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Abstract

Glioblastoma (GB) is a highly invasive and lethal brain tumor due to its universal recurrence. Although it has been suggested
that the electroneutral Na+-K+-Cl2 cotransporter 1 (NKCC1) can play a role in glioma cell migration, the precise mechanism
by which this ion transporter contributes to GB aggressiveness remains poorly understood. Here, we focused on the role of
NKCC1 in the invasion of human primary glioma cells in vitro and in vivo. NKCC1 expression levels were significantly higher
in GB and anaplastic astrocytoma tissues than in grade II glioma and normal cortex. Pharmacological inhibition and shRNA-
mediated knockdown of NKCC1 expression led to decreased cell migration and invasion in vitro and in vivo. Surprisingly,
knockdown of NKCC1 in glioma cells resulted in the formation of significantly larger focal adhesions and cell traction forces
that were approximately 40% lower than control cells. Epidermal growth factor (EGF), which promotes migration of glioma
cells, increased the phosphorylation of NKCC1 through a PI3K-dependant mechanism. This finding is potentially related to
WNK kinases. Taken together, our findings suggest that NKCC1 modulates migration of glioma cells by two distinct
mechanisms: (1) through the regulation of focal adhesion dynamics and cell contractility and (2) through regulation of cell
volume through ion transport. Due to the ubiquitous expression of NKCC1 in mammalian tissues, its regulation by WNK
kinases may serve as new therapeutic targets for GB aggressiveness and can be exploited by other highly invasive
neoplasms.
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Introduction

Glioblastoma (GB) is the most common malignant primary

brain tumor. GBs are aggressive and display key features of

invasion and infiltration of healthy brain tissue [1]. Due to its

invasive nature, GB is not curable through surgical resection [2,3].

The surgical and medical treatment for patients with this disease

has evolved in the last 20 years, however the prognosis remains

dismal due to tumor recurrence [4]. Thus, understanding the

mechanisms that GB cells utilize during migration and invasion

into normal brain tissue is paramount in the development of novel,

effective therapies.

Volume regulation, cytoskeletal rearrangements, and adhesion

dynamics are major determinants of cell migration and are essential

processes in invasion [5,6]. Migration of mammalian cells is

accompanied by volume changes. For instance, neutrophils [7] and

dendritic cells [8] undergo cell volume increases when exposed to

signals leading to migratory responses. Indeed, it has been hy-

pothesized that inhibition of cell volume regulation impairs cell

migration [9,10]. NKCC1, a transporter that belongs to the

SLC12A family of cation-chloride cotransporters, is a fundamental

transporter utilized in the regulation of intracellular volume and in

the accumulation of intracellular Cl2 [11,12]. NKCC1 mediates

the movement of Na+, K+, and Cl2 ions across the plasma

membrane using the energy stored in the Na+ gradient, generated

by the Na+/K+ ATPase. Recent work supports the notion that

intracellular volume regulation by NKCC1 [13,14], as well as

aquaporin 4 (AQP4) [15], may indeed promote glioma cell invasion.

However, whether cell volume regulation is the only or primary

mechanism mediating NKCC1 effects is unclear. It is equally

unclear if NKCC1 is differentially regulated in invasive cells.

In addition to cell volume regulation, ion transporters can

participate in anchoring the cytoskeleton to the plasma membrane

by binding to ezrin-radixin-moesin (ERM) proteins [16,17]. ERM
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proteins associate directly with actin and integral membrane

proteins, which connect the cytoskeleton to the plasma membrane

[18]. Anion exchangers (AE) 1, 2, and 3, Na+/H+ exchanger 1

(NHE1), and a Na+/Ca++ exchanger are all able to act as

cytoskeletal anchors by interacting with ERM proteins [19]. It has

been shown that ERM proteins bind to clusters of positive amino

acids in the juxtamembranous domain of NHE1, CD44, CD43,

and ICAM-2 [16,20] and that these interactions regulate cell

migration and contractility, as well as focal adhesion turnover

[21,22]. The interaction between ion transporters, as integral

membrane proteins, and the cytoskeleton mediates the transduc-

tion of contractile forces generated from within the cell to the

extracellular matrix and promotes migration. However, the mech-

anistic action of NKCC1 on cell contractility and focal adhesion

dynamics in the context of GB cell migration and invasion are

entirely unknown.

Activation of NKCC1 transport activity requires phosphoryla-

tion of key threonine residues in the NKCC1 N-terminal domain

[23]. Phosphorylation of NKCC1 is mediated by at least three

members of a novel family of unusual kinases that lack a key lysine

in their catalytic domain, the WNK kinases (With No K-lysine)

[24,25]. These kinases have been implicated in the pathogenesis of

hypertension and epilepsy [26,27]. Of these, WNK3 is the most

abundantly expressed in the brain [28]. Interestingly, WNK1 is a

substrate for Akt-mediated phosphorylation [29]. Hence, it is

possible that Akt may regulate NKCC1 activity through the

regulation of the WNK kinases. Intracellular signaling pathways,

such as phosphoinositide 3-kinase (PI3K)-Akt, are frequently

altered in GBs [30]. Akt is able to regulate various cellular functions

through phosphorylation of a conserved substrate sequence, and

altered regulation of this pathway can lead to aberrant cell behavior,

such as increased proliferation and migration [31–33]. Importantly,

intracellular signaling pathways of promigratory factors such as

epidermal growth factor (EGF) [34–36], and integrin signaling

pathways converge on Akt, modulating cell processes such as cell

cycle, apoptosis, and migration [37]. PI3K, the activator of Akt, is

thought to be critical in mediating both chemotactic and random

cell migration [38]. Therefore, the regulation of NKCC1 by the

interaction between Akt signaling and WNK kinases may be

important in determining the invasive properties of GB cells.

To further our understanding of the role of NKCC1 in GB cell

migration and invasion, we investigated (1) whether the expression

of NKCC1 in human tumors correlates with tumor grade, (2)

whether NKCC1 affects cell contractility and migration, (3)

whether NKCC1 can have an effect on the interaction between

the cells and the cells’ adhesion substratum, and (4) whether a

signaling mechanism involved in the regulation of NKCC1 by

promigratory factors exists in GB cells. We found that NKCC1

expression indeed correlates with in vivo glioma aggressiveness

and that the transporter activity modulates migration speed and

invasiveness of cells derived from various human GBs. Further-

more, we show that NKCC1 expression affects GB cell traction

forces, possibly by regulating focal adhesion dynamics. Moreover,

the regulation of NKCC and KCC transport by WNK3 may

determine the invasive behavior of GB cells. Additionally, we show

evidence of NKCC1 phosphorylation regulation by Akt through

WNK3 phosphorylation upon stimulation with a promigratory

factor, EGF. This suggests an important link between the acti-

vation of WNK3 by Akt as well as changes in the activity of ion

transport systems in glioma cells. Taken together, these findings

strongly suggest that ion transport regulation might be integrated

into the control of glioma cell invasiveness in a complex fashion

that extends beyond regulation of cell volume and involves the

interplay between cell adhesion and growth factor signaling.

The understanding of these complex interactions may assist in the

design of novel therapeutic strategies.

Results

NKCC1 Is Essential for Glioma Cell Invasion
Prior data implicating NKCC1 in GB invasiveness were based

on established, model GB cell lines, rather than primary cells or

tissues. We therefore first evaluated and characterized whether

primary cells isolated from human GB indeed supported the role

of NKCC1 in invasiveness as suggested previously [13]. We

assayed invasiveness using the transwell invasion assay in the

presence or absence of the NKCC1 inhibitor bumetanide [39].

