,13]. Indeed, the

rapid deployment of synergistic antibiotics should, according to the

same logic, be the fastest way of clearing a bacterium.

To make our discussion more precise we say that a pair of

bacteriostatic antibiotics of equal efficacy is synergistic if a 50-50

weighted combination of both drugs inhibits growth more than the

two single-drug treatments when measured over one day of

bacterial growth [8,14–16]. (Strictly speaking, we ask this for all

(h,(12h))-combinations where h is any value between 0 and 100%,

not just 50-50, as shown in Figure 1.) With this definition we can

formulate a null hypothesis, H0: a synergistic drug combination also
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inhibits growth synergistically if the treatment lasts longer than a day. Put

differently, if the 50-50 combination treatment is more efficient

than both single-drug monotherapies on the first day of treatment,

it should also be more efficient on subsequent days to be deemed

synergistic.

Any in vitro test of H0 necessitates the use of antibiotic

concentrations that support measurable population densities, the

treatments we can use to test it are, as a result, necessarily

constrained to a sub-inhibitory dosing regime. We must therefore

question how relevant this study can be to antibiotic use in vivo, we

argue that it is relevant for the following reasons. Drug interactions

are often determined by one-day checkerboards and isoboles [17],

like those illustrated in Figure 1, but by their very nature

checkerboards only provide insight into the interaction inside the

sub-inhibitory regime as isoboles can only be calculated if cells

grow. Moreover, drug concentrations can sweep downwards from

their highest values to sub-inhibitory concentrations during

treatment ([18], Figure 1), repeatedly so for intermittent dosing

regimens [19,20]. The different diffusivities small antibiotic

molecules exhibit in different tissue can create substantial

inhomogeneities in concentration [21] resulting in a potential

spatiotemporal mosaic of selection for resistance [18,22] whereby

treatment can reduce pathogen load in some, but not all, organs

[23]. Indeed, spatial diffusion itself creates concentration gradients

with rapid, super-exponential decay away from a point source. It is

therefore essential to understand how antibiotic combinations

mediate resistance at all dosages within this mosaic, including sub-

inhibitory, particularly as resistance is known to be selected for at

very low concentrations, well below the minimal inhibitory

concentration [24].

Now, we argue that treatments with the greatest short-term

efficacy do not necessarily lead to the lowest bacterial densities

later. A simple construction accounting for both density-depen-

dent and frequency-dependent selection on drug resistance suffices

to explain why. Consider three scenarios with two drugs, ‘A’ and

‘B’. A bacterium is either unchallenged by antibiotics, challenged

with drug A only (or drug B only) or else treated with the optimally

synergistic combination of both, as in Figure 2(a). The no-drug

treatment sees the cells grow, to carrying capacity say, without

selecting for drug-resistant phenotypes. The synergistic combina-

tion inhibits drug-susceptible cells optimally, better than the two

monotherapies, and so, by the end of day 1, the lowest bacterial

load of all is observed in this treatment. However, suppose some

cells exhibit genetic or epigenetic adaptation conferring resistance;

such cells may even have been present in low frequencies at the

start of treatment. It is now in the synergistic line that drug-

resistant phenotypes fare best as they have fewer competitors for

the extracellular metabolites needed for growth.

To clarify how this might arise, imagine a population of bacteria

with two subpopulations of drug-susceptible and resistant cells and

suppose extracellular metabolites are shared equally among all the

growing cells. As the growth of susceptibles is suppressed more at

greater synergies, more metabolites become available for resistant

cells in those treatments. However, resistant cells necessarily grow

faster than susceptible cells do when the drugs are present, with a

greater fitness difference at greater synergies. Thus the total

population density can be increased by the synergy even when the

number of drug-susceptible cells present is reduced. Now, if

resistant cells are absent or at low frequencies at the beginning of

treatment, the exposure to antibiotics must be long enough to

Figure 1. The drug interaction profile, i(h), as defined in
Materials and Methods. The drug interaction profile is closely
related to the two ‘checkerboard’ diagrams shown in (a) and (c). In a
checkerboard, the concentration of both drugs is given on the x and y
axes, bacterial growth inhibition (or population density or some other
fitness measure) is then plotted on the z axis. The contour of all
concentrations that reduce this measure by half is an isobole here
denoted IC50 and figures (a) and (c) show two checkerboard plots
viewed from above. Basal concentrations of both drugs that achieve the
same inhibitory effect in this illustration are D50 and E50, h then
parameterises the equidosage line between these two values. The
fitness measure evaluated along this line is shown in (b) and (d) and we
define the degree of interaction based on this curve, this is i(h). We say
the interaction is synergistic when the drug proportion that minimises
i(h) satisfies 0,h,1 as in (b), we denote the resulting value by hsyn. In
(d) we observe hsyn = 0 or hsyn = 1, in this case the drugs are said to be
antagonistic as i(h) is maximised by some drug combination and
minimised by the monotherapies.
doi:10.1371/journal.pbio.1001540.g001

Author Summary

We take an evolutionary approach to a problem from the
medical sciences in seeking to understand how our
knowledge of rapid bacterial evolution should shape the
way we treat pathogens with antibiotic drugs. We pay
particular attention to combinations of different drugs that
are purposefully used to produce potent therapies.
Textbook orthodoxy in medicine and pharmacology states
one should hit the pathogen hard with the drug and then
prolong the treatment to be certain of clearing it from the
host; how effective this approach is remains the subject of
discussion. If the textbooks are correct, a combination of
two antibiotics that prevents bacterial growth more than if
just one drug were used should provide a better treatment
strategy. Testing alternatives like these, however, is
difficult to do in vivo or in the clinic, so we examined
these ideas in laboratory conditions where treatments can
be carefully controlled and the optimal combination
therapy easily determined by measuring bacterial densities
at every moment for each treatment trialled. Studying
drug concentrations where antibiotic synergy can be
guaranteed, we found that treatment duration was crucial.
The most potent combination therapy on day 1 turned out
to be the worst of all the therapies we tested by the
middle of day 2, and by day 5 it barely inhibited bacterial
growth; by contrast, the drugs did continue to impair
growth if administered individually.

The Smile-Frown Transition
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allow the resistants to achieve densities comparable to the

susceptibles and so the treatment duration then needs to be long

enough for the claim in the previous sentence to be true. This

process is illustrated in Figure 2.

