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Abstract

Expansions of DNA trinucleotide repeats cause at least 17 inherited neurodegenerative diseases, such as Huntington’s
disease. Expansions can occur at frequencies approaching 100% in affected families and in transgenic mice, suggesting that
specific cellular proteins actively promote (favor) expansions. The inference is that expansions arise due to the presence of
these promoting proteins, not their absence, and that interfering with these proteins can suppress expansions. The goal of
this study was to identify novel factors that promote expansions. We discovered that specific histone deacetylase complexes
(HDACGs) promote CTG+CAG repeat expansions in budding yeast and human cells. Mutation or inhibition of yeast Rpd3L or
Hda1l suppressed up to 90% of expansions. In cultured human astrocytes, expansions were suppressed by 75% upon
inhibition or knockdown of HDAC3, whereas siRNA against the histone acetyltransferases CBP/p300 stimulated expansions.
Genetic and molecular analysis both indicated that HDACs act at a distance from the triplet repeat to promote expansions.
Expansion assays with nuclease mutants indicated that Sae2 is one of the relevant factors regulated by Rpd3L and Hda1.
The causal relationship between HDACs and expansions indicates that HDACs can promote mutagenesis at some DNA
sequences. This relationship further implies that HDAC3 inhibitors being tested for relief of expansion-associated gene
silencing may also suppress somatic expansions that contribute to disease progression.
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Introduction

The relentless expansion of trinucleotide repeats (I'NRs) causes
Huntington’s disease (HD), myotonic dystrophy type 1 (DM1), and
at least 15 other inherited neurological disorders [1]. It is thought
that expansions are actively promoted by the presence of key
proteins, not their absence, probably due to the “corruption” of
their normal biochemical activities by TNR DNA [2—4]. Evidence
for promoting factors includes the fact that disease alleles expand
at high frequencies, sometimes approaching 100% [5], in
otherwise normal individuals and in a number of transgenic and
knockin mouse models of HD and DM1 [6-12]. Using candidate
gene approaches, the DNA repair factors Msh2, Msh3, Pms2,
Oggl, and Xpa were identified as promoting proteins in mice,
based on the fact that somatic expansions are suppressed ~50%
90% by homozygous knockout of Msh2, Msh3, Pms2, Oggl, or Xpa
[6-13]. Knockout of Msh2 or Msh3 also largely eliminates
intergenerational expansions [7,9,10,14]. Thus, key DNA repair
components promote expansions in certain mouse models.

The transgenic mice studies described above monitor long, disease-
causing TNRs becoming even longer. For example, commonly used
HD mouse models carry CAG tracts of 110-120 repeats [10,12]. A
human inheriting an HD allele in this length range would develop the
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disease as a young child [15]. As an alternative approach, we focus on
expansions near the crucial threshold, a narrow range of allele lengths
(~30-40 uninterrupted repeats in humans [2,4,16]) that demarcates
stable shorter repeats from unstable longer tracts. Expansion risk in
humans and in yeast increases sharply once the threshold is crossed
[17,18]. Expansions crossing the threshold are critical initiating
mutations leading to enhanced instability and disease [2—4]. It is not
known whether the mechanism of expansion is the same for
threshold-length alleles and long, disease-causing tracts. In this study,
we find that yeast mutants lacking the nucleases Sae2 or Mrell
reduce expansion rates for (CTG)yy alleles, whereas sae2 or mpell
mutants show increased expansion frequencies for long (CAG);
repeats [19]. This new evidence suggests that triplet repeat length
helps determine expansion mechanism.

The goal of this study was to identify novel factors in yeast and
human cells that promote expansions of TNR alleles near the
threshold. We found specific histone deacetylase complexes
(HDAC:S) that promote expansions, plus one human histone
acetyltransferase (HAT) that inhibits expansions, and we suggest a
mechanistic link between HDACs and DNA repair. These results
indicate a causal relationship between HDACs and expansions,
and they show that protein acetylation and deacetylation are key
modulators of TNR instability.
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Author Summary

The human genome contains numerous DNA trinucleotide
repeats, which mutate infrequently in most situations.
However, in families affected by certain inherited neuro-
logical diseases such as Huntington's, a trinucleotide
repeat has undergone an expansion mutation that
lengthens the repeat tract. This expansion is generally
sufficient to cause disease. Further germline and somatic
expansions in affected families occur at very high
frequencies—approaching 100% in some cases—suggest-
ing that mutation of the trinucleotide repeat becomes the
norm rather than the exception, while the rest of the
genome remains genetically stable. These observations
indicate that trinucleotide repeat expansions are localized
in the genome and occur by novel mutational mecha-
nisms. We searched for proteins that favor expansions and
identified specific histone deacetylase complexes
(HDACs)—comprising enzymes that remove acetyl groups
from histones—in budding yeast and in human astrocytes.
Interfering with these HDACs by mutation, RNA interfer-
ence, or small molecule inhibitors blocked 50%-90% of
expansion events. We also found that yeast HDACs
promote expansions via a downstream deacetylation
target, the nuclease Sae2. These results indicate that
HDACs promote trinucleotide repeat expansions by
modulating key proteins, which in turn catalyze the
expansion. We postulate that HDAC inhibitors, currently
being tested for relief of the transcription-related conse-
quences of expansions, may have the beneficial side effect
of reducing the risk of further somatic expansion.