Inhibition of NKCC1 transport in various primary human glioma

cells exposed to 25 and 50 mM of bumetanide led to a dose-

dependent decrease in the number of invasive cells (Figure 1A and

Figure S1A). Significant inhibition of invasion was seen in GB cells

tested at a concentration of 50 mM (Figure S1B), a concentration

at which bumetanide does not exhibit considerable non-specific

effects on other cation-chloride transporters [40,41]. To further

examine whether the effect of bumetanide on cell invasion is due

to inhibition of NKCC1, we performed stable knockdown of

NKCC1 using lentiviral particles carrying NKCC1 shRNA.

Knockdown of NKCC1 in GB cells (NS561, NS567, NS501,

and NS318) was successfully established in 4 GB cell lines and the

efficiency of knockdown was assessed by immunoblot of whole cell

lysates of these GB cells (Figure S1C). We confirmed that, as

previously shown by Haas and colleagues [13], knockdown of

NKCC1 significantly reduced the invasiveness of all these cells

(Figures 1B, S1D). Taken together, these data suggest that

NKCC1 may indeed play a role in invasiveness of primary GB

cells, supporting prior results [13] obtained in non-primary cell

cultures.

Since NKCC and KCC transporters work in a concerted

inverse manner to regulate intracellular volume and intracellular

chloride concentration ([Cl2]i) [42], we tested whether inhibition

of KCC transport, an important Cl2 extrusion mechanism, might

mimic NKCC1 overexpression and lead to increased invasion. To

Author Summary

Treatment of many cancers has been hampered by the
invasive ability of tumor cells. A notable example is brain
cancer, which is incurable due to its invasiveness and
resulting high tumor recurrence after surgical resection.
Here, we analyze further the function of NKCC1, an ion
transporter that is known to regulate cell volume and
intracellular chloride concentration, and to play an
important role in brain tumor cell invasion. Our findings
suggest that in addition to its conventional function as an
ion transporter, NKCC1 may also interact with the
cytoskeleton and affect brain tumor cell migration by
acting as an anchor that transduces contractile forces from
the plasma membrane to the extracellular matrix en route
to cell migration. Moreover, we show that regulation of
NKCC1 by a family of unconventional enzymes, the WNK
kinases, is an important factor that affects the activity of
NKCC1 and may determine the invasive ability of brain
tumor cells. We postulate that NKCC1 has multiple
functions in brain tumor cell migration and that together
with its regulatory enzymes may be therapeutic targets in
the treatment of brain tumors or other types of cancer,
given the wide expression of these proteins throughout
the body.

Novel Role of NKCC1 in Brain Tumor Dispersal
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test this hypothesis we performed transwell invasion experiments

in the presence of DIOA (R(+)-Butylindazone), a potent K+-Cl2

transport inhibitor that has no effect on NKCC transport activity.

Consistent with this hypothesis, inhibition of KCC transport with

DIOA resulted in increased cell invasion. This effect was sta-

tistically significant in two of the four cell lines tested (NS221 and

NS318) (Figure 1C). DIOA is a non-specific inhibitor of KCC co-

transporters, which may be the cause of a heterogeneous effect on

GB cells observed. To avoid this confounding result we induced

the genetic knockdown of KCC4 (Figure S1E), a KCC family

member implicated in cervical and ovarian cancer invasiveness

[43]. KCC4 had similar expression levels in the cell lines used for

the experiments (Figure 2D). Knockdown of KCC4 in NS318

showed a significant increase in the number of invading cells

(Figure 1D). These data suggest that KCC transport inhibition

could lead to an increase in [Cl2]i promoting invasive behavior of

GB cells.

NKCC1 Silencing Leads to Decreased GB Stem Cell
Invasiveness In Vivo

It is thought that GB tumor stem cells may be the core

component of the invasive cell population [44]. Therefore, in

addition to invasiveness of primary GB cells in vitro, we explored

the role of NKCC1 in the invasion of primary brain tumor stem

cells (BTSC) in vivo. Tumor area and area of invasion in the

corpus callosum were then quantified to evaluate differences in

tumor size and invasive ability of BTSCs carrying the control

shRNA as well as BTSCs carrying NKCC1 shRNA. We found

that tumors generated after the implantation of BTSCs with

control shRNA were significantly smaller than tumors generated

with the NKCC1 shRNA harboring BTSC line (Figure 1E).

Consistent with previous results by Haas and colleagues using

commercial GB cell lines [13], the invaded area in the corpus

callosum of mice that were implanted with BTSCs carrying the

control shRNA was significantly larger than that of mice im-

planted with BTSCs carrying NKCC1 shRNA (Figure 1F).

NKCC1 knockdown did not affect the proliferative potential of

the BTSCs injected in vivo (Figure S2). These results suggest that

NKCC1 may be an important determinant of primary and GB

stem cell invasiveness, in congruence with prior suggestions based

on commercial GB cell lines [13].

NKCC1 Protein Expression in Human Gliomas Correlates
with Tumor Grade

To evaluate the potential clinical importance of NKCC1 in

glioma invasion in vivo, we characterized NKCC1 expression in a

large array of glioma tissue samples using a tissue microarray

(TMA) containing several tumors of different grades ranging from

World Health Organization (WHO) Grade II to WHO Grade IV

(Table S1). The results revealed that NKCC1 protein expression

was significantly higher in GB and anaplastic astrocytoma (AA)

tissue samples compared with expression in Grade II astrocytomas

and normal brain (Figure 2A and 2B). Epithelial tissues included in

the TMA were used as positive controls (intestinal mucosa and

tissue from the distal collecting duct in the kidney) (Figure 2B).

As a corollary to this analysis and a complement to the results in

Figure 1, we characterized the expression levels of NKCC1

protein in multiple primary human GB cells and found that all cell

lines tested showed substantial expression of NKCC1 (Figure 2C).

The data obtained from this set of samples showed that NKCC1

protein expression indeed correlates with glioma grade, in that

tissues from GB and AA expressed higher NKCC1 protein levels

than low-grade astrocytomas and normal brain. This correlation

between NKCC1 expression with glioma grade suggests that

NKCC1 may contribute to the increased invasiveness of high-

grade tumors.

Figure 2. NKCC1 is highly expressed in GB tissue samples and primary human GB cells. (A) Quantification of NKCC1 immunoreactivity in a
tissue microarray (TMA) containing samples of multiple glial tumors of different grades. The quantification was done using FRIDA software [100]. Red
lines represent mean immunoreactivity levels. (B) Representative images of NKCC1 immunohistochemistry in tissue cores from the TMA including
glial tumors of different grades, normal brain, and epithelial tissues, which express NKCC1 in the apical surface of epithelial cells as a positive control.
(C) Immunoblot showing NKCC1 expression in multiple glioma cell lines. Information on the number of samples, age, and gender of the patient of
origin of each tumor type can be found in Tables S1 and S2. (D) KCC4 expression by real-time PCR in different glioma cell lines. * p value,0.001.
doi:10.1371/journal.pbio.1001320.g002

Figure 1. NKCC1 activity is necessary for GB cell invasion in vitro and its inhibition leads to formation of less invasive tumors in
vivo. Quantification of transwell invasion assays of primary-cultured GB cells exposed to increasing doses of the NKCC1 inhibitor bumetanide (A) or
transduced with NKCC1 shRNA (B); exposed to 10 mM of the KCC inhibitor DIOA (C) or stably transduced with KCC4 shRNA (D). Insets show schematic
representation of the experimental design in (A) and (D). (E–F) Orhtotopic in vivo tumors formed by NKCC1shRNA cells were significantly larger and
less invasive than control cells. Inset shows NKCC1 knockdown by protein expression. (G) Representative images of DAPI-stained coronal sections of
mouse brains, after the implantation of control shRNA (left panel) or NKCC1 shRNA (right panel) cells. (G9) Confocal images of human-specific Nestin
positive cells migrating across the corpus callosum at the area in the dotted square in (G). These results suggest that NKCC1 expression is necessary
for efficient GB cell migration in vivo. Scale bars, 500 mm in low magnification panels and 20 mm in high confocal images panels. Bars represent mean
6 SEM. * p value,0.05; ** p,0.005.
doi:10.1371/journal.pbio.1001320.g001
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NKCC1 Knockdown Decreases the Speed of GB Cell
Migration on Nanopatterned Surfaces

Our results so far strongly suggest that NKCC1 may indeed be

an important determinant of GB cell invasion. While all prior

analyses attempted to link the role of NKCC1 in cell migration

to its role as a cell volume regulator [11,13,14,45], we examined

whether NKCC1 plays an essential role in the regulation of

polarization of cell morphology and migration of GB cells. We

were particularly interested in whether NKCC1 might affect cell

migration and how this migratory behavior may depend on the

mechanical cues mimicking the extracellular matrix components.