This idea, known as ‘competitive release’ [25] has been tested in

treatments of malaria in vivo using mice [5] where higher drug

concentrations have been shown to select for higher parasite load

but competitive release makes new predictions for antibiotic

therapy, for combinations in particular. First, the optimal

combination is not robust: the best way of deploying a drug pair

depends on how long the treatment lasts. Second, and as a result,

the favoured property of antibiotic synergy is not necessarily

robust to adaptations that confer drug resistance. Not only will

synergy decay with time, it can be lost completely and replaced

with an antagonism because more potent combinations have

paradoxically selected for larger bacterial load. Thus the theory of

competitive release is not consistent with our null hypothesis and

provides an evolutionary rationale for rejecting it.

A toy mathematical model captures the verbal argument

completely and shows that synergy loss can be viewed as a form

of tipping point. Imagine a bacterial population consisting of cells

susceptible to both antibiotics at density S(t), where t is time.

Suppose there is a completely resistant phenotype, R(t), and m is

the mean rate in a random Poisson process by which susceptible

cells gain resistance. The dimensionless variable h between zero

and one controls the drug combination and k(h) = 1+h(12h)

measures the efficiency of each combination at drug concentra-

tions (A,B) = (A0h, B0(12h)). Here A0 and B0 are normalising

concentrations, chosen so that each drug achieves equal inhibitory

effect at a defined time. Note that k(h)is maximised when h = 1/2.

This value represents a 50-50 combination therapy whereby

(A,B) = (A0/2, B0/2).

The toy model is the following logistic growth equation

modified to include antibiotics:

d

dt
S~S(1{(SzR)){(k(h)zm)S, ð1aÞ

d

dt
R~R(1{(SzR))zmS, ð1bÞ

where 0vS(0)%1 and R(0) = 0. We therefore begin with

susceptible cells but no resistant ones. Figure 2(b) shows the

population densities that result from this model,

Dt(h) = S(h,t)+R(h,t), plotted as a function of h for increasing values

of time t.

For short times (Equation 1a–b) exhibits synergy because

density is suppressed most by the combination where h = 1/2, so

the plot of Dt(h) has the convex, U-shaped ‘smile’ shown in blue in

Figure 2(b). At later times, but only provided m.0, the shape of the

density profile changes and now density is greatest for the 50-50

combination and lowest for the ‘monotherapies’, where h = 0 and

h = 1. So the plot of Dt(h) now exhibits a near-concave, W-shaped

‘frown’ consistent with antagonism having its maximal value at

h = 1/2, as shown in red in Figure 2(b). Density is now maximised

where before it was minimised. We call the resulting passage from

synergy to antagonism the ‘smile-frown transition’, referring to it

on occasion as ‘synergy inversion’ because the convex, synergistic

profile is inverted to form a near-concave, antagonistic one; this is

a different notion of synergy inversion to the one in [26].

If we set m = 0, thus preventing the modelled population from

adapting to the drug, it then follows that Dt(h) has a synergistic

profile at all times. In this case the 50-50 combination, represented

Figure 2. Smile-frown transition: a verbal argument and a toy mathematical model. (a) Synergistic drugs suppress drug-susceptible sub-
populations (yellow cells) more than single-drug therapies however, this eliminates competitors of the drug-resistant red cells who grow more rapidly
than the yellow cells would have done at weaker synergies. Thus greater synergy can increase population densities. (b) Solving Equation 1a–b and
plotting population density against drug proportion shows that a short-term synergistic combination (blue) can maximise densities later (red). The red
dots show the path of the optimal combination, note this idealised model is symmetric about h = 1/2 but empirical data will not be. (c and d) The
densities of drug-susceptible cells (S on the vertical axis in (c)) and resistants (R on the vertical axis in (d)) are shown at different times where, again, the
blue line denotes a treatment of short duration and the red line denotes a longer treatment. The arrow in (c) represents the loss of S that occurs because
of the drug whereas the arrow in (d) represents the analogous gain in R. For longer treatments the latter more than compensates for the former and by
summing the red and blue lines in (b) and (c), respectively, we obtain the red and blue curves showing population density, D= S+R, in (a).
doi:10.1371/journal.pbio.1001540.g002
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by the value h = 1/2, is the optimal combination for all times as it

minimises population density, irrespective of treatment duration.

We tested the veracity of these theoretical predictions using an

evolutionary functional genomics approach that combined evolu-

tion experiments using Escherichia coli, a genomic analysis, the

genetic manipulation of an identified candidate resistance

mechanism and quantitative mathematical modelling. This

approach highlights the molecular mechanism that causes the

synergy loss predicted by theory, whereas the theory alludes to the

generality of the empirical results that we now describe.

Results

Evolution of a Family of Combination Treatments:
Experimental Design

The above predictions are best tested in vitro where the drug

interactions are well-understood and can be rigorously controlled.

We therefore cultured E. coli K12 (MC4100) over a five-day period

using a serial dilution protocol and sixteen different combination

treatments of erythromycin (ERY, a macrolide) and doxycycline

(DOX, a tetracycline), two bacteriostatic translational inhibitors

with an established synergy [14]. The bacteria are first cultured for

24 h in liquid growth medium containing antibiotics at concen-

trations described below and, at the end of the 24 h period, a

random sample of the bacteria is transferred using a standard plate

replicator to inoculate fresh growth medium. This process is

repeated to create a treatment lasting several days.

We began by choosing a pair of normalising, or ‘basal’,

antibiotic concentrations, D50 and E50, in such a way that each

DOX-only and ERY-only monotherapy achieved a 50% reduc-

tion in density when measured at 24 h relative to a zero-drug

control (the basal concentrations D50 and E50 are the IC50 values

of each drug). Each of the sixteen different treatments may

therefore be described by a single pair of concentrations

(D,E)~(hD50,(1{h)E50), ð2Þ

where h is the relative drug proportion. When combined in a 50-

50 ratio at these doses, where h = 1/2, a 90% reduction in

bacterial growth at 24 h is achieved, greater than the 50%

reduction achieved by each monotherapy (the data in Figure 3(a)

(Day 1) supports this). We implemented 14 different combination

treatments and two monotherapies at those basal doses with h
ranging in discrete values from 0 and 1/15 to 14/15 and then 1

(19 replicates per treatment; see Section 3.2 in Text S1).

