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Abstract

Protein domain motion is often implicated in biological electron transfer, but the general significance of motion is not clear.
Motion has been implicated in the transfer of electrons from human cytochrome P450 reductase (CPR) to all microsomal
cytochrome P450s (CYPs). Our hypothesis is that tight coupling of motion with enzyme chemistry can signal ‘‘ready and
waiting’’ states for electron transfer from CPR to downstream CYPs and support vectorial electron transfer across complex
redox chains. We developed a novel approach to study the time-dependence of dynamical change during catalysis that
reports on the changing conformational states of CPR. FRET was linked to stopped-flow studies of electron transfer in CPR
that contains donor-acceptor fluorophores on the enzyme surface. Open and closed states of CPR were correlated with key
steps in the catalytic cycle which demonstrated how redox chemistry and NADPH binding drive successive opening and
closing of the enzyme. Specifically, we provide evidence that reduction of the flavin moieties in CPR induces CPR opening,
whereas ligand binding induces CPR closing. A dynamic reaction cycle was created in which CPR optimizes internal electron
transfer between flavin cofactors by adopting closed states and signals ‘‘ready and waiting’’ conformations to partner CYP
enzymes by adopting more open states. This complex, temporal control of enzyme motion is used to catalyze directional
electron transfer from NADPHRFADRFMNRheme, thereby facilitating all microsomal P450-catalysed reactions. Motions
critical to the broader biological functions of CPR are tightly coupled to enzyme chemistry in the human NADPH-CPR-CYP
redox chain. That redox chemistry alone is sufficient to drive functionally necessary, large-scale conformational change is
remarkable. Rather than relying on stochastic conformational sampling, our study highlights a need for tight coupling of
motion to enzyme chemistry to give vectorial electron transfer along complex redox chains.
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Introduction

The relationship between dynamics and the function of proteins

is important. Proteins undergo a wide range of motions in terms of

time (10212 to .1 s) and distance (1022 to .10 Å) scales and any

of these may be significant catalytically and related directly to

function [1–5]. Proteins exist in an equilibrium of conformational

states that define a multi-dimensional free energy landscape,

enabling proteins to explore high energy states [6]. Mutagenesis

can induce altered landscapes leading to energy traps with

consequent effects on catalytic efficiency [7,8]. It is in the nature

of catalysis that high energy states are populated transiently during

the course of an enzyme-catalyzed reaction. The ability to study

these states experimentally, and to assess their impact on biological

function, is a major challenge. Evidence points to a range of spatial

and temporal dynamical contributions to substrate binding,

product release, and chemical catalysis [9–11].

There is evidence supporting a role for domain motion in

catalysis in the important family of diflavin oxidoreductases

typified by human cytochrome P450 reductase (CPR) and human

methionine synthase reductase (MSR) [12,13]. Pulsed Electron

Electron Double Resonance (PELDOR) studies of both CPR and

MSR indicate landscape remodeling induced by ligand binding.

Domain motion in this enzyme family has also been inferred from

structural studies (crystallographic [14–17] and solution state [18])

and from pressure-dependent kinetic studies of electron transfer in

CPR [12]. CPR is a membrane-bound NADPH-dependent

oxidoreductase that contains FAD and FMN cofactors housed in

discrete redox domains separated by a flexible hinge region [15].

CPR catalyzes electron transfer from NADPH to cytochrome

P450 (CYP) enzymes in the endoplasmic reticulum. The relative

orientation of the two flavin redox domains is variable, giving rise

to ‘‘open’’ and ‘‘closed’’ conformations of the enzyme as seen in

crystallographic analysis of homologous wild-type and mutant

forms [16,19]. NMR and small angle X-ray scattering studies

suggest that CPR adopts a more closed conformation on

coenzyme binding [18], similar to the conformation of crystallized

rat CPR in which the dimethylbenzene moieties of the FAD and

FMN cofactors are juxtaposed [15]. This closed conformation is

optimal for interflavin electron transfer since the short interflavin

distance enhances electronic coupling. Despite this close approach,

interflavin electron transfer is slow (,50 s21) as measured by
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temperature jump [20,21] and flash photolysis [22] time-resolved

spectroscopies. These studies imply adiabatic control of electron

transfer through conformational sampling [23]. This is consistent

with temperature [24], pressure [12], and viscosity dependence

[20] analysis of electron transfer kinetics, and with the multiple

conformational states of human CPR seen in PELDOR studies

[12]. Whilst the closed state of CPR is optimal for interflavin

electron transfer, interaction with CYP enzymes requires a more

open state. FMN domain residues that interact with CYP enzymes

are occluded in the closed state [25]. A sequential opening and

closing of CPR during the catalytic cycle is therefore proposed to

facilitate internal electron transfer and subsequent transfer of

electrons to CYP enzymes [16,26]. This proposed cycling between

open and closed conformations is consistent with impaired CYP

reduction by CPR containing a non-native disulphide bond that

links the FAD and FMN domains and the rescue of activity

following reduction of this bond [27].

