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Abstract

Receptor tyrosine kinases (RTKs) and Notch (N) proteins are different types of transmembrane receptors that transduce
extracellular signals and control cell fate. Here we examine cell fate specification in the Drosophila retina and ask how N acts
together with the RTKs Sevenless (Sev) and the EGF receptor (DER) to specify the R7 photoreceptor. The retina is composed
of many hundred ommatidia, each of which grows by recruiting surrounding, undifferentiated cells and directing them to
particular fates. The R7 photoreceptor derives from a cohort of three cells that are incorporated together following
specification of the R2-R5 and R8 photoreceptors. Two cells of the cohort are specified as the R1/6 photoreceptor type by
DER activation. These cells then activate N in the third cell (the R7 precursor). By manipulation of N and RTK signaling in
diverse combinations we establish three roles for N in specifying the R7 fate. The first role is to impose a block to
photoreceptor differentiation; a block that DER activation cannot overcome. The second role, paradoxically, is to negate the
first; Notch activation up-regulates Sev expression, enabling the presumptive R7 cell to receive an RTK signal from R8 that
can override the block. The third role is to specify the cell as an R7 rather than an R1/6 once RTK signaling has specified the
cells as a photoreceptor. We speculate why N acts both to block and to facilitate photoreceptor differentiation, and provide
a model for how N and RTK signaling act combinatorially to specify the R1/6 and R7 photoreceptors as well as the
surrounding non-neuronal cone cells.
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Introduction

During development, cells receive signals from local or distant

sources and respond by sending other such signals. As a result,

complex systems of spatial and temporal information emerge and

individual cells make decisions about their fates based on this

information. Remarkably, only a few ligands and receptors mediate

these signaling events. Hence, the question arises as to how a small

number of signaling pathways can generate elaborate cell patterns

such as the array of photoreceptors, lens and pigment cells that

make up each facet of the insect compound eye.

Two concepts have emerged. The first is the iterative use of

signals. In this case, each signaling event alters the state of a cell

and determines how it responds to subsequent signals. Accord-

ingly, a cell can receive a sequence of signals over time and pro-

gress in a stepwise manner towards its ultimate fate. The second

concept is the combinatorial use of the signals. In this case, the

informative value of a signal depends on whether it is received

alone or together with one or more additional signals. Both

mechanisms appear to apply in most developmental contexts, but

how they are used, either separately or in conjunction to dictate

any given cell fate is poorly understood. Here we investigate how

receptor tyrosine kinase (RTK) and Notch (N) signaling are used

to specify a unique cell type: the R7 photoreceptor of the Drosophila

eye.

The Drosophila ommatidium is a complex assembly of 20 cells

arrayed in a stereotypical pattern in which each cell can be

uniquely identified by both its type and its position in the structure

(Figure 1A–1C). Each ommatidium is composed of a core

assembly of eight photoreceptors and four cone cells (non-neural

lens elements) surrounded by an array of primary, secondary and

tertiary pigment cells, and mechanosensory bristle complexes

(Figure 1B) [1]. The core assembly arises in two distinct phases. In

the first phase, a ‘‘precluster’’ of five cells withdraws from the cell

cycle and differentiates into five photoreceptors in a stepwise

fashion: first R8, then the pair R2/R5 and then the R3/R4 pair.

In the second phase, the assembly grows by successive rounds of

accretion of surrounding cells (Figure 1F). Cells are recruited to

specific positions (niches; white cells in Figure 1F) on the surface of

the growing cluster, and as they begin to differentiate they then

contribute to the formation of new niches into which the next

round of cells will be recruited [2,3]. During the first round of

accretion, a group of three undifferentiated cells is added to the

R2/8/5 face of the precluster (Figure 1Fii). Upon joining, the two

end cells, which abut the R2 and R5 cells, rapidly differentiate as

the R1 and R6 cells (Figure 1Fiii). Several hours later, the middle
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cell, which abuts R8, differentiates as an R7 cell. The next rounds

of accretion add cells first to the anterior and posterior faces of the

unit (Figure 1Fiv), and then to the polar and equatorial faces

(Figure 1Fv). Upon joining, these cells differentiate as non-neuro-

nal cone cells. Thus, three distinct cell types are sequentially speci-

fied: first R1/6, then R7 and finally the cone cells (Figure 1Fvi)

[2,3].

Receptor tyrosine kinase (RTK) signaling is critically required

for the specification of the R1-R7 photoreceptors. Acting through

the Ras/MAPK pathway, it activates the transcription of phyllopod

(phyll) [4,5] that encodes an adapter protein that directs the

ubiquitin ligase Sina to target the transcription factor Tramtrack

(Ttk) for degradation (Figure 1E) [6–8]. Ttk is the major inhibitor

of photoreceptor development: those cells that degrade it proceed

to become photoreceptors, while those that do not become the

other components of the ommatidium. RTK signaling is also

involved in other aspects of ommatidial development, both before

and after the choice to degrade Ttk is made. For example,

moderate levels of RTK signaling regulate the survival and

proliferation of cells before they are recruited to the cluster [9–11]

as well as the differentiation of cone cells after the choice not to

degrade Ttk is made [12]. In this article we focus exclusively on

the RTK signaling events that determine whether a cell becomes a

photoreceptor (Ttk degraded) or not (Ttk not degraded).