Results

Yeast HDACs Rpd3L and Hdal Promote CTG+CAG Repeat
Expansions

If specific proteins promote TNR expansions, then mutants
deficient in these proteins will have fewer expansions. A large-scale
yeast mutant screen was performed to identify mutants with
reduced expansion rates. Cells with a (CTG)yo-CANI reporter
(Figure 1A) were randomly mutagenized with a disruption library.
A (CTG)y repeat tract was utilized, as this allele length is near the
apparent threshold in yeast [18]. Reduced expansion rates are
manifested as fewer canavanine resistant cells (Figure S1). Nine
thousand disruptants, covering approximately 50% of non-
essential genes, were subjected to several rounds of screening with
increasing stringency. Eleven mutant genes were identified that
consistently suppressed TNR expansions (Figure S1). Three of the
11 genes were SIN3, PHO23, and HDA3. SIN3 encodes a subunit
of histone deacetylases Rpd3L and Rpd3S, whereas the subunit
encoded by PHO23 is unique to Rpd3L. HDAS encodes a subunit
of another HDAC, Hdal. The /da3 mutant was found twice, along
with single isolates of sin3 and pho23. Thus, a blind screen pulled
out three genes encoding components of Rpd3L and Hdal, an
enrichment of ~100-fold compared to random chance. This
clustering of mutations in related enzymes suggested a causal
relationship between specific HDACs and TINR expansion.

Targeted knockouts of sin3, pho25, and hda3 confirmed the gene
assignments and allowed further analysis of expansions. Expansion
rates were quantified using two reporters, CANI (Figure 1A) and
URA3 [18], and all expansions were confirmed by PCR
(Figure 1B). If an HDAC mutant primarily affects the instability
at the triplet repeat, independently of the readout gene, then
similar phenotypes would be expected for assays with CANI and
URA3. This outcome was observed (Figure 1C and Table S1).
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Single mutants of sin3, pho25, and hda3 showed 9- to 18-fold
reductions in expansion rates for the CANT reporter integrated into
chromosome II (Figure 1C, left panel). Expansion rates were
reduced >1,000-fold in the double mutants pho23 hda3 and sin3
hda3, which are simultaneously deficient in both Rpd3L and
Hdal. When the reporter gene was URA3, a similar pattern of
suppressed expansion rates occurred (Figure 1C, middle panel).
The magnitude of the phenotype was somewhat smaller: 2- to 4-
fold suppression in expansion rates for single HDAC mutants, and
10- to 18-fold for the double mutants. Thus, both CANT and URA3
reporters integrated at the same locus yielded similar outcomes,
suggesting that Rpd3L and Hdal affect instability of the TNR. To
exclude a position effect, the CANT reporter was relocated to an
Integration site on chromosome V. Suppression of expansions was
again seen for the HDAC mutants (Figure 1C, right panel). Single
mutants reduced expansion rates by 2- to 3-fold, while the pho23
hda3 and sin3 hda3 double mutants yielded 12- to 340-fold effects.
In total (Figure 1C), the single mutants sin3, pho23, or hda3 showed
significant reduction in CTG expansion rates in seven of nine
assays. All six assays using the double mutants, pho23 hda3 or sin3
hda3, consistently gave lower expansion rates, and the double
mutant effect was always stronger than for the single mutants.
HDAC mutants in a common commercial strain, BY4741, also
displayed reduced expansion rates for CANI integrated at LYS2.
Relative to wild type, expansion rates in the sin3 mutant were
strongly suppressed (>100-fold), with a milder phenotype for
pho23 (3-fold reduced), and a small but not statistically significant
reduction of 1.7-fold for #da3. Overall, targeted knockout of
Rpd3L and/or Hdal suppressed expansion rates in most assays,
and expansions were almost completely eliminated in some cases.

Expansion suppression could be phenocopied by treating wild
type cells with trichostatin A (T'SA), which inhibits many but not
all HDAG:s [20]. TSA reduced expansion frequencies by 2.6-fold
(Figure 1D) at a concentration that inhibits most HDAC activity of
Rpd3 and Hdal in vitro [21]. This finding is consistent with a
published report showing that TSA-treated Drosophila had ~3-fold
fewer expansions of a (CAG);g transgene, with preferential
modulation of +1 repeat changes relative to other sizes [22]. In
yeast, expansion sizes were similar with or without T'SA, ranging
from +6 to +19 repeats (Figure S2). Cells with impaired HDAC
function showed the anticipated accumulation of acetylated
histone H3, by nearly 5-fold in the sin3 hda3 mutant and about
2.4-fold in wild type cells treated with T'SA (Figure 1E). Compared
to the HDAC mutants, TSA gave smaller effects on both
expansion levels and the accumulation of acetylated histone H3,
presumably due to incomplete inhibition by the drug.

