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Abstract

Clathrin-mediated endocytosis proceeds by a sequential series of reactions catalyzed by discrete sets of protein machinery.
The final reaction in clathrin-mediated endocytosis is membrane scission, which is mediated by the large guanosine
triophosphate hydrolase (GTPase) dynamin and which may involve the actin-dependent recruitment of N-terminal
containing BIN/Amphiphysin/RVS domain containing (N-BAR) proteins. Optical microscopy has revealed a detailed picture
of when and where particular protein types are recruited in the ,20–30 s preceding scission. Nevertheless, the regulatory
mechanisms and functions that underpin protein recruitment are not well understood. Here we used an optical assay to
investigate the coordination and interdependencies between the recruitment of dynamin, the actin cytoskeleton, and N-
BAR proteins to individual clathrin-mediated endocytic scission events. These measurements revealed that a feedback loop
exists between dynamin and actin at sites of membrane scission. The kinetics of dynamin, actin, and N-BAR protein
recruitment were modulated by dynamin GTPase activity. Conversely, acute ablation of actin dynamics using latrunculin-B
led to a ,50% decrease in the incidence of scission, an ,50% decrease in the amplitude of dynamin recruitment, and
abolished actin and N-BAR recruitment to scission events. Collectively these data suggest that dynamin, actin, and N-BAR
proteins work cooperatively to efficiently catalyze membrane scission. Dynamin controls its own recruitment to scission
events by modulating the kinetics of actin and N-BAR recruitment to sites of scission. Conversely actin serves as a dynamic
scaffold that concentrates dynamin and N-BAR proteins at sites of scission.
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Introduction

Clathrin-mediated endocytosis (CME) begins when a clathrin-

coated bud forms at the plasma membrane through the processive

recruitment of cargo, adaptors, and accessory proteins including

curvature inducing/sensing BIN/Amphiphysin/RVS domain

(BAR) domain proteins [1–3]. The actin cytoskeleton may also

play a role in the late stages of clathrin-coated bud formation in

some cell types [4–7] through force generation and/or through

segregation of lipids [8–10] (though see [11]). The process is

completed when the constricted membrane neck of the clathrin-

coated bud is severed to release a clathrin-coated vesicle (CCV) in

a reaction involving guanosine triophosphate (GTP) hydrolysis by

the large GTP hydrolase (GTPase) dynamin [12,13].

Despite this timeline of the molecular dynamics of CCV

formation, the underlying mechanisms that govern how and when

endocytic proteins arrive and depart from sites of CME are still

poorly understood. Pharmacological [14] and live cell imaging

studies [15] in conjunction with dynamin mutants [16–18] have

shown that the GTPase activity of dynamin is not solely involved

in the scission reaction but also is functionally relevant at earlier

time points during clathrin-coated bud maturation (see also

[19,20] for recent reviews). This finding suggests that the GTPase

activity of dynamin could have a role in regulating the recruitment

kinetics of endocytic proteins such as N-terminal containing BIN/

Amphiphysin/RVS domain (N-BAR) proteins, actin, and actin

effectors in the seconds preceding scission. In support of this

hypothesis, N-BAR proteins can directly bind to dynamin [21,22]

and also promote the generation of highly curved membrane

templates to which dynamin preferentially binds [23,24]. This

suggests a cooperative relationship with dynamin during mem-

brane scission [3,25]. Moreover dynamin recruitment and actin

polymerization occur over a similar time course in the seconds

preceding scission [26]. Thus the dynamin GTPase cycle could

potentially modulate endocytic actin and N-BAR protein dynam-

ics. It has been proposed that dynamin is a negative regulator of

endocytic actin dynamics [27]. There is also evidence that the

GTPase activity of dynamin is required for actin polymerization in

some cellular contexts [28,29] and dynamin can bind filamentous

actin (F-actin) and promote actin polymerization via F-actin

uncapping [30]. However, despite the circumstantial evidence, it

remains unclear whether the dynamin GTPase cycle regulates
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actin polymerization and the recruitment dynamics of dynamin

and key dynamin binding partners to clathrin-coated buds in the

,20 s before scission in vivo. Conversely actin could play a role in

concentrating dynamin at sites of scission because dynamin binds

directly to F-actin [30] and F-actin binding effectors are implicated

in actin polymerization [31,32].

Here we investigated potential dependencies between dynamin,

actin, and N-BAR protein recruitment during CME by employing

the ‘‘pulsed pH assay’’: a total internal reflection fluorescence

microscopy (TIR-FM)–based assay that detects the internalization

of transferrin receptor at individual clathrin-coated structures (CCS)

[26,33]. By using scission events as a spatial and temporal reference

the kinetics of protein recruitment to sites of scission can be

measured with 2-s resolution [26,33]. We found that dynamin and

the actin cytoskeleton have complementary regulatory functions

during mammalian CME: dynamin GTPase activity regulated the

kinetics of dynamin, actin, and N-BAR recruitment and, in turn, a

dynamic actin cytoskeleton was required to concentrate dynamin

and N-BAR proteins at sites of scission. Our data indicate that a

feedback mechanism exists between dynamin and actin in the

moments leading up to membrane scission during CME.

Results

Dynamin Recruitment to Sites of Scission
NIH-3T3 cells stably expressing WT mouse dynamin1 fused to

mCherry (dyn1(WT)-mCherry) were transiently transfected with

the reporter construct human transferrin receptor (TfR) fused to the

pH-sensitive green fluorescent protein pHluorin (TfR-phl) [33–35].

Cells were assayed with the pulse pH assay by synchronizing image

acquisition with local perfusion of a target cell with alternate low

and high pH buffers (Figure 1A; in the following text TfR7 refers to

the TfR-phl signal at pH7, and TfR5 refers to TfR-phl signal at

pH5). The moment of vesicle formation was detected when a

fluorescent puntcum of TfR-phl appeared in an image acquired at

pH5 (TfR5 t = 0 s; Figure 1B; see Materials and Methods for

description of quantification and [26] and [33] for details). A

prominent burst of dyn1(WT)-mCherry recruitment was observed

in the frames directly preceding the appearance of individual

scission events (Figure 1B) [26]. Detailed signal analysis revealed the

dyn1(WT) fluorescent signal consisted of low amplitude ‘‘flickering’’

that preceded the final burst of dynamin fluorescence that peaked

2–4 s before vesicle appearance (Figure 1C; also see Video S1).

Scission events were used as a fiducial marker to align dyn1(WT)-

mCherry fluorescent recruitment signals and generate an average

ensemble recruitment ‘‘signature’’; a temporal readout of a protein’s

recruitment relative to scission. The recruitment signature reflects

the dynamic equilibrium between protein free in the cytosol and

accumulated at the CCS. The dyn1(WT)-mCherry ensemble

recruitment signature peaked at 2 s before vesicle detection (t = 0;

Figure 1D and 1E), consistent with previous measurements [26] and

dynamin’s role in catalyzing membrane scission [23,36]. The

average ensemble dyn1(WT)-mCherry recruitment signature was

equivalent for NIH-3T3 cells that were transiently or stably

expressing dyn1(WT)-mCherry (Figure 1D and 1E). For scission

events defined as ‘‘terminal’’ (hosted by a parent CCS that

disappeared after scission, see TfR7 channel in Figure 1C; see

Materials and Methods; and also [26]), the low amplitude

‘‘flickering’’ observed at individual events manifested as an elevated

pre-scission fluorescence, which disappeared following scission (see

arrows in Figure 1D). In the recruitment signature to scission events

defined as ‘‘non-terminal’’ (hosted by a parent CCS that persisted

post-scission at the plasma membrane and could host multiple

scission events; see TfR7 traces in Figure 1C) the elevated

fluorescence persisted after scission, indicating continual dynamin

flickering at the remaining portion of CCS (Figure 1E). The low

amplitude ‘‘flickering’’ indicated that dynamin was present at CCS

at early time points and suggested transient recruitment, with

dynamin constantly ‘‘hopping’’ on and off CCS until time points

close to scission when its recruitment was stabilized.

Dynamin GTPase Mutants Have Different Effects on the
Recruitment Kinetics of Dynamin to Scission

We hypothesized that dynamin’s GTPase activity was involved

in recruiting dynamin to CCS. If this were correct, mutant

versions of dynamin with altered enzymatic kinetics should have

distinctive recruitment signatures relative to scission. To test this

hypothesis we assayed the recruitment of six GTPase domain

dynamin mutants [37,38] tagged with mCherry (Figure 2A). The

six GTPase mutations selected display a range of different Km and

kcat values (see [37,38]).

By inspection we found that GTPase domain point mutants

with similar enzymatic kinetics had similar recruitment signatures.

To quantify the similarity between the six GTPase mutants and

wild type (WT), we compared the pre-scission recruitment

signatures (from 282 s to t = 0) of each point mutant and WT

pair-wise and arranged them into a dendrogram by hierarchal

clustering (Figure 2B). Mutations that mainly effect kcat,

dyn1(S61D)-mCherry, dyn1(T65D)-mCherry, and dyn1(T65H)-

mCherry grouped together and slowed the burst of dynamin to a

similar degree at time points close to scission (Figure 2C).