Two RTKs are required for specification of the R1/6/7

photoreceptors: the Drosophila EGF-Receptor (DER) and Seven-

less (Sev). DER is ubiquitously expressed and is activated by its

ligand Spitz, a diffusible peptide that is secreted by differentiating

cells of the precluster and is required for the specification of all the

six outer photoreceptors (R1–R6) [13,14]. Sev is expressed in a

complex manner; it is found in R3/4 and the mystery cells in the

precluster, but at the time around R7 specification it is expressed

at high levels in the R7 and cone cell precursors, and at low levels

in the R1/6 progenitors. It is activated by a membrane bound

ligand, Bride of Sevenless (Boss) presented on the surface of the R8

cell [15–18]. The R1/6/7 precursors contact R8 but the cone cell

progenitors do not (Figure 1Fvi).

For many years only the RTK signaling pathway was clearly

defined in the developing ommatidia. DER and Sev were seen

as performing the same role in the R1/6 and R7 precursors

respectively [14]. That is, they activated the Ras/MAPK path-

way to degrade Ttk and induce photoreceptor differentiation

(Figure 1E). However, the R1/6 and R7 cells are morphologically

and physiologically distinct photoreceptor types, and although the

activity of DER and Sev explains how they become photorecep-

tors, it does not explain what makes them different kinds of

photoreceptors. Three models have been invoked to explain what

Figure 1. Details of the developing and adult ommatidia. (A) Scanning EM of the adult eye. Each facet corresponds to a single ommatidium.
(B) A schematic adult ommatidium. The four cone cells (c, light blue) overlie the eight photoreceptors. Green labels the outer photoreceptors (R1-R6);
R7 is colored purple and R8 is dark blue. R7 lies higher in the retina than R8. (C) TEM section through an ommatidium corresponding to the middle
cross-section in (B). R7 is evident at this level. (D) TEM section through a developing ommatidium. At this stage the cone cells are yet to join the
cluster. Presumptive photoreceptors are numbered. Note that R8 is the central cell at this stage. (E) Schematic summary of the RTK signaling that
promotes the photoreceptor fate. Ras activation via Sev or DER signaling leads to the expression of Phyll, which targets Ttk for degradation. (F)
Schematic summary of the incorporation and differentiation of the first seven cells added to the precluster. (i) The precluster is surrounded by many
cells. (ii) Cells join the cluster at precise positions; the first three join on the R2/5/8 face. (iii) The two that contact R2/5 begin to differentiate as R1/R6.
(iv) The cell between them waits and then subsequently begins differentiation as R7. Two cone cell precursors join the cluster in flanking positions. (v)
Two more cone cells join to complete the four cone cell grouping that surrounds the photoreceptors. (vi) The 12 cell cluster with 8 photoreceptors
and four cone cells is formed.
doi:10.1371/journal.pbio.1001132.g001

Author Summary

Cells are often directed to their developmental fates by the
signals they receive from other cells. The Drosophila eye
has become a classic paradigm for studying such signaling,
and in this system direct neighbor-to-neighbor signaling
plays a large role. The R7 photoreceptor is directed to its
fate by signals derived from two different neighboring cell
types. One sends a signal that activates tyrosine kinase
signaling in the R7 precursor, whereas the other activates
the Notch signaling pathway. Here we examine Notch
signaling and find that it induces three responses in the R7
precursor. We show that one role acts to inhibit the
specification of the cell as a photoreceptor, while another
role opposes this function, and acts to direct the cell to the
photoreceptor fate. The third role specifies the cell as the
specialized R7 photoreceptor rather than as the generic
photoreceptor type. These results demonstrate that
activation of a single signaling pathway can result in
multiple cellular responses, even antagonistic ones.

N Signaling in R7 Specification
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differentiates the R1/6 and R7 photoreceptors. One model is that

the timing or intensity of the RTK signal is the critical deter-

minant. For example, a ‘‘clock’’ in the cells might meter the time

of receipt of the RTK signal, and those receiving it early would

become R1/6 types and those late would become R7s [14]. A

second model sees Sev conferring a more potent activation of the

Ras/MAPK pathway than DER, sufficient to engage additional

outputs that select the R7 as opposed to the R1/6 fate. The third

model posits that R1/6 cells, or perhaps the R8, express a second

signal that acts in combination with Boss to direct the R7 pre-

cursors to their unique fates [3]. This third model was sub-

stantiated by the subsequent discovery that N signaling was

required for specification of R7. Signaling by the N ligand Delta

(Dl) on R1/6 activates N in the R7 precursor, directing it to the

R7 fate [19,20]. In the absence of Sev, the R7 precursor fails to

differentiate as a photoreceptor and adopts the non-neuronal cone

cell fate [17], and in the absence of the N signal it differentiates as

an R1/6 photoreceptor [19,20].