Several control experiments eliminated trivial explanations of
the HDAC effect on expansions. The range of expansion sizes was
similar in wild type cells, HDAC mutants, and TSA-treated cells
(Figures 1F and S2), indicating that HDAC status did not affect the
genetic selection for expansions. Rather, the expansion size data
suggest that HDAC:s likely govern initiation of expansions; there
are fewer initiation events when HDACs are mutated or inhibited,
but once the process is started the final size of the expansion is
similar. There was no growth disadvantage of the HDAC mutants,
with or without an expanded TNR, under conditions that select
for expansions (Figures S3 and S4). CANI transcript levels varied
by 2-fold or less in the HDAC mutants (Table S2), showing no
correlation with changes in expansion rates. Finally, suppression of
expansions was primarily attributable to Rpd3L and Hdal,
because only modest expansion phenotypes occurred in mutants
defective in the alternative HDACs Rpd3S, Hos1, Hos2, Hos3, or
Sir2 (Figure S5). In summary, mutation or chemical inhibition of
yeast Rpd3L and Hdal suppresses CTG repeat expansions by
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Figure 1. Mutation or chemical inhibition of yeast HDACs suppresses TNR expansions. (A) Reporter with (CTG),, permits expression of the
reporter gene CAN1, and results in canavanine sensitivity. Expansions of =6 repeats alter transcription initiation, incorporating the out-of-frame ATG
codon that blocks expression of CANT (X). Canavanine resistance ensues. (B) PCR products displayed on a high-resolution polyacrylamide gel. All
expansion results reported here include PCR validation. (C) Expansion rates in mutants of Rpd3L (sin3 or pho23), Hda1 (hda3), or both (pho23 hda3 or
sin3 hda3). TNR reporter integration sites are indicated in the figure. Error bars, =SEM; * p<<0.05 compared to wild type; + p<<0.05 compared to wild
type and to each single mutant (details in Table S1). (D) Cells were grown 13-14 generations in liquid culture =30 ug/ml TSA, followed by expansion
analysis. Error bar, = SEM; * p =0.02 compared to DMSO-only control, n=5 independent measurements. (E) Accumulation of acetylated histone H3 in
yeast cells with impaired HDAC activity. Immunoblot results of 15 ug protein from whole cell lysates. Top, acetylated H3; bottom, total H3. Values
below the blot show the ratio of acetylated H3/total H3. (F) Expansion sizes, derived from PCR analysis. 26 genetically independent expansions for

wild type, 17 for sin3, 25 for hda3, and 8 for hda3 sin3.
doi:10.1371/journal.pbio.1001257.g001

50%—-90%, with even greater effects in some mutant strains. These
data support a mechanistic link between triplet repeat expansions

and the yeast HDACs Rpd3L and Hdal.

Human HDAC3, a Homolog of Yeast Rpd3L, Promotes

Expansions in Cultured Human Astrocytes

To address whether HDACs promote expansions in human
cells, we focused on class I human HDAC:s, the homologs of yeast
Rpd3 [23]. The small molecule inhibitor 4b is selective for the
class I enzyme HDAC3 but with some activity against HDAC1
[24]. 4b treatment reverses FXN gene silencing in primary cells
from Iriedreich’s ataxia patients [24] and relieves disease
phenotype and transcriptional abnormalities in HD transgenic
mice [25]. In light of the yeast experiments presented above, we
posited that HDAC inhibition by 4b might have the added benefit
of suppressing expansions in human cells. To test this idea, CTG
repeat expansions were measured in a cultured human astrocyte
cell line, SVG-A. Glial cells such as astrocytes show somatic
expansions in HD patients [26], and SVG-A cells support
expansions in culture, as measured by the assay shown in
Figure 2A [27].