In this study we employed nanoscale grooves to analyze the

migratory behavior of glioma cells. Our substrate mimics ECM

features, such as myelinated fiber tracts, upon which brain cancer

cells have been shown to migrate [46,47]. This model offers the

advantage of allowing biased cell migration along the nano-ridges

of the textured surface that can be quantified in terms of cell speed

and migration (Figure S3A–C). We found a significant reduction

in the cell migration speed of human primary GB cells stably

transduced with NKCC1 shRNA (Figure 3A–B). Similarly, a

significant decrease in migration speed was observed when GB

cells were treated with bumetanide (Figure S3D). Migration

directionality was quantified by measuring the ratio of cell

movements parallel to the ridges on the pattern versus those that

were perpendicular to the pattern. This metric tended to correlate

with the speed of migration, showing significant decreases in

directionality for cells expressing NKCC1 shRNA (Figure 3C–D).

Overall, GB cells stably transduced with NKCC1 shRNA

displayed a lower speed of migration and showed more random

migration as demonstrated by the decrease in directionality.

NKCC1 Deficiency Increases the Size of Focal Adhesions
and Decreases Net Contractile Moments in GB Cells

The cell migration data indicated that NKCC1 can directly or

indirectly affect cell motility, but the mechanism of how an ion

transporter can be involved in this process is not immediately

apparent. It is therefore of interest to note that at least some ion

transporters have been reported to associate with the ERM com-

plex to anchor actin to the plasma membrane, affecting cell

migration [16,19]. The ERM complex proteins bind to clusters of

positive amino acids such as lysine (K) and arginine (R) in proteins

that are known to bind ERM proteins and to serve as anchors for

the actin cytoskeleton such as CD44, CD43, and ICAM-2 [20].

Also, NHE1, a Na+-H+ exchanger, acts as an anchor for the

cytoskeleton in migrating cells, through the interaction with ERM

proteins [16]. Based on these data, we studied the sequence of the

juxtamembrane carboxy-terminus domain of human NKCC1 and

found clusters of positively charged amino acids identical to those

found in other ERM binding proteins. These clusters of positive

amino acids are conserved in the human, mouse, and rat NKCC1

sequences (Figure 4A). These amino acids may be important in the

interaction between ERM proteins and NKCC1 and may be

similar to other ERM-integral membrane protein binding [20].

To assess the possibility that NKCC1 may affect GB cell mi-

gration through a mechanism other than cell volume regulation,

we compared the size of focal adhesions formed by NKCC1

knockdown cells and cells transduced with the control shRNA.

Focal adhesions were stained with an antibody against vinculin

and paxillin, cytoskeletal proteins that are part of focal adhesions

that also regulate mechanical coupling of the cytoskeleton to the

extracellular matrix (ECM). We observed small, thin, and elon-

gated focal adhesions primarily in the extending processes in

control virus shRNA cells, whereas in NKCC1 shRNA cells,

focal adhesions were much larger (Figure 4B–C and Figure S4),

indicative of focal adhesion maturation [22,48]. The area of focal

adhesions was significantly larger in NKCC1 shRNA cells when

compared to control virus cells (Figure 4D). The increased focal

adhesion area was also seen when we used paclitaxel (a drug that

stabilizes microtubules dynamics and disrupts focal adhesion

formation) as a positive control for this experiment [49]. These

results suggest that NKCC1 expression not only regulates cell

volume but may also be important in modulating focal adhesion

dynamics and maturation.

Cells exert traction forces on their environment during mi-

gration and invasion in response to different mechanical and

chemical cues in the extracellular matrix. These forces are applied

through points of cell adhesion via focal adhesion-mediated

integrin-ECM connections [21,22]. To evaluate whether the

increase in size of focal adhesions after NKCC1 depletion had a

functional effect on the generation of contractile forces by GB

cells, we quantified cell traction forces exerted by adherent living

GB cells (control virus versus NKCC1 shRNA). We found that

NKCC1-deficient cells exerted significantly lower cell traction

forces than control virus cells (Figure 5A–B). Compared to control

virus cells, NKCC1 shRNA cells exhibited approximately a 40%

decrease (NS501, 44% decrease; NS561, 37% decrease; p,0.002,

nested ANOVA) in net contractile moments, which is a scalar

measure of cell contractile strength (Figure 5C–D, Figure S5). No

within-group differences existed between both tested cell lines.

To further support the interaction of NKCC1 and ERM

proteins, we immunoprecipated endogenously expressed NKCC1

and probed the immunoprecipated lysate with an antibody against

Ezrin. We found that endogenous Ezrin associates with immuno-

precipitated NKCC1. These results strongly suggest that in primary

human GB cells, Ezrin is an NKCC1 binding partner. As expected,

actin, a binding partner of Ezrin, also co-immunoprecipitated with

NKCC1 (Figure 6A). We also performed the reverse experiment

where Ezrin was immunoprecipitated and then probed for NKCC1

on the immunblot. In multiple primary human GB cell lines, we

found that after performing immunoprecipitation of Ezrin, NKCC1

Figure 3. NKCC1 activity is necessary for GB cell migration on a
nanopatterned substrate. Quantification of migration speed (A–B)
and directionality (C–D) of two different GB cell lines stably transduced
with NKCC1 shRNA. NKCC1 shRNA-transduced cells show a decreased
migration speed and directionality when compared to control virus-
transduced cells. Bars represent mean 6 S.E.M. * p value,0.05; ** p
value,0.001. Scale bar represents 50 mm.
doi:10.1371/journal.pbio.1001320.g003
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was also pulled down (Figure 6B). As expected, actin was also co-

immunoprecipitated.

To assess whether the association of NKCC1 and Ezrin is

important for the generation of cell traction forces, we mutated the

two clusters of basic amino acids found in the juxtamembranous

domain of NKCC1 (putative Ezrin-binding sites) and measured

the functional consequences in GB cells. We found that the net

contractile movements of cells expressing the Ezrin-binding null

NKCC1 were significantly lower than cells expressing wild type-

NKCC1 (Figure 6C). Furthermore, cells expressing the Ezrin-

binding null-NKCC1 had a lower projected cell area than cells

expressing wild-type NKCC1 (Figure 6D).

Thus, the absence of NKCC1 expression may lead to the for-

mation of more mature focal adhesions. In turn, these mature

focal adhersions may further enhance the adhesion of cells to the

substratum, which decreaces the migration speed of NKCC1

shRNA cells, as observed above. Mature focal adhesions do not

participate in the generation of contractile forces in migrating cells;

rather, they participate in anchoring cells to the substrate [21]. On

the other hand, nascent adhesions apply forces to the substratum

to drive cell movement [21]. Hence, our results suggest that

NKCC1 affects cell-ECM interactions by stimulating higher

traction force generation and lower substratum adhesion, thus

enhancing cell motility in a synergistic fashion.

