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Abstract

Genetically identical cells grown in the same culture display striking cell-to-cell heterogeneity in gene expression and other
traits. A crucial challenge is to understand how much of this heterogeneity reflects the noise tolerance of a robust system
and how much serves a biological function. In bacteria, stochastic gene expression results in cell-to-cell heterogeneity that
might serve as a bet-hedging mechanism, allowing a few cells to survive through an antimicrobial treatment while others
perish. Despite its clinical importance, the molecular mechanisms underlying bet hedging remain unclear. Here, we
investigate the mechanisms of bet hedging in Saccharomyces cerevisiae using a new high-throughput microscopy assay that
monitors variable protein expression, morphology, growth rate, and survival outcomes of tens of thousands of yeast
microcolonies simultaneously. We find that clonal populations display broad distributions of growth rates and that slow
growth predicts resistance to heat killing in a probabalistic manner. We identify several gene products that are likely to play
a role in bet hedging and confirm that Tsl1, a trehalose-synthesis regulator, is an important component of this resistance.
Tsl1 abundance correlates with growth rate and replicative age and predicts survival. Our results suggest that yeast bet
hedging results from multiple epigenetic growth states determined by a combination of stochastic and deterministic
factors.
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Introduction

Clonal populations of cells grown in a constant environment

display a striking amount of cell-to-cell heterogeneity. For

example, in bacteria, yeast, and mammalian cell lines, levels of

some gene products vary widely between cells [1–5]. A crucial

challenge is to understand how much of this heterogeneity serves a

biological function [6,7]. That is, does variability in gene

expression between clonal cells simply reflect the noise tolerance

of a robust system, or does the variation itself increase population

fitness?

In bacteria, several examples exist in which clonal variation in gene

expression correlates with a morphological or physiological state that

presumably confers a fitness advantage in some environments. These

examples include competence to uptake foreign DNA [8–10],

initiation of sporulation [11,12], and expression of cell surface pili

[13,14]. In each case, a binary fate decision is controlled in part by

stochastic expression of a crucial regulatory protein.

A population-fitness advantage for heterogeneity is even more

obvious for the phenomenon known as bacterial persistence. When

a clonal population of Escherichia coli is exposed to a lethal dose of

ampicillin, the vast majority of the population dies at a fast

exponential-decay rate but rare, slow-growing ‘‘persister’’ cells die

at a much slower rate [15,16]. These persister cells can subsequently

switch to the common, fast-dividing state, thereby restoring the

population after removal of the antibiotic. Persistence is therefore

considered a canonical example of a bet-hedging mechanism (Box

1), whereby a population maximizes its long-term fitness in an

unpredictably changing environment by distributing risk among

individuals [16,17]. In a benign environment, most E. coli cells adopt

the sensible strategy of fast growth, whereas a small proportion of

cells adopt the high-risk strategy of entering the persister state,

which could reap large benefits should the environment change.

Single-cell observations in a microfluidic chamber suggest that,

as with competence and the other examples above, persisters and

non-persisters constitute binary states that interconvert through a

stochastic mechanism [16]. However, despite the clinical impor-

tance of persistence, and despite indications that slow growth

might be a general means of surviving stress [18–20], the

molecular mechanisms underlying persistence remain unclear

[21,22]. This is due, in large part, to the experimental difficulty of

identifying and characterizing a rare persister subpopulation prior

to antimicrobial treatment.

Like clonal populations of bacteria, those of the budding yeast S.

cerevisiae have also been shown to contain a large amount of cell-to-

cell heterogeneity [3,4,23,24]. In both bacteria and yeast, one
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component of gene-expression variation is so-called ‘‘intrinsic’’

noise, which is operationally defined as fluctuations that are not

correlated between identical promoters in the same cell [3]. In

yeast, as in other eukaryotes, an important component of intrinsic

noise is fluctuation between more or less accessible chromatin

states [3,5,25–28]. Mutations in yeast genes associated with

chromatin remodeling alter the extent of heterogeneity in both

protein expression [3,29] and cell morphology [30].

By contrast, ‘‘extrinsic’’ noise is defined as variation that is

correlated between different alleles of the same gene, or between

different genes [3]. Such variation reflects either fluctuations in the

concentrations of upstream regulators (i.e., intrinsic noise

upstream can produce extrinsic noise downstream), or fluctuations

in global cell state, such as the abundances of ribosomes [31] or

mitochondria [32].

In yeast, evidence suggests that a fraction of what might

operationally be defined as extrinsic noise is instead due to

deterministic factors. For example, fluctuations of many gene

products have been found to correlate with the cell cycle [4] and

cell size [3,33,34]. Additionally, unequal segregation of certain

molecular components between mother and daughter cells [35–

38] or daughter-specific expression [39] could produce meaningful

replicative-age-dependent heterogeneity within a yeast population

[24]. For example, cells that have undergone ,eight replicative

cycles survive ultraviolet irradiation better than younger or older

cells [40].

A combination of stochastic and deterministic influences could

provide the basis for more complex bet-hedging mechanisms than

the binary switches that appear to be primary in bacteria. Indeed,

the pathogenic yeast Candida albicans displays at least seven

different metastable colony morphologies when grown on agar

[41]. Another opportunistic pathogen, C. glabrata, which despite its

name is actually a member of the Saccharomyces clade, shows similar

multi-stability [42,43]. It should also be kept in mind that bacterial

bet-hedging mechanisms might be more complex as well, and that

the apparent primacy of binary switches might be a product of the

phenotypes chosen for study and of experimental limitations in

phenotypic measurement. For example, although E. coli antibiotic

persistence is commonly described as a two-state system, recent

observations of macroscopic bacterial colonies on agar have found

a continuous distribution of growth rates [44]. Additionally,

asymmetric cell division has been found to underlie bet hedging to

starvation in the bacterium Sinorhizobium meliloti, indicating that

deterministic factors may be important in prokaryotes as well [45].

Here, we investigate the mechanisms of bet hedging and

persistence in S. cerevisiae using a new high-throughput microscopy

assay capable of monitoring variable protein expression, morphol-

ogy, growth rate, and survival outcomes of tens of thousands of

yeast microcolonies simultaneously. We find that clonal popula-

tions of yeast grown in a rich, benign environment display a wide

and continuous distribution of growth rates that can be modulated

by mutations in genes involved in chromosome organization or

other core regulatory functions. Using a bioinformatic screen, we

identify candidate gene products whose expression correlates with

growth rate and establish that Tsl1, a protein involved in the

synthesis of the disaccharide trehalose, is a molecular marker for

slow growth in the benign environment. Using quantitative

measurements of microcolony growth rates and abundance of

fluorescently tagged Tsl1, we show that both slow growth and Tsl1

abundance predict survival of heat stress in a graded rather than

binary fashion and that Tsl1 is an important component of the

stress survival. Lastly, we investigate replicative age as a potential

source of heterogeneity in this stress-survival system and in protein

expression in general. We find that Tsl1-abundant cells tend to be

older and, more generally, that replicative age is an underlying

component of cell-to-cell variation in the expression of many

proteins.

Results

High-Throughput Microcolony Growth Assay
Microbial fitness assays have historically been limited to

ensemble measurements that calculate the difference in mean

growth rate or the competitive fitness advantage of one population

over another. Besides suffering severe limitations in the number of

replications that are experimentally feasible, these assays do not

measure the variance of growth rates, even though this is likely to

be an evolutionarily meaningful parameter in both static and

fluctuating environments and over the course of population

bottlenecks [17,24,46–49].

To overcome these limitations, we developed a high-throughput

assay that measures microcolony growth by time-lapse bright-field

microscopy (Figure 1A; Videos S1 and S2). Exponentially growing

cells are plated at a low density in rich, liquid medium on glass-

bottomed micro-well plates and allowed to grow into isolated

microcolonies of up to ,100 cells (Materials and Methods).

During this growth period, 1-h time-lapse images of ,3,000 low-

magnification fields are captured in parallel allowing for simulta-

neous observation of ,105 microcolonies. Custom-written image

analysis software tracks changes in area over time, and these

measurements are used to calculate the specific growth rate of

each microcolony (the change in the log of the area per hour).

Each growing microcolony displays log-linear growth over the

period of observation (Materials and Methods), yet different

microcolonies grow at vastly different rates (Figure 1B and 1C).