The fixed drug proportion, h, that minimises bacterial density

from the sixteen implemented and determined empirically by

culturing the bacteria for 24 h will be denoted by hsyn in the

following. This value between zero and one denotes the maximally

synergistic combination treatment obtained after fixing the basal

drug concentrations, as shown in Figure 1(b). The time-dependent

optimal combination will be denoted hopt (T) (see Materials and

Methods) and this value represents the combination of ERY and

DOX that minimises density for a treatment of duration T hours.

It follows by design that hopt (T) = hsyn if T is small, less than 24 h,

say.

After calibrating concentrations D and E so that each drug has

equal effect, so hsyn<1/2 in practise as Figure 4(c) shows, the

short-term optimal treatment is a 50-50 combination of both ERY

and DOX. As a reflection of this, the day 1 data in Figure 3(a) then

shows the 50% growth reduction obtained for each monotherapy,

the 90% reduction for the maximally synergistic 50-50 combina-

tion in addition to the growth reduction for all the other

combinations we tested. We can now test our null hypothesis by

asking whether the drug combination that is optimal on day 1, 50-

50 by design, is also optimal on subsequent days. Equation 1

makes a clear prediction: the best therapy on day 1 will be the worst

later.

Smile-Frown Transition: An Empirical Test
The first day’s data exhibits synergism with the lowest short-

term bacterial densities found for near 50-50 combinations of ERY

and DOX, so hsyn<1/2, this can be seen in Figure 5 (shown in

blue). However, the subsequent population dynamics beyond day

1 lead to us to reject H0 for Figure 5 (in red) shows they are

consistent with the theory of competitive release and exhibit the

smile-frown transition before 36 h have elapsed, as we now

explain.

Consistent with the predictions of Equation 1, Figure 4(a)

illustrates how the degree of interaction, I(T), defined in Materials

and Methods, shifts from synergy (where I(T),0; t-test, df = 19,

t<26.13, p,0.0001,) to antagonism (where I(T).0; t-test, df = 19,

t<6.83, p,0.0001) between 12 h and 36 h. The degree of

interaction thereafter remains positive, denoting antagonism, until

the end of the experiment. This is shown with more detail in

Figure 3. Dynamics of the optimal treatment: the greater the early inhibition, the faster efficacy decays and so the greater the
resulting bacterial density. (a) Using an area under the curve (AUC) inhibition measure expressed as a percentage of growth without antibiotics,
by design a combination of ERY and DOX is optimal on day 1 (red line, ‘50-50’) but an ERY monotherapy is optimal by day two (after the crossing
points of the lines; c.f. Figure 4). The path of three extreme therapies are shown as lines, coloured dots represent the remaining thirteen treatments
colour-coded from green (ERY) to blue (DOX). (b) Exponentially decaying datafits are superimposed upon three treatments from (a).
doi:10.1371/journal.pbio.1001540.g003

The Smile-Frown Transition

PLOS Biology | www.plosbiology.org 4 April 2013 | Volume 11 | Issue 4 | e1001540



Figure 4(b) where the dynamics of the interaction profile are

shown on an hour-by-hour basis; this illustrates that the interaction

changes at about 30 h.

Examining the apparent change in drug interaction more closely

in Figure 5, at 12 h the interaction profile is synergistic (a-test,

a = 0.6160.05.0, df = 13, t#11.22, p,1027, hopt(12h) =

0.4960.01#hsyn; see Materials and Methods and Section 4.3 in

Text S1 for a description of the a-test) but combination treatments

for which h<2/3 (estimated robustly using the a-test described in

Materials and Methods as 0.6560.04) yield the highest observed

population densities by 36 h. As a result, the optimal combination

has changed within two days from a 50-50 combination to an ERY

monotherapy because the interaction profile is now antagonistic (a-test,

a = 20.4460.14,0, df = 13, t#23.05, p,0.0093, hopt(36h)#0?hsyn;

Section 4.3 in Text S1).

These data were produced for optical density measures of

bacterial growth, but analogous results are obtained using different

notions of fitness. Using an area under the curve measure of

growth inhibition that accounts for both population sizes and

growth rates (Section 4.2 in Text S1) Figure 3(a) shows drug

efficacy approaches zero most rapidly for near 50-50 combination

treatments. The same figure shows the optimal treatment has

shifted in this measure too, to the ERY monotherapy within two

days. For completeness, the smile-frown transition is also seen if we

use colony-forming units to measure bacterial population densities

(Section 7.4 in Text S1).

As a further test for loss of synergy, dose-response checker-

boards and isobolograms were produced using bacteria sampled

from the highly synergistic h<8/15 treatment at the beginning of

days one and five, both are shown in Figure 6. The earlier

checkerboard is consistent with synergism whereas the latter

checkerboard shows a progressing wave of increased resistance,

with synergy at higher drug concentrations and a mixed

interaction apparent at lower concentrations. Figure 6(a, right)

shows isoboles at 60% inhibition that are suggestive of a

suppressive interaction by day 4 in which doxycycline reduces

the inhibitory effect of erythromycin. The white isobole of 50%

inhibition in Figure 6(b) shows a shift from day 1 to 5 that indicates

increased resistance of the population to both ERY and DOX (for

controls that the antibiotics do not degrade significantly when

stored at 4uC for several days see Section 3.2 in Text S1).

Stabilising Synergy: A Genomic Prediction from a
Mathematical Model

Having established the rapid loss of optimality of the most

synergistic combination treatment, at which point the latter

becomes the worst treatment of all, it is essential we understand

the genetic basis of this change. So we first performed a test to

determine whether increased drug resistance was the result of

epigenetic adaptation (Section 3.2 in Text S1).

Samples each of the initially most synergistic drug treatment

and the control treatment without drug were taken from the end of

day 5 and cultured without antibiotics for a further 24 h. The

resulting populations were then all subjected to the most

synergistic drug combination for another 24 h. Consistent with a

likely genetic basis to drug-resistance adaptation, samples from the

short-term synergistic treatment still displayed greater AUC

inhibition when measured relative to the no-drug control

(Wilcoxon signed rank test, W = 92, N = 10, p,0.001).