Thus, specification of the R7 fate requires the activation of two

signaling pathways, providing a paradigm for studying how a cell

‘‘decodes’’ two signals to choose a particular fate. The role of the

RTK signal in this process is relatively well understood but that of

N has remained less clear. Here we have examined the roles

played by N and find that it has (at least) three distinct roles in

dictating R7 specification. First, N activity in the R7 precursor

creates a barrier to RTK-induced photoreceptor differentiation,

one that DER activation is not able to overcome. Second, it

promotes Sev expression, providing the R7 precursor with a

means to receive an additional RTK signal that overcomes the N-

induced barrier to photoreceptor differentiation. Third, it provides

an input that dictates the choice of R7 as opposed to R1/6

photoreceptor type. Extrapolating from these results, we propose a

combinatorial model for the specification of the R1/6, R7 and

cone cell fates by RTK and N signaling.

Results

We define three distinct roles for N in R7 specification. A role in

activating sev transcription was uncovered first; the remaining roles

emerged from experiments in which this role was bypassed.

Accordingly, we begin with the evidence that sev transcription is N

dependent.

Role 1—N Activity Up-Regulates sev Transcription to
Specify the R7 Precursor as a Photoreceptor Rather Than
a Cone Cell

(i) N activity regulates sev transcription. Sev is expressed

in a complex pattern in the developing ommatidium; it is absent

from R8, R2 and R5, barely detectable in R1 and R6, and

accumulates highly in the remaining photoreceptors (R3, R4 and

R7) as well as the cone cells [21]. Using a sev promoter fragment

that reproduces the expression pattern of the native sev gene [22],

we previously drove a constitutively activated form of N (sev.N*)

and observed the cell-autonomous differentiation of R1 and R6

precursors as ectopic R7 photoreceptors [20]. This finding was

one of several that established a causal relationship between N

activity and the specification of the R7 versus the R1/6 fate

[19,20]. However, it posed the question of why sev.N* activity is

effective at transforming R1/6 precursors to R7s given that the sev

promoter is normally expressed at such a low level in these cells.

One simple explanation is that sev transcription is itself up-

regulated by N activity. Accordingly, even an initially low level of

sev.N* expression in the R1/6 precursors might be expected to

stimulate sev promoter activity, creating a positive auto-regulatory

loop that amplifies expression of both the sev.N* transgene as well

as endogenous sev.

To investigate this possibility we examined the expression of

sev.lacZ in developing ommatidia of sev.N* flies, and observed a

rapid and strong accumulation of ectopic b-Galactosidase in the

R1/6 precursors (Figure 2B), which in wild type (Figure 2A) show

no detectable expression. Accordingly, we infer that N activity can

up-regulate sev transcription in these cells, allowing the sev.N*

transgene to amplify its own expression as well as that of the

sev.lacZ transgene.

To determine whether the normal up-regulation of sev tran-

scription in the R7 precursor depends on N activity, we performed

the reciprocal experiment of assaying sev.lacZ expression in omma-

tidia in which the N transduction pathway was impaired in two

different ways. In the first approach, we used the sev promoter to

drive expression of a chimeric protein consisting of Suppressor of

Hairless (Su(H)) fused to the Engrailed repressor domain (EnR):

sev.Su(H)EnR [20]. Su(H) can function as a transcriptional activator

or repressor depending on the state of N activity [23], but

Su(H)EnR is ‘‘locked’’ in the repressor state and acts as a con-

stitutive repressor of N target genes. If sev transcription is normally

up-regulated by N, the sev.Su(H)EnR transgene might be subject to

a self-limiting, governor effect in which N activity leads to

enhanced expression of Su(H)EnR, which in turn impairs the

expression of Notch target genes, including both sev and the

sev.Su(H)EnR transgene itself. Consistent with this reduction in N

signal transduction and a requirement for N input in the R7 fate

choice, R7 precursors are transformed (albeit at a low penetrance)

to R1/6 fates in sev.Su(H)EnR flies [20].

To assess the effect of the sev.Su(H)EnR transgene on sev.lacZ

expression, we generated wild type clones in a background of cells

carrying a single copy of the sev.Su(H)EnR transgene, allowing us

to compare sev.lacZ expression in experimental (sev.Su(H)EnR)

versus wild type (control) cells, side-by-side. sev.lacZ activity was

reduced cell-autonomously in R7 precursors as it was in the

other cells that expressed sev.Su(H)EnR (R3/4 and the cone cells)

(Figure 2C). Furthermore, this reduction was even more pronounced

in the ‘‘twin spot’’ clones in which two copies of sev.Su(H)EnR are

present (Figure 2C).