The automated measurements of microcolony area correlate

extremely well with manual cell counts over a range of growth

rates (R2.0.9) (Figures 1C, S1, and S2), indicating that changes in

area are representative of cell-division rates. Growth-rate distri-

butions generated from all individual microcolony growth rates

measured within a well of a 96-well plate are highly reproducible

Author Summary

Genetically identical cells grown in the same environment
can display heterogeneity in their morphology, behavior,
and composition of their cellular components. In some
microorganisms, such cellular heterogeneity can underlie a
phenomenon known as bet hedging because it enables
some cells to survive in harsh environments, hence
increasing the overall population fitness when environ-
mental shifts are unpredictable. Bet hedging is likely to be
an important strategy by which microbes infect humans
and evade antimicrobial treatments, yet little is known of
how cellular heterogeneity contributes to microbial sur-
vival. Here, we study the mechanisms underlying bet
hedging in yeast. We find that populations of genetically
identical yeast contain a broad distribution of growth rates
and that slow growth predicts resistance to heat killing in a
graded fashion. We identify several gene products that are
likely to play a role in this bet-hedging strategy and
confirm that Tsl1, a regulator of the production of the
disaccharide trehalose, is an important component of
acute stress resistance. Finally, we find that old age in cells
correlates with a Tsl1-abundant, stress-resistant cell state.
Our results suggest that trehalose synthesis is part of a
complex and multifactorial mechanism that underlies bet
hedging in yeast.

Bet Hedging in Yeast
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between wells on a single plate or between experimental days

(Figure S3).

In wild-type populations grown in a benign environment, a

large fraction of microcolonies grow at less than half the median

population growth rate (1.3%–10%, depending on the strain)

(Figure 1D; Table S1). Because growth rate is extremely consistent

within a microcolony over the duration of tracking, this wide

distribution indicates that substantial differences in growth rate

between isogenic cells exist and are heritable over several

generations. We hypothesized that, as in bacteria, cell growth

rates constitute a phenotypically observable component of

epigenetic cell states that together act as a bet-hedging mechanism

in yeast. That is, the lowered relative fitness of slow-growing cells

in the benign environment would have an increased relative fitness

in other, perhaps harsher, environments, allowing a clonal

population to maximize the population fitness over multiple

environments. We first ruled out several alternative technical and

biological explanations of slow growth. One possibility is that local

nutrient depletion by neighboring microcolonies causes closely

spaced microcolonies to grow slower than distantly spaced

microcolonies. With the exception of microcolonies within

35 mm (4–8 cell lengths) of each other, microcolony growth rate

distributions showed no observable dependence on the proximity

of a microcolony to its nearest neighbor (Figure S4). A slight

difference in growth-rate distribution of microcolonies that fall

within 35 mm of each other could be detected and is likely due to a

technical bias of the experiment rather than local nutrient

depletion (Materials and Methods). Regardless of the cause,

removing closely spaced microcolonies had a minimal effect on

observed growth rate distributions. Nonetheless, to be conserva-

tive, we ignored these microcolonies in all data reported here.

A second possible explanation for the frequent occurrence of

slow-growing microcolonies is that these cells are petites, having

lost mitochondrial function. Such losses can occur frequently in

yeast [50]. To test this possibility, we generated growth rate

distributions of single-deletion strains of several genes necessary for

Box 1. Bet Hedging: Definitions and Open Questions

Bet hedging is an often loosely used term to describe a risk-
spreading strategy that increases a population’s fitness in
unpredictably fluctuating environments. A rigorous definition
of bet hedging is reversible epigenetic phenotypic heteroge-
neity that results in decreased arithmetic mean fitness and
increased geometric mean fitness of the population across
environments [87]. This concept can be best understood in
microbes that compete in a benign environment most of the
time but unpredictably encounter a harsh environment. In the
common benign environment, a heterogeneous population
will be less fit than one with a single robust phenotype tuned
to the benign environment. However, when acute transitions
to the harsh environment occur, the heterogeneous popula-
tion will contain some individuals better able to cope with it,
and thereby will outcompete the robust population.

The requirements for an experimental demonstration of bet
hedging are currently undergoing a lively debate [88]. General
agreement underlies several criteria: (1) bet hedging is
epigenetic in nature and therefore must be demonstrated in
isogenic lines; (2) bet hedging must be demonstrated to act
across unpredictable environmental shifts where it could be
reasonably assumed that a sense-and-response system would
have greater costs than benefits [17]; (3) cell lineages must be
demonstrated to interconvert between phenotypic states
reversibly and independently of the prevailing environment;
and (4) alternative phenotypic states must be demonstrated
to confer different fitnesses across environments.

Several other proposed requirements for bet hedging lack
consensus. The first concerns whether or not interconverting
phenotypic states must be binary. Early examples of putative
bet-hedging systems in bacteria meet this criterion [8–16].
For example, a discrete slow-growth phenotype in E. coli
predicts survival of high doses of ampicillin [15,16]. However,
several examples in yeast demonstrate multiple metastable
phenotypic states [41–43], and recent observations of
macroscopic bacterial colonies on agar have found a
continuous distribution of growth rates [44]. Heretofore, it
remained an open question whether multiple discrete
phenotypes or a continuous distribution of phenotypes
could act as a risk-spreading mechanism.

A second debate surrounds the mechanism by which cells
interconvert between phenotypic states. Because phenotyp-

ic switching must be insensitive to the environment, it has
been generally assumed that the mechanism underlying
switching must be stochastic [16,17,89]. We argue here that
deterministic factors, such as replicative age, could also
underlie bet hedging. For example, unequal segregation of
certain molecular components between mother and daugh-
ter cells [35–38] or daughter-specific expression [39] could
produce meaningful replicative-age-dependent fitness dif-
ferences within a yeast population that is independent of
environmental shifts [24]. Indeed, a completely deterministic
asymmetric cell division has been found to underlie fitness
differences under starvation in the bacterium S. meliloti [45].

A third debate surrounds the selective forces that ultimately
produce a bet-hedging system. That is, if a distribution of
phenotypes and relative fitnesses is produced as a by-product
of some other adaptive event, can this be classified as a bet-
hedging system? Or, must selection be for the distributed
phenotypes per se? For example, old cells might be selected
to increase production of chaperones to compensate for an
increased misfolded-protein load. A by-product of the
increased abundance of chaperones might be an increased
heat tolerance of old cells and the observation of survival
heterogeneity within a population exposed to acute heat
stress. To demonstrate conclusively that survival heterogene-
ity is a consequence of selection for distributed phenotypes,
however, the environmental regime and fitness distributions
must be measured during the adaptation itself [45]. This
represents an extreme experimental challenge that has been
overcome only a few times [89–91]. Indeed, in a comprehen-
sive survey of over 100 studies of candidate bet-hedging
systems, Simons [92] found only four cases meeting his most
stringent evidence criteria. We therefore propose to reserve
the term ‘‘adaptive bet hedging’’ [93,94] for cases where
survival heterogeneity has been demonstrated to be conse-
quence of selection for distributed phenotypes and use the
term ‘‘bet hedging’’ in all other cases where the consensus
criteria have been met. In the present study, we show
reversible and environment-independent interconversion of
phenotypic states that results in heterogeneity of survival for
isogenic cells exposed to acute stress. We therefore refer to
this phenomenon as bet hedging, while acknowledging that
the hypothesis of its being adaptive remains to be tested.

Bet Hedging in Yeast
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Figure 1. A new high-throughput assay to measure growth rate variance in yeast. (A) A schematic of the assay. Cells in logarithmic growth are
plated at a low density on a glass-bottomed multi-well plate. Low-magnification time-lapse bright-field images are captured in a highly parallelized manner.
Custom-written software tracks colony area over time. (B) Isogenic cells grow at different rates. Time-lapse images of a portion of one field (left) and the
output of image analysis software (right). (C) Microcolony area correlates with cell number. Representative traces of fast- (purple), medium- (grey), and slow-
(green) growing microcolonies from a strain of the yeast deletion collection containing the knockout of YFR054C, an open reading frame with dubious
function. Colony area as determined by automated image processing (solid lines, diamonds) and cell number as determined by a manual count (dashed
lines, triangles) are plotted over time. Colonies generally display log-linear growth over the duration of the experiment. (D) Isogenic cells display a wide
distribution of growth rates. A histogram of growth rates (grey) and a cumulative growth rate distribution (orange) of a population of ,17,000 isogenic
microcolonies of the YFR054C knockout. (E) Gene deletions alter both growth rate mean and variance. Cumulative growth rate distributions of strains from
the yeast deletion collection: two knockouts of open reading frames with dubious function (YFR054C and YHR095W), two knockouts that are unable to grow
without mitochondrial function (petite-negatives PET9 and YME1), and nine knockouts with diverse functions that have been shown to result in cell-to-cell
heterogeneity in protein expression or morphology (SWA2, DIA2, KEM1, SNF6, RAD50, HTZ1, SCP160, BEM1, and NOT5). Note that a steep slope for the
cumulative growth rate distribution indicates a low variance in growth rate.
doi:10.1371/journal.pbio.1001325.g001
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growth as a petite [50,51] and compared these to growth

distributions of control strains of the same genetic background

but with a deletion of a dubious open reading frame (Figures 1E

and S5). Petite-negative strains generally contain as many or more

slow-dividing microcolonies than controls, suggesting petites are

not a major component of slow-dividing microcolonies in our

assay.