4b efficiently suppresses TNR expansions in SVG-A cells at doses
that are well tolerated. Treatment with 4b reduced expansion
frequencies in a dose-dependent manner (Figure 2B and Table S3).
Compared to the DMSO-only control, expansion frequencies were
suppressed 70% and 77% by 4b at 10 uM and 20 puM, respectively.
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In contrast, treatment of SVG-A cells with an HDACI- and
HDAC2-selective inhibitor called compound 3 [28] did not
suppress expansion frequencies (Figure 2B; small increases were
not significant). Together, the inhibitor results suggest HDACS is
the relevant target. Confirmation came from RNAi knockdowns.
Knockdown of HDACS resulted in 76% reduction in expansion
frequencies (Figure 2C), the same extent seen at the highest doses of
4b, whereas knockdown of HDACI elevated the expansion
frequency slightly but not to a statistically significant level. Inhibiting
HDAC3 with 4b or knocking it down changed the frequency of
expansions, not their sizes (Figure 2D). Expansions added as many
as 18 repeats to a starting tract of 22 repeats; thus, some expansions
regulated by HDAC3 in SVG-A cells cross the threshold of 3040
repeats observed in humans [2,4,16]. The reduced number of
expansions upon 4b treatment could not be attributed to increased
cell death, because the SVG-A cells retained =83% viability,
relative to DMSO-only control, even at the highest dose of inhibitor
(Figure 2E). Molecular analysis of global histone H4 acetylation
showed the anticipated increase in acetylated H4, up to about 10-
fold, when cells were treated with 4b (Figures 2I and S6). The
opposite phenotype—increased expansions—was seen with RINAi
knockdown of the histone acetyltransferases CREB-binding protein
(CBP) and p300 (Figure 2G), consistent with observations in
Drosophila [22]. We conclude that HDAC3 and CBP/p300 have
opposing effects on expansions in SVG-A cells, with HDAC3
promoting TNR expansions.
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Figure 2. Chemical inhibition or RNAi knockdown of HDAC3 in human SVG-A cells suppresses expansions. (A) The genetic assay is
essentially as described [27]. Cells were treated with either HDAC inhibitor 4b, compound 3, or DMSO only. Alternatively, siRNA was used with
scrambled siRNA as a control. Expansions are scored using yeast as a biosensor, and total plasmid counts are monitored by bacterial transformation
for enhanced sensitivity. (B) Expansion frequencies as a function of inhibitor dose, compared to DMSO-treated control cells. Blue, 4b-treated; red,
compound 3-treated. Error bar, =SEM; * p<<0.05 compared to DMSO-treated cells. Details in Table S3. (C) Expansion frequency after RNAi. Knockdown
efficiency, judged by three independent immunoblots, averaged 76(+8)% for HDAC3 and 76(+2)% for HDAC1. Error bars, =SEM; * p<<0.05 compared
to scrambled control. Details in Table S3. (D) Expansion sizes, derived from PCR analysis. 21 genetically independent expansions for DMSO, 16 for 4b
(combined data from 10 uM and 20 puM treatments), 28 for scrambled siRNA, and 13 for HDAC3 siRNA. (E) Cell viability measured by nigrosin staining
just prior to cell harvest. (F) Representative immunoblot of acetylated histone H4 and total histone H4 upon treatment with 4b; data summary in
Figure S6. (G) Expansion frequencies after RNAi against histone acetyltransferases. Error bars, =SEM; * p<<0.05 compared to scrambled control.
doi:10.1371/journal.pbio.1001257.9g002

Rpd3L and Hda1l Promote Expansions in Trans, Partly acetylation, then integration of the TNR reporter at ZNOI should
through Sae2 give an enhanced sin3 phenotype, 1.e. show greater suppression of
expansions. Similarly, there should be less sin3 phenotype on

We first tested the idea that expansion rates are suppressed in cis
expansions at a “‘cold” zone like SPS2 whose expression and histone

by hyperacetylation of histones near the repeat tract, as might occur ons a ) '
in HDAC mutants. The approach took advantage of previous acetylation is nearly unaffected in a siz3 mutant [20,29,30]. The

studies showing that transcription and histone acetylation at some results indicate otherwise (Figure 3A). For both integration sites, hot
yeast genes are particularly sensitive to the absence of SIN3. One and cold, the effect of sin3 on expansions was similar (6.4-fold
such locus is the ZNO! gene, which we refer to as a “hot” zone. In suppression at INOI, 5.7-fold at SPS2). Nearly identical suppression
sin3 mutants compared to wild type, transcript levels increase about effects were seen when the reporter was integrated at another

30-fold [20,29] and histone acetylation increases 3.6- to 5-fold relatively cold locus, LYS2 (8.8-fold; Figure 1C, left panel), or at
[30,31] at INOI. If expansions are sensitive to local histone another hot zone locus, IMEZ2 (8.8-fold; unpublished data).
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Figure 3. Evidence that Rpd3L acts in trans to promote expansions. (A) sin3 mutants suppress expansion rates when the TNR reporter is
integrated at “hot” zone, INOT on chromosome X and a “cold” zone, SPS2 on chromosome IV. Error bars, =SEM; * p<<0.05 compared to wild type. (B,
C) Chromatin immunoprecipitation using antibodies against pan-acetylated histone H4 or total H4. Underline indicates the TNR reporter integration
site at INO1 (B) or SPS2 (C). Rand, control reporter with randomized sequence in place of triplet repeat. Error bars, =SEM. Primer site details are
provided in Figure S8. (D) Expansion rates in single or double mutants of sae2, mre11, exo1, and/or sin3. The reporter was (CTG),,-CANT integrated on
chromosome Il. Error bars, =SEM; * p<<0.05 compared to wild type. Details for panels (A-D) are in Table S4. (E) Model for HDAC promotion of
expansions in yeast. 1. Acetylated Sae2 (Ac-Sae2) is marked for degradation, but it is stabilized by deacetylation in an Rpd3L- and Hda1-dependent
manner [32]. The same HDACs may deacetylate other factors relevant to expansions, thereby stabilizing them or influencing their activities. The
action of Rpd3L and Hda1 is counterbalanced by one or more HATSs that await identification. 2. Sae2 along with another nuclease, Mre11, cleaves TNR
DNA, possibly in a hairpin structure, to initiate the expansion pathway. 3. The cleaved TNR undergoes additional processing steps to complete the