Evidence for conformational cycling during CPR catalysis is

largely circumstantial. A direct means of analyzing conformational

variations during enzyme catalysis is required to link the kinetics

(and energy barriers) of conformational change to the chemical

(redox) changes that result from hydride transfer (NADPHRFAD)

and electron transfer (FADRFMN). There are major problems to

be addressed, including (i) identification of the ‘‘drivers’’ that open

and close CPR; (ii) discrimination between electron transfer

mechanisms that rely on conformational change coupled to

chemical or binding events, or stochastic sampling of conforma-

tional space (i.e., conformational sampling mechanisms of electron

transfer [28,29]); (iii) whether the timescales for opening and

closure support directional electron transfer from NADPH to CYP

enzymes. With these key questions in mind our strategy has been

to develop a direct method for analyzing the spatial and temporal

properties of domain motion in human CPR using time-resolved

Fluorescence Resonance Energy Transfer (FRET) during catalytic

turnover. Our approach employs extrinsic fluorophores (Alexa 488

and Cy 5) attached at different positions on the solvent exposed

surface of CPR to enable spatial (range ,20–80 Å) and temporal

(range ms to s) mapping of conformational variation during

stopped-flow studies of flavin reduction by NADPH. In this way,

we have been able to correlate the time dependence and extent of

conformational change with individual rate constants for hydride

and electron transfer in CPR. Using this direct approach, we have

elucidated how motions link to enzyme chemistry, identified the

‘‘drivers’’ of these motions, and gained important new insight into

how these motions facilitate directional transfer of electrons along

human microsomal P450 chains.

Results and Discussion

An Experimental System That Reports Directly on CPR
Domain Motion

We generated homology models for several closed and open

structures of human CPR based on X-ray crystal structures of the

homologous rat CPR (94% sequence identity) [15,16]. The fully

closed structure is shown in Figure 1. Based on these models we

reasoned that CPR can bind at least two mole equivalents of an

extrinsic fluorophore through a thiol linkage to cysteine residues.

Figure S1 shows the absorbance spectra for the donor (Alexa 488

(D)) and acceptor (Cy 5 (A)) fluorophores attached to cysteine

residues, in fluorophore-labeled CPR (CPR-DA). The fluorophore

and protein concentrations determined from this spectrum

indicate stoichiometric attachment of the two fluorophores, giving

a total fluorophore:CPR ratio of 2:1. Mass spectral analysis

indicates that three cysteines are labeled using our protocol,

namely C228, C472, and C566 (Figure S2), suggesting fractional

labeling of each cysteine (see Text S1 for detailed discussion).

C228 is located in the FMN domain and C472/C566 in the FAD

domain, as shown in Figure 1. We have not attempted to remove

the multiple cysteines in the FAD domain as we wish to study the

wild-type enzyme, particularly since mutagenesis may have

unknown effects on the protein dynamics. We note that there is

only one labeled residue in the FMN domain, C288. From our

homology models, opening of CPR results in a decreased distance

between C228 in the FMN domain and C472/C566 in the FAD

domain.

Figure 2A shows the emission spectra of both donor labeled

CPR (CPR-D) and CPR-DA, where the donor is excited at

495 nm. For CPR-DA, there is significant emission arising from

the acceptor (,670 nm) with a corresponding decrease in the

Figure 1. Homology model of CPR in the closed conformation.
FMN is shown in yellow and FAD in orange. The curved arrow indicates
the putative direction of domain motion as flavin reduction proceeds.
The positions labeled with the extrinsic fluorophores are shown in
magenta.
doi:10.1371/journal.pbio.1001222.g001

Author Summary

Enzymes are proteins that catalyze a large array of
chemical reactions, often in partnership with other
enzymes. We understand in detail the chemical mecha-
nisms of many of these reactions; however, the importance
of the physical movements of enzymes during catalysis (or
protein dynamics) is, increasingly, becoming apparent. In
this study, we have placed fluorescent markers on an
enzyme called cytochrome P450 reductase (CPR) to probe
the dynamic changes in the physical conformation of the
protein as the reaction chemistry proceeds. CPR catalyses
the transfer of electrons from a small molecule donor
(called NADPH), ultimately passing them to their partner
enzymes called CYPs. We were able to correlate specific
conformational changes with distinct chemical steps in
CPR. We found that the chemical transformation itself
induces the enzyme to adopt conformations that are
required for its efficient interaction with CYPs. These
findings have allowed us to develop a model of CPR
activity in which electron transfer along the pathway from
NADPH through CPR to CYP is tightly integrated with
physical conformational control of the enzyme.

P450 Microsomal Electron Transfer
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emission arising from the donor (,520 nm) compared to CPR-D.

This indicates that there is efficient FRET from donor to acceptor

when bound to CPR. We observed a small emission peak at

,670 nm for the Cy 5 labeled CPR (CPR-A) when excited at

495 nm (Figure S3), but the relative emission is far smaller

(,,3%) than that attributed to FRET. If the FMN domain moves

significantly relative to the rest of CPR (as is proposed to occur

following flavin reduction), the FRET efficiency is expected to

change, manifesting as a change in the ratio of acceptor to donor

emission (A:D). We were able to determine contributions to the

FRET signal from inter-protein FRET as well as direct physical

interaction of the extrinsic fluorophores with the flavin cofactors. A

description of these control studies is given in Supporting

Information (Text S1; Figure S4). We found no evidence to

indicate that either of these processes contributes to the observed

emission that we attribute to intraprotein FRET. We are therefore

confident that the experimental setup reports on conformational

change.

Several studies have suggested that CPR undergoes a

conformational change associated with coenzyme binding

[12,18,20,30]. Specifically, PELDOR spectroscopy of di-semiqui-

noid CPR (containing FAD semiquinone and FMN semiquinone)

has revealed that binding of NADP+ leads to formation of a more

closed distribution of CPR structures compared to ligand-free di-

semiquinoid enzyme [12]. It is possible to form an enzyme-

coenzyme complex by incubating oxidized CPR with NADP+.

Should binding of NADP+ induce CPR closure, the distance

between C228 and the cysteines in the FAD domain will increase

(as discussed above), resulting in poorer FRET efficiency between

donor and acceptor (i.e., a decrease in the A:D emission ratio).