Lastly, we considered a high mutation rate as a possible source

of slow growth. Based on mutation accumulation experiments, the

spontaneous mutation rate in S. cerevisiae is estimated to be

,0.003–0.006 per cell per DNA replication when mutations to

homopolymeric runs are excluded [52,53], and ,0.3 when

mutations to homopolymeric runs are included [52]. Assuming

that each mutation results in an observable difference in growth

rate in our assay, mutation rates of this magnitude could explain a

large fraction of the growth rate variation. However, the

deleterious mutation rate is expected to be far lower than the

spontaneous mutation rate, and orders of magnitude below the

number of slow-growing colonies we observe. Indeed, in S. cerevisiae

the rate of fitness-altering mutations has been estimated to be

1.3761024 per haploid genome per generation [54]. Moreover,

we show below that slow growth is reversible for both single cells

and cell populations, suggesting that a large component of growth

rate heterogeneity is metastable and epigenetic in nature.

Mutations Alter the Variance in Growth Rate
We have shown that wild-type yeast populations grown in a

benign environment contain a wide distribution of growth rates, a

property likely to impact population fitness in both static and

fluctuating environments. A static environment favors low

variance in growth rate, as the long-term population growth rate

of a single genotype is its geometric mean, which weighs lower

values of a distribution more heavily [55]. In contrast, a fluctuating

environment can favor high variance, if growth rate correlates

with stress survival [17]. The variance of the growth-rate

distribution is therefore an important evolutionary parameter,

but one that is invisible to standard, population-level measure-

ments of growth rate. To examine whether mutations can alter the

variance in growth rate, we selected candidates from previous

studies that had shown that deletions in gene products involved in

chromosome organization or those with a large number of genetic

and physical interactions increase the cell-to-cell heterogeneity in

gene expression or morphology [3,29,30,56]. We find that the

variance in growth rate can also be modulated by these deletions

(Figure 1E; Table S1). For example, deletion of histone variant

HTZ1 or the protein scaffold BEM1 results in a greater than 4-fold

increase in slow-growing microcolonies (operationally defined as

microcolonies growing at less than half of the population median)

when compared to control deletions of dubious open reading

frames. Interestingly, some gene deletions decrease the growth rate

variance. For example, deletion of SWA2, a gene that encodes a

product involved in clathrin-dependent vesicular transport, and

NOT5, a gene that encodes a global transcriptional regulator, each

result in a greater than 2-fold decrease in the number of slow-

growing microcolonies. There does not appear to be a trivial

relationship between the mean growth rate and variance (Figure

S6). A deletion resulting in a reduced mean growth rate can result

in an increased (DIA2, RAD50, HTZ1, BEM1) or decreased

(SWA2, SNF6) variance when compared to a deletion of a dubious

open reading frame.

Tsl1 Is a Marker for Slow Growth in a Benign Environment
To allow for further investigation into the nature of growth

heterogeneity, we next sought to identify a molecular marker of

slow-dividing cell subpopulations. We reasoned that such a marker

would have at least two general characteristics: (1) a correlation

between its expression level and growth rate, and (2) high cell-to-

cell variation in its expression to match the observed variation in

growth rate. Genome-wide expression profiling of cells grown at

different growth rates in nutrient-limited chemostats has revealed a

large number of genes whose transcript levels correlate with

growth rate, no matter what the limiting nutrient [18]. However, a

correlation between a gene’s average expression level and the bulk

growth rate might merely indicate that the gene is part of a

generalized stress response. Indeed, genes whose transcript levels

correlate with growth rate overlap significantly with those that are

induced as part of a general environmental stress response [18].

To identify candidates among these genes that might be relevant

to growth heterogeneity under constant, benign conditions, we

therefore cross-referenced the growth-correlation data with data

on cell-to-cell variation in each protein’s abundance, as measured

by flow cytometry of cells engineered to encode a GFP fusion

protein at the corresponding endogenous gene [4]. Plotting these

two measures revealed several gene products that anti-correlate

with the population growth rate and that also exhibit a large

amount of cell-to-cell variation in protein levels under benign

conditions (Figure 2A). Using strict cut-offs for the growth-

correlation and protein-variation datasets, we identified 78

candidate markers of cell-to-cell variation in growth rate (Materials

and Methods) (Table S2).

We next investigated the candidate markers of cell-to-cell

variation in growth rate for enrichment in gene ontology (http://

www.geneontology.org) process, function, and component terms

(Table S3). As a group, the candidates appear to be involved in

energy storage or mobilization. Specifically, candidates are highly

enriched for mitochondrial genes in the proton-transporting ATP

synthase complex (p,961025) and genes involved in the

metabolism of the disaccharide trehalose (p,0.002). Trehalose is

synthesized by a trimeric complex consisting of two enzymatic

subunits, Tps1 and Tps2, and one of two interchangeable

cofactors, Tps3 and Tsl1 [57,58]. Among these, Tps1, Tps2,

and Tsl1 were identified as candidates in our screen, with Tsl1

ranking especially high for both the growth correlation and protein

noise datasets (Figure 2A). As a class, genes involved in trehalose

biosynthesis are highly over-represented among those whose

expression levels negatively correlate with growth rate and that

are induced by heat shock [20]. Both trehalose and Tsl1 appear to

be correlated with a stress-resistant cell state in yeast. Expression

levels of Tsl1 and bulk trehalose content remain relatively low

during exponential growth but rise rapidly as cells reach saturation

and become more stress resistant [58,59]. Trehalose is thought to

preserve protein folding under stress [60], and indeed cellular

trehalose content correlates with resistance to various forms of

stress, including heat, freezing, desiccation, and high ethanol

content [60–63]. Consistent with a direct role for Tsl1 in stress

resistance, deletion of TSL1 results in increased sensitivity to killing

by high ethanol concentrations [61]. Taken together, these data

suggest that Tsl1 might not only serve as a marker for a slow-

growing, stress-resistant cell state, but might also be an important

component of heterogeneity-dependent stress resistance. We

therefore chose to focus further examinations on the role of Tsl1

in bet hedging.

To determine if TSL1 expression correlates with individual slow

growth phenotypes in a non-stressful environment, we simulta-

neously monitored microcolony growth and green fluorescent

protein (GFP) fluorescence of cells encoding a Tsl1-GFP fusion

protein at the endogenous TSL1 locus [64]. As mentioned, Tsl1

abundance increases at saturation [58]. To avoid the possibility

Bet Hedging in Yeast
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that variability in exit from stationary phase could confound our

results, we maintained cells in logarithmic growth for a minimum

of 24 h prior to any measurements. Consistent with previous flow-

cytometry data [4], the expression of Tsl1 varies between cells

(Figure 2B). An examination of individual microcolonies suggests

that, as predicted, Tsl1-GFP fluorescence correlates negatively

with cell-division rate. Figure 2B shows that cells undergoing few

or no cell divisions over the course of 8 h are highly Tsl1-GFP

fluorescent. Although GFP expression level and growth status tend

to persist within a cell lineage, they can change. Microcolonies

founded by a fast-dividing cell occasionally produce a highly

fluorescent cell with a low cell-division rate (Figure 2B). Cells can

switch in the opposite direction as well: a highly fluorescent cell

with a low cell-division rate can produce low-fluorescence fast-

growing progeny (Video S3). In general, slow-dividing cells appear

to be larger than fast-dividing cells (Figure 2B), suggesting that

these cells might have altered the influence of cell size on the Start

transition in late G1 [18,65].

The connection between high Tsl1-GFP fluorescence and low

cell-division rate, which we observe in individual cases such as that

shown in Figure 2B, holds as a general trend across many

microcolonies tracked in our assay. To control for alterations in

Tsl1 abundance that may be caused by differences in cell size, we

measured the Tsl1-GFP intensity per unit area of each microcol-

ony (Figures 2C and S7). A negative correlation between Tsl1

abundance and microcolony growth rate is observed across the

range of growth rates (Figures 2C and S8), indicating that Tsl1 is a

general marker of growth state rather than a marker for only

Figure 2. Tsl1 protein content marks slow growth. (A) A bioinformatic screen for candidates marking slow-growing cells. The correlation of
mRNA expression with the bulk population growth rate [18] is plotted against the protein-expression noise (the extent of cell-to-cell variation in
expression, DM in synthetic dextrose media from [4]) for each gene. 78 noisy genes that anti-correlate with the growth rate are in the upper left
quadrant (dashed lines). Among these are three subunits of the trimeric trehalose synthase complex (green circles). (B) Time-lapse microscopy of cells
expressing Tsl1-GFP under the endogenous TSL1 promoter. Three time points of Tsl1-GFP fluorescence overlaid onto bright-field (left) and 1.67-fold
magnified views of bright-field (top right for each time point) and GFP fluorescence (bottom right for each time point) of three colonies from the
field. Arrows indicate the emergence of a morphologically distinct, slowly dividing, Tsl1-GFP fluorescent cell within a colony. (C) Tsl1 abundance
correlates with growth rate. Top: A histogram of the specific growth rates of TSL1-GFP cells. Colors indicate bins used in bottom. Bottom: Tsl1-GFP
fluorescence intensity per unit area of colonies binned by growth rate. Error bars indicate standard error of the mean (SEM); p-values are a
comparison to all colonies; Wilcoxon-Mann-Whitney test: *, p,0.01; ***, p,1610210.
doi:10.1371/journal.pbio.1001325.g002

Bet Hedging in Yeast

PLoS Biology | www.plosbiology.org 6 May 2012 | Volume 10 | Issue 5 | e1001325



extreme slow growth. Also of note is that the correlation is specific

to Tsl1, not a generic property of any protein with variable

expression. Expression of the control protein Tma108-GFP, which

has a similar average abundance as Tsl1 [66] and is highly variable

from cell to cell [4], shows no correlation with microcolony growth

rate (Figure S9).