Dyn1(T141A)-mCherry, a mutant with reduced affinity for GTP

but greater rate of GTP hydrolysis, was surprisingly similar to

dyn1(S61D/T65D/T65H) (Figure 2D). Dyn1(T141D), a mutant

with reduced GTP binding and hydrolysis, had a dramatically

slower rate of build-up in the seconds leading to scission

(Figure 2D). Finally dyn1(T65A)-mCherry, a mutant with a low

Author Summary

Cells internalize surface receptors via clathrin-mediated
endocytosis, a process in which receptors concentrate in
clathrin-coated pits in the plasma membrane that pinch
into the cell as membrane vesicles. The mechanism by
which vesicles pinch off from the plasma membrane is
referred to as membrane scission and this requires the
large guanosine triphosphate hydrolase (GTPase) dynamin,
curvature sensing/inducing N-terminal helix containing
Bin/Amphiphysin/Rvs (N-BAR) domain proteins and regu-
lation by the actin cytoskeleton. The precise mechanism of
dynamin recruitment to scission sites, the kinetics of this
recruitment, and how dynamin regulates recruitment of its
binding partners and scission is not well understood. In
this study we used an optical assay to measure the
recruitment kinetics of dynamin, actin, and N-BAR proteins
BIN1 and endophilin2 to individual clathrin-mediated
endocytic scission events. We show that there is a positive
feedback loop between dynamin and actin at membrane
scission sites: dynamin regulates actin recruitment and
actin assembly stabilizes dynamin recruitment. The kinetics
of dynamin, actin, and N-BAR protein recruitment are in
turn regulated by dynamin’s GTPase activity. Conversely,
inhibiting actin dynamics decreases the incidence of
scission and decreases the amplitude of dynamin recruit-
ment to scission events by around 50%. Our data suggest
that dynamin, actin, and N-BAR proteins cooperate to
catalyze efficient membrane scission and that dynamin
controls its own recruitment to scission by modulating the
actin cytoskeleton.

A Dynamin/Actin Feedback Loop in Endocytosis
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affinity for GTP and rate of GTP hydrolysis, was the least similar

to any other recruitment signature, and had a unique recruitment

profile (Figure 2E; see Video S1).

Dynamin has been implicated in regulating multiple stages of

CCV formation [15]. To understand these regulatory mechanisms

we focused on the dyn1(T65A) mutant, as its recruitment signature

displayed a high level of recruitment from the earliest time points

before scission (280 s to 220 s pre-scission) (Figure 2E and 2F).

This suggested dyn1(T65A) affected the transient ‘‘flickering’’ of

dynamin and was recruited at higher levels to CCS during the

early stages of CCS formation. Kymograph analysis of dyn1(WT)-

expressing cells showed that dyn1(WT) was significantly recruited

in the seconds before vesicle appearance (Figure 2G). In contrast

dyn1(T65A) was significantly recruited at or shortly after the point

of de novo CCS formation and appeared to be enriched at CCS

from early time points (Figure 2H; and see Video S1).

In previous studies the expression of dyn1(T65A) was shown to

significantly decrease the rate and extent of transferrin uptake

measured using bulk assays [37–39], although it was not as potent

a dominant negative as dyn1(K44A) [39]. Similar to these earlier

results we found that dyn1(T65A) lowered the incidence of scission

events; although, once again, it was a much less potent inhibitor of

scission activity when compared to dyn1(K44A) (Table S1).

Unexpectedly, dyn1(T141D) did not cluster with dyn1(T65A)

(Figure 2B), despite similar enzymatic constants [38].

Dyn1(T141D) did not affect the transient ‘‘flickering’’ phase of

dynamin recruitment but had a slower burst of recruitment

associated with scission, and hence was more similar to

dyn1(S61D/T65D/T65H) (Figure 2B).

To further investigate the kinetics of dynamin association with

CCSs we compared the mobility and turnover of dyn1(WT/T65A)

using fluorescent recovery after photobleaching (FRAP). A 3-mm2

region containing CCS (indicated by mCherry-Clc) was selected and

bleached and the fluorescence recovery of dyn1(WT/T65A)-EGFP

and mCherry-Clc was measured in the following 100 s. Dyn1(T65A)-

EGFP had a lower mobile fraction and slower half-time of recovery

compared to dyn1(WT)-EGFP (mobile fraction of 59% versus 80%,

and half time of recovery of 5.3 s versus 3.9 s, respectively) (see Figure

Figure 1. The kinetics of dynamin recruitment to sites of
membrane scission. (A) Sequential images from a TIR-FM image
series of an NIH-3T3 fibroblast stably expressing dyn1(WT)-mCherry
(Dyn1, lower panel) and transiently expressing TfR-pHl (TfR, upper
panel). CCS were marked by spots of TfR-phl (spots, TfR images, pH7).
At pH5 the fluorescence of externally accessible TfR-SEphl at CCS and
on the membrane quenched to reveal acid-resistant, internalized TfR-
phl. (B) Dyn1(WT)-mCherry was recruited shortly before scission. Time
series of an example CCS (marked by TfR7, upper panel), which hosted a

scission event (indicated by arrow, TfR5 image series) to which
dyn1(WT)-mCherry was recruited (lower image series). Quantified
fluorescence measurements from the time series shown on right (dark
green, TfR7; light green, TfR5; blue, Dyn1). Dots correspond to the
images shown. Scission manifested as an abrupt increase in the TfR5
fluorescence signal as the endocytic vesicle was occluded from external
acidification. (C) Example full-length TfR7 fluorescence traces of CCS
showing associated scission events and dyn1(WT)-mCherry recruitment.
Example events of CCS that hosted one scission event (two sets of
traces on left), two scission events (set of traces upper right), or three
scission events (set of traces lower right). Scission events were classified
as ‘‘terminal’’ (T) or ‘‘non-terminal’’ (NT) depending on whether the host
CCS persisted or disappeared following scission (see text for
explanation). Grey boxes indicate time over which CCS were visible.
(D–E) Ensemble recruitment signatures of dyn1(WT)-mCherry for
terminal events (D) or non-terminal events (E). Similar recruitment
kinetics were observed in cells expressing dyn1(WT)-mCherry either
stably (light blue) or transiently (dark blue). Transient ‘‘flickering’’ of
dyn1(WT)-mCherry manifested as elevated pre-scission dyn1(WT)-
mCherry fluorescence (black line and arrow on (D)), which persisted
in non-terminal events following scission (E). Error bars represent
standard error of the mean. Grey lines in (D and E) represent 95%
confidence limits for random fluorescence measurements (see Materials
and Methods for details). (D, stable, 11 cells, 1,483 events; transient, 21
cells, 2,229 events; E stable, 11 cells, 1,483 events; transient, 21 cells,
2,229 events).
doi:10.1371/journal.pbio.1001302.g001
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S1A–S1F). Dynamin is recruited to clathrin-coated pits at the plasma

membrane [12], and these results indicate that dyn1(T65A) turned

over at CCS at a slower rate. The turnover and mobility, as measured

by FRAP, of mCherry-Clc in cells expressing dyn1(WT) or

dyn1(T65A) was very similar suggesting that the turnover of clathrin

at CCS was independent of the dynamin GTPase cycle. These latter

findings are congruent with published data [40].

Regardless of the mutant assayed using the pulse pH assay peak

recruitment was at t = 22 s suggesting continuous dynamin

recruitment up until the point of scission (see Table S1). All

measurements were carefully performed at equivalent expression

levels, although in a background of endogenous WT dyn1/2, and

at present we do not know the relative proportions of endogenous

and mutant dynamin at any given scission event. However, the

variation between the recruitment profiles of specific mCherry-

tagged GTPase mutants shows that dynamin’s recruitment to CCS

was regulated by its GTPase cycle.

Dynamin GTPase Cycle Regulates Both CCS Maturation
and Scission

Previous analysis of single scission events in 3T3 fibroblasts

revealed CCS can host multiple scission events [26]. The time

between CCS nucleation to the first detected scission event was

equivalent to the time between successive scission events, if they

occurred, at persistent CCS. Therefore the underlying kinetics of

clathrin-coated bud formation was relatively constant, despite the

observed variability of CCS lifetimes [33] and total CCS lifetime

was not an accurate measure of the underlying kinetics of CCV

formation for CCS, which hosted multiple scission events. To

understand dynamin’s role in CCS maturation, we measured the

average time from CCS nucleation to the first detected scission

event in cells expressing dyn1(WT), dyn1(S61D) and dyn1(T65A)

(Figure 3A–3C). We found that expression of dyn1(S61D) and

dyn1(T65A) increased the time from CCS nucleation to scission in

comparison to the expression of dyn1(WT) (156 s and 216 s versus

104 s, respectively). For CCS, which hosted from one up to three

scission events, the average time from nucleation to the nth scission

event increased linearly, as expected (Figure 3D; see Materials and

Methods). Therefore, dyn1(T65A) and dyn1(S61D) significantly

slowed the underlying kinetics of clathrin-coated bud formation

and, by definition, the endocytic activity per CCS was significantly

lower in cells expressing these mutants. The magnitude of this

effect was greatest for dyn1(T65A)-expressing cells. Dyn1(T65A) is

a point mutant with a strong effect on GTP binding and

hydrolysis, and its expression increased the time course of CCS

maturation by ,2-fold (Figure 3D).

For comparison the dynamics of three GED mutants were also

measured: dyn1(K694A), dyn1(K694E), and dyn1(R725A) (see

Figure S2A–S2C) [17,18]. In earlier studies, it was suggested that

dyn1(K694A) and dyn1(R725A) accelerated early, rate-limiting

events in CCS maturation and thereby increased the rate of

transferrin uptake [17,18]. However, in an alternative study it was

found cells expressing dyn1(K694A) and dyn1(R725A) internal-

ized transferrin to an equivalent level as WT cells [37]. Our results

were congruent with this later study and we found that the three

GED mutants assayed did not have a strong effect on the dynamin

recruitment signature (Figure S2A–S2C) or the average time from

nucleation to scission (see Figure S2D–S2G).