Figure 2B shows the resulting A:D ratio for the emission of the

CPR-DA fluorophores excited at 495 nm when titrated against

NADP+. The individual donor and acceptor emission titrations are

shown in Figure S5, normalized for the corresponding changes in

fluorescence of CPR-D and CPR-A as described in Materials and

Methods. This removes effects such as quenching by aromatic

residues/NADP+ and FRET involving the flavin cofactors, leaving

only changes attributable to FRET between the extrinsic

fluorophores. From Figure 2B, the A:D ratio decreases with

increasing NADP+ concentration and saturates with a constant,

KS = 1.660.5 mM. These data indicate that coenzyme binding

induces formation of a more closed form of CPR and demonstrate

that our experimental system can detect relative domain

movements in CPR.

Conformational Change Occurs on the Timescale of
Chemical Turnover

By monitoring the change in fluorescence emission of the

fluorophores in stopped-flow studies of flavin reduction by

NADPH, we have been able to correlate the kinetics of

conformational change with enzyme chemistry. We assessed the

degree of photo-bleaching of the fluorophores in oxidized CPR-D

(ex 495 nm) and CPR-A (ex 655 nm). Example traces are given in

Figure S6A. In each case there is a small decrease in fluorescence

emission of ,1% over 500 s. This small amount of photo-

bleaching is not used to correct subsequent traces as the magnitude

of the quenching is relatively small. Next, we determined if binding

of NADP+ in stopped-flow studies causes a measurable change in

protein conformation as demonstrated also in NADP+ titration

experiments (Figure 2B). The change in FRET (CPR-DA excited

at 495 nm) was monitored on mixing oxidized and 2-electron

reduced CPR-DA with a saturating concentration (5 mM) of

NADP+. Example traces are given in Figure S6B–C. The observed

changes in emission following mixing with NADP+ are similar to

those recorded for photo-bleaching. However, we observed small

shifts in the absolute magnitude of fluorescence at t = 0 for enzyme

versus NADP+ mixes compared to enzyme versus buffer control

mixes. This indicates a loss in the fluorescence signal of a

magnitude similar to the titration study (Figure 2B) in the dead

time of the stopped-flow instrument, consistent with fast (,5 ms)

conformational closure of CPR. Since coenzyme-induced closure

of CPR is fast, we infer that any fluorescence changes observed

beyond the instrument dead time in reactions of CPR with

NADPH would be related to conformational change accompany-

ing chemical (redox) change in the enzyme catalytic cycle.

Figure 2. Coenzyme binding causes CPR to close. (A) Fluorescence emission spectra of CPR-D (black line) excited at 495 nm and CPR-DA
excited at 495 nm (red line). The introduction of an acceptor fluorophore causes a decrease in donor emission and an increase in acceptor emission
when the donor is excited (red arrows), which is demonstrative of FRET. The same concentration of donor fluorophore is present in both spectra. (B)
Effect of titrating NADP+ on the relative change in FRET efficiency (expressed as variation in A:D ratio). The solid line shows the fit to Equation 1.
Conditions: 50 mM potassium phosphate pH 7, 25uC, 0.3 mM CPR-D, 0.6 mM CPR-DA.
doi:10.1371/journal.pbio.1001222.g002

P450 Microsomal Electron Transfer
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We extracted time-resolved changes in FRET between the D

and A fluorophores as flavin reduction proceeds. In this way we

assessed relative conformational change associated with flavin

reduction in CPR. The time-resolved FRET response is

deconvoluted from other contributions to the emission response

such as quenching by aromatic residues or FRET involving the

flavin moieties in a similar manner as our NADP+ titration study

(Figure 2B). This is achieved by subtracting the traces for CPR

that contained only a single fluorophore (species CPR-D and

CPR-A; fluorescence traces shown in Figure S7A and B, trace (i))

from the fluorescence traces for the corresponding fluorophore in

a FRET pair (Figure S7B, trace (ii)). The resulting difference traces

(Figure 3A) then show the fluorescence emission due to FRET

between the extrinsic fluorophores alone. Opposition of the D and

A traces was not observed (as expected for FRET data) despite

deconvolution of the FRET response, suggesting we recover an

approximation of the pure FRET signal. Consequently, we have

not calculated detailed distance information from the FRET data,

but simply used the FRET signal qualitatively to follow changes in

the distribution of CPR conformations in a time-resolved manner.

To extract rate constants for the observed changes in the

conformational distribution, we simultaneously fit both the donor

and acceptor traces in Figure 3A to a multi-exponential expression

(Text S1) with linked rate constants for each kinetic phase. This

method is robust as the shifting sign of the amplitude for each

kinetic phase facilitates good resolution of potentially similar rate

constants and small amplitudes. Data fitting is described in detail

in Supporting Information (Text S1). The extracted observed rate

constants and amplitudes are given in Table S1. These data can be

minimally fit to a four exponential function, suggesting there are at

least four conformational transitions that occur during flavin

reduction by NADPH. The extracted rate constants are essentially

the same for each kinetic phase for any of the traces shown in

Figure S7 (Table S1). This is consistent with our assertion that the

observed changes in fluorescence emission of the fluorophores are

due to conformational changes in the enzyme only. That is, the

traces give the same rate constants, despite different mechanisms

(quenching, FRET, etc.), since the changes in fluorescence

emission are caused by the same conformational change as flavin

reduction proceeds. Moreover, changes in the FRET signal report

specifically on distance changes between C228 and C472/C556 as

shown by control experiments in which negligible changes in A:D

ratio were seen with a variant form of CPR containing the C228S

mutation (see Text S1 and Figures S8 and S9).