The second method we used to reduce N activity was to use the

temperature sensitive allele -N[ts]. We examined eye discs that were

fully mutant for N[ts] or had N[ts] clones induced in them. In these

manipulations the animals were held at the restrictive temperature

for 24 h before dissection and analysis. We observed a strong

reduction in sev.lacZ expression in all cells that normally express it,

in both the whole disc experiments and in the clones (not shown).

Since b-Galalactocidase has a long perdurance it may give an

inappropriate indication of surviving sev transcripts when N

activity is severely reduced. We therefore monitored Sev protein

levels. Here the whole disc experiments showed an almost com-

plete loss of Sev expression (Figure 2E), and an autonomous loss

was detected in the clones (Figure 2F). Again, the effects on Sev

expression were universal; all cells that express Sev (including the

presumptive R7) showed a loss of the protein expression.

Since raising or lowering activity of the N signal transduction

pathway correspondingly raises or lowers sev transcription, we infer

that N acts to promote high levels of sev expression in the R7

precursor.

(ii) High levels of sev transcription are required for R7

specification. In the absence of the sev gene, the R7 precursor

is inappropriately specified as a cone cell, and we next asked

whether the high levels of sev transcription induced by N activity

are indeed necessary for the appropriate R7 specification. To do

this we varied the level of Sev expression independently of N

N Signaling in R7 Specification
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signaling by replacing the endogenous sev gene with transgenes

that express within the eye in a blanket manner. First we used the

low-level, ubiquitous tubulina1 promoter (tub.sev). In sev null

(henceforth sevu) flies, all R7 precursors differentiate as cone cells

and the adult eyes have no R7 cells. To the sevu mutant back-

ground we introduced two tub.sev transgenes and observed no

rescue of any R7s (N = 272 ommatidia). Correspondingly, the eye

discs of this genotype showed almost no Sev expression (Figure 3B).

When a different set of two tub.sev transgenes was tested, again no

rescue of R7s was observed (N = 283 ommatidia). However, when

the four transgenes were combined, 29% of the R7s were rescued

(N = 344 ommatidia), and a correspondingly higher level of Sev

protein was present in the eye discs (Figure 3C). GMR is a

promoter element that drives at high levels in all the developing

retinal cells, and into the sevu mutant background we introduced a

GMR-sev transgene (sevo; GMR.sev) and observed almost complete

rescue (97%) of the R7s (N = 511 ommatidia) with a corresponding

high level of Sev expression in the eye disc (Figure 3D). Likewise,

increasing the number of the tub.sev transgene to 8 copies leads to a

complete rescue (100%, N = 130 ommatidia). Collectively, these

data suggest that at low levels of Sev expression R7s are not

specified, at moderate levels an intermediate number of R7s are

rescued, and high levels correspond with a robust specification of

R7s. We therefore infer that N functions to ensure a high level of

Sev in the R7 precursor for its appropriate specification.

Role 2—N Activity Specifies a Photoreceptor as the R7
Rather Than the R1/6 Type

Based on the reciprocal transformations between the R1/6 and

R7 fates caused by reducing or elevating N activity, we previously

proposed that N normally directs the choice of the R7 fate as an

alternative to R1/6 [20]. However, we now understand that the N

Figure 2. N regulates sev transcription. (A, B) Activated N induces up-regulation of sev.lacZ. (A) shows a wild type eye disc stained for sev.lacZ
(green) and a-Svp (blue). The R1/6 precursors (asterisks) are labeled with a-Svp. (A’) shows the same disc labeled for sev.lacZ alone. The asterisks mark
the R1/6 precursors which do not express detectable levels of sev.lacZ. (B) Image of a sev.N* eye disc stained as in (A). Here the cells in the R1/6
positions (asterisks) can be seen expressing high levels of b-Galactosidase (green). They do not express Svp because they differentiate as R7s. (C)
Down-regulation of N signaling reduces sev.lacZ expression. Wild type clones (black) induced in a sev.Su(H)EnR background (green). The twin spots
with two copies of sev.Su(H)EnR are brighter green. (C’) Within the wild type clones there is an increase in sev.lacZ staining (red), and in the twin spots
there is an enhanced reduction of expression. (C0) is a merge of (C) and (C’). The inset shows a detail from the box indicated in (C’) additionally stained
for svp.lacZ (blue) which highlights the R1/6/3/4 cells. To the right (in the wildtype tissue) R1/6 flank the R7 cell expressing sev.lacZ (red). To the left
(where there are two copies of sev.Su(H)EnR) the cell in the R7 position (asterisk) expresses little sev.lacZ but has high levels of svp.lacZ (blue). (D–F)
Reduction of N activity using N[ts] reduces Sev protein levels. (D) Shows a wild type disc stained for Sev (red). (E) In a N[ts] disc held at 30uC for 24 h Sev
staining is very low. (F) Clones of N[ts] (labeled by the absence of GFP) held at 30uC for 24 h show an autonomous reduction in Sev expression.
doi:10.1371/journal.pbio.1001132.g002
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pathway modulates the level of sev transcription, and the question

arises as to whether N directs the R7 versus R1/6 choice through

the regulation of sev or through a separate mechanism.