Slow Growth and Tsl1 Abundance Predict Resistance to
Heat Killing

Having shown a correlation between Tsl1 abundance and

growth rate at the individual microcolony level, we next assayed

for differential susceptibility of microcolonies to heat killing. Tsl1-

GFP cells were grown normally in our microcolony growth assay

for 6 h (producing microcolonies of 1–20 cells), heat shocked

under conditions that kill most cells, and placed back under the

microscope for an additional 14–20 h of observation (Videos S4

and S5). Figure 3A shows a typical result: a highly fluorescent cell

in a slow-growing microcolony survives heat shock, undergoes one

or two cell divisions at a slow rate, and then produces fast-growing

progeny. Again, this individual case is representative of a general

relationship. Microcolonies with a higher Tsl1 content are

significantly more likely to contain a survivor, as shown by a plot

of the survival frequency of microcolonies binned by the Tsl1-GFP

fluorescence prior to heat shock (Materials and Methods)

(Figure 3B).

We next asked if Tsl1 is directly involved in heterogeneity-

dependent heat resistance or instead acts only as a marker of

resistant cells. We generated a genotypically similar TSL1

knockout strain, by replacing the coding sequence of the Tsl1-

GFP fusion protein with that of the fluorophore mCherry, to

compare the heat killing susceptibility of the TSL1D-mCherry

strain to the TSL1-GFP strain (Figure 3C). Multiple logistic

regression was used to isolate the effects of growth rate and TSL1

genotype on survival (Materials and Methods). Independent of

genotype, growth rate before heat shock is a major determinant of

survival, with slower growing microcolonies being more likely to

Figure 3. Growth heterogeneity is a stress survival mechanism. (A) Slowly growing, Tsl1 abundant cells survive heat shock. Time-lapse
images of Tsl1-GFP fluorescence overlaid onto bright-field (left) and Tsl1-GFP fluorescence of the right-most colony (right) before and after heat
shock. Colonies are grown for 5 h to monitor growth rate and Tsl1-GFP fluorescence, heat shocked for 70 min at 60uC, resulting in massive cell death,
and monitored for growth for 13 h following heat shock to identify colonies that contain at least one surviving cell. Bright-field and fluorescent
images of the entire field at each time point are shown in Video S4. (B) Tsl1-GFP fluorescent colonies are more likely to survive heat shock. Percentage
of colonies that contain at least one cell that survives heat shock binned by Tsl1-GFP fluorescence. p-Values are a comparison to all colonies, Fisher’s
exact test: **, p,161025, ***, p,1610210. (C) TSL1 contributes to survival in slow-growing colonies. Percentage of colonies that contain at least one
cell that survives heat shock binned by growth rate for chimeric TSL1-GFP (green) or TSL1 replaced with mCherry (grey) at the endogenous TSL1 locus.
Both growth rate and TSL1 genotype significantly affect survivorship (multiple logistic regression, p,10228 and p,0.01, respectively). (D) TSL1
contributes to population resistance to acute heat shock. Survival of a strain containing a gene deletion of TSL1 (green) or a control dubious open
reading frame (YFR054C, grey) as measured by plating on agar following heat shock of cell suspensions. Student’s t test of arcsin transformed data;
**, p,161024. Error bars indicate SEM.
doi:10.1371/journal.pbio.1001325.g003
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contain a survivor (multiple logistic regression, p,10228). Because,

prior to the heat shock, slow-growing microcolonies produce far

fewer cells than do fast-growing microcolonies, the difference in

survival per cell is necessarily greater than the differences reported

in our microcolony survival assay. In support of a direct role of

Tsl1 in heterogeneity-dependent stress resistance, functional Tsl1

improves survival when controlling for growth rate (multiple

logistic regression, p,0.01) (Figure 3C). The median growth rate

of TSL1D-mCherry populations is slightly reduced compared with

TSL1-GFP populations (Figure S10) and thus TSL1D-mCherry

populations would be expected to have more survivors if

survivorship is independent of TSL1 content. However, TSL1-

containing cells are slightly more likely to survive heat killing even

without controlling for the effects of growth rate on survival

(Figure 3C). One possibility to explain differential survival between

the TSL1-GFP strain and the TSL1 deletion is that TSL1 is an

important component of an induced heat shock response rather

than a component of a bet-hedging mechanism that renders a

proportion of cells heat resistant prior to any environmental shift.

To test this possibility, we compared the survival upon extremely

Figure 4. Cell sorting by Tsl1-GFP content alters growth rate distributions and heat shock survival. (A) The distribution of Tsl1
abundance does not appear bimodal. Histogram of single-cell Tsl1-GFP intensity as measured by fluorescence-activated cell sorting. Inset: the right-
hand tail of the main figure. Cells with the top 0.1% (dark green) and next 0.1 to 1% (light green) Tsl1-GFP fluorescence were sorted for downstream
analysis. (B) Survival of sorted populations following heat shock of a liquid suspension as measured by plating on agar plates. p-Values are a
comparison to the unsorted population (purple), Student’s t test of arcsin transformed data: *, p,0.01; **, p,161025. Error bars indicate SEM. (C)
Sorting for Tsl1-GFP abundance transiently alters growth rate distributions. Left: cumulative growth rate distributions of sorted cells (dark and light
green), cells passed through the cell sorter but unsorted (purple), and cells not passed through the cell sorter (orange). Right: Samples of the same
sorted or unsorted cell populations after ,42 generations of growth.
doi:10.1371/journal.pbio.1001325.g004
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acute stress between a TSL1 knockout from the yeast deletion

collection and a second strain from that collection with a deletion

of a dubious open reading frame (YFR054C). Performing a 2-min

heat shock at 60uC in a small volume of liquid medium followed

by plating on agar to count survivors (Materials and Methods), we

find that TSL1 directly contributes to heat resistance under these

conditions in which an induced response is unlikely to be relevant

(Figure 3D).

Continuous Distributions Underlie Probabilistic
Susceptibility to Heat Killing

Having established TSL1 as both a predictor of susceptibility to

heat killing and an important component of the survival

machinery, we next sought to characterize the distribution of

TSL1 expression in yeast populations and how this distribution

relates to survival. As discussed previously, in bacteria, bistable

gene expression patterns underlie several binary phenotypic states

thought to act as bet-hedging mechanisms [8–14,24,67,68]. Thus,

levels of certain proteins show a bimodal distribution across cells.

Using flow cytometry to measure cellular Tsl1-GFP fluorescence,

we observe a continuous distribution in Tsl1 abundance rather

than the bimodal distributions characteristic of bistable bacterial

systems (Figure 4A). Sorting cells into discrete bins at the high end

of the Tsl1-GFP fluorescence distribution, then subjecting these

groups of cells to heat shock reveals that Tsl1 abundance predicts

survival in a graded or probabilistic manner rather than a binary

manner: the higher the level of Tsl1-GFP, the higher the chance of

survival (Figure 4B).

Taken together, observations of continuous or graded distribu-

tions in Tsl1 abundance (Figure 4A), growth rate (Figure 2C), and

stress survival (Figure 4B) suggest that populations of yeast might

contain a continuum of metastable epigenetic cell states that each

confer a different fitness in a given environment. This hypothesis is

supported by growth-rate distributions derived from cells sorted by

Tsl1 abundance. Cells sorted for higher Tsl1-GFP content yield

growth-rate distributions containing more slow-growing microcol-

onies (Figure 4C). If the altered growth-rate distribution of the cells

sorted for high Tsl1-GFP fluorescence reflects selection of a subset

of metastable cell states, then prolonged culturing of a population

founded by the sorted cells should result in a distribution similar to

the initial unsorted population, which is presumably a steady-state

distribution. The altered growth-rate distribution is indeed

transient. After 42 generations of growth, a population founded

by sorted cells has a growth-rate distribution that is indistinguish-

able from that of one founded by unsorted cells (Figure 4C, right).