To further investigate the strong effect of dyn1(T65A) on vesicle

formation, we analyzed the ultrastructure of CCS in dyn1(WT),

dyn1(T65A), and dyn1(K44A) expressing NIH-3T3 cells. Fluores-

cence-activated cell sorting was used to select NIH-3T3 cells

expressing bicistronic constructs encoding dyn1(WT/T65A/K44A)

tagged with hemagglutinin antigen (HA) and green fluorescent

protein (see Materials and Methods). Cells were prepared for

electron microscopy (EM) to investigate the effect of dynamin

expression on the ultrastructure of coated pits. Compared to

untransfected NIH-3T3s or dyn1(WT)-HA expressing NIH-3T3s,

dyn1(T65A)-HA expressing cells accumulated coated pits with

tubulated necks (Figure 3E and 3F; Student’s t test p = 0.021);

although the effect was not as strong as the expression of the

dominant negative dyn1(K44A)-HA (Figure 3E and 3F). The potent

effect of dyn1(K44A) on the incidence of scission (see Table S1) and

the ,4 fold increase in frequency of tubulated coated pits compared

to cells expressing dyn1(T65)-HA (Figure 3F) suggested that the

tubulated coated pits in the dyn1(K44A)-expressing cells were dead-

end structures that were unable to pinch off, as previously concluded

[12,41]. By contrast the relatively moderate increase in tubulated

coated pits in dyn1(T65A)-HA expressing cells suggested coated pits

were slowed at this late phase close to scission, but were still

endocytically competent structures that could pinch off to form

CCVs. Collectively these data are consistent with previous studies

and suggest dynamin’s GTPase cycle regulates both clathrin-coated

bud maturation and scission [14–19].

Dynamin’s GTPase Cycle Regulates the Kinetics of Actin
and N-BAR Protein Recruitment

Dynamin directly interacts with F-actin [30], actin-associated

proteins [42], as well as molecules that induce/sense membrane

curvature such as N-BAR proteins [3,21]. Given these biochemical

interactions, how do the endocytic dynamics of actin and N-BAR

proteins compare to that of dynamin? We observed transient foci

of lifeact-mCherry, a vital probe for F-actin [43], at individual

scission events that appeared ,20 s before scission and then

decayed in fluorescence intensity post-scission (Figure S3A). We

observed endophilin2 (endo2)-mCherry recruitment (see Figure

S3B) over a similar time window, consistent with previous studies

[26] and localization of endo2-mCherry to the highly curved

membrane neck of deeply invaginated CCS [44]. A comparison of

the ensemble recruitment signatures confirmed that actin, endo2,

and dynamin were recruited to sites of scission over a similar time

window (Figure S3C and S3D; see also [26]). The ensemble

recruitment signatures of NIH-3T3 cells stably expressing endo2-

mCherry or transiently expressing BIN/Amphiphysin/RVS

domain containing protein 1 (BIN1)-mCherry were very similar

with a prominent burst of recruitment that peaked at 2–4 s before

scission (Figure S3E; Table S1). These data suggest that actin,

dynamin, and N-BAR proteins are present at CCS in the seconds

leading up to scission and vesicle formation.

Next we asked whether dynamin’s GTPase cycle modulated

actin and N-BAR protein recruitment to sites of scission. To

examine if the kinetics of endocytic actin and N-BAR recruitment

were regulated by dynamin’s GTPase cycle we created bicistronic

constructs to co-express lifeact-mCherry or endo2/BIN1-mCherry

in tandem with WT or GTPase mutant versions of dynamin

(Figure 4A and 4B). The recruitment signature of lifeact in a

background of co-expressed dyn1(WT) and dyn1(T141A) showed

only subtle differences to that of lifeact alone (Figure 4C and 4D)

and had little effect on the slope of actin recruitment/de-

recruitment (Figure 4E). Although it had no effect on the slope

of actin recruitment, co-expression of dyn1(WT) did shift the

lifeact recruitment signature ,4 s towards scission (Figure 4C).

The co-expression of dyn1(S61D) and dyn1(T65A) decreased the

slope of actin recruitment with dyn1(T65A) having the strongest

effect (Figure 4F–4H). Actin recruitment in cells expressing

dyn1(S61D) had a shift in the recruitment signature ,8 s away

from scission. The actin recruitment signature in cells expressing

A Dynamin/Actin Feedback Loop in Endocytosis
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dyn1(S61D) and dyn1(T65A) still peaked at t = 0, but F-actin

build-up began at much earlier time points (.,20 s and .,30 s

pre-scission for dyn1(S61D) and dyn1(T65A), respectively)

(Figure 4H). In contrast the slope of actin de-recruitment from

CCS was accelerated (Figure 4H). In all dynamin GTPase mutants

assayed actin enrichment peaked at t = 0. We conclude from these

experiments that the enrichment of actin at sites of CME scission

was regulated by dynamin’s GTPase activity either directly or

indirectly and that dyn1(T65A), the most potent GTPase mutant

tested, had the strongest effect.

The dynamin GTPase cycle had a similar effect on the rate of

N-BAR protein recruitment to sites of scission. Expression of

dyn1(WT) had no effect on the recruitment of endo2-mCherry to

scission; however, the expression of dyn1(T65A) slowed the rate of

endo2 recruitment to scission (Figure 4I–4K), although de-

recruitment was the same. Expression of dyn1(T65A) had a

similar effect on the kinetics of BIN1 recruitment (Figure 4K).

However scission was still associated with peak N-BAR protein

recruitment. We next examined how expression of dyn1(T65A)

affected G-cyclin associated kinase (GAK) recruitment. GAK

binds to Hsc70 and is involved in the uncoating reaction of CCVs

[45]. We found that the expression of dyn1(T65A) had no effect on

the rate of GAK-mCherry recruitment (Figure 4L) but the GAK

recruitment profile was shifted 2 s towards scission (see Table S1).

This could reflect an accelerated uncoating reaction following

scission in cells expressing dyn1(T65A) (Figure 4H).

Figure 2. The effects of Dynamin GTPase mutants on Dynamin recruitment kinetics. (A) Domain architecture of dynamin showing the
position of point mutation within the GTPase domain and the position of the pleckstrin homology domain (PH), guanine exchange domain (GED) and
proline rich domain (PRD). The GTPase point mutations selected were within the switch1 and 2 (SW1 and SW2) regions of the GTPase domain and
exhibited a range of Km and kcat values (see text). (B–E) Dynamin GTPase point mutants with similar enzymatic constants showed similar recruitment
kinetics to scission. The pre-scission recruitment profiles were compared pair-wise and arranged in a dendrogram by hierarchal clustering. (C–E)
Comparison of dyn1(WT)-mCherry and GTPase mutants recruitment signatures. (C) Dyn1(T65D)-mCherry, dyn1(T65H)-mCherry, and dyn1(S61D)-
mCherry showed similar recruitment signatures to scission and have similar enzymatic constants (see text). (D) Dyn1(T141A)-mCherry was similar to
dyn1(WT)-mCherry, while dyn1(T141D)-mCherry showed significantly slowed recruitment kinetics at scission. (E) Dyn1(T65A)-mCherry was the least
similar to all other recruitment signatures. Error bars represent standard error of the mean. (F) Dyn1(T65A)-mCherry was recruited from early time
points at relatively high levels compared to dyn1(WT)-mCherry, other GTPase mutants, and GTPase effector domain (GED) mutants (dyn1(R725A)-
mCherry, dyn1(K694E)-mCherry, dyn1(K694A)-mCherry). Fluorescence values calculated from window 82–42 s before scission (grey boxes, C–E). (G
and H) Kymograph comparison of dyn1(WT)-mCherry and dyn1(T65A)-mCherry expressing cells illustrating conspicuous recruitment of dyn1(T65A)-
mCherry to CCS from early time points. Red and yellow arrowheads indicate the timing of terminal and non-terminal scission event respectively. Blue
asterisk marks the position of a CCS forming de novo.
doi:10.1371/journal.pbio.1001302.g002
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Acute Inhibition of Actin Dynamics at Sites of Scission by
the Addition of Latrunculin-B

Examinations of actin-disrupting drugs on CME have histori-

cally relied on pre-incubations (typically 30 min to 1 h) prior to

examination with static techniques (such as biochemical assays or

EM) or indirect optical assays for CME function [4,7,11,46,47].