Absorption studies of flavin reduction by NADPH in CPR using

stopped-flow methods have previously been reported [12,24,31]

and can be used to dissect flavin reduction in CPR in detail. These

studies indicate that NADPH binds to the FAD domain where it

transfers a hydride to the N5 of FAD followed by electron transfer

from FAD to FMN to yield a distribution of 2-electron reduced

species (FADHN FMNHN, FADH2 FMN and FAD FMNH2). In the

absence of an electron acceptor (such as CYP) a second equivalent

of NADPH binds to the FAD domain and transfers a hydride to

FAD, driving the equilibrium distribution of enzyme states

towards the fully (4-electron) reduced species (FADH2 FMNH2).

The observed rate constants for formation of 2-electron (FMNHN

FADHN) and 4-electron (FMNH2 FADH2) reduced CPR can be

monitored by following the formation and decay of the di-

semiquinoid (FMNHN FADHN) 2-electron reduced species at

600 nm on mixing with a saturating concentration of NADPH

in a stopped-flow instrument [31]. The two exponential phases

extracted from these reaction traces correspond broadly to the

observed rate constants for 2-electron and 4-electron reduction

(termed k1 and k2, respectively). CPR-DA reacts with NADPH in a

similar way, and the kinetics of absorption change at 600 nm for

the two exponential phases are identified as ‘‘flavin reduction’’

(black trace) in Figure 3B. Further, there is a very slow phase

(increase in 600 nm absorbance; represented as ‘‘EQ’’ in

Figure 3B) observed after 4-electron reduction. In wild-type

CPR, this phase has been attributed previously to the formation of

an internal equilibrium between redox states in the absence of an

electron acceptor [31]. This slow adjustment to the final

equilibrium of redox states is retained in CPR-DA. In the present

study, we focus on the chemical steps, k1 and k2. Figure 3B shows a

typical reaction trace for flavin reduction by NADPH in CPR

monitored at 600 nm. The data are fit to a four exponential

function (Text S1, Equation S1) accounting for all the observed

absorption changes discussed above. The rate constants for k1 and

k2 at 25uC are given in Table 1, extracted as kobs1 = 16.260.2 s21

and kobs2 = 4.060.1 s21. Table 1 also shows the observed rate

constants for the first two kinetic phases extracted from the

fluorescence data that represent conformational change

(Figure 3A). The rate constants extracted from the fluorescence

data (kobs1 = 24.561.0 s21 and kobs2 = 4.260.1 s21) are similar to

the observed rate constants for flavin reduction, suggesting that

flavin reduction and conformational change are linked in CPR.

We now correlate the observed changes in flavin redox state

with the conformational changes extracted from our fluorescence

data. Figure 3B shows the ratio of acceptor to donor (A:D)

emission extracted from the stopped-flow traces shown in

Figure 3A, effectively describing the trend in FRET efficiency

during flavin reduction by NADPH. These data clearly show that

the FRET signal is increased (i.e., more ‘‘open’’ conformations are

populated) as CPR is sequentially reduced to the 2-electron and

then 4-electron levels (indicated by the time-resolved absorption

measurements at 600 nm; Figure 3B). Further, following flavin

reduction we observed a gradual closing of CPR (reduced A:D

emission ratio) over prolonged time periods (10 to 1,000 s) as CPR

relaxes to the final equilibrium position. These FRET data

indicate, therefore, that conformational closure is a key part of this

long-time base equilibration of the reduced enzyme species and

that the more open state is a metastable form of reduced CPR.

The fluorescence and absorption changes shown in Figure 3B

occur over very similar timescales (0–10 s), suggesting that domain

motion is linked to redox chemistry. The potential for direct

coupling of redox change with conformational opening of CPR is

addressed below.

CPR Exhibits Redox-State Dependent Conformational
Change

Strong evidence for the coupling of conformational change with

enzyme chemistry would arise if the energetic barriers for electron

transfer and motion are shown to be equivalent. This was

addressed experimentally by monitoring the temperature depen-

dence of the rate of flavin reduction (absorption change at

600 nm, reporting on k1 and k2) and associated conformational

change (from time-resolved fluorescence data). The temperature

dependence of the rate constants k1 and k2 for structural change

and flavin reduction is shown in Figure 4. The Eyring plots for the

fluorescence data are linear (Figure 4), suggesting that the first two

exponential phases each report on rate constants for a single

process (i.e., structural change). The values of DH{ for flavin

reduction and conformational change are given in Table 1 and are

similar for both kinetic phases (k1 and k2). That DH{ is very similar

for both flavin reduction and structural change for both

exponential phases (2-electron and 4-electron reduction) suggests

a tight coupling of the reaction chemistry with the observed

structural transitions.

P450 Microsomal Electron Transfer
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The kinetics and energetics of flavin reduction and conforma-

tional change are consistent with the two processes being tightly

coupled. These data might suggest that flavin reduction is

responsible for conformational opening of CPR or that confor-

mational change induces electron transfer associated with flavin

reduction. The analysis, however, is complicated by the opposing

effects of coenzyme binding, which in the absence of redox

chemistry is known to effect closure of CPR (Figure 2B). We

therefore conducted stopped-flow measurements in which CPR-

DA was mixed with the chemical reductant, sodium dithionite, to

investigate the effects of redox change in the absence of coenzyme

binding. A typical trace from these experiments is shown in

Figure 5A. As with NADPH reduction, when dithionite is used to

reduce the flavin centers the appearance and subsequent

disappearance of the flavin semiquinones is observed at 600 nm

corresponding to formation of the 2-electron and 4-electron

reduced species of CPR. The individual exponential components

corresponding to 2-electron and 4-electron reduction are less well

defined, which complicates data analysis, but approximate rate

constants can be obtained. The observed rate constant for flavin

reduction is far slower, with dithionite being ,0.05 s21 and

,0.04 s21, compared to NADPH, ,19 s21 and ,2.5 s21, at

20uC for 2- and 4-electron reduction, respectively. The change in

FRET efficiency for CPR-DA was also monitored as flavin

reduction proceeds (Figure 5A). Individual fluorescence traces

used to calculate the FRET response are shown in Figure S11A,B.