expansion.
doi:10.1371/journal.pbio.1001257.g003

Confirmation studies of chromatin acetylation at the TNR locus
led to an unanticipated result. Chromatin immunoprecipitation
(ChIP) was used to evaluate pan-acetylation of histone H4
compared to total H4 at INOI, SPS2, and the TNR reporter
(Figure 3B and C). H4 acetylation at INOI was increased 3- to 5-
fold in the sin3 mutant as expected for a hot zone, while H4
acetylation at SPS2 was low in both the wild type and sin3 strains,
typical of a cold zone. These findings are independent of the
integration site of the TNR reporter (compare Figure 3B and 3C),
indicating that insertion of the reporter does not alter acetylation
levels at either integration locus. Unexpectedly, we found that
histones near the TNR are hyperacetylated, regardless of SIN3
status, to about the same level as INVO! in the sn3 mutant
(Figure 3B and C). Hyperacetylation seems to be conferred in part
by the trinucleotide repeat, because a control reporter with a
randomized sequence in lieu of the TNR yielded a greater
dependence of histone acetylation on SIN3 status (“Rand,”
Figure 3B). Although the TNR is not uniquely responsible for
hyperacetylation of nearby histones (Figure S7), it does contribute.

We concluded from the results in Figure 3A-C that HDACs
most likely promote expansions in trans, perhaps by controlling
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the expression or stability of factors that expand the TNR. The
nuclease Sae2 was investigated because a recent study showed
Sae2 is stabilized by deacetylation in an Rpd3- and Hdal-
dependent manner [32]. Furthermore, Sae2, along with the
Mrell/Rad50/Xrs2 complex, is known to process hairpin DNA
in vivo and in vitro [33,34]. Since TNR expansions are thought to
involve structured intermediates such as a hairpin [2-4], we tested
the idea that an see2 mutant would suppress expansions. The sae2
mutant partially suppressed expansions when compared side-by-
side with a siz3 mutant (Figure 3D), consistent with the idea that
Sae? is one (but not the sole) relevant target of Rpd3. Mutation of
the nuclease encoded by MREI1 suppressed expansions as much
as the si3 mutant (Figure 3D). Although Rpd3 is not known to
directly regulate Mrell, the expansion phenotype of the mrell
mutant is consistent with the possibility that HDACs stabilize
Sae2, which then works together with Mrell to promote
expansions. In support of this idea, the expansion phenotype of
the sin3 mrell double mutant was indistinguishable from those of
the sin3 and mrel ] single mutants (Figure 3D). In contrast, loss of
the Exol exonuclease showed no effect on expansions, and the sae2
exol double mutant was no more defective than the sae2 single
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mutant (Figure 3D). Together, the results of Figure 3 suggest that
yeast Rpd3L and Hdal promote expansions in trans through the
nucleases Sae2 and Mrell.

Discussion

This study reveals that yeast Rpd3L. and Hdal and human
HDAC3 promote expansions of threshold-length triplet repeats in
budding yeast and human astrocytes. Interfering with HDAC
function through mutation, RNAi knockdown, or small molecule
inhibitors eliminates most expansions. It is striking that yeast Rpd3
and Hdal elicit opposite effects on genetic stability depending on
the genomic context; these HDACs accelerate mutagenesis at
triplet repeats, whereas they favor chromosome stability via the
DNA damage response and processing of double strand breaks
[32]. We also found that the human HATSs encoded by CBP and
p300 have the contravening effect of stabilizing triplet repeats. The
latter finding complements an earlier report that CBP modulates
instability of long repeats in Drosophila [22]. The relevant yeast
HAT remains to be identified. The identification of HDAC:s as
promoting factors and the protective action of HATs emphasizes
the importance of protein acetylation/deacetylation to expansions.
The mechanistic and therapeutic implications of these findings are
considered below.