Replicative Age Correlates with a Tsl1-Abundant Cell
State

As discussed previously, a combination of stochastic and

deterministic influences is likely to underlie the continuous and

graded distributions we observe here. Several characteristics of

stress-resistant cells led us to hypothesize that replicative age (the

number of cell divisions an individual cell has undergone) could be

a deterministic factor underlying yeast bet hedging. For example,

both old cells and stress-resistant cells have an increased cell size,

altered cellular morphologies, and a slowed cell cycle (Figure 2B)

[69–71]. To test this hypothesis, we stained TSL1-GFP cells with

wheat-germ agglutinin (WGA)-tetramethyl rhodamine isothiocya-

nate (TRITC), a fluorescent marker that specifically stains bud

scars, and measured single cell correlations in GFP and TRITC

fluorescence by flow cytometry. Older cells show higher levels of

TRITC fluorescence because each cell division leaves an

additional bud scar [72]. As predicted, cells that abundantly

express Tsl1 also show high levels of WGA-TRITC fluorescence

(Figure 5A). An alternative explanation is that cell states with high

Tsl1 abundance more efficiently take up the WGA-TRITC stain,

and the observed correlation is due to differences in staining rather

than replicative age. To test this possibility, we sorted cells for high

Figure 5. Old cells are Tsl1-GFP abundant. (A) TSL1-GFP yeast stained with the bud scar stain WGA-TRITC are passed though a cell sorter to
monitor co-fluorescence. Shown is the WGA-TRITC fluorescence of cells binned by Tsl1-GFP fluorescence. p-Values are a comparison to all cells,
Wilcoxon-Mann-Whitney test: ***, p,1610210. (B) Sorted WGA-TRITC stained TSL1-GFP cells are counted for bud scars. Shown is the cumulative
percentage of all cells (grey) and cells in the top 1% Tsl1-GFP fluorescence bin (green). The 1% Tsl1-GFP cells have significantly more bud scars,
Wilcoxon-Mann-Whitney test, p,161027. (C) Population demography accounts for some expression ‘‘noise.’’ Shown is the protein-expression noise
(DM in yeast permissive dextrose media from [4]) of genes binned by logarithm of their age expression ratio, the average expression in young cells
over the average expression in old cells [73]. Error bars indicate SEM; p-values are a comparison to all colonies; Wilcoxon-Mann-Whitney test:
*, p,0.05; **, p,0.001.
doi:10.1371/journal.pbio.1001325.g005
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Tsl1-GFP content and compared the number of bud scars in

this subpopulation to an unsorted population by performing

manual bud scar counts. In further support of an age dependence

of Tsl1 expression, we find that cells with abundant Tsl1 tend to

have more bud scars (p,1027, Wilcoxon-Mann-Whitney test)

(Figure 5B).

Replicative Age Contributes Significantly to Protein-
Expression Variation

The finding that variation in replicative age partially underlies

heterogeneity in TSL1 expression (and presumably heterogeneity

in growth rate and stress resistance) led us to hypothesize that

population demography might underlie a significant fraction of

protein-expression variation generally thought to be a conse-

quence of extrinsic noise. To test this hypothesis, we used data

from an existing microarray study that measured differences in

expression between young (one to three generations) and old (16–

18 generations) cells [73]. We then compared these expression

differences to data on cell-to-cell variation in each protein’s

abundance [4]. These abundances were measured by flow

cytometry of cells engineered to encode a GFP fusion protein at

the corresponding endogenous gene and therefore capture both

intrinsic and extrinsic noise, although a major source of extrinsic

noise (the cell cycle) was minimized by gating the cells by size and

complexity of shape [4]. Plotting the cell-to-cell variation in

expression of genes binned by their age expression ratio (AER, the

mean expression in young cells divided by the mean expression in

old cells) reveals that cell age does indeed contribute significantly

to protein-expression variation (Figure 5C, Wilcoxon-Mann-

Whitney test). Transcripts that become over- or under-expressed

in old cells tend to result in protein levels that are more variable

across cells in exponential growth. The absolute log AER explains

approximately 1% of the variation in protein-expression variation,

which is on par with other significant contributors to protein-

expression variation, including mRNA half-life, ribosomal density

of mRNA, and translation rate per mRNA [4].

Discussion

We show that: (1) clonal yeast populations contain a wide and

continuous distribution of growth rates when cultured in a benign

environment; (2) growth differences are transient and reversible

over the course of a few generations; (3) mutations can alter the

mean and variance of the steady-state growth rate distribution; (4)

Tsl1 is a marker for the slow-growing cells within an exponentially

growing population; (5) Tsl1 abundance and slow growth predict

resistance to heat killing; (6) TSL1 is an important component of

heterogeneity-dependent heat shock survival; (7) Tsl1-abundant

cells tend to be of higher replicative age; and (8) replicative age is

likely to underlie a fraction of gene expression heterogeneity for

many gene products besides Tsl1.

These results describe a bet-hedging phenomenon in yeast that

might be an adaptation to life in an unpredictably varying

environment (Box 1). As is true in descriptions of bacterial bet

hedging and persistence [16], slow growth is a crucial predictor of

stress survival in yeast. Both bacteria and yeast appear to be

maximizing population fitness by balancing fast growth in good

conditions with bet hedging against bad ones [17].

Yet, some crucial differences between bacterial and yeast bet

hedging appear prominent. One difference appears to be in the

nature of the heterogeneity underlying bet hedging. Single-cell

observations in bacteria suggest that persisters and non-persisters

constitute binary growth states that predict survival in an all-or-

none fashion [16]. That is, bacterial persisters generally survive

and non-persisters generally perish in stress. We find that yeast

populations contain a continuous rather than bimodal distribution

of growth states and that these states predict survival in a

probabilistic manner. That is, the slower a yeast cell grows, the

greater its probability of surviving stress. Although the mechanism

of bacterial persistence has yet to be elucidated, persisters and non-

persisters are thought to interconvert through a stochastic

mechanism [16], as is true for the vast majority of characterized

bacterial two-state systems [8–14]. In yeast, differences in growth

and survival appear to be due to a more complex combination of

stochastic and deterministic factors. Taken together, these results

suggest that bet hedging in yeast is a consequence of a spectrum of

metastable inheritable epigenetic states that confer differential

fitnesses across environments.

The processes underlying interconversion between epigenetic

states, and the different phenotypes associated with these states,

are of great importance not just for yeast but also in metazoan

development and disease. Interconverting epigenetic states have

been shown to underlie phenomena as diverse as antibiotic

resistance [16], stem cell reprogramming [74], and cancer

progression [75–77]. For example, recent work has shown that

rare cells within a melanoma tumor divide slowly but give rise to

highly proliferative daughter cells, and vice versa [78]. This

behavior can be thought of as a bet-hedging mechanism, and likely

contributes to the poor long-term performance of chemotherapies

that target fast-dividing melanoma cells [78].

Current theoretical models of bet hedging focus on the

dynamics of two-state systems [17,16]. Our results and recent

work in human cancer cell lines [77] suggest that future models

must account for a distribution of multiple cell states and the

transitions between them [79,80]. Interconversion between

multiple Tsl1-abundance and growth states presents an experi-

mentally tractable system that can be exploited to test and

parameterize such models. For example, sorting cells by Tsl1

abundance and following changes in growth rate distributions over

time might allow for theoretical estimates of the number cell states

and the transition rates between them [77]. Additionally, because

the microcolony growth and survival assay presented here relies on

simple microscopy and image analysis routines, these methods

could be relatively easily exported to the above-mentioned cell

culture systems to provide additional quantitative measures of

metazoan multi-stability and bet hedging.

A correlation between growth and the deterministic factor of

replicative age has been previously noted, with increasing age

resulting in slower progression through the cell cycle until no more

cell cycles can be completed [71]. Here we show that replicative

age also correlates with Tsl1-abundant, presumably stress-resistant

cell states. We note, however, that replicative age does not appear

to be the sole determinant of slow growth, Ts1-abundance, or

stress resistance. Both slowed growth and high fluorescence of

TSL1-GFP cells persist in newborn cells and their daughters

(Figure 1B, 1C; Video S3). Additionally, we observe newly born

cells surviving heat shock (Videos S4 and S5). A more likely

possibility is that both the deterministic factor of replicative age

and stochastic mechanisms contribute to stress resistance, although

more research is required to establish causal links.

The possibility that old age contributes to stress resistance

provides a particularly compelling bet-hedging mechanism: an old

cell with few remaining cell cycles maximizes its contribution to a

clonal population if a cell cycle is completed after a stressful event

that results in a mass killing of the younger, fast-growing cells.

Thus, a slowed cell cycle in old cells—and, with high probability,

their few remaining progeny, as implied by inheritance of TSL1

abundance and slow growth from mother to daughter (Video
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S3)—might be selected to maximize bet hedging. In this scenario,

the influence of age, although independent of the environment,

could nonetheless be probabilistic, if the age signal or its transduction

is noisy. An alternative possibility is that older cells have accumulated

minor stresses throughout their lifetimes, so that induction of TSL1

and other genes represents a genuine stress response despite the

benign environment. If true, this possibility would still represent a

bet-hedging mechanism, because the induced response protects

against a subsequent, unpredictable, and acute stress.