NKCC1 Is Expressed at the Distal Edge of Extending
Processes of Primary Human GB Cells

The pronounced effect of NKCC1 expression on focal adhesion

formation and cell migration suggests the importance of its partial

intracellular localization. We initially approached this issue by

performing immunocytochemistry experiments on multiple GB

cells. We found that all GB cells had a polarized subcellular

expression of NKCC1. In cells that appeared to have a more

stationary phenotype with multiple projections, the expression of

NKCC1 was primarily correlated with these projections (Figure 7A

and Figure S6). Specifically, NKCC1 was localized either to the

apparent leading edge of a moving cell or to its rear, frequently in

a mutually exclusive pattern (Figure 7B and Figure S6). Expression

of NKCC1-EGFP fusion protein in GB cells supported that

NKCC1-EGFP expression was mainly localized to the plasma

membrane of the extending processes confirming the results

obtained by immunofluorescence (Figure 7B, Figure S7, and

Video S1 and Video S2). In cells spreading on nano-structured

substrata, NKCC1-EGFP localization oscillated between the two

transiently existing edges, before a prominent single edge was

formed. Furthermore, when using immunocytochemistry, we

examined the sub-cellular localization of WNK3, a serine/

threonine kinase that regulates the transport activity of NKCC1

through phosphorylation [26,27,50]. We observed partial co-

localization of WNK3 immunoreactivity with NKCC1 immuno-

reactivity in the edges of extending processes (Figure 7A and

Figure S6). These findings suggest that the cellular localization

of NKCC1 is spatially heterogeneous during GB cell migration.

Although the localization patterns were diverse in different cell

states, the overall pattern that emerged from this analysis was that

NKCC1 is associated with extending processes of the cell. This

finding correlates with the suggestion that NKCC1 is important in

the formation of new focal adhesions and controlling existing focal

adhesions and active cytoskeletal components.

NKCC1 Is Activated by EGF Through Akt-Mediated WNK3
Phosphorylation

The aforementioned data suggest that NKCC1 transport activity is

important for glioma cell migration and invasion, at least in part

through direct regulation of the cytoskeletal and ECM-cell adhesion

dependent processes. NKCC1 transport activity is known to be

regulated through phosphorylation and de-phosphorylation events

mediated by members of the novel serine/threonine kinase family

WNKs [26]. NKCC transport is activated by stimulation with EGF in

corneal epithelial cells [51]. It is well established that EGF promotes

astrocytic [34] and glioma cell migration [36,52,53]. Thus, we

examined the effect of EGF on the phosphorylation of NKCC1 as an

indication of NKCC1-activation using an NKCC1 phospho-specific

antibody [23]. After stimulating glioma cells with EGF, NKCC1

phosphorylation increased in a time-dependent and dose-dependent

manner in NS318 and NS567 cells (Figure 8A). To gain insight into

the regulation of phosphorylation of NKCC1 in an unbiased cellular

system, we stimulated HEK-293 cells with EGF in the presence or

absence of wortmannin (WM), a PI3K inhibitor. After exposure of

HEK-293 cells to EGF, NKCC1 phosphorylation increased signif-

icantly. However, in the presence of WM, EGF-induced NKCC1

phosphorylation was blocked (Figure 8B). These findings together

demonstrate that the EGF-induced increase in phosphorylation of

NKCC1 requires activation of the PI3K-Akt pathway.

The activity of cation-chloride cotransporters is regulated in a

coordinated manner by the novel family of serine-threonine kinases

WNK [50]. WNK3 promotes phosphorylation and activation of

NKCC1 transporters while promoting phosphorylation and inac-

tivation of KCC transporters [50]. It has also been shown that

WNK1, another member of the WNK family, is phosphorylated

and activated by Akt (protein kinase B) [29,54]. Therefore, we

decided to test if Akt phosphorylates WNK3 after stimulation with

EGF. We immunoprecipitated total WNK3 from HEK-293 cells

exposed to serum-free media, and we stimulated with EGF, or EGF

in the presence of the PI3K inhibitor WM. Samples were im-

munoblotted with an antibody that recognizes phosphorylated Akt

Figure 4. NKCC1 knockdown increases the size of focal adhesions in primary human GB cell lines. Nascent focal adhesions have a
smaller area and are primarily responsible for generating traction and participate in generating contractile forces that allow cells to move. Mature
focal adhesions have a larger area and are responsible for remodeling the extracellular matrix during migration. Primary human GB cells
immunostained for focal adhesion proteins vinculin and paxillin. (A) Left panel, schematic representation of NKCC1, CD44, and NHE1 showing the
localization of putative ezrin-radixin-moesin binding domains (red boxes) in the juxtamembranous intracellular domains of these proteins. Right
panel, alignment of the protein sequences of NKCC1 of human (NP_001037), mouse (NP_033220), and rat (NP_113986) with the sequence of CD44
(NP_000601) and NHE1 (NP_003038), which have been shown to bind ezrin-radixin-moesin proteins to anchor the actin cytoskeleton to the plasma
membrane. In these protein sequences, the positive amino acids such as lysine (K) and arginine (R) are highlighted in red; groups of three positive
amino acids are underlined in blue and groups of two positive amino acids are underlined in green. (B–C) NS 318 control shRNA (left panel), NKCC1
shRNA (middle panel), and wild-type treated with 5 mM paclitaxel (right panel) stained with an anti-vinculin antibody (B) and anti-paxillin antibody (C)
to visualize focal adhesions (lower panels in B and C show an amplification of areas within the squares). (D) Bar chart of the quantification of focal
adhesion area stained with vinculin (left panel) and paxillin (right panel) antibodies. Quantification of vinculin staining NS318 control shRNA n = 23
cells, NS 318 NKCC1 shRNA n = 26 cells, NS 318 control shRNA+paclitaxel n = 22 cells, NS 501 control shRNA n = 20 cells, NS 501 NKCC1 shRNA n = 20
cells, and NS 501 control shRNA+paclitaxel n = 10 cells. Quantification of paxillin staining NS 318 control shRNA n = 21 cells, NS 318 NKCC1 shRNA
n = 15 cells, NS 318 control shRNA+paclitaxel n = 21 cells, NS 501 control shRNA n = 12 cells, NS 501 NKCC1 shRNA n = 24 cells, and NS 501 control
shRNA+paclitaxel n = 10 cells. * p value,0.05; ** p value,0.01. Scale bars represent 50 mm.
doi:10.1371/journal.pbio.1001320.g004
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substrates (aPAS antibody) (Figure 8C). Data obtained from this

experiment showed a basal phosphorylation level of WNK3, which

increases with exposure to EGF. This increase in phosphorylation is

repressed by inhibition of PI3K with WM, suggesting that Akt

phosphorylates WNK3. The same samples were immunoblotted

against phosphorylated Akt, and as expected, we found that WM also

inhibited the phosphorylation of Akt (Figure 8D). In silico analysis of

the protein sequence of WNK3 revealed that two putative Akt

phosphorylation motifs are present and are conserved in available

WNK3 protein sequences of the human and rat, as previously found

in WNK1 (Figure 8E) [54]. These findings indicate that NKCC1

may be activated by factors that stimulate migration of astrocytic or

glioma cells, such as EGF via kinases of the WNK family, a family of

kinases that have been shown to regulate the transport activity of

multiple members of the SLC12A family of transporters.