Despite these studies the mechanistic role of actin in mammalian

CME is still enigmatic. To gain a more precise mechanistic

understanding of the role of actin in mammalian CME and how

actin dynamics are interconnected with other endocytic proteins

we developed a four-channel perfusion system, which allowed the

local perfusion of a target cell with latrunculin-B in conjunction

with the pulsed pH assay (Figure 5A). In a typical experiment a

target cell was perfused with alternating high and low pH buffers

Figure 3. The effects of Dynamin GTPase mutants on CCS lifetime and ultrastructure. (A–C) Histograms of the time difference from de
novo CCS nucleation to first detected scission events in cells expressing dyn1(WT)-mCherry (A), dyn1(S61D)-mCherry (B), and dyn1(T65A)-mCherry (C).
(D) Slower rates of GTPase hydrolysis resulted in an increased average time from CCS nucleation to the nth scission event (see text for explanation of
measurement). Expression of dyn1(T65A)-mCherry and dyn1(S61D)-mCherry increased the time from nucleation to the nth scission event compared
to NIH-3T3 cells expressing dyn1(WT)-mCherry or clathrin light chain (Clc-mCherry). Dyn1(T65A)-mCherry had the most pronounced effect on CCS
lifetime. (E) Ultrastructural analysis of coated pits in WT NIH-3T3 cells and cells expressing dyn1(T65A)-HA. Representative transmission electron
micrographs of shallow, omega-shaped, and tubulated coated pits profiles as well as a coated vesicle. (F) Tubulated coated pits accumulate in cells
expressing dyn1(T65A)-HA. Morphometric analysis of the frequency of coated pit profiles in NIH-3T3 cells, and in NIH-3T3 cells expressing dyn1(WT)-
HA and dyn1(T65A)-HA. Insets show sketches of the coated pit profiles included in each category. Data were obtained from .30 randomly selected
cell profiles. Error bars represent standard error of the mean. *p = 0.021, Student’s t test.
doi:10.1371/journal.pbio.1001302.g003
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Figure 4. The effects of dynamin GTPase mutants on the kinetics of actin recruitment. (A) Bicistronic IRES vectors co-express dynamin
tagged with HA epitope and lifeact-mCherry or endo2/BIN1-mCherry. (B) Immunofluorescence of NIH-3T3 cells transiently transfected with
pIRESneoII-dyn1(WT)-lifeact-mCherry stained with antibodies against HA and mCherry. White arrowhead indicates untransfected cells only stained
with DAPI (scale bar = 10 mm). (C) The fluorescence recruitment signature of lifeact-mCherry (red, six cells, 788 events) and lifeact-mCherry co-
expressed with dyn1(WT)-HA (light blue, nine cells, 1,469 events). In cells co-expressing dyn1(WT)-HA, the recruitment peak of lifeact-mCherry was
moderately shifted towards scission. Recruitment slope was measured over the interval shown. (D) The fluorescence recruitment signature of lifeact-
mCherry co-expressed with dyn1(T141A)-HA (dark blue, nine cells, 2,258 events) compared with dyn1(WT)-HA (light blue). The recruitment signatures
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containing vehicle DMSO (channel 1 and 2) for ,13 min (400

frames) and then switched to alternating high and low pH buffer

(channel 3 and 4) containing DMSO and 2.5 mM latrunculin-B.

After 26 min (800 frames) the perfusate was switched back to

channel 1 and 2 to wash out the latrunculin-B (Figure 5A). Image

stacks were analyzed by separating them into 400-frame blocks

corresponding to data acquired under DMSO, 0–13 min and 14–

26 min exposure to latrunculin-B and during the wash out phase.

Thus, unlike previous studies, we could directly measure CCS

dynamics and scission events before, during, and after exposure to

latrunculin-B.

On exposure to 2.5 mM latrunculin-B we observed the

disappearance of actin foci, membrane ruffling, and actin stress

fibers (Figure 5B). By 6 min lifeact-mCherry had a cytosolic

localization, with only a few stable actin structures remaining

(Figure 5B; see Video S2), and this was coincident with a reduction

in the number of CCS (Figure 5B). In the presence of latrunculin-

B we were unable to measure significant lifeact-mCherry

recruitment relative to scission (Figure 5C). This finding is

consistent with previous studies that have observed latrunculin-

resistant clathrin endocytic events [7,33,47,48]. Although scission

events were observed, latrunculin-B reduced the incidence of

scission by .50% (Figure 5D) and resulted in a greater proportion

of events classified as non-terminal (Figure 5E). This suggested

larger and more stable CCSs tended to host scission events in the

absence of F-actin (see Table S1). Latrunculin-B decreased the

incidence of de novo CCS formation (Figure 5F), consistent with

previous studies [7,11,33]. Although the incidence of CCS

nucleation was reduced in frequency, we measured an increase

in the average time from nucleation to scission for CCS that did

form de novo in the presence of latrunculin (150 s compared with

117 s in presence of DMSO only) (Figure 5G). Consistent with

previous studies [7,27,49], ultrastructure analysis showed that

latrunculin-B–treated cells accumulate omega shape pits with

wider, less constricted membrane necks (see Figure S4A–S4C). On

average the ratio of clathrin bud to neck diameter in coated pits

classified as omega shaped was reduced by ,one-third in NIH-

3T3 cells treated with latrunculin-B (see Figure S4D). This

suggested that actin was involved in membrane constriction and

formation of deeply invaginated clathrin-coated pits.

Actin Dynamics Regulate the Recruitment of Dynamin
and N-BAR Proteins to Scission

While a role for dynamin in regulating actin dynamics in

cellular processes such as podosomes [50] and actin comets

[28,29] has been established, there are no data examining how

actin regulates dynamin’s endocytic function. We measured

dynamin recruitment to sites of scission before, during, and after

washout of latrunculin-B (Figure 6A). We found that latrunculin-B

did not perturb the pre-scission ‘‘flickering’’ phase of dynamin

recruitment but the burst of dynamin recruitment leading up to

scission was strikingly decreased in amplitude (Figure 6A; see

Video S3). Histogram analysis of dynamin fluorescence peaks

revealed that between 0–13 min exposure to latrunculin-B there

were still many events (,16%) with a fluorescent peak at 2–4 s

before scission (Figure 6A inset; see Materials and Methods) [26].

However after 13 min the fluorescent peaks appeared to be

randomly distributed in time, indicating a reduction in the

fluorescence intensity of the dynamin burst at scission relative to

background fluorescence. These observations suggest that actin

polymerization amplified dynamin recruitment at time points close

to scission.

To test whether actin dynamics regulated the burst of

dynamin at scission and not the pre-scission ‘‘flickering’’ at

CCS, we examined the effects of latrunculin-B on the

recruitment of the dyn1(T65A). The addition of latrunculin-B

did not perturb the enrichment, or pre-recruitment, of

dyn1(T65A)-mCherry at CCS (see Video S4). However, as

observed with dyn1(WT), the disruption of actin dynamics with

latrunculin-B decreased the amplitude of the final burst of

dyn1(T65A)-mCherry recruitment at scission (Figure S5A and

S5B). As observed in untransfected NIH-3T3s (Figure S4A),

morphometric analysis of NIH-3T3 cells expressing dyn1(T65A)-

HA exposed to latrunculin-B showed a significant increase in

‘‘omega’’ shape coated pit profiles and a reduction of

‘‘tubulated’’ coated pits (Figure S5C). Thus these data demon-

strate that dynamin pre-scission flickering is actin independent

and occurs at early stages during CCS maturation. By contrast

the burst of dynamin at scission is actin dependent and correlates

with the formation of a tubulated coated pit.

We next examined endo2 recruitment to scission events before,

during, and after the washout of latrunculin-B. The addition of

latrunculin-B caused the loss of endo2 puncta associated with CCS

(see Video S5), consistent with previous studies [27]. In the

presence of latrunculin-B the recruitment signature of endo2 was

still above random; however, there was no longer a prominent

burst of recruitment at time points close to scission (Figure 6B).

Histogram analysis of the fluorescence peaks of endo2-mCherry at

individual scission events were randomly distributed across time

points before and after scission in the presence of latrunculin-B

(Figure 6B, inset). When the perfusate was switched back to

channel 1 and 2, endo2-mCherry recruitment to scission resumed

with identical kinetics (Figure 6B; Video S5). Latrunculin-B had an

identical effect on the BIN1 recruitment signature (unpublished

data). We therefore conclude that although there was evidence of

basal recruitment to CCS, a dynamic actin cytoskeleton was

required for N-BAR recruitment to scission. Given that the

recruitment profiles of BIN1 and endo2 were identical and

responded in an identical manner to perturbations, we conclude

that a single mechanism governs endo2 and BIN1 recruitment to

are very similar. (E) Comparison of the slope of lifeact-mCherry recruitment/de-recruitment in cells expressing lifeact-mCherry alone (magenta), co-
expressed with dyn1(WT) (dark blue) or with dyn1(T141A) (light blue). The co-expression of dyn1(WT)-HA or dyn1(T141A)-HA had little effect on the
slope of lifeact-mCherry recruitment/de-recruitment. (F and G) Expression of dynamin mutants with reduced rates of GTP binding and hydrolysis
modified actin recruitment to sites of scission. Co-expression of dyn1(S61D)-HA (magenta, seven cell, 2,401 events) led to a left shift in lifeact-mCherry
recruitment away from scission and a moderate decrease in slope compared to cells co-expressing dyn1(WT)-HA (blue) (F,H). Co-expression of
dyn1(T65A)-HA (green, six cells, 797 events), the most potent GTPase mutant tested, led to a marked decrease in the slope of lifeact-mCherry
recruitment compared to cells co-expressing dyn1(WT)-HA (blue) (G,H). The co-expression of dyn1(S61D)-HA or dyn1(T65A) increased the slope of de-
recruitment post-scission compared to dyn1(WT)-HA control (H). (I–K) Expression of dynamin mutants with reduced rates of GTP binding and
hydrolysis modified N-BAR recruitment to sites of scission. Endo2-mCherry recruitment kinetics were very similar in cells expressing endo2-mCherry
alone (magenta, six cells, 2,608 events) and cells co-expressing dyn1(WT)-HA (blue, 12 cells, 2,186 events). (I,K) Co-expression of dyn1(T65A)-HA
(green, seven cells, 574 events) led to a marked decrease in the slope of endo2-mCherry recruitment compared to cells co-expressing dyn1(WT)-HA
(blue) (J,K). (L) The expression of dyn1(T65A)-HA had little effect on the kinetics of GAK-mCherry recruitment, a protein that is recruited post-scission
and involved in the uncoating of CCVs.
doi:10.1371/journal.pbio.1001302.g004
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Figure 5. Acute ablation of actin recruitment to scission by addition of Latrunculin-B. (A) Logic diagram illustrating a four-channel
perfusion system under transistor to transistor logic (TTL) control used to perfuse a target cell with drugs whilst detecting single scission events. Cells
were first perfused with buffer containing vehicle (DMSO), then buffer containing latrunculin-B, followed by washout with buffer containing vehicle.
(B) Example TIR-FM images of a cell expressing lifeact-mCherry and TfR-phl during acute exposure to 2.5 mM latrunculin-B. Within 6 min the majority
of F-actin stress fibers had disappeared from the adherent cell surface and fewer CCS were visible. Washout of latrunculin-B resulted in the
resumption of actin dynamics and a recovery in the number of CCS. (C) Lifeact-mCherry was not recruited to scission in the presence of latrunculin-B.
Recruitment signature normalized to the random confidence interval (see Methods). Inset: histograms of peak lifeact-mCherry fluorescence
(horizontal scale bar indicates the number of event; vertical scale bar corresponds to 20 s). Data pooled from five cells (DMSO pre-exposure, 1,559
events; 0–13 min exposure to latrunculin-B, 724 events; 14–26 min exposure, 758 events; and DMSO washout, 1,078 events). (D–F) Inhibition of actin
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CCS and that actin serves to concentrate N-BAR proteins at CCS

at time points close to scission.