We have previously shown that a large number of gene deletions

result in a decreased phenotypic robustness, increasing the cell-to-

cell heterogeneity in morphology [30]. Here we show that some of

these mutations also alter the growth rate distribution in a benign

environment, often resulting in a greater variance in growth rates

with proportionally more slow-dividing cells. It is unclear whether

the large number of slow-dividing cells in the distributions of these

single-deletion strains represent, as they do in wild-type popula-

tions, meaningful bets that are more fit in harsh environments, or

instead represent unfit cell states in any environment. Yet, the

possibility that a large number of mutations could result in

increased fitness in harsh environments presents a dynamic picture

of the tension between bet hedging and robustness in yeast. That

is, selection for a robust phenotype in a given environment (i.e.,

the fittest phenotypic state) is countered by selection for distributed

phenotypes (i.e., multiple phenotypic states that constitute a series

of bets on changing environments) [81]. When the environment is

not constant and when slow growth in a benign environment

confers resistance to an acute stress, then the growth rate

distribution of a mutant will be more informative about fitness

than the mean growth rate. The high-throughput microcolony

assay of growth and stress survival offers a way to explore these

distributions systematically using yeast gene-deletion strains or

strains segregating natural variation. Another way to explore the

tension between robustness and bet hedging would be to test the

expectation that organisms evolved in fluctuating environments

should exhibit a wider distribution of growth rates than those

evolved in static environments.

We have shown here that Tsl1, a protein involved in the

synthesis of trehalose, is both a marker and an important

component of a stress-resistant cell state. Trehalose appears to

function as a general stress protectant across biological kingdoms,

approaching 20% of the dry weight of stress-protected organisms

such as yeast and nematodes, which regularly encounter harsh

conditions [59]. Thus, it is quite plausible that the bet-hedging

mechanism described here will provide mechanistic insights into

ecological adaptation in a wide range of organisms, as well as into

how pathogenic eukaryotes, such as C. albicans [82] or indeed

strains of S. cerevisiae [83], colonize humans and evade therapeutic

agents. Identification of Tsl1 as marker for stress-resistant cell

states in yeast will be of great value to elucidating the molecular

mechanisms underlying persistence, an endeavour that has been

elusive in bacterial models [21]. For example, comparisons of the

gene expression profiles between cells sorted for abundant Tsl1-

GFP and unsorted populations will provide a list of candidate gene

products involved in heterogeneity-dependent stress resistance.

These candidates can subsequently be tested for correlation to or

necessity within a stress-resistant cell state using methods similar to

those described here for Tsl1.

Materials and Methods

Yeast Strains and Cloning
Haploid deletion strains were converted from the diploid

BY4743 YKO magic marker strains (Open Biosystems, MATa/

a ura3D0/ ura3D0 leu2D0/leu2D0 his3D1/ his3D1 lys2D0/LYS+
met15D0/MET15+ can1D::LEU2+-MFA1pr-HIS3/CAN1+ xxx::

kanMX/XXX+) as described [84]. Tsl1-GFP yeast (MATa

his3D1 leu2D0 met15D0 ura3D0) are part of the yeast-GFP

collection [64] and were purchased from Invitrogen. The TSL1D-

mCherry strain was constructed directly from the TSL1-GFP

strain by replacing the coding region of the genomic TSL1-GFP

chimera with that of mCherry and the selectable marker, NatMX,

through homologous recombination [85]. The mCherry-NatMX

insert was amplified by PCR from the pCZ-Nat plasmid (GenBank

accession number JN580989) using the primers (59R39)

CAAACAAAGCAAAGAATACAATAGCAACGCAAGATCA-

ACACAATGGTGAGCAAGGGCGAGGAGGA and AAGTT-

CATACCCAAGAAAATTAAAATTTTAAAATGGTAAAATT-

TATGAGCTCCAGCTTTTGTTCC. The PCR product was

extended for homologous recombination using the primers

CCGTGTCATTGCACATCCACCCACCCGTCGATTAAA-

AAACCAAACAAAGCAAAGAATACAATAGCAACG and TA-

GAATTGATATATAATAAGCAGTTGAAAATAAAAGTTC-

ATACCCAAGAAAATTAAAATTTTAAAATGG. Transforma-

tion of the PCR construct was performed with lithium acetate, as

described [86], and homologous recombinants were selected for

incorporation of NatMX with nourseothricin. Proper integration

was confirmed by sequencing.

Cell Preparation
For all strains, a single colony was selected and grown overnight

in YPD to generate a frozen stock. Frozen stocks were struck onto

YPD plates at a high density and populations from the streak were

used to initiate experiments. Growth rate and survival assays were

preformed in synthetic complete liquid medium or on synthetic

complete plates. Deletion strains were allowed to reach saturation

in liquid culture. A day prior to plating, saturated cell cultures

were diluted 1:60 and grown overnight to saturation. On the day

of plating, cultures were again diluted 1:60 and allowed to reach

early logarithmic phase by growing for 3–4 h with shaking at

30uC. Because TSL1 expression increases for all cells during late

log phase and saturation [58], the TSL1-GFP and TSL1D-

mCherry strains were instead maintained in early- to mid-log

phase for at least 24 h prior to any experiments. We estimate ,50

generations of growth between a single cell bottleneck and growth

rate measurements for single gene deletions strains and ,60

generations for TSL1-GFP and TSL1D-mCherry strains.

Microscopy
Cells were sonicated for 90 s on high in a Diagenode Bioruptor

water bath, counted using a hemocytometer, and diluted to a final

concentration of 5–206103 cells/ml. Glass-bottomed 96-well

plates (Matrical MGB096-1-2-LG) were coated with 200 ml of

200 mg/ml Concanavalin A (Type V, Sigma) for 2–6 h. Wells

were washed once with 200 ml of water and 400 ml of cells were

plated per well. Plates were sealed with an optically clear film

(Axygen PCR-SP) and spun at 360 g for 2 min. Before placing the

samples on the microscope, the bottom surface of the 96-well plate

was dusted using compressed air to remove any particles that may

interfere with the Nikon Perfect Focus System (PFS). Micrographs

were captured on a Nikon TE2000e microscope equipped with

PFS for infrared high-speed focusing and a fully automated stage

equipped with a full-stage environmental chamber. All images

were collected with a Nikon Plan Apo 106 (0.45 numerical

aperture) air objective using Nikon NIS Elements software to drive

stage movement and acquisition. Because NIS Elements readily

accepts externally written XML files for position and PFS control,

we created homemade R- and C-based scripts to assign plate
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position and focus coordinates that minimize stage travel time and

optimize PFS offsets over the plate surface. The environmental

chamber was set to 30uC at least 2 h before observation to prevent

heat gradients. Prior to image acquisition, a 45-min focusing

routine was performed to determine the optimal PFS offset for

each well. This focusing routine was necessary because the PFS

maintains focus on the plane between the bottom of the cover glass

and the air. Thus, alterations in thickness of the cover glass surface

result in images that are slightly out of focus, which we found can

have mild effects on measured growth rates (unpublished data).

Microcolonies begin growing during the focusing routine, thus

some microcolonies might contain two cells by the time an initial

image is taken. Microcolony growth was monitored by capturing a

micrograph of each field every hour. For routines that require only

bright field images, we were able to monitor ,3,000 fields in

parallel (,100,000 microcolonies at 26104 cells/ml) because each

image requires ,1 s to capture including stage travel time. Tsl1-

GFP fluorescence was captured for 4 s at 26 gain. The long

exposure time required for fluorescence measurements consider-

ably slowed our assay, allowing us to monitor ,360 fields (,3,000

microcolonies at 0.56104 cells/ml).

Automated Image Analysis
Image processing and microscope control routines were written

in Matlab, R, C, and shell scripts.

Focusing routine. For each well, bright-field images of five

fields at four different PFS offsets were captured. The five fields

map to the center and four corners of a rectangle that covers the

central 50% of the area of each well. The four PFS offsets are

spaced 7.5 mm apart, which allows at least one image to be

captured in the proper focal plane to determine the correct PFS

offset (the glass surface typically varies by ,30 mm over a plate).

To find the ideal optical plane for each field in a computationally

efficient manner, we took advantage of an idiosyncratic optical

property of yeast: ,10 mm below the ideal focal plane, yeast

appear large and white resulting in a histogram of image pixel

intensities with a sharp peak at the highest measured pixel

intensity. To find the ideal optical plane for each field, we found

the PFS offset of the image with maximal number of highest

intensity pixels and added 10 mm. For each well, the optimal PFS

offset of each of the five fields was averaged and this averaged

offset was used for all images captured in the next phase of the

experiment. Capturing 1,920 images, (96 wells)6(5 fields)6(4 PFS

offsets), requires ,40 min of microscope time and performing the

simple image analysis and calculation routine required about

5 min of computational time.