To address this question, we used the sevo; GMR.sev flies in which

there is no endogenous sev gene for N to up-regulate, and sev

transcription is supplied by a heterologous promoter element that

is not responsive to N. Hereafter we refer to this as the ‘‘GMR.sev-

rescued’’ condition.

In this background we repeated the three genetic mosaic

experiments used to define the requirement for N signaling in the

R7 versus R1/6 choice [20]: namely assaying the effects of Dl null

(henceforth Dl o), sev.Su(H)EnR, and sev.N* clones.

(i) Dlo clones in GMR.sev-rescued eyes. In wild type eyes,

Dl is required in either R1 or R6 for R7 specification [20]. We

performed Dl mosaic analysis in GMR.sev-rescued flies and scored

normally constructed ommatidia to determine which photore-

ceptors could be Dlo without perturbing R7 specification. As we

previously observed in wild type flies, Dl could be safely removed

from any of the R1, R6, or R7 precursor cells (Figure 4G),

provided that it was not removed simultaneously from both the R1

and R6 precursor. We scored 127 normally constructed yet

genetically mosaic ommatidia (containing a mixture of wild type

and Dlo cells). 30% of these had Dlo cells in the R1/6/7 group

(14% had either a single R1 or R6 mutant, 15% had R1/R7 or

R6/R7 mutant, and 1% had only R7 mutant). No ommatidium

had both R1 and R6 mutant. Thus, correct specification of the R7

photoreceptor still requires Dl signaling from either the R1 or R6

cell, even when the requirement for N in up-regulating sev is

bypassed.

Determining the fate of the cell in the R7 position when both

R1 and R6 are mutant for Dl is difficult as such ommatidia are

structurally aberrant, and a degree of inference is required in

identification of the constituent cells [20]. Given this proviso,

ommatidia were observed that had a morphologically R1/6-like

cell in the R7 position when the neighboring R1 and R6 cells were

both Dlo (Figure 4B and 4C), as we previously observed for Dl

mosaics in otherwise wild type eyes [20]. Hence, in GMR.sev-rescued

ommatidia, as in wild type ommatidia, it appears that the cell in

the R7 position must receive Dl input from either the R1 or the R6

cell to avoid being mis-specified as an R1/6 cell.

(ii) sev.Su(H)EnR clones in GMR.sev-rescued eyes. As

described above, sev.Su(H)EnR acts as a mild cell-autonomous

suppressor of the N transduction pathway. Here, we focus on the

consequences of reducing N transduction in the R7 precursor.

Such analysis is complicated by the accompanying reduction of N

signaling in the cone cell precursors which, as we describe below,

can cause them to be mis-specified as R1/6 photoreceptors. To

avoid this complication we generated mosaic eyes with only small,

rare sev.Su(H)EnR clones, and scored ommatidia containing only

one or a few mutant cells and lacking supernumerary photo-

receptors. In an otherwise wild type background, a low frequency

of sev.Su(H)EnR cells located in the R7 position differentiate

inappropriately as R1/6 cells [20] and the same was observed in

the GMR.sev-rescued background (Figure 4D and 4E).

We then examined the effects of sev.Su(H)EnR activity in

GMR.sev-rescued ommatidia in the larval retina during the stage of

R7 specification (but before supernumerary photoreceptors are

added by mis-specification of cone cells) using molecular markers

Figure 3. Rescue of sev transcription using heterologous promoters. Upper panels show the levels of Sev expression (green) in third instar
eye discs, and the lower panels show the corresponding adult eyes. Blue arrows indicate ommatidia with R7s, red arrows indicate ommatidia without
R7s. (A) shows a wild type eye disc stained for Sev. The inset shows a high magnification image of an ommatidial cluster counterstained with a-Arm
(red) to highlight the adherens junctions. The arrow points to Sev protein in the R7 precursor. In the corresponding adult retina all ommatidia have R7
cells. (B) In sev0 mutant flies carrying two copies of a tub.sev transgene, little Sev staining is evident in the disc, and there are no R7s in the adult retina.
(C) When four tub.sev transgenes are introduced in a sev0 fly there is more Sev expression detected in the discs, and many ommatidia show rescued
R7 cells. (D) sev0; GMR.sev eye discs show high levels of Sev expression in the eye disc. The inset shows a high magnification image of an ommatidial
cluster counterstained with a-Arm (red) to highlight the adherens junctions and the arrow indicates the level of Sev protein in the R7 precursor. This
level of Sev protein rescues sev0 as evidenced by the presence of the R7s in the corresponding adult retina.
doi:10.1371/journal.pbio.1001132.g003
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Figure 4. The effects of N manipulations in the sev6; GMR.sev background. (A–C) Dl clones (labeled by lack of pigment—evident in
photoreceptors by the absence of the black granular mass adjacent to the rhabdomeres) in the GMR.sev-rescued background. (A) Mosaic analysis
shows that normal ommatidia still form if either R1 or R6 is mutant for Dl (arrows point to R1 or R6 cells lacking Dl), but not when both are mutant.
(B,C) The fate of R7 precursors when both R1 and R6 are mutant. (B) The lower ommatidium labeled with black numbers shows the cell in the R7
position (asterisk) appearing as an R1/6 type when the cells in the R1/6 positions are both Dl. Compare with the wild type ommatidium (top right)
labeled in red. (C) At the level of the R8s, the lower ommatidium (black labels) still shows the large rhabdomere cell (asterisk) consistent with it being
an R1/6 type, and R8 can be seen projecting between the inferred R1/2 cells. Compare with the wild type ommatidium (red labeling) in which the cell
in the R7 position is no longer evident at this depth and R8 projects between R1 and R2. (D,E) Clones of sev.Su(H)EnR labeled by the absence of
pigment. (D) When the cell in the R7 position carries sev.Su(H)EnR, it can transform into an R1/6-like cell (asterisk) with (E), a rhabdomere that projects