As in double strand break processing [32], one downstream
target of Rpd3L. and Hdal is likely to be the nuclease Sae2. We
propose a model where Rpd3L and Hdal positively regulate
Sae2 by stabilizing it. Sae2 and Mrell then function together as
nucleases to promote expansions (Figure 3E). This model is based
in part on the study of Robert et al., who found that acetylated
Sae2 is degraded by autophagy, but that Sae2 is stabilized by
deacetylation in an Rpd3- and Hdal-dependent manner [32].
Also consistent with the Robert et al. work, we infer that Sae2 is
not the only relevant target of these HDACs because the
expansion phenotype of a sae2 mutant is not as strong as for sin3
(Figure 3D). Other factors, currently unknown, are also proposed
to be regulated by Rpd3 and Hdal and to contribute to
expansions by mechanisms that remain to be elucidated
(Figure 3E). Sae2 and Mrell (acting in the Mrell/Rad50/
Xrs2 complex) are known to process hairpin DNA in vivo and in
vitro [33,34]. It remains to be determined whether these enzymes
actually process a TNR hairpin intermediate to accelerate
expansions. The effects of Sae2 and Mrell have also been
examined for expansions of long (CAG);q repeats [19]. In this
study, expansion frequencies increased in sae2 or mrel 1 mutants.
One likely explanation is that long alleles in yeast break more
frequently than do the shorter alleles we utilize; thus, long repeats
in yeast rely on double strand break repair to prevent expansions
[19]. In support of this possibility, expansions of (CAG);, are also
enhanced by loss of the recombination proteins Radb1 and
Rad52 [19], whereas rad5] or rad52 mutants do not affect
expansion rates of CTG alleles between 13 and 25 repeats
[35,36]. The outcomes of Sae2 and Mrell activity could be
different in break repair than in putative hairpin processing
described above.

We found that yeast HDAC mutants suppress expansions in
nearly all assays (Figure 1C), but quantitative differences in
phenotype illustrate that some aspects of HDAC regulation of
expansions remain unknown. What other factors regulated by
yeast Rpd3L and Hdal or human HDAC3 might contribute to
expansions? One possibility is chromatin structure near but not
immediately adjacent to the repeat. The triplet repeat literature
contains several connections between expansions and proteins that
modulate chromatin structure, including Drosophila CBP [22]
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mentioned above, the insulator protein CTCF [37,38], and the
DNA methyltransferase Dnmtl [39]. A second possibility is that
HDACGs promote expansions by controlling the firing of DNA
replication origins [40-43]. The major finding against the origin
firing model is that similar SIN3-dependent promotion of
expansions was seen when our yeast reporter was integrated at
four different loci (LYS2, INO1, SPS2, and IMEZ2; Figures 1 and 3),
which are 21-130 kb away from the nearest origins that become
deregulated in 7pd34 cells [42]. We feel it is unlikely that Rpd3-
dependent origin firing explains suppression of expansions,
although HDAC effects on fork progression or fork stalling cannot
be ruled out at this time.

HDAC inhibitors are currently being evaluated as therapies to
treat the transcriptional defects in several TNR expansion diseases
[44,45]. For example, 4b treatment reverses F’XV gene silencing in
primary cells from Friedreich’s ataxia patients [24] and relieves
disease phenotype and transcriptional abnormalities in HD
transgenic mice [25]. Our work implies these inhibitors may have
a second, beneficial effect of suppressing somatic expansions that
contribute to disease progression.

Materials and Methods

Genetic Assays and Analysis of Expanded TNR Alleles

Triplet repeat expansion assays using the URA3 reporter have
been described previously [18,27]. Assays using the CANI reporter
(Figure 1A) utilized canavanine at 60 pg/ml to select for
resistance. All expansions were verified by single-colony PCR
across the repeat tract followed by analysis on high-resolution
polyacrylamide gels [18]. Details of statistical analysis are provided
in Tables SI and S4.

Western Blot Analysis

Whole cell lysates (yeast and SVG-A astrocytes) or histone acid
extracts (SVG-A astrocytes) were separated electrophoretically
and transferred to PVDF membranes. Primary rabbit antibodies
were against histone H3 (A300-823A, Bethyl Laboratories),
acetyl-histone H3 (#17-615, Millipore), acetyl-histone H4 (#06-
866, Millipore), B-actin (A2066, Sigma-Aldrich), HDAC3 (sc-
11417, Santa Cruz Biotechnology), and HDAC1 (CH00218,
Coriell Institute for Medical Research). Assessment of HDACS3
expression via Western blot analysis resulted in two bands
around 50 kDa, the predicted size of the protein, presumably
representing the two reported isoforms of HDAC3 [46].
Throughout all experiments, consistent knockdown of the top
band was observed following HDAC3 siRNA treatment,
however levels of the bottom band varied between experiments.
Quantitation of HDACS3 knockdown was performed by densito-
metric analysis of the top band only. A mouse antibody was used
against histone H4 (ab31830, Abcam). Secondary antibodies
conjugated to horseradish peroxidase were 711-035-152 and
115-035-003 from Jackson ImmunoResearch Laboratories.
Visualization was by chemilluminescence (Western Lightning

Plus-ECL, PerkinElmer).