The change in FRET efficiency can be adequately fit to a two-

exponential function (Text S1, Equation S1) with observed rate

constants of ,0.05 s21 and ,0.03 s21 for the first and second

kinetic phases, respectively. In general, there is a large increase in

A:D (CPR opening) as flavin reduction proceeds. We note that the

first exponential phase shows a slight decrease in A:D, though this

is on a faster timescale than either 2- or 4-electron reduction

(Figure 5A). Therefore, as seen with NADPH, the rate of flavin

reduction by dithionite correlates with the observed rate of

conformational change (Figure 5) and reduction to the 2-electron

and 4-electron levels is accompanied by an opening of CPR. These

data indicate that reduction of the flavin cofactors alone is

sufficient to induce conformational opening of CPR. Further,

these data are consistent with our temperature dependence data

from which we inferred a tight coupling of the conformational

transition with the flavin redox state.

Figure 3. The observed rate of conformational change and flavin reduction in CPR are the same. (A) Example stopped-flow traces of the
deconvoluted trace arising from FRET alone for the donor (black) and acceptor (green). Solid lines show the simultaneous fit of both traces to
Equation S1. (B) The green line shows the ratio of acceptor to donor emission extracted from the deconvoluted traces (A). The black line shows an
example trace for the relative change in CPR absorbance at 600 nm versus a saturating concentration of NADPH (flavin reduction). Solid lines show
the fit to Equation S1. The dotted lines show the relative phases of flavin reduction (2e2) and establishment of the internal equilibrium (EQ).
Conditions: 50 mM potassium phosphate pH 7, 5 mM NADPH at 15uC. Labelled CPR and unlabelled CPR concentrations were ,0.5 and 40 mM,
respectively.
doi:10.1371/journal.pbio.1001222.g003

Table 1. Observed rate constants for 2- and 4-electron reduction of CPR monitored as a change in 600 nm absorbance (flavin
reduction) and fluorescence emission of extrinsic fluorophores (domain motion).

Reduction Level of CPR

Observed Rate Constants and
Enthalphy Changes for 2- and
4-Electron Reduction Flavin Reduction Domain Motion

2e2 kobs1 (s21)a 16.260.2 24.561.0

DH{
1 (kJ mol21) 61.160.3 62.463.4

4e2 kobs2 (s21)a 4.060.1 4.260.1

DH{
2 (kJ mol21) 64.160.2 67.662.8

aMeasurement at 25uC.
doi:10.1371/journal.pbio.1001222.t001
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We also examined the effects of coenzyme binding on the rate of

flavin reduction and conformational opening during enzyme

reduction with dithionite. This is achieved by mixing CPR-DA

that had been pre-incubated with a saturating concentration of

NADP+ (5 mM) with dithionite. There was no evidence for

reduction of NADP+ to NADPH (monitored by absorption

changes at 340 nm) by dithionite over the timescale of the study.

In the presence of NADP+, the rate constant for flavin reduction

by dithionite (2-electron reduction) increases approximately 2-fold

(,0.01 s21; Figure 5B) compared with reactions performed in the

absence of NADP+. The conversion of 2-electron reduced CPR to

the 4-electron reduced species is not well-resolved, due likely to

overlap with the slow kinetic phase(s) involved in establishing the

final equilibrium of redox states (EQ) (Figure 5B). The

corresponding change in FRET efficiency is shown in Figure 5B

with the individual fluorescence trace shown in Figure S11C and

S11D. As with dithionite alone, there is a significant increase in the

A:D ratio corresponding to CPR opening and this occurs on a

similar timescale to flavin reduction (approximate rate constant

,0.08 s21).

The effect of NADP+ is therefore to accelerate (approximately

2-fold) flavin reduction and the associated conformational opening

of CPR with dithionite as reductant. Further, after the opening of

CPR with NADP+ bound there is a subsequent decrease in A:D

reflecting CPR closure as the reduced enzyme relaxes to the final

equilibrium (EQ) state (Figure 5B). On the timescale of our

measurements we do not observe the establishment of this

equilibrium in dithionite studies performed in the absence of

NADP+ (Figure 5A). We find therefore that NADP+ not only

increases the observed rate of flavin reduction, but also increases

the observed rate of EQ formation. This is consistent with previous

t-jump studies of interflavin electron transfer in di-semiquinoid

human CPR, where the observed rate of electron transfer (55 s21)

is increased 5-fold on adding NADP+ compared to reactions

performed in the absence of nicotinamide coenzyme [20]. The

precise reasons for accelerated flavin reduction in the presence of

NADP+ are unclear. However, cofactor binding likely induces a

shift in the equilibrium distribution of enzyme forms towards a

more closed conformation (Figure 2B). We suggest that internal

electron exchange between the flavin cofactors is enhanced due to

a minimized cofactor separation induced by NADP+ binding.

Clearly, once CPR is reduced by dithionite the distribution then

adjusts first to the metastable open conformations (0–50 s) and

then relaxes to the more closed EQ conformations (.50 s)

(Figure 5B).