N Signaling in R7 Specification
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of cell fate. Here, a-Runt staining was used to label R79s, and a-

Seven-up (Svp) and a-Bar used to label the early and late phases of

R1/6 specification, respectively. In an otherwise wild type

background, sev.Su(H)EnR causes a fraction of the R7 precursors

to express R1/6 markers instead of R7 markers [20], and we

observe a similar mis-specification of R7 precursors in the

GMR.sev-rescued background (Figure 4F).

Collectively, our analysis of both the Dlo and sev.Su(H)EnR

mutant conditions argue that N activity in the R7 precursor is

required to select the R7 fate instead of the R1/6 fate, even in the

GMR.sev-rescued background, when it is no longer required to up-

regulate sev.

(iii) sev.N* clones in GMR.sev-rescued eyes. Boss is the

ligand for Sev and is expressed by the developing R8 cell. Both R1

and R6 contact R8, so any Sev expressed in these cells should gain

access to the ligand. And yet Boss has no effect on R1/6

specification, even when Sev is supplied at high levels in the R1/6

cells, as in GMR.sev-rescued ommatidia (Figure 3D), as expected if N

input is required for R7 versus R1/6 specification. Similar results

were found when heat shock expression of the sev gene was

previously used to rescue sevu ommatidia [24,25].

Above, we have assayed the requirement for N in promoting the

R7 fate. We next examined the effects of ectopic N activity in R1/

6 precursors using sev.N*. Our earlier studies showed that the R1/6

precursors are sensitive to the presence of ectopic N activity.

Although there were some escapers, the R1/6 precursors were

largely specified as R7 types [20]. We have repeated these

experiments in the GMR.sev-rescued background and obtained the

same result. Of 73 mosaic ommatidia with normal pattern only

7% of ommatidia showed R1 or R6 cells carrying the sev.N*

transgene. In comparison, control clones using a neutral marker

showed 70% of mosaic ommatida with R1/6 cells labeled. Thus,

in the GMR.sev-rescued background the presence of sev.N* strongly

interferes with the correct specification of the R1/6 fates.

Furthermore, in entirely mutant sev.N* GMR.sev-rescued eye discs,

the vast majority of R1/6 precursors express the R7 marker, Runt,

at the expense of the R1/6 marker, Svp (Figure 4H).

In summary, the level of N signaling in the R1/6 precursors, as

in the R7 precursor, distinguishes between alternative R1/6 and

R7 fates, even when the N-dependent requirement for sev up-

regulation is met by other means. When a cell has been specified

as a photoreceptor (Ttk degradation) the presence of high N

activity dictates the R7 fate, whereas a low N signal directs the

R1/6 fate (Figure 4I).

Role 3—N Activity Imposes a Barrier to Photoreceptor
Specification by DER Signaling That Can Be Overcome by
Sev Signaling

The first two roles of N (up-regulating sev to allow the R7

precursor to initiate photoreceptor differentiation and to distin-

guish between the R7 and R1/6 photoreceptor fates) were gleaned

primarily from examining the consequences of manipulating N

activity in the R7 precursor cell. Below we present three

experiments that manipulate N and Sev/Ras transduction in the

R1/6 and cone cell precursors and we describe the effects on

whether these cells adopt the photoreceptor (R1/6/7) or non-

photoreceptor (cone cell) fate.

(i) In the absence of sev, ectopic N activity causes the R1/

6 precursors to become cone cells. In both wild type and

GMR.sev-rescued ommatidia, sev.N* activity in R1/6 precursors

directs them to the R7 fate. However, in both these contexts, sev is

also up-regulated, posing the question of what fate the R1/6

precursor cells would adopt if the contribution of Sev signaling was

abolished. To address this, we compared sev.N*ommatidia in the

presence or absence of the endogenous sev gene.