Growth rate analysis. Bright-field images were analyzed

continuously during image capture on a different dedicated

computer. The area of each micrograph covered by yeast

microcolonies was identified by taking advantage of the fact that

yeast tend to be both the lightest (high pixel intensities in the cell

center and outside the cell perimeter) and dimmest (low pixel

intensities at the cell perimeter) objects in the field. Thresholds

were applied to both high and low pixel intensities to create a pair

of black (not-yeast) and white (yeast) images for each optical field.

Each black and white image was then subjected to several rounds

of optical dilation and erosion to generate continuous white

microcolony objects. Non-yeast objects that were erroneously

identified as yeast in either the high or low threshold were

removed by performing an AND operation across the high and

low pixel threshold images. Thus, only objects that contain both

high and low intensity pixels, a property specific to yeast rather

than cellular debris or other precipitates, are counted as a

microcolony. Once all images from a time-series are collected,

microcolonies are aligned through time by centroid proximity.

When a microcolony physically touches a neighboring microcol-

ony or the edge of the image field, it is no longer tracked. Large

decreases in microcolony area, generally indicating an image

analysis failure, cause the software to discontinue tracking that

microcolony. Microcolonies that appear de novo in a later time

point (generally a single cell that floated away from a nearby

microcolony) are grouped with the nearest microcolony if they lie

within a distance of (0.65)6(length of the longest line that can be

drawn through the microcolony), otherwise they are ignored. For

each microcolony, the total recorded time of growth is measured

and microcolonies with less than five recorded growth time points

are ignored. When log(microcolony area) is plotted over time for

9 h of growth, in excess of 99.9% of microcolonies that underwent

at least one cell division (operationally defined as a specific growth

rate above 0.1) displayed linear correlations in excess of 0.9,

suggesting that cells are not limited for nutrients over the time of

observation.

Fluorescence quantitation. Tsl1-GFP fluorescence was

quantified by averaging the intensities in the fluorescent channel

of all pixels within the microcolony area of each microcolony as

determined in the above section.

Post-heat shock alignment. Removal and replacement of

the plate for heat shock causes slight shifts in the locations of each

microcolony, often causing errors in centroid-based microcolony

alignment through time. Thus, we added a routine to realign

microcolonies by searching across many fields on the plate for

microcolonies with distant neighbors. The average centroid

movement of these isolated microcolonies was used to calculate

total plate movement and realign all remaining microcolonies.

Reliable realignment required cells to be plated at a lower density.

Thus, all heat shock experiments were performed at 56103 cells/

ml (,eight microcolonies per field). We found that this lower

density did not alter growth rate distributions (unpublished data).

Microcolony survival. Microcolonies were labeled as survi-

vors if they grew by 400 or more pixels after heat shock (180 mm2

or ,eight cells) in 16 h of growth. Microcolonies were labeled as

non-survivors if they grew by less than 300 pixels after heat shock

(135 mm2 or ,six cells) in 16 h of growth. Microcolonies that did

not meet these criteria were ignored. Alternative values of the

change in area cut-offs for calling survivors or non-survivors or of

the length of growth allowed before assessing survival had no effect

on the conclusions of this paper (unpublished data).

Measures for Systematic Bias
Microcolony proximity measurements. The centroid of

each microcolony was calculated by averaging the centroid

positions of all time points for which the microcolony was tracked.

Proximity of each microcolony to its nearest neighbor was

calculated by measuring the minimum distance between a

microcolony and all other microcolonies in the field. Microcolo-

nies within 55 mm of the field edge were ignored for all

measurements. A small fraction of microcolonies that fall within

35 mm (4–8 cell lengths) of their nearest neighbor do have reduced

growth rates (Figure S3). Although it is possible that this skew is

due, in part, to local nutrient depletion, a more likely explanation

is a technical bias of the experiment: fast-growing close-neighbor

microcolonies merge with neighbors before sufficient time points

can be recorded to estimate an accurate growth rate (a minimum

of five time points is necessary in these assays), whereas slow-

growing close-neighbor microcolonies do not.

Position on the plate. To measure systematic bias that may

be caused by the position of a well on a 96-well plate or the

position of a microcolony within a well, we performed several
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replicates of growth with the identical strain in each well, a haploid

segregant of a dubious open reading frame knockout (YFR054C)

from the BY4743 YKO collection. We found no obvious bias

based on well position or position within a well. However, to be

conservative, we randomized the well position for all growth rate

measurement of strains from the YKO collection.

Manual Microcolony Cell Counts
Cell counts were performed on a haploid segregant of a dubious

open reading frame knockout (YFR054C) from the BY4743 YKO

collection. Microcolonies on which to perform manual cell counts

were selected at random from the following growth rate bins:

below two standard deviations (2 SD) from the mean population

growth rate, between 2 SD and 1 SD below the mean, between 1

SD below the mean and 1 SD above the mean, between 1 SD and

2 SD above the mean, and above 2 SD above the mean. Counts

did not try to distinguish budding cells that have not undergone

cytokinesis from two separate cells (i.e., a cell with a small bud was

counted as two cells). Microcolonies under ,100 cells generally

grew as a monolayer on the glass surface and cell counts correlated

extremely well with automated colony area measurements

(Figures 1C, S1, and S2). We did notice that automated

measurements slightly overestimated the cell number of the

slowest growing microcolonies when they became large (Figure

S2A) and slightly underestimated the cell number of the fastest

growing microcolonies when they became large (Figure S2E). For

both slow and fast growing microcolonies, the automated

measurements provide conservative estimates for the deviation

from the mean growth rate (i.e., slow-growing colonies are

measured as growing faster than their true growth rate), and thus

the automated growth rates were not adjusted. For microcolonies

over ,100 cells, we did notice some piling of cells on top of each

other resulting in automated colony area measurements underes-

timating the total number of cells (unpublished data). We therefore

limited all of our quantitative assays to colony sizes below 100 cells.

Single-Gene Deletion Growth Rate Distributions
In each well of a 96-well plate, approximately equal cell

numbers of a single-gene deletion strain and an easily distinguish-

able GFP fluorescent control strain, FBA1-GFP [64], were grown

together for 9 h. The mean growth rate of the FBA1-GFP

microcolonies was used to normalize deletion strain growth rates

across different experimental wells. All reported single-gene

deletion distributions are the combined microcolony growth rates

from at least three replicate wells of a 96-well plate. Relative

growth rates reported in Figures 1E and S3 and Table S1 were

calculated by setting the mean growth rate of the control dubious

open reading frame deletions (YHR095W and YFR054C) equal to

one. Alternatively, growth rate distributions of deletions resulting

in petite-negative and dubious open reading frame control strains

(Figure S5) are reported as raw specific growth rates without

normalization.

Screen for Slow-Growth Markers
Using microarray analysis of cells grown in nutrient-limited

chemostats, the regression slope for the transcriptional response to

changes in growth rate has been determined for all transcripts

[18]. The cell-to-cell variation, or noise, in protein level has been

quantified for a large number of genes using flow cytometry of

endogenously expressed GFP fusions and is summarized in a

measure called DM [4]. To identify gene products that might

mark cell-to-cell variation in growth rate, we set the following

thresholds: a growth rate slope of less than 22 and noise (DM in

synthetic dextrose medium) of greater than 5.

Gene Ontology Enrichment
Gene ontology enrichment was calculated using the GO Term

Finder in the Saccharomyces genome database website (http://

www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl) on Sep-

tember 7, 2011 using the default settings. Genes with a reported

value for both growth rate slope and noise in synthetic dextrose

medium were used as the set of background genes for statistical

comparisons. Reported p-values are corrected for multiple

hypothesis testing.

TSL1-GFP Growth Rate Distributions
As is true for the single deletion studies, we observed only

nominal differences between replicate wells or days (unpublished

data). Thus, growth rate distributions and fluorescence correlation

studies for the TSL1-GFP strain and associated controls were

generated by pooling microcolony growth rates across a minimum

of 12 replicate wells and two experimental days. Growth rate

distributions associated with microscopy-based survival assays

were performed by pooling microcolonies from a minimum of 80

replicate wells over a minimum of two experimental days.

Heat Shock
Heat shock of film-covered glass-bottomed micro-well plates

was performed by removing plates from the microscope and

sandwiching them between two pre-heated standard aluminum

heat blocks in a hydrated oven for 70 min at 60uC. Heat shock of

TSL1 and control knockout strains was performed in liquid

suspension for 2 min at 60uC. Heat shock of sorted and unsorted

TSL1-GFP strains was performed in liquid suspension for 6 min at

52uC.