To examine whether inhibition of actin has an effect on CME

reactions occurring post-scission, we examined the effect of

latrunculin-B on the recruitment of GAK. We observed no

difference in the magnitude or rate of GAK-mCherry recruitment

in presence of latrunculin-B (Figure 6C; see Video S6). However,

in the presence of latrunculin-B, peak GAK recruitment was

shifted 4 s towards scission (see Table S1), suggesting that the post-

scission de-polymerization of actin changed the timing of CCV

uncoating relative to scission.

To quantify the effect that inhibition of actin dynamics had on

the amplitude of dynamin and N-BAR recruitment we calculated

the difference in fluorescence intensity between the early stages

before scission (282 to 242s pre-scission, grey area on graphs in

Figure 6A and 6B) and peak recruitment relative to scission (see

Table S1). Dynamin recruitment decreased by .50% on initial

exposure to latrunculin-B (0–13 min) and .70% during 14–

26 min exposure to latrunculin-B (Figure 6D). The effect on endo2

was even more dramatic with 14–26 min exposure to latrunculin-

B ablating any enrichment of endo2 in comparison to pre-scission

time points (Figure 6E). We conclude that changes in magnitude of

the dynamin and N-BAR recruitment signal did not arise from a

global repositioning of the plasma membrane or the clathrin bud

in the evanescent field, because the amplitude of GAK recruitment

was unaffected (Figure 6F).

Discussion

Here we used quantitative microscopy to examine the kinetics of

dyn1(WT) and dyn1(GTPase mutant) recruitment to individual

endocytic events in live cells. Detailed analysis revealed two

distinct phases of dyn(WT) recruitment: a low amplitude phase in

the early stages of CCS maturation and a prominent spike that

increased over 20–30 s and culminated in scission. Dynamin’s

GTPase cycle regulated both phases of recruitment, regulated the

association of actin and N-BAR proteins with CCS and modulated

CCS maturation. These experiments suggest that in addition to a

mechanochemical enzyme dynamin also has a regulatory role, as

proposed by previous studies [14–19].

The initial phase of dyn1(WT) association with CCS (,,20–

30 s prior to scission) manifested as low amplitude ‘‘flickering’’

(Figure 1), which was proportional to overall CCS size [26] and

which suggested low copy number and most likely transient

dynamin association with the clathrin lattice. The turnover of

dynamin at CCS was confirmed using FRAP (Figure S1).

Dynamin was localized to flat and hemispherical clathrin lattices

using EM [12,51] and a rate-limiting, mechanistic, role for

dynamin at early time points has previously been reported

[14,15,17]. The finding that dyn1(T65A) was enriched at early

time points (Figure 2) suggested that dynamin’s GTPase activity

regulated the early recruitment phase. This finding was unexpect-

ed because, in the absence of highly curved membrane, dynamin

was expected to be either unassembled or present as short-lived

multimers with low instrinsic GTPase activity [52–55]. One

possible explanation is that the low GTP affinity and rate of

hydrolysis for dyn1(T65A) caused dynamin to be preferentially

fixed in a conformation that stabilized linear oligomers [52,53].

Alternatively the GTPase cycle could have regulated the binding

kinetics of dynamin with SH3 domain interacting partners, such as

intersectin [56], present at flat or hemispherical clathrin lattices

[57].

Overall it seems unlikely that dynamin plays an essential role in

the early stages of CCS formation because deeply invaginated

tabulated coated pit profiles are still able to assemble in dynamin

null fibroblasts [27]. However, dynamin is thought to be rate

limiting [15,17] and was shown to regulate the efficiency of these

early CME reactions (Figure 3) [15]. Alternatively dynamin’s

transient association with CCS at early stages (where its activity is

not required per se) could be a mechanism by which dynamin

senses the progression or state of CCS maturation, possibly by

interacting with SH3 domain containing proteins [20]. Such a

mechanism could allow dynamin to be precisely targeted in the

later stages of CCV biogenesis where it is mechanistically required

for invagination and scission. This targeting could prevent coated

pits from stalling, potentially leading to abortive endocytic events

[15].

At ,20–30 s before scission the dyn1(WT) fluorescent signal

increased rapidly, which suggested a stabilized enrichment of

dynamin at the CCS, which peaked at scission (Figure 1) [26].

This phase occurred over a similar time window as N-BAR protein

and F-actin recruitment (Figure S3). Like the initial phase of

dynamin recruitment, the kinetics and time course of this phase

were regulated by its GTPase cycle (Figure 2). In addition, we

showed that the expression of dynamin GTPase mutants with

impaired GTPase activity (dyn1(S61D) and dyn1(T65A)) slowed

the time course of N-BAR protein and actin polymerization over

the ,20–30 s leading up to scission (Figure 4H and 4I). This time

course was similar to the later stages of invagination [33,58] and

suggested dynamin regulated the kinetics of invagination via the

buildup of F-actin and N-BAR proteins.

Dynamin has a regulatory function in cellular processes

dependent on Arp2/3-NWASP actin polymerization

[28,29,42,50]. However, does dynamin regulate actin polymeri-

zation directly or indirectly during CCV biogenesis? In an earlier

study the analysis of arrested coated bud profiles in dynamin1/2

knock out fibroblasts suggested that dynamin terminated actin

dynamics at CCS by mechanically catalyzing scission [59]. The

increased frequency of tubulated coated pits in cells expressing

dyn1(T65A) (Figure 3F) is congruent with this hypothesis.

However, the subtle effects that distinct GTPase mutants have

on the rate of lifeact recruitment suggest a direct regulatory role on

the kinetics of F-actin polymerization at CCS. Whether dynamin

exerts its effect on actin dynamics via endocytic actin effectors such

as syndapin [60], cortactin [31,61], or Abp1 [32], via a second

GTPase Cdc42 [62] and/or more directly by binding F-actin and

promoting uncapping [30], remains unclear. Nonetheless we

believe our data are congruent with the idea that dynamin’s

regulatory role on actin dynamics during CME has a temporal

context [15] and that dynamin can function as a regulatory

GTPase, which controls actin polymerization, and a mechano-

chemical enzyme, but that these functions are temporally distinct

(Figure 7) [14,16–19].

The role of actin in mammalian CME is controversial. As we

have shown here productive CME scission events do occur in the

presence of actin-disrupting drugs, similar to previous results

dynamics reduced the incidence of scission by ,50% (D), increased the proportion of scission events classified as non-terminal (E), and reduced the
incidence of de novo CCS formation (F). Error bars represent SEM. (G) Inhibition of actin dynamics increased the time from de novo CCS nucleation to
the nth detected scission event at CCS that host single or multiple scission events (limited to a maximum of three detected events). Error bars
represent standard deviation.
doi:10.1371/journal.pbio.1001302.g005
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[7,33,46]. These observations have led to the suggestion that actin

is dispensable in the canonical mammalian model of CME [1], at

least for cultured cells. Nonetheless, disrupting the actin

cytoskeleton clearly has profound effects on the CME machinery:

the efficiency of the entire reaction was significantly impaired

(Figure 5) including, from morphological analysis, the final stages

Figure 6. Inhibition of actin perturbs the kinetics of dynamin recruitment, but has minimal impact on GAK recruitment. (A) Acute
inhibition of actin decreased the amplitude of peak dyn1(WT)-mCherry recruitment. Inset: histograms of peak dyn1(WT)-mCherry fluorescence for
each scission event that composed the ensemble average (horizontal scale bar indicate the number of event, vertical scale bar correspond to 20 s).
Recruitment traces from five cells: (DMSO pre-exposure, 875 events; 0–13 min exposure to latrunculin-B, 430 events; 14–26 min exposure, 451 events;
and DMSO washout, 743 events). (B) The burst of endophilin2-mCherry recruitment at time points close to scission was ablated by exposure to
latrunculin-B. Inset: histograms of peak fluorescence for each scission event. Recruitment traces of events from five cells (DMSO pre-exposure, 1,547
events; 0–13 min exposure to latrunculin-B, 885 events; 14–26 min exposure, 854 events; and DMSO washout, 1,445 events). (C) The kinetics of GAK
recruitment was insensitive to latrunculin-B. Inset: histogram of peak fluorescence for each scission. Recruitment traces of events taken from three
cells (DMSO pre-exposure, 1,070 events; 0–13 min exposure to latrunculin-B, 392 events; 14–26 min exposure, 472 events; and washout, 1,445
events). (D-F) Latrunculin-B exposure decreased the peak amplitude of dynamin (D) and endo2 (E) recruitment, but had a negligible effect on the
amplitude of GAK recruitment (F). See Materials and Methods for details of quantification.
doi:10.1371/journal.pbio.1001302.g006
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of CCS invagination (see Figure S4). Moreover, we along with

others [7,26,27,33,63] have observed that actin and actin-

associated factors are recruited and enriched at CCS in

mammalian cells. We now show that actin modulates the degree

of recruitment of N-BAR proteins and dynamin. Collectively these

data suggest that evolution has indeed delegated a functional role

for actin in mammalian CME. Perhaps a more pertinent question

for future studies is why in mammalian cells, in comparison to

yeast, CME has evolved a high level of mechanistic redundancy.