Adult sev.N* ommatidia (Figure 5A) are variable in structure and

usually contain four large rhabdomere cells (probably correspond-

ing to R2, R3, R4 and R5) and two to four small rhabdomere cells

(probably R7 and R8 plus variable numbers of supernumerary R7

cells [26] derived from the R1 and R6 precursors [20]). The

variability derives from the loss of cells from the presumptive R1/

6/7 positions in sev.N* ommatidial clusters. Why this happens is

not known, but it results in a variable number of supernumerary

R7s being generated [20]. When the sev gene is removed in this

background, there is a dramatic reduction in the number of small

rhabdomere cells, in most cases to only a single R8 cell, without a

gain in the number of large rhabdomere cells (Figure 5B). From

this we draw two inferences. First, the sev.N*-induced transforma-

tion of R1/6 precursors to the R7 fate is sev-dependent. Second, in

the absence of sev, the R1/6 precursors do not default back to their

normal fate since there is no corresponding increase in numbers of

large rhabdomere cells.

What do the sevu; sev.N* R1/6 precursors become? To address

this, we stained sevo; sev.N* eye discs with photoreceptor markers

(Svp, Elav, Runt) and the cone cell marker (Cut) and observed that

the cells in the R1/6 positions express Cut and none of the

photoreceptor markers (Figure 5C). Hence, N activation in the R1/

6 precursors in the absence of sev directs them to the cone cell fate.

(ii) Activated Ras restores R7s in sevo; sev.N*

ommatidia. Sev is specifically required for the R7 fate, in

contrast to the outer photoreceptors (including R1/6), which are

specified by DER signaling. It is generally assumed that the R1/6

precursors receive Spitz, the DER ligand, from the precluster cells

(most likely the abutting photoreceptors R2 and R5). Spitz binding

to DER activates the Ras/MAPK pathway leading to the

degradation of Ttk; the inhibitor of photoreceptor differentiation

(Figure 1E; see Introduction). Thus, in normal development,

activation of DER appears sufficient to promote photoreceptor

differentiation in the R1/6 precursors by destroying Ttk. How-

ever, when N is inappropriately activated in these cells in the

absence of sev (sevu; sev.N*) the cells no longer become photo-

receptors, but instead become cone cells. If, however, sev is present

(as in sev.N*, or sevu; GMR.sev; sev.N* ommatidia), the cells

differentiate as photoreceptors. Thus, N activity appears to

create a barrier to photoreceptor differentiation that DER alone

cannot overcome. Yet when Sev is concurrently activated the

photoreceptor fate is specified. This difference could be explained

in at least two ways. First, Sev and DER are different types of

RTKs, and hence, Sev may be able to activate downstream

transduction pathways that DER cannot. Second, Sev simply

provides more of the same activity that DER provides, namely an

into the R8 levels. Labeling and details are as given in (B,C) above. (F) In a sev.Su(H)EnR eye disc cells in the R7 position often differentiate as a normal
R7 (lower left asterisk marks a Runt-expressing R7), but at a lower frequency the cell in the R7 position expresses Bar the R1/6 marker (upper right
asterisk). Cells are also stained with a-Elav to mark the neural fate. (G,H) The effects of N* on sevu; GMR.sev R1/6 cells. (G) shows a mosaic analysis of
sev.N* (marked by the absence of pigment). Arrows point to sev.N* R2, R3, R4 and 5 cells in normally constructed ommatidia. (H) Image of a third instar
sevu; GMR.sev; sev.N* eye disc. The cells in the R1/6 positions express Runt (asterisks) the R7 marker. The tissue is counter-stained with a-Svp to mark
R1/6/3/4 cells and a-Elav to label neurons. (I) Schematic summary of the effects of N manipulation in the sevu; GMR.sev background. If N signaling is
reduced in the R7 precursor, it differentiates as an R1/6 type. If N signaling is activated in an R1/6 precursor, the cell is specified as an R7.
doi:10.1371/journal.pbio.1001132.g004
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increased activation of the Ras/MAPK pathway. Indeed, it may

be that N up-regulates sev in the R7 precursor cells specifically to

enable them to receive a more potent RTK signal than that

normally mediated by DER.

To distinguish between these models, we used a sev.Ras*

transgene to supply high levels of constitutive Ras activity to the

R1/6 cells in sevu; sev.N* ommatidia, allowing us to assess whether

potent activation of the canonical Ras/MAPK pathway is

sufficient to overcome the sev.N* induced barrier to photoreceptor

differentiation. sevu; sev.N*; sev.Ras* flies do not eclose which pre-

vented an assessment of the adult phenotype, but in eye discs the

cells in the R1/6 position develop as R7s (Figure 5D), indicating

that high level activation of the Ras pathway suffices to overcome

the block to photoreceptor differentiation.