Figure 4. Drug interaction profiles are dynamic. (a) The degree of interaction, I(T) defined in Materials and Methods, is shown at different times
from 12 h to 108 h: I(T) is negative for T#24 h denoting synergy, but is positive for all T$36 h denoting antagonism (vertical bars are s.e., 19
replicates). (b) A finer interaction measure than that used in (a), the degree of interaction obtained using the a-test defined in Materials and Methods
produces a locus of drug interaction measures as a function of time. Consistent with (a), this measure changes sign, indicating a change of interaction
near 30 h (note: 2a is plotted). (c) The smile-frown transition resembles a phase transition when applying the a-test to i(h,T) derived from MC4100
density data: the grey line shows the optimal drug combination that minimises i(h,T), the red line shows the maximising combination. As the drug
interaction profile ‘inverts’, the short-term optimal therapy shifts over a very short period to become the worst therapy beyond approximately 30 h.
(The y-axis varies from h = 0 (denoting an ERY-monotherapy) to h = 1 (for a DOX-monotherapy), s.e. is shown as a pair of dashed lines.)
doi:10.1371/journal.pbio.1001540.g004
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Knowing such rapid adaptation has a genetic basis, our goal was

to exploit the resistance mechanism and understand what

organismal function, if suitably manipulated, could maintain

antibiotic synergy for longer and so ensure the smile-frown

transition does not occur so rapidly.

We therefore conducted a whole-genome sequencing study of

independent biological replicates of both monotherapies and of the

maximally synergistic treatment sampled at the end of day 5. The

analysis revealed single nucleotide polymorphisms (SNPs) in most

replicates modifying physiology, metabolism and drug resistance,

including treatments with SNPs in marRAB and acrR (see Table 1,

Figure 7, and Section 5.3 in Text S1). Indeed, the mar regulon is

known to control a range of stress-responses in E. coli [27]

including the multidrug efflux system acrAB-tolC [28].

Rapid increases in resistance to antibiotics can occur when

regions of the genome containing resistance genes are duplicated

and whole-genome sequencing was proposed as a method to

detect such duplications [29,30]. Our analysis revealed 90% of the

independent replicates in the most synergistic combination

treatment had the same 315 Kb fragment duplicated, a region

containing several efflux pumps including acr (Table 2, Section 5.4

in Text S1). The duplication was found in monotherapies too, but

only in 30–40% of those treatments (3/10 replicates for DOX-only

and 2/6 for ERY-only).

The duplication was therefore observed significantly more for

the 50-50 combination treatment than in the ERY monotherapy

(Fisher’s exact test, P,0.035) and the DOX monotherapy (Fisher’s

exact test, P,0.02). In all 14 replicates where a duplication was

detected, it was located between positions 274,201 bp and

589,900 bp. This region contains 293 genes, among which are

12 antibiotic resistance or binding genes, 32 transporter genes and

31 transposon-related genes (Appendix B in Text S1). Cross-

resistance to antibiotics not used in the protocol is likely as three

known multi-drug efflux systems and ampicillin degradation

proteins are encoded within the duplicated region (Section 5.4 in

Text S1 and Appendix B in Text S1). Such consistent, parallel

evolution towards a 315 Kb duplication in all but one replicate of

the 50-50 combination treatment strongly suggests, therefore, that

genetic amplification of a multi-drug efflux pump is the adaptation

that confers the multi-drug resistance phenotype we observe.

To test the stronger hypothesis that a drug efflux system could be

responsible for synergy loss and the smile-frown transition, we first

developed a system-specific, physico-genetics theoretical model

(detailed in Section 6.4 of Text S1) in which cells may express a gene

whose product can pump both antibiotics from the cell with no

fitness or ATP cost. We assume the drugs have different affinities for

the pump and the model encodes three phenotypes: drug-sensitive

cells that do not express the efflux system, less sensitive cells that do

Figure 5. The smile-frown transition in empirical data and modelled bacterial densities. Shown are empirical and modelled bacterial
densities (dots and lines, respectively) for 16 different drug proportions, denoted by h and ranging from 0 (denoting ERY) to 1 (denoting DOX) on the
horizontal axis. Population densities, measured as optical densities, are plotted against drug proportion are shown here in a panel of six time points
with each blue and red datum 24 hours apart. The data was obtained using E. coli K12 (MC4100) challenged by erythromycin and doxycycline. The
smile-frown transition described in the text occurs near 30 h at which point drug synergism is replaced by an antagonism. The model assumes multi-
drug efflux is the only resistance mechanism and interpolates the discrete dataset to produce a series of continuous interaction profiles, as shown.
doi:10.1371/journal.pbio.1001540.g005
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and a third phenotype then possesses an additional efflux gene and

expresses both. Figure 5 shows that the model successfully captures

the first 48 h of data predicting that the rapid inversion of synergy

that we observe empirically is consistent with the up-regulation and

duplication of efflux genes.

Generalising this mathematical framework, we can show that the

short-term optimal combination, represented by hsyn, and the time-

dependent optimal combination hopt(T) are close in general for a

time that depends on the convexity of the drug interaction profile

(Section 8.2 in Text S1). The two quantities are related as follows:

hopt(T)~hsynzr:Tz O(T2)
zfflffl}|fflffl{terms smaller than linear

ð3Þ

where T is treatment duration, r is the divergence rate between the

optimal treatment and maximal synergy; r may be positive or

negative depending on how the bacteria adapt to each drug. The

times

Tsynergy-loss&(1{hsyn)=r or Tsynergy-loss&{hsyn=r ð4Þ

are therefore approximations of the moment at which the optimal

protocol is a monotherapy and no longer a combination. Figures 2(b),

3 and 5 all exhibit this phenomenon, but it can be seen most clearly in

Figure 4(c) that shows the dynamical path taken by the best and the

worst therapies. Analogous to a critical transition, a shift takes place at

30 h of treatment where the 50-50 therapy displaces the DOX

monotherapy as the worst treatment. The synergistic treatment never

recovers its previously favourable status rather, as Figure 3(b) shows in

red, its performance continues to deteriorate exponentially.

The physico-genetics model predicts the drug interaction profile

will be robust to changes in the duration of treatment, which can

be interpreted as r being reduced in magnitude and so synergy

maintained, if the efflux system were suppressed (Figure S16 in

Text S1). This is analogous to setting m = 0 in Equation 1 above.