Discussion

The nearly universal recurrence of GB after surgical resection is

largely due to invasion of glioma cells into healthy brain tissue and

Figure 5. NKCC1 knockdown decreases the net contractile moment and projected area in primary human GB cell lines. (A and B)
Representative traction maps of GB cells stably expressing control shRNA or NKCC1 shRNA, respectively. The white line shows the cell boundary.
Colors show the magnitude of the tractions in Pascal (Pa). Arrows show the direction and relative magnitude of the tractions. Scale bars represent
50 mm. Inset, phase contrast images of the respective cells on the elastic gel. Computed net contractile moment of GB cells expressing control shRNA
or NKCC1 shRNA in (C), NS 561 (control shRNA n = 15 cells, NKCC1 shRNA n = 14 cells, p = 0.024) and (D) NS 501 (control shRNA n = 13 cells, NKCC1
shRNA n = 12 cells, p = 0.005). Net contractile moment is expressed in pico-Newton meter (pNm). Measurement of the projected cell area in mm2 of (E)
NS 561 (control shRNA versus NKCC1 shRNA, p = 0.01) and (F) NS 501 (control shRNA versus NKCC1 shRNA, p = 0.001). Data are presented as
geometric mean 6 SEM in log transformation.
doi:10.1371/journal.pbio.1001320.g005
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presents a major impediment in the improvement of GB patient

survival. In this study, we tested the hypothesis that NKCC1

expression and transport activity are crucial elements of cell mi-

gration and invasion in primary human GB cell lines. Here we

provide evidence for the participation of NKCC1 in the migration

and invasion of primary human glioma cells, highlighting its

possible role in anchoring the actin cytoskeleton to the plasma

membrane. Additionally, through this anchoring, NKCC1 medi-

ates transduction of the cellular contractile forces to focal adhesions

that interact with the extracellular matrix. These in vitro findings

were confirmed functionally in an in vivo model using primary

human BTSCs, where their invasion was decreased significantly

after NKCC1 knockdown. Given these findings, NKCC1 inhibition

could potentially be used in the clinic to improve glioblastoma

treatment, given that Bumetanide (a commonly used diuretic, FDA-

approved) decreases the invasive potential of glioma cells in vivo

[13]. This could potentially improve surgical resection of the tumor

mass, as tumor cells lacking NKCC1 activity would form less

invasive tumors.

Our work shows that NKCC1 protein expression in multiple

glioma samples is higher in high-grade gliomas such as GB and

anaplastic astrocytomas. Inhibition of NKCC1 transport pharma-

cologically, as well as genetic inhibition of NKCC1 expression,

decreases invasion of multiple primary human GB cell lines. These

results are in accordance with previous findings using commercial

human glioma cell lines [13]. Our data further indicate that

migration speed of GB cell lines in a 2-D nanopatterned substrate

is decreased by pharmacological inhibition and by shRNA-based

silencing of NKCC1 expression. Interestingly, pharmacological

and genetic inhibition of the K+-Cl2 cotransporters leads to a

more invasive behavior of GB cells in vitro. Moreover, our results

suggest that NKCC1 may affect the morphology of focal adhe-

sions, perhaps due to a putative ERM binding motif in the

cytoplasmic domain of NKCC1. We also found that NKCC1 is

located at the extending processes of GB cells and that NKCC1

polarization may precede migration towards the direction of this

pole. Furthermore, exposure of GB cells to EGF, a factor that

promotes migration and invasion of normal and tumor cells [34–

36,55,56], induces phosphorylation (activation) of NKCC1

through PI3K-Akt-WNK3 pathway.

The concerted action of local anchoring of the actin micro-

filaments to the plasma membrane and volume regulation may be

important for the polarization of cells during migration. Coupling

the actin cytoskeleton to the plasma membrane is essential for the

regulation of cell morphology and migration [6]. Our immuno-

cytochemistry and live cell imaging experiments using a GFP-

NKCC1 fusion protein demonstrate that NKCC1 is localized to

the extending processes of migrating GB cells. During the mi-

gratory process, cells acquire a polarized morphology where actin,

integrin receptors, and ion transporters among other proteins,

become asymmetrically distributed in the cell. Some examples of

ion transporters that show a polarized localization to the leading

edge of the cell include NHE1 and AE2 [9,16,17], which also have

K+ channels that are polarized to the rear end of the cell [57].

Ezrin-radixin-moesin (ERM) proteins bind actin filaments and

anchor them to integral plasma membrane proteins. Some of these

integral membrane proteins include NHE1, CD44, and intercel-

lular cell adhesion molecule 2, which have ERM binding motifs

Figure 6. NKCC1-Ezrin association affects net contractile moments and projected cell area. (A) Immunoprecipitation of NKCC1 in two GB
cell lines shows that Ezrin and actin are associated with NKCC1. (B) Immunoprecipitation of Ezrin pulls down NKCC1 in several GB cell lines. (C) Cells
that overexpress Ezrin-binding null NKCC1 generate lower contractile moments and have lower surface area. Black bars represent the transfected
cells, and white bars represent the untransfected cells. Measured cells in the WT group (n = 16 untransfected cells; n = 11 transfected cells), and
measured cells in the mutant group (n = 17 untransfected cells; n = 12 transfected cells). Bars represent mean 6 S.E.M. * p value,0.001.
doi:10.1371/journal.pbio.1001320.g006
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(ICAM-2) [16,18]. The ERM binding motif consists of clusters

of positive amino acids, such as lysine and arginine residues in

juxtamembranous intracytoplasmic domains of these proteins. By

analyzing the peptide sequence of NKCC1, we found clusters of

lysine and arginine residues in the N-terminal cytoplasmic domain

that are conserved across mammalian species, which may bind

ERM proteins. Indeed, we found that NKCC1 is able to bind to

Ezrin and actin with our co-immunoprecipitation assay. The

generation of advancing membrane protrusions is necessary for

migrating cells to achieve cell translocation. ERM protein binding

to NHE1 is necessary during migration to promote extension of

advancing processes to anchor the cytoskeleton [16,17]. Our

results show that NKCC1 is polarized to the extending processes

of migrating glioma cells; therefore, it is likely that NKCC1 is

necessary during migration to anchor the cytoskeleton, aiding in

the extension of lamellipodia, and mediate local volume changes at

the same time [14].

NKCC1 expression may be an important determinant of the

response of migrating cells to external physical cues. The ex-

tracellular matrix surrounding cells presents topographical features

ranging from nanometers (nm) to microns (mm) and affects cell

behavior. For example, collagen fibrils form with diameters from

20–200 nm and influence cell polarity and migration through

‘‘contact guidance’’ [58–65]. Recent studies have employed more

intricate substrates presenting nanoscale features (e.g., grooves,

ridges, bumps, and pillars) to more closely model the cellular

microenvironment [66–68]. In this study, we have employed

nanoscale features mimicking the ECM found in the brain. These

features include myelinated fiber tracts, upon which brain

cancer cells have been shown to migrate [47]. It is known that

cell migration is governed by many molecular processes, including

attachment to the cell substrate. Our nanopattern provides a quasi-

3-D platform that can examine these interactions with ECM by

examining speed, direction, and morphologies of migrating cells.

While cells move in 2-D, they respond to topographical cues from

the substrate presented in 3-D [46,69].

By examining cell migration after genetic changes to NKCC1

expression, we sought changes that might inhibit the overall motility

of glioma cells. Our observed changes in migratory behavior upon

simulated ECM suggests that these cells will be less migratory and

invasive, eventually leading to improved medical outcomes. These

changes in migratory behavior were further supported by our ex-

periments employing more classical techniques (e.g., transwell).

It has been shown that formation of actin stress fibers precedes

the formation of nascent focal adhesions in the lamellipodium of

fibroblasts [70]. However, stress fiber formation depends on the

anchorage of actin bundles to the plasma membrane, which has

been shown in the interaction of NHE1 with ERM proteins [16].

Nascent adhesions are present at the front of the cell and exert

traction forces that lead to cell repositioning [21]. As focal ad-

hesions increase in size, they mature and the traction forces that

they exert decrease considerably [21]. In migration studies of cells

that do not express focal adhesion kinase (FAK), a major regulator

of focal adhesion turnover, it was shown that these cells possess

larger focal adhesions and display lower cell spreading [71,72]. In

fact, these observations were also seen in GB cells when NKCC1 is

knocked down; NKCC1 knockdown cells display larger focal

adhesions and smaller projected cell area than control shRNA

cells. These changes in focal adhesion size were accompanied by a

decrease in the generation of contractile forces by GB cells. These

findings suggest that the localized distribution of NKCC1 to the

extending processes plays a role in the modulation of focal ad-

hesion turnover and generation of nascent focal adhesion to

maintain cell contractility and traction for efficient migration.