Growth-Rate Binned Survival
A TSL1D-mCherry control strain was constructed as a direct

descendant of the TSL1-GFP strain (see ‘‘Yeast Strains and

Cloning’’). This genetic manipulation resulted in a mild but

detectable decrease in mean population specific growth rate

(0.366 h21 for TSL1D-mCherry, 0.377 h21 for TSL1-GFP,

p,10210, Wilcoxon-Mann-Whitney test). Because TSL1 expres-

sion is generally low, requiring long exposure times and thus high

fluorescence background, TSL1D-mCherry and TSL1-GFP were

grown in a checkerboard pattern on separate wells on the same

plate, rather than in the same well, to avoid genotype miscalls. We

observed no obvious biases in growth rate or survival frequency

over a plate’s surface for either genotype and observed similar

survival patterns over four similar heat-shock experiments.

Multiple Logistic Regression
Heat-shock survival is a binary dependent variable, so multiple

logistic regression was used to test the effects on it of growth rate

(prior to heat shock) and genotype (TSL1-GFP vs. TSL1D-

mCherry). A full linear model including main-effect terms for

growth rate and genotype as well as an interaction between the

two was compared to reduced models using AIC, as implemented

in the glm and anova functions of R. The full model was not

significantly better than a reduced model with the two main effects

but without the interaction. Removing either main effect from this

no-interaction model made the model significantly worse. There-

fore reported p-values come from the model with both main effects

but no interaction.

Survival in Liquid Suspension
Heat shock of liquid suspensions was performed in triplicate.

Survival frequency was determined by counting the number of
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cells in liquid before heat shock and comparing this to the number

of colonies that grew on an agar plate following heat shock. p-

Values were determined by performing a Student’s t test on the

arcsin of the square root of the proportion surviving.

Cell Sorting
Cells were sonicated for 90 s in a Diagenode Bioruptor water

bath prior to sorting. Cell sorting was performed on a FACSaria

(BD) sorter. The pulse width was used to separate individual cells

from cell clumps. FITC gates used to isolate cells with high levels

of Tsl1-GFP are shown in Figure 4A. Because most cells contain

low levels of Tsl1 (,2,000 molecules per cell on average [66]), the

sorter was not sensitive enough to sort cells in the bottom 85% of

the distribution. Sorted cells were immediately resuspended in

synthetic complete medium following sorting. A fraction of cells

were immediately plated for growth rate distribution and heat

shock survival analysis. A second fraction was grown in early- to

mid-log phase for 48 h, allowed to reach saturation, grown again

in early- to mid-log phase for 24 h, and plated for growth rate

distribution analysis. Assuming an average specific growth rate of

0.4 h21 for each sorted fraction, 76 h of log growth represents

,42 generations.

Replicative Age Analysis
TSL1-GFP cells were kept in logarithmic growth for a minimum

of 24 h, sonicated for 90 s in a Diagenode Bioruptor water bath,

washed once in PBS, fixed for 90 min in 3.7% formaldehyde, and

washed twice in PBS. Bud scar staining was performed for 15 min

in 1 mg ml21 TRITC-labeled WGA. All sorting was done using a

tight pulse-width gate to remove cell clumps from the analysis. For

co-fluorescence measurements, ,86105 cells were measured for

WGA-TRITC and Tsl1-GFP fluorescence. Data shown are from

one experiment. Replicate experiments yielded similar results. For

bud scar counts, cells were sorted until 104 cells were recovered.

Cells were pelleted, resuspended in 5 ml Vectashield (Vector

Laboratories), and mounted on a glass slide. Bud scars were

counted manually using a Nikon TE2000e epifluorescent micro-

scope and a 1006plan apochromat objective with a narrow focal

plane. Three sorts for each category were performed and bud scars

from ,100 cells were counted per sort. Similar bud scar

distributions were observed in all three sorts. Data shown are

the pooled counts from all sorts.

Supporting Information

Figure S1 Automated colony area measurements correlate with

cell number. Manual cell counts are plotted against colony area

measurements determined by automated image processing for

cells binned by growth rate for the strain of the yeast deletion

collection containing a knockout of YFR054C, an open reading

frame with dubious function. (A) below two standard deviations (2

SD) from the mean population growth rate, (B) between 2 SD and

1 SD below the mean, (C) between 1 SD below the mean and 1

SD above the mean, (D) between 1 SD and 2 SD above the mean,

(E) above 2 SD above the mean, (F) all counts from (A–E) plotted

together. The purple line indicates the linear regression of the

points.

(PDF)

Figure S2 Bland-Altman plot of automated and manual cell

counts. Manual cell counts are plotted against the difference

between cell count estimations on the basis of automated colony

area measurements and manual cell counts. Cells are binned by

growth rate for the strain of the yeast deletion collection

containing a knockout of YFR054C, an open reading frame with

dubious function. (A) below 2 SD from the mean population

growth rate, (B) between 2 SD and 1 SD below the mean, (C)

between 1 SD below the mean and 1 SD above the mean, (D)

between 1 SD and 2 SD above the mean, (E) above 2 SD above

the mean, (F) all counts from (A–E) plotted together. The purple

line indicates the mean difference and orange lines indicate the

95% confidence interval.

(PDF)

Figure S3 Reproducibility of the microcolony growth rate assay.

Eighteen replicate growth rate distributions are shown for six yeast

strains. Traces of the same color are from replicate wells on the

same microplate and traces of different colors are from replicate

experimental days. In addition to the genotypes shown, each well

contained an easily distinguishable fluorescent strain from the GFP

fusion collection (FBA1-GFP, Invitrogen) [64] that was used to

normalize growth rates for global differences between wells or

experimental days (Materials and Methods). Thus, growth rates

are reported as normalized values, with the mean FBA1-GFP

growth rate within each well used as the normalizing denominator.

(PDF)

Figure S4 Effect of colony proximity on growth rate. Box plot of

growth rates of colonies binned by the colony’s proximity to its

nearest neighbor for cells plated at a density of 26104 cells/ml.

Colonies that fall within 35 mm (4–8 cell lengths) of their nearest

neighbor do have reduced growth rates. This reduction may be due

to local nutrient depletion or a technical problem with measuring

the growth rates of closely spaced colonies (Materials and Methods).

Regardless of the cause, we ignored all colonies with a nearest

neighbor of less than 35 mm away in all our measurements.

Whiskers are 1.5 times the interquartile range from the box.

(PDF)

Figure S5 Petite-negative strains contain slow-growing colonies.

Cumulative specific growth rate distributions of six haploid

knockout strains from the yeast deletion collection. Plotted are a

control dubious open reading frame knockout (YFR054C, black)

and five knockouts unable to grow when mitochondrial function is

lost: YME1 (red), PET9 (green), MGR1 (blue), MGR2 (cyan), and

PDE2 (magenta).

(PDF)

Figure S6 Scatter plot of the means and standard deviations of

the microcolony growth rates of 13 knockout strains from the yeast

deletion collection. A linear regression (blue line) does not fit the

data well.

(PDF)

Figure S7 Tsl1-GFP fluorescence intensity per unit area of

colonies binned by growth rate for each time point during the first

6 h of growth. p-Values are a comparison to all colonies,

Wilcoxon-Mann-Whitney test: *, p,0.01; **, p,161025;

***, p,1610210.

(PDF)

Figure S8 Scatter plot of Tsl1-GFP fluorescence intensity per

unit area and specific growth rates of microcolonies of cells

expressing Tsl1-GFP under the endogenous TSL1 promoter. A

linear regression of the data is shown as a green line.

(PDF)

Figure S9 Fluorescence intensity per unit area of colonies

binned by growth rate for TSL1-GFP (left) or TMA108-GFP cells

(right). Error bars indicate SEM; p-values are a comparison to all

colonies; Wilcoxon-Mann-Whitney test: **, p,161025;

***, p,1610210.

(PDF)
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Figure S10 Cumulative specific growth rate distributions of

TSL1-GFP and TSL1D-mCherry microcolonies that contained at

least one cell that survived heat killing or no surviving cells.

(PDF)

Table S1 Characteristics of growth rate distributions of single

gene deletion strains.

(XLS)

Table S2 Candidate genes involved in bet hedging.

(XLS)

Table S3 Gene ontology enrichment of noisy gene products

whose average expression correlates with the bulk growth rate.

(XLS)

Video S1 A typical field of microcolony growth. Cells in

logarithmic growth are plated at a low density on a glass-bottomed

multi-well plate and low-magnification time-lapse bright-field

images are captured each hour (left). Custom-written software

tracks colony area over time (right). Colonies that touch each other

or the edge of the field discontinue being tracked. Notice an

extremely slow-growing dark-purple colony at the lower left of the

field.

(MOV)

Video S2 A video of the same colonies shown in Figure 1A.

(MOV)

Video S3 A highly fluorescent slow-growing cell produces low-

fluorescence fast-growing progeny. Bright-field (bottom) and

fluorescent (top) images of TSL1-GFP yeast grown for 9 h. Notice

that slow-growing cells on the right produce fast-growing progeny.

(MOV)

Video S4 Typical results of heat killing. Bright-field (left) and

fluorescent (right) images of TSL1-GFP yeast grown for 5 h, heat

shocked, and grown for another 13 h.

(MOV)

Video S5 A second field, as described in Video S4.

(MOV)
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