To test this prediction we repeated the original evolutionary

protocol using two new E. coli strains: a wild-type strain AG100

and a mutant AG100A(Dacr) [31]; we refer to Section 7 of Text S1

that details the minor differences between the first and now this

evolutionary protocol. The latter strain differs from the former

through a large deletion in acrAB that renders efflux systems that

use the products of this operon, like acrAB-tolC, inoperable. As

already observed using the E. coli K12 strain MC4100, AG100

soon exhibited the smile-frown transition, within 48 h according to

Figure 8(a). In contrast, the mutant strain AG100A(Dacr) that lacks

acrAB continued to exhibit synergy until 72 h according to

Figure 8(b), consistent with the prediction.

Figure 6. Drug checkerboards and isobolograms. (a) Empirical dose-response checkerboards show population density data on the z-axis versus
drug concentration on the x and y-axes. This data was obtained by culturing E. coli sampled from the highly synergistic 50-50 environment at days
one and five (the treatment with 4.8 mg/ml ERY and 0.08 mg/ml DOX), it corroborates the known synergism on day 1 and indicates the appearance of
a more complex interaction by day 5. Note, 50% inhibition relative to the zero-drug control population is indicated by white blocks; (right) the 70%
isobole is highlighted as a green line, indicating an interaction where one drug appears to suppress the other. (b) Isoboles (lines of equal inhibitory
effect) are shown based on a numerical filter of the data from (a) (the fitting algorithm and code are described in [50]). Black lines correspond to
isoboles in intervals of 10% inhibition, the darkest red areas illustrate increasing drug concentrations with inhibition towards 100%, the darkest blue
areas denote inhibition closest to 0%. The white region denotes 50% inhibition.
doi:10.1371/journal.pbio.1001540.g006
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Dose-Dependence: Higher Doses Amplify the Smile-
Frown Transition

We now ask whether the synergy loss we observe is contingent

on the choice of D50 and E50 as basal drug concentrations. For

example, might synergy be maintained for longer if we were to

increase the dosage of both drugs? We address this question with

the following experiment.

We re-ran the drug-specific mathematical model (Section 6.4 in

Text S1) at different dosages and repeated the evolutionary

protocol using four different pairs of basal drug concentrations,

Table 1. Overview of single nucleotide polymorphisms in the genomes of E. coli K12 (MC4100) that evolved within five days in
erythromycin, doxycycline treatments or in a 50-50 combination of both.

Treatment Gene Polymorphic Sites Frequency in Replicates Annotation

Doxycycline marR 7 0.5 Repressor of marRAB operon (controls antibiotic resistance and
oxidative stress genes)

mdaB 1 0.1 NADPH quinone reductase

agaS 1 0.1 Tagatose-6-phosphate ketose/aldose isomerase

ascF 1 0.1 Phosphotransferase system IIC components (carbohydrate
transport)

eco 1 0.1 Serine protease inhibitor

Erythromycin acrR 1 0.2 acrRAB antibiotic transporter operon

ycbZ 2 0.6 ATP-dependent protease

50-50 combination rcnA 1 0.1 Membrane protein conferring nickel and cobalt resistance

evgS 1 0.1 Hybrid sensory histidine kinase in two-component regulatory
system

The number of polymorphic sites indicates how many independent nucleotide positions in the gene carry a SNP in at least one replicate, the frequency reflects the
number of replicates where a polymorphism in the gene was found. The table only shows SNPs unique to the three treatments.
doi:10.1371/journal.pbio.1001540.t001

Figure 7. Coverage plots highlight the suspected duplication: a 26increase in coverage suggests a gene duplication. A 315 Kb region
of the E. coli K12 (MC4100) genome contains the acrAB operon and is highlighted in red. The region was not duplicated for treatments with no
antibiotic (‘No drug’), it was duplicated for monotherapies (both ‘ERY’ and ‘DOX’) but was duplicated most often for combination treatments with the
greatest synergy (‘50-50’). The outer ring (black line) indicates genome position, grey blocks encompass the different replicates of each treatment
(replicates are marked with an alphabetic label) and the reddest regions are most likely to have been duplicated.
doi:10.1371/journal.pbio.1001540.g007
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chosen as follows. By analogy with (3) each new treatment can be

represented by a pair of concentrations

(D,E)~(hD40,(1{h)E40),(hD80,(1{h)E80),(hD90,(1{h)E90)

and (hD95,(1{h)E95):

Empirically, we calibrated these four concentration pairs to

produce a 40%, 80%, 90% and 95% reduction in growth relative

to a zero-drug control by 18 h on day 1 for the 50-50 treatments

(ones with h = 1/2). We then subjected AG100 to treatments at

each of the four basal dosages for a duration of five days using the

drug proportions h = 0,1/4,2/4,3/4, and 1.

Table 2. Several antibiotic-binding and resistance genes are found in the 315 Kb genomic region duplicated most frequently in
the 50-50 combination treatment, including the following genes and their annotations.

Start Position End Position Gene Annotation

297113 298270 ampH b-Lactam binding protein AmpH

370854 372626 mdlA Putative multidrug transporter membrane/ATP-binding components

3383237 386386 acrB Multidrug efflux protein

360871 363225 lon DNA-binding ATP-dependent protease La

386409 387602 acrA Multidrug efflux protein

387744 388391 acrR Regulates the acrAB operon

72619 374400 mdlB Putative multidrug transporter membrane/ATP-binding components

405459 406679 fsr Putative fosmidomycin efflux system

470298 470630 emrE Member of the SMR family of transporters. In E. coli this provides resistance against positively
charged compounds including ethidium bromide and erythromycin; proton-dependent
transporter exchanging protons for compound translocation (multidrug efflux protein).

564735 565946 dacA Penicillin-binding protein; removes C-terminal D-alanyl residues from sugar-peptide cell wall

567184 568296 mrdB Cell wall shape-determining protein

568299 570200 mrdA Penicillin-binding protein

doi:10.1371/journal.pbio.1001540.t002

Figure 8. The deletion of one operon in strain AG100 stabilises antibiotic synergy. (a) The strain E. coli K12 (AG100) undergoes the smile-
frown transition within two days (the value of a from the a-test is shown in the left figure and quoted 6 s.e.; day-1 a-test at 18 h: a.0, df = 27,
t = 14.84, p,10213 with hopt(18 h) = 0.0460.01; day-2 a-test at 18 h: a,0, df = 27, t = 27.45, p,1027). The right-hand plot shows a dynamic of the
value of 2a from the a-test through time with antagonism following synergy where the plot passes through zero, just as in Figure 4 for the strain
MC4100. (b) E. coli K12 AG100A(Dacr) does not exhibit the smile-frown transition by day 3 and the drug interaction is still synergistic then (a-test at
24 h on day 3: a.0, df = 27, t<3.95, p,0.00052; see Section 7.2 in Text S1). The right-hand figure shows that the plot of 2a from the a-test does not
pass through zero at any time, the drug interaction is therefore stable and synergistic over the entire period of observation.
doi:10.1371/journal.pbio.1001540.g008
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The prior mathematical model made a quantitative prediction

for this new protocol that is depicted in Figure 9(a): the greater the

antibiotic dose, the greater the synergy observed on day 1 and the

greater the resulting antagonism on day 2 (see also Figure 9(b)).