Cell volume changes are expected in migrating cells since al-

terations in shape during extension and retraction occur through-

out migration. Multiple ion transport mechanisms are responsible

for regulating and maintaining cellular volume in response to

changes in extracellular osmolarity and during cell migration [5];

in addition, ion gradients and local volume changes have been

described in migrating cells [73,74]. These mechanisms include

ion transporters such as NKCC1, NHE1, KCC transporters, and

also ion channels. For instance, neutrophils undergo an increase in

intracellular volume in response to the chemotactic factor N-

formylmethionyl-leucyl-phenylalanine; this increase in cell volume

and increased migration is blunted by NHE1 transport inhibitors

and by exposure to hyperosmolar solutions, suggesting that

NHE1-mediated volume increase is necessary for neutrophil

migration [7,75]. Na+-K+-Cl2 transport inhibition has also shown

to decrease Madin-Darby canine kidney cell migration [74]. Our

results are in accordance with the findings discussed above where

inhibition of NKCC transport decreases migration. We also show

that NKCC1 knockdown decreases GB cell migration, confirming

the effects of pharmacologic inhibitors. Pharmacological inhibitors

and shRNA-based approaches may have off-target effects, but the

fact that the effect of both on GB cell migration is the same

confirms that the results seen by manipulating NKCC1 expres-

sion/transport are consistent.

EGFR activation promotes migration of normal neuroblasts,

astrocytes, and glioma cells [34,53,76–78]. EGF signaling affects

migration through diverse mechanisms, such as actin polimeriza-

tion [79,80], focal adhesion kinase regulation [81–83], and matrix

metalloproteinase expression [84]. EGF mediates its effects on cell

migration and proliferation through activation of its receptor-

tyrosine kinase and the various downstream signaling pathways,

which include the PI3K-Akt pathway. NKCC1 phosphorylation

by WNK3 after activation of the PI3K-Akt pathway supports the

hypothesis that NKCC1 activity is necessary for GB cell migration.

Furthermore, WNK3 activation after EGF stimulation suggests

that phosphorylation and activation of NKCC1 and phosphory-

lation and inhibition of KCC transporters may result in GB cell

migration. Therefore it seems this balance between these opposing

transport activities is important in the determination of GB cell

invasion.

The PI3K-Akt signaling pathway, among many other cell

functions, is central in the control of cell motility and polarization.

PI3K is activated by receptor tyrosine kinases and Ras [85]. It

modulates these functions by bringing diverse proteins that are

able to bind phosphatidyl-inositol triphosphate (PIP3) close to the

membrane. A notable example of the proteins that are recruited to

the membrane is Akt, which is activated after binding to PIP3

and phosphorylated by 39-phosphoinositide-dependent kinase 1

Figure 7. NKCC1 localizes to the extending processes of migrating cells with directional polarization. (A) Images of NS 253 cells
immunostained with T4 antibody (red, left panel), WNK3 antibody (green, center panel), and DAPI (blue). The right panel shows co-localization of
NKCC1 and WNK3 immunoreactivity. Below, high magnification images of the area in the dotted boxes are presented for more detail. Areas of
colocalization are pointed out using arrowheads. Scale bars represent 50 mm. (B) Images of NS 561 cells expressing NKCC1-GFP protein migrating on
a nanopatterned substrate shows localization to the advancing edge of extending processes in migrating cells at time-point 0 min (left panel), 2 h
(center left panel), 3 h (center right panel), and 4 h (right panel).
doi:10.1371/journal.pbio.1001320.g007
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Figure 8. EGF promotes phosphorylation of NKCC1, and activation of the PI3K-Akt pathway is necessary for EGF-mediated WNK3
phosphorylation. (A) Treatment of GB cell lines NS 318 and NS 567 with EGF (30 ng/ml) stimulates phosphorylation of NKCC1. Exposure of cells to
EGF (30 ng/ml) for 10, 30, and 60 min show a time-dependent course of NKCC1 phosphorylation. Also, exposure of NS 567 to 60 ng/ml of EGF shows
higher levels of phosphorylation than phosphorylation levels at the same time point at 30 ng/ml showing a dose-dependent effect. A line plot is
presented with the quantification of the ratio of p-NKCC1/NKCC1. (B) Activation of PI3K is necessary for phosphorylation of NKCC1 after stimulation of
HEK-293 cells with EGF. HEK-293 cells were serum starved overnight and were incubated with wortmannin (WM) for 30 min prior to stimulation with
EGF for 30 min. Total cell lysate (150 mg) was immunoprecipitated with T4 antibody before immunoblotting with anti-phospho NKCC1 antibody (top
panel) or T4 antibody (bottom panel). (C) Activation of PI3K is necessary for increased phosphorylation of WNK3 after stimulation with 30 ng/ml EGF.
After overnight serum starvation, HEK-293 cells were incubated with WM for 30 min prior to stimulation with EGF for 30 min. Total cell lysate (150 mg)
was immunoprecipitated with WNK3 antibody before immunoblotting with anti-phosphorylated Akt substrate (aPAS) antibody (top panel) or WNK3
(bottom panels). (D) Total cell lysate samples (25 mg) were also resolved by SDS-PAGE and blotted with phospho-Akt (threonine 473, top panel) and
Akt (bottom panel) antibodies to show inhibition of Akt phosphorylation after PI3K inhibition. A line plot is presented with the quantification of the
ratio of p-NKCC1/NKCC1, aPAS/WNK3, and p-Akt/Akt. (E) Akt phosphorylation motif, top panel. Middle panel shows the alignment of the sequences
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(PDK1); AKT is recruited in a polarized manner to the leading

edge of the migrating cell membrane [86]. It is well known that

PI3K activation mediates cytoskeletal rearrangements and cell

polarization through the action of the guanine nucleotide exchange

factors (GEFs) [87,88]. Moreover, PI3K modulates actin polymer-

ization and membrane insertion at the leading edge of a cell by

regulating the activity of Arf [89]. Its activation also promotes cell

polarization through Rac regulation [90]. It is still necessary to

assess if the cytoskeletal rearrangements and cell polarization

mediated by PI3K are important in the generation of the partial

distribution of NKCC1 to the extending processes of GB cells.

WNK3 regulates ion transport through phosphorylation: it

phosphorylates and activates NKCC1 and phosphorylates and

inhibits transport of the KCC transporters in a reciprocal manner

[27,50]. Furthermore, Haas et al. have shown that following a

hyperosmotically induced decrease in cell volume, WNK3 may

regulate NKCC1. Also, the reduced expression of WNK3 by

shRNA diminished the ability of glioma cells to migrate in vitro

[91]. Our results show that inhibition of NKCC and KCC transport

result in opposite effects in GB cell migration. Similar to WNK1,

our immunoprecipitation experiments show that EGF induces

phosphorylation of WNK3 through Akt [29,54]. When phosphor-

ylated, WNK3 then phosphorylates NKCC1 and possibly KCC

transporters. This mechanism is similar to the mechanism proposed

for increased excitability of neurons, where WNK3 signaling is

impaired, resulting in GABA-mediated excitation of neurons and

seizure activity [27]. Therefore, it is conceivable that WNK3

activation results in activation of NKCC1 and inhibition of KCC

transport, causing increased migration of GB cells.

In this study, we show that NKCC1 transport expression and

activity are necessary for GB cells to migrate and invade. The

mechanism affecting cell contractility that we report in this article

may be independent from regulation of volume changes and may

be due to regulation of focal adhesion formation and turnover. We

also show that EGF regulates NKCC1 phosphorylation through

an Akt-WNK3 pathway, linking the PI3K-Akt pathway to the

WNK3 kinase. This suggests that WNK3 may have a role in

determining GB cell migratory properties. Furthermore, given that

NKCC1 is ubiquitously expressed, it is possible that it plays a very

similar role in physiological migration such as inflammatory cell

diapedesis or neural precursor migration during development, as

well as in the process of metastasis of other highly aggressive

cancers.