Chromatin Immunoprecipitation

250 ml yeast cell cultures were grown to Agyp~0.8 at 30° in
yeast extract/peptone/dextrose. Following cross-linking with 1%
formaldehyde (15 min, 22°), cross-linked chromatin was isolated
in lysis buffer containing 50 mM HEPES/KOH pH 7.5,
140 mM NaCl, 1 mM EDTA, 1% Triton X-100%, 0.1%
sodium deoxycholate and the protease inhibitors 1 mM PMSF,
I mM benzamidine, 1 pg/ml leupeptin, and 1 pg/ml pepstatin.
After sonication (40% duty cycle for seven cycles of 5 s each with
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50 s cooling in between; Digital Sonifier EDP 100-214-239,
Branson), chromatin fragments were immunoprecipitated with
antibodies specific for total histone H4 (5 pg, A300-646A, Bethyl
Laboratories) or pan-acetylated H4 (7 ul, # 06-866, Millipore) at
4°C overnight. Immune complexes were captured by incubating
with Protein G magnetic beads (S1430S, New England BioLabs)
for 4 h at 4°C. After a series of washes, DNA was eluted in
250 ul elution buffer (50 mM Tris-HCI pH 8, 10 mM EDTA,
and 1% SDS) and crosslinks were reversed by incubating
overnight at 65°C. DNA was purified by phenol-chloroform
extraction followed by an ethanol precipitation and analyzed by
quantitative PCR (Applied Biosystems, 7500 FAST). Primer
sequences used for quantitative PCR are provided in the
Supporting Information section. Signals for total H4 and
acetylated H4 were quantified by the method of 97 A and
normalized using the following calculation: (C, immunoprecipi-
tate—C input)—(C, background—C, input). Amplification of the
chromosome VI telomere region was chosen as a measurement
for background [31,47]. The normalized IP values obtained for
acetylated H4 were divided by the normalized IP values for total
H4.

Reverse Transcription-PCR

Cells were grown to mid-log phase and then extracted with hot
acidic phenol. Following clean-up of the RNA, reverse transcrip-
tion was performed in triplicate. cDNA levels were analyzed in
triplicate by quantitative real-time PCR and normalized to ALG9
levels. Details and primer sequences are provided in Table S2.

Shuttle Vector Assays and Molecular Analysis of Protein
Components

SVG-A astrocytes were seeded in 60 mm tissue culture dishes
and transfected with 5 pg shuttle vector DNA using Lipofecta-
mine 2000 (Invitrogen Corporation). After 6 h, the DMEM
transfection media was replaced by DMEM supplement with
10% fetal bovine serum, plus one of the HDAC inhibitors 4b or
compound 3 (kindly provided by Joel Gottesfeld, The Scripps
Research Institute) or DMSO only. Cells were incubated for an
additional 48 hours, then samples were taken for either
expansion assay or histone analysis. To measure expansions,
plasmid DNA was extracted and concentrated by using Hirt’s
alkaline lysis [48] and Amicon Ultra 50 K centrifugal filter units
(Millipore). Purified plasmid DNA was digested by Dpnl (New
England Biolabs) and then transformed into S. cerevisiae for
measurement of canavanine resistance or into E. coli for analysis
of total plasmid numbers as measured by ampicillin-resistant
colonies. Histone extracts were prepared by acid extraction
(protocol provided by Abcam).

RNA interference experiments were performed with minor
variations. SVG-A cells were seeded and transfected with ON-
TARGET plus or siGenome SMARTpool siRNAs (100 nM)
against HDAC3 (L-003496, M-003496), HDAC1 (M-003493), or
scrambled non-targeting siRNA (D-001810) from Dharmacon
using DharmaFECT 1. After 48 h, cells were transfected with 7 pg
of shuttle vector and also re-transfected with siRNAs using
Lipofectamine 2000. After another 2 d, expansion frequencies
were prepared as above, in parallel with immunoblot analysis of
whole cell lysates.

Statistical Analyses

All p values were determined by two-tailed Student’s ¢ test. p and
n values for each data set are specified in Tables S1, S2, S3, S4
unless stated in the figure legend.
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Supporting Information

Figure S1 Identification of mutants with reduced expansion
rates. (A) Overview of screen and results. (B) Schematic of replica
plating strategy to identify relevant mutants.

(TTF)

Figure S2 Expansion sizes in yeast = TSA. Expansion sizes
were measured by PCR and high-resolution gel electrophoresis to
within *2 repeats. All expansions are genetically independent.
The histogram shows the spectra from 42 expansions seen in cells
treated with DMSO (unfilled bars), or from 39 expansions from
cells treated with 30 pg/ml TSA (blue-filled bars).