These figures show the model predicts that synergy is maintained

from the first day onwards only when the dosages are sufficiently

low.

Figure 9(c) shows the results of this experiment are in

quantitative agreement with the model. Indeed, the numerical

values of day-one synergy and day-two antagonism are

positively correlated in both the model and the resulting data

(R2 = 0.990, F = 145, p,0.0069) provided the antibiotic dose is

sufficiently high in the former. Finally, we observe more rapid

selection for resistance at higher doses in the sense that the

greater the dose, the sooner the transition to antagonism

(Section 7.3 in Text S1).

Discussion

It is important to state that we, of course, exercise extreme

caution when drawing parallels with in vivo infections where the

immune response, the highly-organised spatial structure of the

host, xenobiotic metabolism and the pharmacokinetics that result

may substantially complicate antibiotic interaction dynamics.

However, we also argue that in vitro evolutionary studies of

bacteria allied to genome-wide analyses and mathematical

modelling can play an important role in elucidating how antibiotic

interactions change through time precisely because model systems

like ours are so simple.

Drug interactions are subtle and synergy can be lost, and

inverted, for reasons other than competitive release. Synergy

must decay with time because of selection for drug-resistant

alleles but it can be inverted when drugs degrade to produce

Figure 9. The stronger the synergy on day 1, the stronger the antagonism on day 2, both in models and data. (a) A theoretical model
trained on prior predicts that the difference between 18 h synergy and 42 h antagonism will be greater at greater doses. (The prior training data is
included in one of the panes and basal dosages are given within each pane.) (b) Predicted changes in interaction are shown as blue points that were
determined using a values from the simulations in (a) above. Alongside these are the analogous a values from data in (c) which are black, the dashed
line is the linear regression from (c). (c) The correlation between day 1 synergy and day 2 antagonism measured empirically at different basal dosages
can be seen in this linear regression showing the interaction measure a at 12 h versus a at 48 h (see Materials and Methods for the definition of a;
horizontal and vertical lines are s.e.). Labels denote the level of growth inhibition, 40, 80, 90 and 95%, observed at 18 h relative to a zero-drug control
for each of four basal drug dosages.
doi:10.1371/journal.pbio.1001540.g009
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non-antibiotic metabolites [26]. It is known that drug interac-

tions can depend upon population heterogeneities because of

differential pump expression between subpopulations [32], but

cellular mechanisms not commonly associated with resistance

might also force drug interactions to change with time. For

example, a theoretical model was used to propose [33] that

synergism and antagonism could be found simultaneously in a

population of cancer cells due to metabolic adaptation in

subpopulations, the so-called Harvey Effect [34]. To our

knowledge, this theory has not been tested.

There are parallels with a prior study [14] that used antagonistic

and synergistic antibiotic pairs to show that synergistic environ-

ments promote resistance more quickly than do antagonistic ones

and the analogy of their result in our data is Figure 10. Their core

argument, that single drug-resistance mutations have a greater

fitness effect in more synergistic environments is applicable to our

study and consistent with our findings. Unlike ours, however, that

study did not address which treatments lead to the lowest or

greatest bacterial loads.

Nothing of the molecular, multi-drug resistance mechanism

is encoded within Equation 1 and despite its simplicity, this

model may explain other phenomena. This includes the

unreliability of antibiotic synergy assays such as checkerboards

[35–37]. If a drug interaction assay were conducted with

resistant cells in the inoculum [32] or if one emerged,

irrespective of genetic mechanism, Equation 1 predicts synergy

and antagonism could be reported for two replicates of the

same checkerboard [37]. Indeed Figure 4(c) illustrates how the

change from synergistic to antagonistic interaction can occur

quickly and it is only when population density data is

sufficiently well-resolved through time that a transition point

from one to the other is found.

Our theoretical models are consistent with the smile-frown

transition not being specific either to the drugs used or to the

bacterium, any multi-drug resistance mechanism inactive in the

absence of drugs that confers a fitness advantage in their

presence may be sufficient (Section 8 in Text S1). However,

while our data establishes that the duplication of a chromosomal

multi-drug efflux operon is sufficient to observe the transition,

this has been done for one Gram negative bacterial species and

one drug pair.

Many questions therefore remain regarding the generality of

our observations. Clinically-important pathogens are known to

efflux drugs into extracellular space, or the periplasm, thus

conferring resistance to a wide range of drugs in many species

[38,39]. As efflux has been observed both in clinical Staphylococcus

aureus [40] and Mycobacterium tuberculosis (TB) [41] we ask whether

synergy loss or the smile-frown transition might be observed in

other bacteria. Relevant to this question is the study [35] of several

clinical isolates of methicillin-susceptible and -resistant S. aureus

(MSSA and MRSA) in which a combination of vancomycin and

rifampin was variously reported as synergistic and antagonistic at

24 h and 48 h, with different interactions reported for both

different strains and different drug concentrations. No mechanistic

explanation has been attributed to this discrepancy and while this

may not be at all related to efflux, the true nature of this important

combination remains unclear [42].

What of drug combinations reliant on different mechanisms of

synergy [43]? The duplicated genomic region illustrated in Figure 7

contains dacA with b-lactamase activity [44] and three efflux systems

in addition to acr. Efflux of fosmidomycin by far [45], of aminoglycosides

by emrE and of fluoroquinolones by mdlAB [39], all of which are found

in the duplicated region (Table 2), indicates the smile-frown

transition may also be relevant to other classes of antibiotics.