Materials and Methods

Cell Lines
Patient samples of glioma tissues were obtained at the Johns

Hopkins Hospital under the approval of the Institutional Review

Board (IRB). All human brain tumor cell lines were derived from

intraoperative tissue samples from patients treated surgically for

newly diagnosed glioblastoma multiforme without prior treatment

as listed in Table S2. Differentiation potential of cell lines for an in

vivo experiment was evaluated by immunohistochemistry against

GFAP, TuJ1, and NG2 (Figure S9). Detailed culture methodology

has been previously described [92,93].

Generation of NKCC1-shRNA Stable Expressing Cell Lines
VSV-G pseudotyped virus was produced by co-transfecting

293T cells with a shRNA transducing vector and two packaging

vectors: psPAX2 and pMD2.G. The shRNA sequence used was

59-TAG TGC TCT CTA CAT GGC ATG GTT AGA AGC

TCT ATC TAA GGA CCT ACC ACC AAT CCT C-39.

Seventy-two hours after transduction, cells were cultured in the

presence of puromycin for selection of cells expressing the shRNA.

Knockdown was assessed by quantitative PCR (Figure S8) and

immunoblot (inset in Figure 1F and Figure S1C).

Cloning of Full-Length Human NKCC1 cDNA, Site-
Directed Mutagenesis, Subcloning Into Lentiviral Vector,
and Generation of EGFP Fusion Protein

The sequence of human NKCC1 (SLC12A2, accession number

NM001046) was amplified by PCR using gene-specific primers.

The sequence of the primers employed is as follows: sense, 59-

GCG TGC TGC CGG AGA CGT CC-39; antisense, 59- AGT

CAC CAT TCG CCA TTG TGA TGT T-39. The resulting PCR

product was cloned into pCR-XL-TOPO (Invitrogen). The cloned

sequence was verified in its entirety to confirm the absence of

mutations. The EGFP fusion protein was made by cloning the

NKCC1 open reading frame into pcDNA3-EGFP using standard

cloning procedures. All other procedures are listed in Supplemen-

tal Experimental Procedures (Text S1).

Quantitative Real-Time Polymerase Chain Reaction
Total RNA was extracted from primary glioma cell lines using

the RNAeasy kit (Qiagen) and reverse transcribed using the

SuperScript III First-Strand Synthesis System for RT-PCR

(Invitrogen). The target cDNAs were analyzed using SYBR Green

PCR master mix (Applied Biosystems) in a 7300 Real-Time PCR

system (Applied Biosystems). For relative quantification, the results

obtained were compared to the levels of target mRNA expression

present in the control cell line and normalized for GAPDH

expression. Primers are listed in Supplemental Experimental

Procedures (Text S1).

Immunoblotting
NKCC, WNK3, Akt, Ezrin, and actin were detected using

rabbit and mouse primary antibodies. Detection was done with the

appropriate horseradish-peroxidase conjugated secondary anti-

bodies and using the enhanced chemiluminescence reagent (GE

Healthcare Life Sciences). Antibodies are listed in Supplemental

Experimental Procedures (Text S1).

Immunoprecipitation
Cell lysates (150 mg of protein) were incubated with anti-NKCC

antibody (T4 antibody, 1 mg; DSHB) and anti-Ezrin (cell signaling

cat: 3145, 1:100) overnight at 4 uC on a shaking platform. Indirect

immunoprecipitation was done with protein G magnetic beads

(Millipore). Proteins were then eluted and denatured in LDS

protein loading buffer (Invitrogen).

In Vitro Invasion Assay
Fifty thousand cells were plated in the top chamber of a

matrigel-coated membrane (24-well insert; pore size, 8 mm; BD

Biosciences). Cells were plated in medium containing 0.5% of

serum, whereas medium with 2% serum was used as a chemo-

attractant in the lower chamber. After 48 h cells that invaded were

stained and counted for comparison.

of rat and human WNK3 showing conservation of the Akt phosphorylation motif. Bottom panel shows sequence of WNK1, which is phosphorylated
by Akt (bottom panel) [29]. Conserved residues are highlighted in red letters.
doi:10.1371/journal.pbio.1001320.g008
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Nanogrooved Pattern Cell Migration Assay
Migration of glioma cells was quantified using a novel

directional migration assay using nano-ridges/grooves constructed

of transparent poly(urethane acrylate) (PUA), and fabricated using

UV-assisted capillary lithography (see Figure S3A–C) [94].

Nanopattern surfaces were coated with laminin (3 mg/cm2). Cell

migration was quantified using timelapse microscopy (Video S3).

Long-term observation was done on a motorized inverted

microscope (Olympus IX81) equipped with a Cascade 512B II

CCD camera and temperature and gas controlling environmental

chamber. Phase-contrast and epi-fluorescent cell images were

automatically recorded under 106objective (NA = 0.30) using the

Slidebook 4.1 (Intelligent Imaging Innovations, Denver, CO) for

15 h at 10–20-min intervals.

Quantitative Analysis of Cell Migration
A custom-made MATLAB script was used to identify cell

boundaries from phase-contrasted images and to measure cell

centroid positions. Average individual cell speed was calculated

from individual cell trajectories and durations of the image

acquisition. Mean squared displacements at various time intervals

were calculated using a previously published method [95].

The spindle shape factor was defined as the ratio of the length of

maximum cell width (maximal axis) to the minimum value of

the cell width in the direction perpendicular to maximum axis,

regardless of the orientation with respect to nanogrooves. For each

condition, over 60 cells were quantified in total.

For quantitative analysis of cell orientation, cells were fixed

and stained for F-actin with phalloidin. The orientation angle of

polarized cell was determined by measuring the acute angle

between the major axis of the cell and the direction of grooves.

More than 100 cells for each group were used to construct the

polarization angle distributions with range 290u and 90u. A

summary of all the migration assays used is presented in Table S3.

Fourier Transform Traction Microscopy (FTTM)
The contractile stress arising at the interface between an

adherent cell and its substratum was measured with traction

microscopy [96]. For each cell analyzed, the traction field was

computed using Fourier transform traction cytometry as described

previously. The computed traction field was used to obtain the net

contractile moment, which is a scalar measure of the cell’s

contractile strength (Figure S5) [97].

Immunofluorescence
Cells were fixed in 4% paraformaldehyde in phosphate-buffered

saline (pH 7.4) for 1 h and blocked with 10% normal donkey

serum in PBS for 1 h. Subsequently, fixed cells were incubated

with primary antibody at 4 uC overnight. The preparation was

then incubated with Alexa Fluor-conjugated secondary antibodies

(Invitrogen) and mounted using Aquamount (VWR). All antibod-

ies and their dilutions are listed in Supplemental Experimental

Procedures (Text S1).

Intracranial GB Cell Injections, Sectioning, and
Histochemistry

All animal protocols were approved by the Johns Hopkins

Animal Care and Use Committee. In vivo invasion and tu-

morigenesis of cells expressing NKCC1 shRNA were assessed in 4-

to 6-wk-old male mice (nude/athymic mice, NCI) using our brain

tumor model as previously described [98]. Mice were sacrificed

8 wk after injection. Brains were fixed using transcardiac per-

fusion, postfixed overnight at 4 uC in 4% formalin, embedded in

OCT compound (Tissue-Tek), and frozen, sectioned, and stained

with an antibody against human nestin (1:500, MAB5326

Millipore). Stained cryosections were used to calculate tumor size

and invasiveness by computer-based morphometrics using Image

J. Please refer to Text S1 for detailed description of the in-

tracranial injection of GB BTSCs.