An Integrated Model for Dynamics and Enzyme
Chemistry in CPR

We have monitored two separate conformational transitions in

CPR, namely opening and closing, which correspond to increased

and decreased separation of the FMN and FAD cofactors,

respectively. Opening is driven by reduction of the flavin cofactors

Figure 4. The temperature dependence of the observed rate of
flavin reduction and domain motion in CPR are the same.
Temperature dependence data for conformational change (filled circles)
and flavin reduction (open circles) are extracted from stopped-flow
fluorescence and absorbance measurements, respectively. Data are
shown for both 2-electron (black, k1) and 4-electron (green, k2)
reduction. Black lines show the fit to the Eyring equation and extracted
parameters are reported in Table 1. Conditions: 50 mM potassium
phosphate pH 7. Labelled CPR and unlabelled CPR concentrations were
,0.5 and 40 mM, respectively.
doi:10.1371/journal.pbio.1001222.g004

Figure 5. Redox state dependent conformational changes in CPR. Example stopped-flow traces for flavin reduction (green) and A:D emission
(black) with sodium dithionite (A) or NADP++dithionite (B). The dotted lines show the approximate end points of the 4-electron reduced oxidation
state and the slow equilibrium of redox states (EQ). Conditions: 50 mM potassium phosphate pH 7, 5 mM NADP+ at 20uC. Labelled CPR and
unlabelled CPR concentrations were ,0.5 and 40 mM, respectively.
doi:10.1371/journal.pbio.1001222.g005
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and closure by coenzyme binding (Figure 6A). We now develop an

integrated model for CPR action that incorporates these

conformational transitions (Figure 6). In this model, domain

motions driven by flavin reduction are crucial in mediating

electron transfer to CYPs. The open conformations expose

residues required for CYP interaction that are occluded in the

closed conformation [25]. The open state signals that CPR is

‘‘ready and waiting’’ to transfer electrons to CYP partners in the

microsomal membranes. Should productive interaction with CYP

partners not occur, subsequent closure of CPR (formation of EQ)

may offer some protection of the reducing equivalents in the flavin

cofactors by suppressing their adventitious transfer (e.g., to

molecular oxygen). The open conformation of CPR is not

appropriate for ‘‘electron loading’’ from the reducing coenzyme

NADPH. Rapid equilibration of electrons across the flavin centers

is required to generate 2- and 4-electron reduced CPR from the

oxidized form. Therefore, ‘‘closure’’ of the oxidized form of CPR

is induced on nicotinamide coenzyme binding to facilitate efficient

loading with reducing equivalents prior to redox-driven opening of

the structure. We note that there is evidence for both 2, 4 and 1, 3

electron cycling in CPR [32,33], and we propose a similar

mechanism of opening/closing driven by the flavin redox state can

occur in either case. However, in vivo the need for a second

hydride transfer from NADPH may be less important (Figure 6B).

The redox and ligand-bound forms of CPR therefore drive the re-

distribution of CPR conformations across the associated energy

landscape to more open or closed forms of CPR. These different

conformations direct downstream interaction of CPR with CYP

partners and facilitate directional transfer of reducing equivalents

for CYP-mediated catalysis. Such motion therefore drives the

vectorial transfer of electrons from NADPH to CYP to catalyze

the wide range of mono-oxygenation reactions in the endoplasmic

reticulum.

It is important to distinguish between the relatively large-scale

redox-coupled and ligand-coupled motions discussed above and

other stochastic motions that can limit the rate of electron transfer.

Our model therefore also recognizes that smaller-scale motions

can also limit electron transfer, either between flavin cofactors (in

the closed state) or to CYP enzymes (in the open state). Localized

searches for productive reaction geometries are common in

biological electron transfer reactions and these are often

responsible for the slower observed rates of electron transfer

compared to those predicted for ‘‘pure’’ (nonadiabatic) electron

transfers on the basis of distance criteria alone [23,34]. Indeed, our

temperature-dependence studies indicate that the reaction cannot

be modeled using the Marcus nonadiabatic formalism for electron

transfer (see Text S1 for details; Figure S10 and Table S2). As

such, Figure 6 should not be taken to imply that single discrete

open and closed conformations of CPR exist under a defined

ligand-bound or redox form of the enzyme. Rather, an ensemble

of conformations exist (as indicated by PELDOR studies of

different liganded forms of di-semiquinoid CPR [12]) and that

redox change and ligand binding drive the equilibrium distribu-

tion towards more open or closed states, respectively. We suggest

that localized searches for reactive electron transfer geometries

could be rate limiting for interflavin electron transfer in CPR,

Figure 6. Integrated model of dynamics and chemistry in CPR in a proposed 2,4 reaction cycle as observed in vitro. The structures
shown are taken from homology models of available rat CPR X-ray crystal structures and are used to exemplify particular conformational changes. (A)
CPR undergoes large scale domain motion subsequent to flavin reduction. There is a detectable conformational change associated with the 2- and 4-
electron reduced state of CPR, giving the species E/Eu (oxidized, yellow flavin), E* (2-electron reduced, blue flavin), and E9 (4-electron reduced, orange
flavin). Binding of NADPH (green sticks) to oxidized (E) or 2-electron reduced (E*) CPR causes a relative closing to form EuS and E(*)S, respectively. (B) A
model for directional transfer of electrons in vitro and in vivo. The 2-electron reduced form of CPR (E*) is capable of being further reduced (E9) in vitro.
However, in vivo electrons are transferred from the open CPR (E*) to the heme of a CYP partner. A similar scheme for a 1,3 catalytic cycle is possible in
vivo in which conversion of enzyme species Eu to E* represents reduction of 1-electron reduced CPR to 3-electron reduced CPR (see text for details).
doi:10.1371/journal.pbio.1001222.g006
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consistent with the slow observed rates of electron transfer in t-

jump [20] and laser flash photolysis experiments [20,35].