The detailed debate over the potential function of the actin

cytoskeleton in CME has primarily focused on whether actin

generates the force for membrane deformation during invagina-

tion [64–67] or plays a role in lipid segregation [68]. Our

experiments did not disprove these potential functions. However,

we showed that a dynamic actin cytoskeleton did control the

amplitude of dynamin and N-BAR recruitment to the CME

scission reaction (Figure 6). Thus, in addition to a mechanical

function, we suggest actin serves as a scaffold to concentrate

endocytic effectors at CCS (Figure 7), perhaps similar to

mechanisms found in neurons [69]. The decrease in amplitude

of the dynamin signal in the presence of latrunculin-B suggests

that, under non-perturbed conditions, a greater amount of

dynamin was recruited to CCS than was required to catalyze

scission. Under normal conditions an actin scaffold could stabilize

dynamin above the minimum threshold required for scission,

promoting dynamin assembly and a more efficient scission

reaction (Figure 7).

Structural studies on dynamin have proposed that membrane

scission is driven by GTP binding and dimerization between

adjacent rungs in the dynamin spiral [52,70]. This event results in

the formation of a ‘‘productive’’ dynamin spiral that can exert

shear forces on the membrane when GTP is hydrolyzed [52],

thereby leading to the catalysis of membrane scission. The slower

build up of GTPase mutants in the ,20–30 s preceding scission

(Figure 2) and the prolonged lifetime of CCS in dyn1(S61D/

T65A) expressing cells (Figure 3) could partially be a result of the

slower formation of a ‘‘productive’’ dynamin spiral. However we

believe that subtle rearrangements of assembled dynamin at the

deeply invaginated coated pit [52,70] cannot solely account for the

longer time course of dyn1(S61DT65A) recruitment. Instead a

Figure 7. Model of the reciprocal regulatory mechanisms between dynamin and actin during CME. (A) During the early stages of CME
dynamin has a transient association with the CCS which is modulated by the GTPase cycle (inset 1). As the CCS grows actin is recruited possibly
generating auxiliary force to drive invagination. Dynamin regulates the rate of actin recruitment, in a mechanism that is dependent on it GTPase cycle
(inset 2). The growth of dendritic actin networks around the clathrin bud form a scaffold that stabilizes dynamin and N-BAR proteins at the
constricted neck of deeply invaginated CCS (inset 3). The coordinated recruitment of dynamin, actin, and N-BAR proteins promotes the efficient
catalysis of membrane scission and the release the CCV into the lumen of the cell. The catalysis of scission also leads to the termination of actin
polymerization and the breakdown the dendritic actin network. (B and C) Schematic of the dynamin/actin (B) and N-BAR/GAK recruitment profiles (C).
We inferred (in absence of suitable measurements) where stages 1–3 (inset 1–3 from (A)) were relative to each profile.
doi:10.1371/journal.pbio.1001302.g007
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more likely scenario is the slower build up of dynamin GTPase

mutants reflected a slower rate of invagination and neck

constriction.

Events immediately following scission were subtly affected by

both dyn1(S61D/T65A) expression and latrunculin B treatment.

In cells expressing dyn1(S61D/T65A) the dissociation of actin and

N-BAR proteins from sites of scission was accelerated (Figure 4),

while in cells transiently bathed in latrunculin B the post-scission

accumulation of GAK was slightly augmented (Figure 6F). This

finding suggests that some factor necessary for events following

scission, perhaps a particular phosphoinositide [71], accumulates

in nascent clathrin-coated buds with an impaired scission

machinery.

Collectively our data are congruent with a model wherein

dynamin’s association with CCS follows a series of temporally

distinct stages (Figure 7). Association of dynamin with coated pits

at stage 1 (,,20–30 s prior to scission) most likely requires the

proline rich domain (PRD) [39] and the amount of dynamin

recruited is proportional to the size of the clathrin lattice [26]. The

accelerating accumulation of dynamin in the late stages of

invagination in stage 2, 20–30 s prior to scission, is augmented

by actin and, in turn, dynamin controls the rate of actin

accumulation and the recruitment of curvature inducing/sensing

N-BAR proteins. This forms a feedback loop, making the late

stages of invagination directional and essentially irreversible. Stage

3 is scission itself at the deeply invaginated CCS, mediated by

dynamin [23,36].

The findings presented here show that, in addition to its well-

established role in scission (stage 3), dynamin’s GTPase cycle is

also involved in the targeting of dynamin to CCS in stages1 and 2

and modulates the recruitment of actin and N-BAR proteins in the

late stages of invagination (stage 2). The major challenges are to

unravel the mechanism(s) by which dynamin’s GTPase activity

controls dynamin targeting to CCS prior to the formation of a

constricted invagination, to precisely understand how dynamin

controls actin polymerization in the final stages of invagination

and to correlate the observed patterns of protein recruitment to

dynamic changes in CCS topology.

Materials and Methods

Cell Culture, DNA Plasmids, and Constructs
NIH-3T3s were maintained in DMEM with 5% calf serum

(Invitrogen). NIH-3T3 fibroblasts were maintained at 37uC and

10% CO2. Cells were transfected with lipofectamine 2000

according to the manufacturer’s instructions (Invitrogen). Stable

cell lines expressing mouse dynamin1-mCherry (Addgene plasmid:

27697), or rat endo2-mCherry (a generous gift from the De

Camilli lab, and previously described [72]) were generated by

selection with media containing 350 mg/ml G418 (Invitrogen).

Mouse dynamin1 point mutants were made using Quicktime

site directed mutagenesis kit as per the manufacturer’s instructions

(Stratagene). The following primers were used to generate

dynamin point mutants: dyn1(K44A): forward 59: gtggtaggcggc-

cagagcgccggcgcgagctcggtgctggagaatttcgtg, reverse 59: cacgaaat-

tctccagcaccgagctcgcgccggcgctctggccgcctaccac; dyn1(T65A): for-

ward 59: ggatctggcatcgtcgcccggcgtcccctggtc, reverse 59: gaccaggg-

gacgccgggcgacgatgccagatcc; dyn1(S61D): forward 59: gacttcttg-

ccccgaggagatggcatcgtcacccggcg, reverse 59: ccgggtgacgatgccatc-

tcctcggggcaagaag; dyn1(T65D): forward 59: ggatctggcatcgtcga-

ccggcgtcccctggtc, reverse 59: gaccaggggacgccggtcgacgatgccagatcc;

dyn1(T65H) forward 59: ggatctggcatcgtccaccggcgtcccctggtc, re-

verse 59: gaccaggggacgccggtggacgatgccagatcc; dyn1(T141A): for-

ward 59: gacctgccaggaatggccaaggtcccagttggg, reverse 59: ccca-

actgggaccttggccattcctggcaggtc; dyn1(T141D): forward 59: gacctgc-

caggaatggacaaggtcccagttggg, reverse 59: cccaactgggaccttgtc-

cattcctggcaggtc; dyn1(K694A): forward 59: ctcatgatcaacaacaccgcg-

gagtttatcttctctgag, reverse 59: ctcagagccgataaactcgatggtgttgt-

tgatcatgag; dyn1(K694E): forward 59: ctcatgatcaacaacaccatcgagtt-

tatcttctctgag, reverse 59: ctcagagaagataaactcgatggtgttgttgatcatgag;

dyn1(R725A): forward 59: gccgagcaggctcagcgggccgacgagatgctgcg-

catg, reverse 59: catgcgcagcatctcgtcggcccgctgagcctgctcggc.

Mouse dyn1(WT/K44A/S61D/T65A/T141A) was engineered

with a N-terminal HA tag by PCR and ligated into the

pIRESneoII-EGFP vector (Clontech) using Bgl2 and EcoR1

restriction sites (forward primer 59: gcgcgcagatctaccatggg-

caaccgcggcatggaa; reverse primer 59: gcgcgcgaattcctaagcgtaatctg-

gaacatcgtatgggtaacttccactggggtcactgatagtgattct). To generate pIR-

ESneoII-Dyn1-HA(WT/K44A/S61D/T65A) the EGFP open

reading frame was removed by digest with BstX1 and Not1.

Lifeact-mCherry was engineered to include BstX1 and Not1 sites

by PCR (forward primer 59: agcttaccatgggagtggcggacctcatcaa-

gaagttcgagagtatcagtaaggaggagctgca; reverse primer 59:

gctcctccttactgatactctcgaacttcttgatgaggtccgccactcccatggta) and di-

gested and ligated into BstX1/Not1 digested pIRESneoII-EGFP

vector. To construct pIRESneoII-Dyn1-HA-GAK-mCherry and

pIRESneoII-Dyn1-HA-endo2/BIN1-mCherry a second multi-

cloning site (forward 59: ttggacgcgtttcgtacggagctcctgcaggctcgacctg-

cagcgc) was constructed downstream of the IRES sequence by

removing the EGFP opening reading frame by restriction digest

with BstX1/Not1. This generated a unique Mlu1 and BsiW1 site.