Assessment of Proliferation
Primary human GB cells expressing the control shRNA and

NKCC1 shRNA were treated with 10 mM 5-ethynyl-20-deoxyur-

idine (EdU). Cells were harvested for detection of EdU incorpora-

tion using Click-iT EdU Flow Cytometry Assay Kits (Invitrogen,

Cat. No. C35002) following the manufacturer’s instructions. The

percentage of cells that incorporated EdU was measured using flow

cytometric detection of EdU. Data were analyzed using Kaluza

software (Beckman Coulter).

Tissue Microarray
A tissue microarray was designed and built according to pre-

viously established methods [99]. Cores were taken from each

tumor mass or control tissue (see Table S1). The tissue that was

included in the cores of the microarray was representative of the

tissue blocks from where the cores were obtained. Analysis and

correction for cell number was done using the FRIDA software

(free web-based tissue microarray analysis software).

Statistical Analysis
Unless otherwise noted, data are presented as mean 6 standard

error of the mean. A t test was used to compare two groups; one-

way analysis of variance (ANOVA) was used in multiple group

comparisons with Bonferroni’s post hoc test. Mann-Whitney rank-

sum test was used to evaluate the statistical significance in

quantification of spindle shape factor where indicated. In order to

satisfy the distributional assumptions associated with the ANOVA,

cell traction force data were first converted to log scale prior to

analyses. For the comparisons between treatments, we used a

nested ANOVA. All analyses were performed in Sigma Plot 9.0

(Systat Software Inc., San Jose, CA) SAS Version 9.2 (SAS

Institute, Cary, NC), and a two-sided p value less than 0.05 was

considered significant.

Supporting Information

Figure S1 NKCC1 activity is necessary for GB cell invasion.

Quantification of transwell invasion assays of NS 221 exposed to

(A) increasing doses of bumetanide. DMSO versus 50 mM. * p

value,0.05. And (B) NS 561, NS 318, NS 221, NS 319, and

NS 243 primary human GB cell lines exposed to 50 mM of

bumetanide. (C) Immunoblot showing effective knockdown of

NKCC1 in stably transduced NKCC1 shRNA cell lines. (D)

Quantification of transwell invasion assays of NS 567 and NS 501

primary human glioma cell lines stably transduced with NKCC1

shRNA. (E) RT-PCR showing stable knockdown of KCC4 in NS

318. Bars represent mean 6 S.E.M. * p value,0.05. Scale bars

represent 50 mm.

(TIF)

Figure S2 NKCC1 knockdown does not decrease proliferation

of primary human GB cell lines in vitro or in vivo. (A) Proliferation

was measured using Click iT EdU kit (Invitrogen). The fraction of

EdU positive cells was similar in cells expressing control shRNA

and in cells expressing NKCC1 shRNA in all three cell lines

tested: NS 561, NS 501, and NS 318. (B) Quantification of Ki67

positive cells in sections of the in vivo tumors showing no
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differences in the amount of proliferating cells n = 4 mice (12

sections per mouse) for Control shRNA and n = 4 mice (12 sections

per mouse) for NKCC1 shRNA cells; the differences were not

significant. (C) Representative images of Ki67 immunohistochem-

istries and DAPI of the tumor grafts (top panels, Control shRNA;

bottom panels, NKCC1 shRNA). Bar represents 20 mm.

(TIF)

Figure S3 NKCC1 knockdown decreases migration speed and

directionality in primary human GB cell lines. (A) Diagram

representing a raw nanopatterned surface (left). After ECM-coating

(red), cells migrate following the mechanical cues (right). (B)

Representative scanning electron microscopy image of the nanopat-

terned substrate. (C) Representative phase contrast image of GB cells

aligned to a nanopatterned surface. (D) Quantification of cell migration

on a nanopattern surface when cells are exposed to the NKCC1

inhibitor bumetanide. Bars represent mean 6 S.E.M. * p value,0.05.

(TIF)

Figure S4 NKCC1 knockdown increases the size of focal

adhesions in primary human GB cell lines. NS 501 control

shRNA (left panel), NKCC1 shRNA (middle panel), and wild-type

treated with 5 mM paclitaxel (right panel) stained with an anti-

vinculin antibody (A) and anti-paxillin antibody (B) to visualize

focal adhesions.

(TIF)

Figure S5 A detailed description of this technique is given by

Butler and colleagues [97,101]. In brief, cells are plated sparsely

on polyacrylamide elastic gel block coated with collagen type I

(0.2 mg/ml) and allowed to spread and stabilize for 24 h. (A) Phase

contrast image of a single primary human glioma cell adhered to

the elastic gel substrate. For each adherent cell, images of fluo-

rescent microbeads (B), 0.2 mm in diameter (Molecular Probes,

Eugene, OR), embedded near the gel apical surface are taken at

different times; the fluorescent image of the same region of the gel

after detachment of the cell with trypsin is used as the reference

(traction-free) image. The displacement field between a pair of

images is then obtained by identifying the coordinates of the peak

of the cross-correlation function [97,101,102]. From the displace-

ment field (C) and known elastic properties of the gel, the traction

field is calculated using both unconstrained and constrained

Fourier transform traction cytometry [97,101,102]. The computed

traction field is then used to obtain contractile moment, which is a

scalar measure of the cell’s contractile strength that requires no

estimation of cell geometry [97,101]. Here contractile moment is

expressed in pico-Newton meters (pNm).

(TIF)

Figure S6 NKCC1 localizes to the extending processes and

colocalizes with WNK3 immunoreactivity in primary human GB

cells. (A) Images of NS 319 cells immunostained with T4 antibody

(red, left panel), WNK3 antibody (green, center panel), and DAPI

(blue). Merge in the right panel showing co-localization of

NKCC1 and WNK3 immunoreactivity. (B) NKCC1 localizes to

the edge of extending processes in multiple primary human GB

cell lines. Scale bars, 50 mm.

(TIF)

Figure S7 Confocal mages of NS 318 cells transfected with

NKCC1-GFP migrating on a flat surface at (A) 0 min, (B) 12 min,

(C) 20 min, and (D) 36 min. Note localization of NKCC1-GFP in

the extending lamellipodia as demonstrated by the arrowheads.

Scale bars represent 100 mm.

(TIF)

Figure S8 Assessment of NKCC1 knockdown efficiency of five

different shRNA sequences using real-time RT-PCR. Bar chart

showing fold change in mRNA levels of NKCC1 in NS 253

glioma cell line expressing five different shRNA sequences. shRNA

#2 showed the best knockdown efficiency when compared to

control shRNA.

(TIF)

Figure S9 Assessment of differentiation of NS 551 BTSCs into

the three neuronal lineages. Immunostains of NS 551 cells

differentiated against Tuj1 (neuronal marker), GFAP (astrocytic

marker), and NG2 (oligodendroglial marker).

(TIF)

Text S1 Supplemental experimental procedures.

(DOC)

Video S1 NKCC1-EGFP localizes to extending processes of

migrating GB cells on nanopatterned surfaces. NS 318 cells

transfected with NKCC1 GFP were plated on a nanopatterned

surface, and timelapse imaging was obtained showing that

NKCC1-EGFP localizes to the extending processes of migrating

GB cells.

(MOV)

Video S2 NKCC1-EGFP localizes to extending processes of

migrating GB cells on flat surfaces. NS 318 cells transfected with

NKCC1-EGFP were imaged using a spinning disk confocal

microscope that allowed us to obtain better spatial resolution of

the localization. This experiment shows how NKCC1-EGFP

localizes exactly to the membrane of ruffles of extending

lamellipodia.

(AVI)

Video S3 Migration of brain tumor cells on a nanopatterned

surface. NS 318 cells were plated on a nanopatterned surface that

provides cells with nanomechanical cues that attempt to

recapitulate the extracellular matrix. Please note how cells migrate

in a linear fashion in parallel to the nanogrooves. Nanogrooves are

horizontally oriented in this experiment.

(MOV)
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