Conclusion
The use of time-resolved FRET in conjunction with stopped-

flow absorption analysis of the CPR catalytic cycle has enabled us

to present a dynamic model of catalysis in which redox change and

ligand binding drive large-scale redox domain motion. By

coupling conformational change to redox change and ligand

binding, CPR optimizes internal electron movements between the

flavin cofactors and signals ‘‘open and ready’’ conformations to

partner CYP P450 enzymes. This linking of motion with enzyme

chemistry enables fine control of vectorial electron transfer along

the NADPHRFADRFMNRheme (CYP) chain that supports all

P450-mediated catalysis in the microsome. Given the structural

similarity of CPR with other major mammalian diflavin

oxidoreductases, including the isoforms of nitric oxide synthase,

we anticipate CPR will be a prototype for similar coupling of

reaction chemistry, ligand binding, and motions in biology.

Materials and Methods

Homology Models of Human CPR
The human CPR structures were modeled using SwissModel

from the rat CPR crystal structures. For the closed and

intermediate forms, the sequence was simply fit to the crystal

structure (1AMO_A and 3ES9_C, respectively, with 94% and

93% sequence identity). Loops not present in the crystal structures

were modeled using the built-in loop database (closed form:

residue 235–241 and 499–505; intermediate form: 235–238 and

499–504). For the most open form, a significant portion of the

FMN domain is missing in the crystal structure (3ES9_B). This

portion was modeled by aligning the FMN domain from the

intermediate form onto the existing coordinates of the crystal

structure with the loop connecting the two domains modeled using

the built-in loop database.

Extrinsic Fluorophore Labeling of CPR
Human CPR was expressed and purified essentially as described

previously [31]. Labeling of CPR with extrinsic fluorophores was

achieved by incubating CPR in 50 mM potassium phosphate,

pH 7 at ,20uC in an anaerobic glove box (Belle Technology) with

either Alexa 488 C5-maleimide (Molecular Probes) or Cy 5 mono-

maleimide (GE Healthcare). To achieve a 1:1 ratio of Alexa 488

and Cy 5 bound to CPR, incubation was with 1 mM and 5 mM of

the fluorophores, respectively. Non-reacted fluorophore was

separated from the sample by running through a desalting column

equilibrated with 50 mM potassium phosphate, pH 7. Details of

mass spectral analysis are given in Supporting Information (Text

S1). Unless otherwise stated, CPR was fully oxidized prior to all

experiments by adding a few grains of potassium ferricyanide and

elution through a desalting column as above. 2-electron reduced

CPR was formed by reaction with an equimolar concentration of

NADPH (Melford), and elution through a desalting column under

anaerobic conditions.

Static Fluorescence and Absorbance Measurements
Fluorescence emission spectra were monitored on a Varian

Cary Eclipse fluorescence spectrophotometer (Varian Inc., Palo

Alto, CA, USA). Multiple wavelength absorbance spectra were

monitored on a Varian Cary 50 Bio UV/Vis spectrophotometer.

Specific experimental conditions are given in the main text. All

experiments were performed in 50 mM potassium phosphate,

pH 7. The saturation constant, KS, was extracted by fitting

concentration dependence data to a weak binding function

(Equation 1):

A : D~A : D0zDA : D NADPz½ �= KSz NADPz½ �ð Þ ð1Þ

Stopped-Flow Studies and Data Fitting
To prevent oxidase activity of CPR, all kinetic studies were

performed under strict anaerobic conditions within a glove box

(Belle Technology; ,5 ppm O2) using a Hi-Tech Scientific (TgK

Scientific, Bradford on Avon, UK) stopped-flow spectrophotom-

eter housed inside the glove box. Spectral changes accompanying

flavin reduction and flavin di-semiquinone formation/decay were

monitored at 456 nm and 600 nm, respectively. For reduction

with sodium dithionite, the same solution of dithionite was used for

all experiments within 6 h. Fluorescence emission changes

associated with donor emission were monitored using a 550 nm

short wave pass optical filter. Fluorescence emission changes

associated with acceptor emission were monitored using a 650 nm

long wave pass optical filter. For the given reaction conditions, no

bleed through of fluorescence was observed. Data were collected

over a log timebase (15 decades, 3,000 data points total). Typically

3–5 measurements were taken for each reaction condition. Fitting

of reaction traces is described in detail in Supporting Information

(Text S1).

Supporting Information

Figure S1 Absorbance spectra of CPR-DA. Two molar equiva-

lents of the donor and acceptor probes are bound at a 1:1 ratio.

Extinction coefficients are: CPR (456 nm) e= 22 mM21 cm21,

Alexa 488 (495 nm) e= 72 mM21 cm21, and Cy 5 (655 nm)

e= 250 mM21 cm21. The flavin absorbance is overlapped by

Alexa 488 absorbance. Flavin absorbance is calculated based on the

known absorbance ratio 280 nm:456 nm. Conditions: 50 mM

potassium phosphate pH 7, 20uC, 0.6 mM CPR-DA.

(TIF)

Figure S2 Mass spectral analysis of fluorophore Alexa 488

labeled CPR. (A) HPLC trace of labeled (red) and unlabelled

(black) CPR monitoring protein absorbance at 215 nm (top panel)

and Alexa 488 absorbance at 475 nm (bottom panel). Black

dashed lines show fractions which were taken for MS/MS analysis.

(B) Example spectra showing labeled peptides for positions C228

(top panel), C472 (middle panel), and C566 (bottom panel).

(TIF)

Figure S3 Emission of the Cy 5 dye and quenching by CPR. (A)

The black line shows the Cy 5 dye excited at 655 nm, and the red

line shows CPR-A excited at 655 nm. The ratio of peak integrals

for Cy 5 and CPR-A excited at 655 nm is 0.23. This is then the

relative quenching of the dye associated with binding to CPR. (B)

Excitation of CPR-A (red line) at 495 nm gives rise to a small

emission peak at ,670 nm. The magnitude of this emission is

,3% of that attributable to Acceptor emission arising from FRET

(black line). Conditions: 0.5 mM Cy 5 and CPR-A, 50 mM

potassium phosphate, pH 7 at 20uC.