GAK-mCherry (Addgene plasmid: 27695) was amplified by PCR

(forward primer 59: gcgcgcacgcgtaccatgtcgctgctgcagtctgcg; reverse

primer 59: gcgcgccgtacgttacttgtacagctcgtccat), engineered to in-

clude Mlu1 and BsiW1 sites, digested and ligated into the second

MCS to generate pIRESneoII-Dyn1HA-GAK-mCherry. Similar-

ly BIN1-mCherry (Addgene plasmid: 27693) and endo2-mCherry

were amplified with Mlu1 and BsiW1 ends (BIN1 forward primer

59: gcgcgcacgcgtaccatggcagagatcgggagc; endo2 forward primer 59:

gcgcacgcgtaccatgtcggtggcggggctg; reverse primer was the same as

used to amplify GAK-mCherry), digested and ligated into the

MCS to generate pIRESneoII-Dyn1HA-BIN1/endo2-mCherry.

All constructs used were verified by DNA sequencing.

Total Internal Reflection Microscopy and Perfusion
The TIR-FM microscope and pulsed pH assay for detecting

endocytic scission events has been described previously [26].

Briefly, the TfR was tagged with pH sensitive super-ecliptic

phluorin to generate TfR-phl [26,33]. TIR-FM image series were

acquired in synchrony with alternating pH of 7.4 and pH 5.5.

Scission events manifested as the abrupt appearance of pH

insulated spots in images acquired at pH 5.5 [26,33]. To combine

the pulsed pH assay with the wash-on/wash-off of drugs, such as

latrunculin-B (Calbiochem), a four-channel perfusion system was

built in house. In a typical experiment 400 frames (,13 min)

were acquired as the pH was switched between pH 5.5 and

pH 7.4 with buffers containing DMSO (0.04% v/v). After 400

frames, perfusion was switched to pH 5.5 and pH 7.4 buffers

containing DMSO (0.04% v/v) and 2.5 mM latrunculin-B. In a

typical experiment $800 frames (,26 min) were acquired in

presence of latrunculin-B. After 1,200 frames (,39 min)

perfusion was switched back to channels containing DMSO for

a further 400 frames (,13 min) wash-out. For analysis the image

series was divided into 400 frame blocks consisting of data

acquired pre-exposure, 0–13 and 14–26 min exposure to

latrunculin-B, and post-exposure washout. Data were analyzed

as described below.
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Image Analysis of Pulse pH Data
In the following a TfR5 spot refers to a pH-resistant TfR-phl

spot in an image acquired at pH 5.5 and a TfR7 spot refers to a

spot or blob of TfR-phl, concentrated at a coated pit, in an image

acquired at pH 7.4. All data acquired with the pulse pH assay

were analyzed as previously described [26,33]. Briefly, image

series acquired with alternating pH were de-interlaced into pH 7.4

and pH 5.5 image series. Candidate scission events manifested as

the abrupt appearance of TfR5 spots that were identified by multi-

particle tracking using the MIA applet (Multidimensional Image

Analysis, V. Racine and J.B. Sibarita, Curie Institute, Paris,

France) for Metamorph (Molecular Devices). Candidate TfR5

scission events were screened for S/N, persistence, and fluores-

cence change as described previously [26,33]. All fluorescence

data were quantified using Matlab (Mathworks) and data stored in

Excel (Microsoft). Previous work established that: (1) TfR7 spot

fluorescence is highly correlated with the amount of clathrin at a

CCS and faithfully report CCS dynamics and (2) that CCS can

host multiple scission events [26]. Therefore, to measure the time

from CCS nucleation to the nth scission event TfR7 spots were

tracked and those TfR7 track histories, which: (1) formed de novo

during image acquisition and (2) were associated with one or more

bonafide scission events were isolated and manually verified for

TfR7 tracking fidelity. Broken track histories were edited and fixed

if necessary. For each verified de novo TfR7 track history the

timing of associated scission events was noted and recorded to

Excel workbooks (Microsoft). The time between TfR7 spot

formation and the nth scission event was then calculated.

Cluster Analysis and Dendrogram of Dynamin GTPase
Mutants

The average recruitment signatures of mCherry-tagged dyna-

min GTPase point mutants were compared by computing the

correlation coefficients for each pair of curves corr(dyn1(XX)a,dy-

n1(YY)b). Cosine distances were used to calculate the correlation

coefficients between the mCherry recruitment curves as this

transform was deemed more sensitive to shape. To focus on the

shape of the recruitment curve prior to scission only time points

between 282 s and 0 s were used for cluster analysis. Hierarchal

clustering was performed using an average linking algorithm and

represented by a dendrogram. The final dendrogram had a

cophenetic correlation coefficient of 0.83 and other linkage

algorithms yielded lower correlation coefficients. All calculations

and construction of the dendrograms were performed in Matlab

(Mathworks).

Electron Microscopy
NIH-3T3 cells transfected with pIRESneoII-Dyn1-HA(WT/

K44A/T65A)-EGFP were sorted away from untransfected cells by

FACS. They were then re-plated and allowed to grow overnight to

recover. For electron microscopy of resin-embedded sections, cells

grown in Petri dishes were briefly washed twice with PBS and then

fixed in paraformaldehyde (PFA; 2%) and glutaraldehyde (2.5%)

in sodium cacodylate (0.1 M at pH 7.2). To examine CCS

ultrastructure in the presence of latrunculin-B NIH-3T3s cell were

incubated for 10 min in HBS containing either latrunculin-B

(2.5 mM) or DMSO. Cells were then washed and fixed as

described above. Post-fixation the cells were gently scraped off

and centrifuged in a horizontal rotor. The cell pellet was then

placed in fresh fixative and stored at 4uC. Samples were washed

thoroughly in sodium cacodylate buffer (0.1 M) and post fixed in

OsO4 (1% in 0.1 M sodium cacodylate) for 1 h and then washed

with distilled water (both OsO4 and cacodylate buffer purchased

from Agar Scientific). Samples were stained en bloc with uranyl

acetate (2%) in ethanol (30%) before dehydration in a graded

ethanol series followed by 1,2, epoxy propane (propylene oxide)

and then infiltrated and embedded in CY212 resin (Agar

Scientific). Ultrathin (50–70-nm) sections were cut on a Reichert

Ultracut E microtome (Leica) and collected on uncoated 200 mesh

grids. Sections were post-stained with saturated uranyl acetate

before staining with Reynolds lead citrate [73]. Images were

acquired using a Philips EM208 microscope (Philips), with an

operating voltage of 80 kV, and a CCD camera detector. For

morphometric quantification intact cell profiles were selected at

low magnification (typically 3,5006–4,4006) at which coated pit

structures were not visible. A low power image was acquired to

measure the cell perimeter. Cells were selected on the basis of an

intact cell perimeter to ensure the quantification of coated

structures remained blind. Subsequent high power images were

acquired on clathrin-coated structures with 200 nm of the plasma

membrane for each intact cell selected. Cell perimeter was

estimated by counting intersections between a 1 mm over laid

lattice and the plasma membrane [74,75]. Omega-shaped and

tabulated coated pits were distinguished from shallow coated pits

by the presence of inward curvature. Coated structures scored as

coated vesicle likely corresponded to a glancing section through

shallow, omega, or tabulated structures [76]. To determine the

ratio of omega-coated pit bud to neck diameter high magnification

(71,0006) images of omega pit profiles were taken. Measurements

of diameter were made in ImageJ and exported to Microsoft Excel

for subsequent analysis.

Immunofluorescence
Cells were seeded onto coverslips 12–24 h before being fixed

with a solution of 4% PFA in PBS for 5 min at room temperature.

The coverslips were then washed in a solution of 0.05% TritonX-

100 in PBS for 2 min to permeabilize the cells. The coverslips

were rinsed in PBS and the primary antibodies were added diluted

in PBS with 0.1% BSA. The primary antibodies used were mouse

anti-HA (Invitrogen) and rabbit anti-RFP (Abcam). The coverslips

were incubated with primary antibodies overnight. Coverslips

were washed in PBS with 1% BSA and transferred to secondary

antibodies (donkey anti-mouse-Alexa488 and goat anti-Rabbit-

Alexa568) diluted in PBS with 0.1% BSA. After incubation for

1 h, the coverslips were rinsed in PBS and mounted on slides with

Vectorshield (Vector laboratories) containing DAPI to stain the

nucleus. Samples were imaged using a 510 Zeiss confocal laser

scanning microscope using a 636/1.4 NA oil immersion Plan-

Apochromat Zeiss lens.

Statistical Analysis
A two-tailed Student’s t test in Microsoft Excel was carried out

on EM data to determine statistical differences.

FRAP Microscopy and Analysis
NIH-3T3 cells were transfected with dyn1(WT/T65)-EGFP

and mCherry-Clc (Addgene plasmid: 27680) using Lipofeta-

mine2000 (Invitrogen) and plated onto Lab-Tek chamber

coverslips (Thermo Fischer Scientific) to adhere overnight. 24 h

post-transfection cells were placed in HEPES buffered saline

imaging buffer. FRAP experiments were performed on an Nikon

TiE inverted microscope (Nikon Instruments) equipped with a

Andor Revolution Spinning Disk confocal microscopy system and

a Andor FRAPPA scan head (Andor Technology). FRAP

experiments were performed on a heated stage (Oko labs, Naples

Italy) set a 30uC, to be consistent with measurements made using

the pulse pH assay and TIR-FM. Target cells were imaged with a
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1006 1.4NA objective lens and sequentially illuminated with

488 nm and 561 nm laser light at a frame rate of 1 Hz with a

exposure time of ,450 ms per frames. Images were captured on

iXon3 897 EMCCD camera (Andor Technology) with a pixel

size 0.13 mm. A 3-mm2 region was selected for FRAP and

subjected to 100% laser power (20 m W laser) scan with 20 ms

dwell time per pixel with five repeats of the selected region. Ten

frames were collected before photo-bleaching, and 100 frames

were collected after bleaching to analyze fluorescent recovery.