(TIF)

Figure 83 Survival of sin3, pho25, and hda3 mutants on
canavanine- or 5FOA-containing media. This experiment tests
whether HDAC mutants without a triplet repeat reporter show
any innate sensitivity to canavanine or 5FOA, the compounds
used to select expansions from the CANI and URAS3 reporters,
respectively. If there were any innate sensitivity, then expansion
assays with the HDAC mutants might give low apparent
expansion rates for reasons unrelated to the triplet repeats
themselves. For each strain, spontaneous deletion of the reporter
(“pop-out”) was identified genetically. Cells from each reporter-
less strain were grown in YPD medium to mid-log phase, and
serial 10-fold dilutions were spotted onto control media (SC-Ura,
left) or selective media (center and right). The plates were
incubated at 30° for 6 d and then photographed. Selection was
for canavanine resistance (top) or S5FOA resistance (bottom). Low
concentrations of Can or 5FOA were used to magnify any
difference in sensitivities of wild type controls versus HDAC
mutants. The results indicate similar growth rates for wild type
and HDAC mutants on the control media (left) and plates with low
(center) or high drug concentrations (center). Based on these
experiments, we conclude there is no evidence for innate sensitivity
of the HDAC mutants to canavanine or 5FOA. Therefore, low
expansion rates in the HDAC mutants cannot be attributed to the
selection method.

(TIF)

Figure S4 Growth tests of sn3, pho25, and hda3 mutants
containing an expanded repeat on canavanine-containing media.
This experiment tests whether HDAC mutants with an expanded
CTG repeat grow similarly to wild type on selective media. The
result will tell whether a hypothetical slow-growth phenotype in
HDAC mutants on selective media could lead to undercounting of
Can resistant colonies, thus imitating low expansion rates. For
each strain, a spontaneous expansion was identified that contained
circa 33 CTG repeats, based on PCR analysis (Figure 1B). The
cells were then resuspended in water, and serial 10-fold dilutions
were spotted onto complete media (top panel) or canavanine-
containing media. The cells were incubated at 30° for 2 d (top
panel) or 6 d (bottom panel). The time, temperature, and selective
media are all the same as used when measuring expansion rates.
The results indicate similar growth rates, and clearly visible
colonies, for all the HDAC mutants and the wild type control
strain. We conclude that the reduced expansion rates in the
HDAC mutants cannot be attributed to slow growth on
canavanine-containing media.

(TTF)

Figure S5 Expansion rate data for alternative HDACs. This
experiment tests whether mutation of any HDAC besides Rpd3L
or Hdal gives reduced rates of expansion for the (CTG)20-CANI
reporter integrated on chromosome II. For each strain, expansion
rates were measured as described in Materials and Methods. Data
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for sin3, pho23, and hda3 strains are reproduced from Figure 1C for
comparison. Error bars represent =1 SEM. The results indicate
that the additional HDAC mutants tested yielded small expansion
phenotypes compared to sin3, pho23, or hda3.

(TIF)

Figure S6 Accumulation of acetylated histone H4 upon
treatment of SVG-A cells with the HDAC inhibitor 4b. These
results are from four independent measurements of acetylated
histone H4 (AcH4) and total H4 by immunoblot. One represen-
tative blot is shown in Figure 2E. The graph below shows the
AcH4/Total H4 ratio normalized to the DMSO-only control.
Error bars denote =1 SEM. * $p<<0.05 compared to untreated.
(TIF)

Figure S7 Histone acetylation levels at LYS2. Chromatin
immunoprecipitation (ChIP) was used to measure acetylated
histone H4 (AcH4) and total H4 levels. Results were measured
by real-time PCR of the LYS2 promoter. Primer positions for each
gene are shown in Figure S8. The x-axis indicates strains with the
TNR reporter integrated at different genomic loci. Bars are
average of three measurements. Error bars reflect =1 SEM.

(TIF)

Figure 88 Position of ChIP primers. Real-time PCR was used to
quantify the ChIP signals in Figure 3 and Figure S7. Shown below
are the primer positions (not to scale) when the TNR reporter was
integrated at the query loci. The 4.3-6 kb distance between the
query site primers and the TNR primers make it likely that the two
amplicons were derived from independent template fragments. In
each case the target locus was disrupted by the reporter; for
example IV...0! indicates disruption of the INOI gene.

(TIF)

Table S1 Expansion rate analysis in yeast HDAC mutants. All
rate data are expressed as expansions per cell generation. n,
number of independent rate measurements; SEM, standard error
of the mean; p values calculated by Student’s ¢ test.

(TIF)

Table S2 Expansion suppression and transcript levels in HDAC
mutants. Expansion suppression values are from Table SI.
Transcript levels were measured in triplicate from three
independent cDNA preparations. For RNA preparation, yeast
cells from overnight cultures were grown in YPD to an A600 of
0.6. Cultures were then centrifuged at room temperature for
5 min at 4,000 rpm, washed in sterile water, and centrifuged
again. RNA extraction was performed using hot acidic phenol as
described previously (http://www.transcriptome.ens.fr/sgdb/pro-
tocols/preparation_yeast.php). A maximum of 100 pg of RNA
was used for clean-up. The RNeasy Mini Kit (Qiagen) was used
for the RNA clean up, which included the on-column DNase
digestion. 1 pg of total RNA was reverse-transcribed in triplicate
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