(TIF)

Figure S4 Changes in fluorescence report on conformational

change only. (A) Fluorescence emission spectra of CPR-D (red),

CPR-DA (black), and an equimolar mix of CPR-D and CPR-A

(blue) excited at 495 nm. Inset, zoomed in view of emission from

Cy 5. (B) Flavin fluorescence emission of oxidized CPR (black),

P450 Microsomal Electron Transfer

PLoS Biology | www.plosbiology.org 8 December 2011 | Volume 9 | Issue 12 | e1001222



oxidized CPR-A (red), and Cy 5 normalized for relative quenching

by the protein (blue) excited at 456 nm. Conditions: 50 mM

potassium phosphate pH 7, 25uC. CPR and fluorophore concen-

trations were 0.35 mM.

(TIF)

Figure S5 Titration of NADP+ against (A) CPR-D (black, Ex

495 nm, Em ,550 nm) and CPR-A (green, Ex 655 nm, Em

.650 nm) and (B) CPR-DA (Ex 495 nm, black Em ,550 nm,

green Em .650 nm). The solid lines show the fit to Equation 1.

The concentration-dependencies in (B) are adjusted for the relative

change in emission of the respective donor/acceptor only emission

(A) as described in Materials and Methods. Conditions: 0.4 mM

CPR-DA, CPR-D and CPR-A, 50 mM potassium phosphate,

pH 7 at 20uC.

(TIF)

Figure S6 Transient state kinetics of donor and acceptor

fluorophore emission on mixing with NADP+. Panel (A) shows

CPR-D and CPR-A emission versus buffer. Panel (B) shows CPR-

DA emission versus saturating NADP+ or (C) 2e2 reduced CPR-

DA versus saturating NADP+. These data are not corrected for the

variation in emission due to the individual fluorophores (CPR-D

and CPR-A) as the traces are essentially identical, showing only

changes associated with photo-bleaching of the fluorophores. The

emission of the traces has been normalized in each case to 100% at

t = 0, but see Materials and Methods for more details. Conditions:

0.4 mM CPR-DA, 50 mM potassium phosphate, pH 7 at 25uC
and 5 mM NADP+ (B/C).

(TIF)

Figure S7 Example stopped-flow traces and residuals for donor

(A) and acceptor (B) emission upon flavin reduction. The emission

is given as percentage change, where t = 0 is 100%; see Materials

and Methods for details. Trace (i) shows the emission from the

singly labeled enzyme, CPR-D or CPR-A, excited at 495 nm and

655 nm, respectively. Trace (ii) shows the emission from CPR-DA

exited at 495 nm. Trace (iii) shows the subtraction of trace (i) from

trace (ii) to give the change due in emission due to FRET only.

Residuals for each fit (A and B) are shown below the respective

panel and have the corresponding color. The residuals are

essentially randomly distributed over the time range. Conditions:

0.4 mM CPR-DA, 50 mM potassium phosphate, pH 7 at 25uC
and 5 mM NADPH.

(TIF)

Figure S8 Transient state kinetics of CPR reduction and

conformational change in the C228S CPR variant. (A) Trace

showing absorbance change attributable to flavin reduction,

reflecting the 2-electron reduced (increase in absorbance) and 4-

electron reduced (decrease in absorbance) states. (B) Example

traces of the deconvoluted donor and acceptor emission as in

Figure S7. (C) The change in A:D emission ratio extracted from

the data in panel (B) on the timescale of flavin reduction.

Conditions: 0.4 mM C228S CPR-DA, 50 mM potassium phos-

phate, pH 7 at 15uC and 5 mM NADPH.

(TIF)

Figure S9 Deconvolution of the FRET response arising from

FAD inter-domain motion upon flavin reduction. The A:D

emission ratio for wild-type CPR (i) is shown with the C228S

CPR variant (ii) on an extended time base. Deconvolution of the

C228S CPR response from that of the wild type enzyme gives rise

to trace (iii).

(TIF)

Figure S10 Temperature-dependence of the observed rate of

flavin reduction (A) and domain motion (B) fit to the Marcus

equation (Text S1, Equation S2). The values for kobs were

extracted as described in Materials and Methods and are only

given for the first two kinetic phases. The resulting parameters

from fitting to the Marcus equation are given below (Table S2).

Conditions: 50 mM potassium phosphate pH 7, 0.5 mM CPR-DA

and 5 mM NADPH.

(TIF)

Figure S11 Example stopped-flow transients donor (A/C) and

acceptor (B/D) emission upon flavin reduction with sodium

dithionite in the absence (A/B) or presence (C/D) of bound

NADP+. The emission is given as percentage change, where t = 0

is 100%; see Materials and Methods for details. Transient (i) shows

the emission from the singly labeled enzyme (CPR-D or CPR-A).

Transient (ii) shows the emission from CPR-DA exited at 495 nm.

Transient (iii) shows the subtraction of transient (i) from transient

(ii) to give the change due in emission due to FRET only.

Conditions: 0.4 mM CPR-DA, 50 mM potassium phosphate,

pH 7 at 20uC and 5 mM NADPH.

(TIF)

Table S1 Donor and Acceptor emission extracted from the trace

in Figure S7 and Figure 3A.

(DOC)

Table S2 Parameters derived from fitting the Marcus equation

to the temperature-dependence of the rate constants in Figure

S10.

(DOC)

Text S1 Supplementary text to the Materials and Methods, and

Results and Discussion sections.

(DOC)
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