FRAP data were analyzed using Andor iQ software (Andor

Technology). The raw fluorescent values were corrected for

bleaching using an equivalent sized reference region in an un-

bleached portion of the cell. An inverse exponential decay, was fit

to the post-bleach fluorescence recovery data (e.g.,

F(t) = 12Ae2Kt). The mobile fraction was calculated from pre-

bleach fluorescence intensity (I0) and the post-bleach fluorescence

intensity (It) following recovery (e.g., m mobile fraction % = It/I0).

The half-time of recovery was calculated from the fitted

parameters K (e.g., half time = ln(0.5)/2K).

Supporting Information

Figure S1 The turnover and mobility of Dyn1(WT/
T65A)-eGFP and mCherry-Clc analyzed by FRAP. (A

and B) An NIH-3T3 cell co-transfected with dyn1(WT)-EGFP (A)

and mCherry-Clc (B). The mobility and turnover of dyn1 and Clc

was analyzed using spinning disk confocal and FRAP. A 3-mm2

region (white box) containing CCSs was selected and bleached.

The recovery of the fluorescent signal was analyzed to determine

the mobile fraction and half time of recovery of dyn1(WT) and

Clc (fluorescent time course in (A) and (B), see Methods for details

of analysis). (C and D) NIH-3T3 cells co-transfected with

dyn1(T65A)-EGFP (C) and mCherry-Clc (D) analyzed with

FRAP (fluorescent time course in (C) and (D)). (E) The average

mobile fraction, as determined by FRAP, of dyn1(WT) (n = 20

cells) and dyn1(T65A) (n = 17 cells). On average Dyn1(T65A) had

a decreased mobile fraction in comparison to dyn1(WT) (59%

versus 80% mobile fraction, respectively; Student’s t test

p,0.001) suggesting a significantly increased association with

CCS. The mobility of mCherry-Clc was also analyzed and found

not to be significantly different in cells expressing dyn1(WT) or

dyn1(T65A) (53% versus 51% mobile fraction, respectively;

Student’s t test p = 0.61). (F) The average half time of fluorescence

recovery for dyn1(WT) and dyn1(T65A). Dyn1(T65A) had a

slower recovery time than dyn1(WT) (5.3 s versus 3.9 s,

respectively; Student’s t test p = 0.027). The recovery time of

mCherry-Clc was not found to be significantly different in cells

expressing dyn1(WT) or dyn1(T65A) (13.8 s versus 12.4 s,

respectively; Student’s t test p = 0.31). Error bars represent

standard error of the mean (SEM).

(TIF)

Figure S2 The effects of dynamin GED domain mutants
on dynamin recruitment kinetics and de novo CCS
lifetime. (A–C) Comparison of dyn1(WT)-mCherry and GED

domain mutant recruitment signatures. The recruitment signa-

tures of dyn1(K694A)-mCherry (A), dyn1(K694E)-mCherry (B),

and dyn1(R725A)-mCherry (C) displayed similar recruitment

kinetics to scission as dyn1(WT)-mCherry. (D–F) Histograms of

the time difference from de novo CCS nucleation to first detected

scission events in cells expressing dyn1(K694A)-mCherry (D),

dyn1(K694E)-mCherry (E), and dyn1(R725A)-mCherry (F). (G)

Point mutations in the GED region of dynamin had little effect

upon the average time from CCS nucleation to the nth scission

event (see text for explanation of measurement). Expression of

dyn1(K694A/K694E/R725A)-mCherry did not significantly in-

crease the time from nucleation to the nth scission event compared

to NIH-3T3 cells expressing dyn1(WT)-mCherry. Error bars

represent standard deviation.

(TIF)

Figure S3 Actin and N-BAR proteins were recruited at
the same time as Dynamin to sites of scission but with
distinct kinetics. (A) Actin was recruited in the moments

leading up to vesicle appearance. (Ai) A time series of an example

scission event in a cell expressing lifeact-mCherry showing the

recruitment of F-actin to sites of scission. (Aii) Fluorescent

measurements (dark green, TfR7; light green, TfR5; red, lifeact)

of the event shown in (Ai). Dots correspond to the images shown in

(Ai). (B) The N-BAR protein endo2 was recruited in the seconds

preceding vesicle appearance. (Bi) Time series of an example

scission event in an NIH-3T3 cell expressing endo2-mCherry. (Bii)

Fluorescence measurements from the time series shown in (Ai)

(dark green, TfR7; light green, TfR5; purple, endo2). Dots

correspond to the time series shown. Horizontal scale bars in (A)

and (B) corresponds to 20 s, and blue line represents t = 0, the

moment of scission. (C) Ensemble recruitment signature of lifeact-

mCherry (6 cells, 788 events) compared to dyn1(WT) (11 cells

3157 events). Lifeact recruitment was measured in NIH-3T3 cells

transiently expressing lifeact-mCherry (D). Comparison of endo2-

mCherry and dyn1(WT)-mCherry recruitment signatures. Endo2-

mCherry recruitment was measured in NIH-3T3 cells stably (St)

expressing endo2-mCherry (6 cells, 2608 events). (E) N-BAR

proteins BIN1 and endo2 showed similar recruitment kinetics to

scission. The normalized recruitment signature from NIH-3T3

cells stably expressing endo2-mCherry and transiently (Tr)

expressing BIN1-mCherry (11 cells, 3,024).

(TIF)

Figure S4 Ultrastructure of CCS in the presence of
latrunculin B. (A) Morphometric analysis of coated pit profiles

in NIH-3T3 exposed to DMSO or latrunculin B. Insets show

sketches of the coated pit profiles included in each category. Data

were obtained from .30 randomly selected cell profiles. Error

bars represent standard error of the mean. (B and C) Example

images of omega-shaped coat pit profile from NIH-3T3 exposed to

DMSO or latrunculin B. Omega-shaped coated pits in cell

exposed to latrunculin B appear to have wider necks. (D)

Quantification of the ratio between the bud and neck diameter

of omega-coated pits suggest an inhibition of neck constriction in

the presence of latrunculin B. Measurement made from a subset of

.30 structures classified as omega-coated pits. Error bars

represent standard error of the mean. Student’s t test, p = 0.0097.

(TIF)

Figure S5 Actin remodeling is not required for the
concentration of dyn(T65A)-mCherry at CCSs. (A) Acute

inhibition of actin decreased the amplitude of peak dyn1(T65A)-

mCherry recruitment at scission, but does not perturb the pre-

scission recruitment. Inset: histograms of peak dyn1(T65A)-

mCherry fluorescence for each scission event that composed the

ensemble average (horizontal scale bar indicate the number of

event, vertical scale bar correspond to 20 s). Recruitment traces

from five cells: (DMSO pre-exposure: 383 events, 0–13 min

exposure to latrunculin-B; 116 events, 14–26 min exposure; 178

events, and DMSO washout: 342 events). (B) Latrunculin-B

exposure decreased the peak amplitude of dyn1(T65A), in a

similar manner to dyn1(WT) (see Figure 6). See Materials and

Methods for details of quantification (C). Morphometric analysis of

coated pit profiles in NIH-3T3 expressing dyn1(T65A)-HA

exposed to DMSO or latrunculin B. As with untransfected NIH-

A Dynamin/Actin Feedback Loop in Endocytosis

PLoS Biology | www.plosbiology.org 15 April 2012 | Volume 10 | Issue 4 | e1001302



3T3 cells (see Figure S4), treatment with latrunculin-B resulted in

an increase in the frequency of ‘‘omega’’-shaped coated pit

profiles. Insets show sketches of the coated pit profiles included in

each category. Data were obtained from .30 randomly selected

cell profiles. Error bars represent standard error of the mean.

(TIF)

Table S1 Parameters for the cells used in this study.
Expression: whether the construct was transiently or stably

expressed. #cells, number of cells recorded; #events, total

number of events detected and analyzed; #Term, number of

events classified as terminal, i.e., with disappearance of the CCS

(see Methods); #Nterm, number of events classified as non-

terminal (no CCS disappearance); %Term, percentage of terminal

events; Peak time, time of maximum average fluorescence relative

to CCV detection, in seconds; Scission rate, average over

individual cells of the rate of event detection per mm2 per minute,

error represents standard error of the mean.

(JPG)

Video S1 Comparison of dyn1(WT), dyn1(T65A), and
TfR7 dynamics in NIH-3T3 cells. NIH-3T3 cell transiently

expressing hTfR-phl and dyn1(T65A)mCherry shown on top.

NIH-3T3 cells transfected with hTfR-phl and stably expressing

dyn1(WT)-mCherry and shown on bottom.

(MOV)

Video S2 TfR5 (left) and lifeact-mCherry (right) dy-
namics before, during, and after exposure to latrunculin
B. Dynamic actin foci, a portion of which co-localize with

endocytic events, disappear upon the addition of 2.5 mM

latrunculin B. A perfusion glitch occurs at 35 min. These frames

were removed from the analysis.

(MOV)

Video S3 TfR7 (left) and Dyn1(WT)-mCherry (right)
dynamics before, during, and after exposure to latrun-
culin-B.
(MOV)

Video S4 TfR7 (left) Dyn1(T65A)-mCherry (right) dy-
namics before, during, and after exposure to latruncu-
lin-B.
(MOV)

Video S5 TfR7 (left) Endo2-mCherry (right) dynamics
before, during, and after exposure to latrunculin-B.
(MOV)

Video S6 TfR7 (left) GAK-mCherry (right) dynamics
before, during, and after exposure to latrunculin-B.
(MOV)
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