And would the transition still be observed if two target-altering,

de novo mutations were needed for multi-drug resistance because

there were no pre-existing chromosomal resistance mechanism

that could be so rapidly duplicated? We have not been able to

determine a pair of such mutations and so, by way of a partial

response, we compared the duration for which synergy is

maintained when an important chromosomally-encoded multi-

drug pump is, and is not, present using data from E. coli strains

AG100 and AG100A(Dacr). Figure 8(a) shows that synergy is lost to

antagonism in the former strain around 35 h but for the latter

strain, the interaction only ceases to be significantly synergistic

around 72 h, although significant antagonism is not observed

thereafter. The latter strain, without acr, does therefore exhibit

synergy loss but the smile-frown transition was not observed.

However, in this case the interaction converges towards indiffer-

ence in which one of the combination treatments maximises

population densities by day 4 but without the smile-frown

transition ever appearing (Section 7.2 in Text S1).

It has been suggested that the treatment of multi-drug resistant

TB will be more successful if supplemented with efflux pump

inhibitors (EPIs) [39,46]. The present work suggests that if EPIs

are used as an adjuvant to combination therapy they may prove

beneficial by maintaining synergy for longer, although we have not

conducted a direct test of this hypothesis using an EPI molecule.

We conclude that complementary theoretical and in vitro

approaches agree that the optimal way of combining antibiotics

depends on the duration of treatment. This could have been

deduced from a simple engineering principle that complex

adaptive systems cannot be controlled optimally using strategies

that are constant through time (Section 8.2 in Text S1). The

consequences of this principle for antibiotic combinations are

dramatic and cause the emergence of what looks like antagonism

from a synergism, rendering the supposed optimal combination

the worst treatment of all within a day. So while it is axiomatic in

theory [18] and demonstrable empirically [14] that drug resistance

rises faster for more synergistic treatments, that the greatest

antibiotic potency can also select for the highest bacterial densities

has been overlooked.

Figure 10. The greater the synergy, the more rapid adaptation
is to treatment. This illustrates an entirely expected aspect of our data
that corroborates a previous finding [14] on differences in rates of
adaptation between antibiotic treatments using different drug pairs:
selection for resistance is greater when treatments are more synergistic.
The figure shows that our data also supports this idea (degree of
interaction defined in Materials and Methods; rate of adaptation is
defined in Section 4 of Text S1).
doi:10.1371/journal.pbio.1001540.g010
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Materials and Methods

Experimental Protocol
The protocol is a standard batch-transfer protocol used

elsewhere [14] in the context of antibiotic treatments and

described in detail in Section 3 of Text S1. Briefly: bacteria are

cultured in liquid growth medium for 24 h in the presence and

absence of different antibiotics and continually shaken. Optical

density measurements are taken continually from where the

inhibition due to treatment can be calculated relative to the

growth observed in a control cultured without drugs. After each

24 h period has elapsed, the environment is sampled and

approximately 1% of biomass transferred to fresh a environment

that includes replenished growth medium and drugs. This process

was repeated for 5 days.

Quantifying Drug Synergy
There are many nonequivalent definitions of antibiotic synergy

[8,17,47–49]. To ensure a precise quantification of drug interac-

tions we use several consistent measures with different granularity

derived with Loewe additivity as the key assumption. Suppose

bacterial growth is measured over a fixed and short length of time,

usually 24 h in the literature, although our measurements will be

substantially longer. Population density is denoted by the function

B(D,E) where D and E are extra-cellular drug concentrations, the

number B(0,0) then represents density in a zero-drug environment.

Assume each basal concentration, D and E, have been normalised

to equal inhibitory effect, thus B(D,0) = B(0,E) = rB(0,0). The value

r~ 1
2

corresponds to the choice of IC50 for D and E, the

concentrations denoted D50 and E50 in the text.

Quantification of the drug interaction begins with i, the

interaction profile, where i(h) = B(hD,(12h)E). Following Loewe

additivity [8], i is said to be synergistic if, for all h between zero

and one exclusive, the effect of the drugs combined is greater than

the sum of effects produced by each drug separately:

i hð Þvh:i 1ð Þz 1{hð Þ:i 0ð Þ

~rB(0,0):

independent of h by constructionð Þ

ð5Þ

This definition is described pictorially in Figure 1, Figures 1(b) and

1(d) are particularly relevant. Property (5) holds necessarily if i(h) is

convex (c.f. blue lines in Figures 2(b) and 5). When property (5)

does hold it follows that hsyn, the maximally synergistic drug

proportion that satisfies

i(hsyn)~ min
0ƒhƒ1

i(h)

also satisfies 0,hsyn,1. Drug antagonism is said to occur when the

reverse inequality applies in (5), this is necessarily the case if i(h) is

concave. The drug interaction is additive in this context if i(h) is

independent of h.

Bacterial density is measured empirically over a time period of

length T hours, so we now introduce T into the definition of B.

Denote density by B(T;D,E ) and re-write i as i(h,T ) to account for

the change. The time-dependent optimal combination, hopt(T ),

then satisfies

i(hopt(T),T)~ min
0ƒhƒ1

i(h,T): ð6Þ

It follows by definition that hopt(T ) and hsyn are equal when T = 0

and are therefore also close for small T , Equation 3 describes the

rate of divergence between the two.

If we define the dimensionless interaction profile

id (h,T)~{rz
B(T ; hD,(1{h)E)

B(T ; 0,0)
,

the degree of interaction, I(T ), is given by the mean interaction

taken over the relevant drug combinations:

I(T)~

ð1

0

id (h,T)dh:

Negative I(T ) denotes synergy, positive I(T ) denotes antagonism.

A measure of the convexity and concavity of i(h,T ) obtained by

fitting a quadratic, q(h)~ah2zbhzc, can be used to assess the

drug interaction. Significant positivity (obtained using a t-test) of a
indicates synergy, negativity indicates antagonism; Section 7 in Text

S1 gives further information on the use of this test. If the density

data is significantly nonlinear as a function of h, meaning a?0, the

fitted quadratic can be used to robustly estimate the drug

proportion that maximises bacterial density at each time. This

proportion is given by one of h = 0,1 or 2b/(2a) depending on

which value is the lowest of q(0), q(1) or q(2b/(2a)). Provided 2b/

(2a) lies between 0 and 1, an approximate upper bound on the

confidence interval for this optimal value can be found from a t-

test that returns confidence intervals for a, b, and c. Throughout

we will refer to the test described in this paragraph as the ‘a-test’

and it is implemented using the regression facilities in the Statistics

Toolbox of MATLAB.

Supporting Information

Text S1 Supporting information. This file includes nine

sections and two appendices: 1. Introduction: hit early, hit hard? 2.

Drug interaction profiles: synergy and antagonism. 3. Experimen-

tal evolution in a two-drug environment: methods. 4. Experimen-

tal evolution in a two-drug environment. 5. Analysis: whole

genome sequencing. 6. Analysis: a mathematical model consistent

with data. 7. Validating the theory: testing the smile-frown

experiment with an acrAB knockout. 8. Optimal drug combina-

tions are not constant: an analysis. 9. Final comment: single cell

synergy and population synergy. Appendix A: Parameter values.

Appendix B: Genes annotated in the duplicated regions.
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24. Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, et al. (2011) Selection of

resistant bacteria at very low antibiotic concentrations. PLoS Pathog 7:
e1002158.

25. Hastings I, D’Alessandro U (2000) Modelling a predictable disaster: The rise and
spread of drug-resistant malaria. Parasitology Today 16: 340–347.

26. Palmer AC, Angelino E, Kishony R (2010) Chemical decay of an antibiotic

inverts selection for resistance. Nat Chem Biol 6: 244–244.
27. Alekshun MN, Levy SB (1999) The mar regulon: multiple resistance to

antibiotics and other toxic chemicals. Trends Microbiol 7: 410–413.
28. Eicher T, Cha HJ, Seeger MA, Brandstatter L, El-Delik J, et al. (2012)

Transport of drugs by the multidrug transporter acrb involves an access and a

deep binding pocket that are separated by a switch-loop. Proc Natl Acad

Sci U S A 109: 5687–5692.

29. Sandegren L, Andersson DI (2009) Bacterial gene amplification: implications for

the evolution of antibiotic resistance. Nat Rev Microbiol 7: 578–588.

30. Andersson DI (2005) The ways in which bacteria resist antibiotics. Int J Risk Saf

Med 17: 111–116.

31. George AM, Levy SB (1983) Amplifiable resistance to tetracycline, chloram-

phenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-

determined efflux of tetracycline. J Bacteriol 155: 531–540.

32. Drusano GL, Liu W, Fregeau C, Kulawy R, Louie A (2009) Differing effects of

combination chemotherapy with meropenem and tobramycin on cell kill and

suppression of resistance of wild-type Pseudomonas aeruginosa PAO1 and its

isogenic MexAB efflux pump-overexpressed mutant. Antimicrob Agents Che-

mother 53: 2266–2273.

33. Jackson RC (1993) Amphibolic drug combinations: the design of selective

antimetabolite protocols based upon the kinetic properties of multienzyme

systems. Cancer Res 53: 3998–4003.

34. Harvey R (1978) Interaction of two inhibitors which act on different enzymes of

a metabolic pathway. J Theor Biol 74: 411–437.

35. Bayer AS, Morrison JO (1984) Disparity between timed-kill and checkerboard

methods for determination of in vitro bactericidal interactions of vancomycin plus

rifampin versus methicillin-susceptible and -resistant Staphylococcus aureus.

Antimicrob Agents Chemother 26: 220–223.

36. Rand KH, Houck HJ, Brown P, Bennett D (1993) Reproducibility of the

microdilution checkerboard method for antibiotic synergy. Antimicrob Agents

Chemother 37: 613–615.

37. White RL, Burgess DS, Manduru M, Bosso JA (1996) Comparison of three

different in vitro methods of detecting synergy: time-kill, checkerboard, and E test.

Antimicrob Agents Chemother 40: 1914–1918.

38. Rice LB (2007) Emerging issues in the management of infections caused by

multidrug-resistant gram-negative bacteria. Cleve Clin J Med 74 Suppl 4: S12–

20.

39. Li XZ, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update.

Drugs 69: 1555–1623.

40. Gibbons S, Udo EE (2000) The effect of reserpine, a modulator of multidrug

efflux pumps, on the in vitro activity of tetracycline against clinical isolates of

methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(k) determinant.

Phytother Res 14: 139–140.

41. Louw GE, Warren RM, Gey van Pittius NC, Leon R, Jimenez A, et al. (2011)

Rifampicin reduces susceptibility to ofloxacin in rifampicin-resistant Mycobacte-

rium tuberculosis through efflux. Am J Respir Crit Care Med 184: 269–276.

42. Deresinski S (2009) Vancomycin in combination with other antibiotics for the

treatment of serious methicillin-resistant Staphylococcus aureus infections. Clin

Infect Dis 49: 1072–1079.

43. Yeh P, Tschumi AI, Kishony R (2006) Functional classification of drugs by

properties of their pairwise interactions. Nat Genet 38: 489–494.

44. Sarkar SK, Chowdhury C, Ghosh AS (2010) Deletion of penicillin-binding

protein 5 (PBP5) sensitises Escherichia coli cells to beta-lactam agents.

Int J Antimicrob Agents 35: 244–249.

45. Fujisaki S, Ohnuma S, Horiuchi T, Takahashi I, Tsukui S, et al. (1996) Cloning

of a gene from Escherichia coli that confers resistance to fosmidomycin as a

consequence of amplification. Gene 175: 83–87.

46. Amaral L, Martins M, Viveiros M, Molnar J, Kristiansen JE (2008) Promising

therapy of XDR-TB/MDR-TB with thioridazine an inhibitor of bacterial efflux

pumps. Curr Drug Targets 9: 816–819.

47. Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between

them. J Antimicrob Chemother 52: 1.

48. Desbiolles N, Piroth L, Lequeu C, Neuwirth C, Portier H, et al. (2001)

Fractional maximal effect method for in vitro synergy between amoxicillin and

ceftriaxone and between vancomycin and ceftriaxone against Enterococcus faecalis

and penicillin-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 45:

3328–3333.

49. Lambert R, Johnston M, Hanlon G, Denyer S (2003) Theory of antimicrobial

combinations: biocide mixtures – synergy or addition? J Appl Microbiol 94:

747–759.

50. D’Errico J (2012). Matlab central file exchange: Surface fitting using gridfit.

URL http://www.mathworks.com/matlabcentral/fileexchange/8998.

The Smile-Frown Transition

PLOS Biology | www.plosbiology.org 13 April 2013 | Volume 11 | Issue 4 | e1001540