(iii) Down-regulation of the N transduction pathway

causes cone cell precursor cells to adopt the R1/6

fate. As described above, down-regulation of N signal trans-

duction by the sev.Su(H)EnR transgene has at least two distinct

consequences in the developing retina: first, it can cause the R7

precursor cell to adopt the R1/6 fate, and second, it can produce

supernumerary large rhabdomere photoreceptors (Figure 5E).

There are two likely sources of these ectopic photoreceptors: the

‘‘mystery’’ cells and the cone cells. Mystery cells are early com-

panions of the R2–5 and R8 precluster cells that are subsequently

lost [3], but various manipulations can induce them to differentiate

as photoreceptors (e.g., [27]). To determine the source of these

ectopic photoreceptors, we examined molecular markers of

photoreceptors and cone cells in developing larval and pupal

sev.Su(H)EnR discs. Nascent ommatidia in such discs show no

evidence of mystery cell incorporation (Figure 5F), but at the

posterior of such discs we detect defects in the cone cell array.

Cell identification in the posterior tissue is difficult because

sev.Su(H)EnR also affects the chirality of the ommatidia and they

rotate in a disorganized manner compromising a simple reading of

which cells belong to which ommatida. The cone cells’ nuclei lie

above the photoreceptor nuclei and express the transcription

factor Cut, and these features make it is easier to identify the cone

cell cluster of each ommatidium. We observe a reduction in the

Figure 5. Evidence that N* generates a barrier to photoreceptor differentiation. (A–D) The effects of sev.N* in the absence of sev. (A) shows
an apical section through a sev.N*eye; ommatidia have a variable number of photoreceptors, often four large rhabdomere cells and two or three small
rhabdomere cells - see inset. (B) When sev is concomitantly removed (sev0; sev.N*), there is a loss of the small rhabdomere cells. (C) sevu; sev.N* eye disc
shows cells in the R1/6 positions (asterisks) expressing the cone cell marker Cut (green). (D) When sev.Ras* is supplied to the cells shown in (C), the R7
fate is restored to the cells in the R1/6 positions (asterisks) as evidenced by Runt expression (green). (E–H) Down-regulation of N signaling converts
cone cells to R1/6 type cells. (E) shows a section through a sev.Su(H)EnR eye; many large rhabdomere cells are present in the ommatidia. (F) A
sev.Su(H)EnR disc labeled for Cut (green) and SVP (red). Circles highlight early R3/4 pairs showing no evidence of incorporation of mystery cells. (G)
Image from the posterior of a sev.Su(H)EnR disc labeled as in (F). Cells in cone cell positions expressing Cut can also express Svp (asterisks). (H) Image
of a sev.Su(H)EnR 36 h pupal disc showing supernumerary Svp-expressing photoreceptors (red). (H’) The same disc as (H) with the level of Cut
expression (green) flattened onto the Svp layer. There are a reduced number of Cut expressing cone cells.
doi:10.1371/journal.pbio.1001132.g005
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number of nuclei in the cone cell positions, and a concomitant

reduction in the number of nuclei expressing Cut. Indeed, we

observe nuclei in cone cell positions expressing both Cut and Svp,

suggesting that such cells have a confused identity (Figure 5G). In

the 36 h pupal eyes individual cells belonging to each ommatidium

are easy to identify, and here we observe an increase in the

number of Svp-positive photoreceptors and a decrease in the

number of cone cells (Figure 5H). At this stage there is no co-

expression of Svp and Cut and any previous ambiguities appear to

have resolved. These data suggest that at least some presumptive

cone cells transform into Svp-expressing R1/6-like cells in the

sev.Su(H)EnR background. We note that this phenotype is only

partially penetrant, likely reflecting the weak suppression of the N

pathway by the sev.Su(H)EnR construct.

In principle, the RTK signal responsible for inducing cone cells

to differentiate as photoreceptors in sev.Su(H)EnR mutant retinas

could be Sev or by DER. A Sev signal seems unlikely as its only

known ligand, Boss is restricted to R8, a cell that the cone cell

precursors do not contact. To confirm this we analyzed sevo;

sev.Su(H)EnR ommatidia and observed supernumerary photore-

ceptors, as in sev.Su(H)EnR ommatidia (not shown). Hence, we

infer that DER is responsible for the mis-specification of cone cell

precursors as R1/6 photoreceptors in sev.Su(H)EnR ommatidia.

N activity Regulates Ttk Levels
Above we have described the evidence for a role of N in

inhibiting the photoreceptor fate. We next examined the effects

that N modulations have on Ttk. There are two distinct popula-

tions of cells that express Ttk in the eye disc. It is expressed at high

levels in the cone cells which lie in the apical regions of the disc,

and it is expressed at low levels in all the basal cells representing

the cells that will subsequently be incorporated into the growing

ommatidia (Figure 6A). The first three cells incorporated into the

precluster are the R1/6/7 precursors, and in these cells Ttk

protein is degraded. But the cone cells, which are recruited next,

not only a fail to degrade Ttk but also show increased levels

(compared to the basal cells from which they are derived;

Figure 6A). We asked whether N activity was responsible for the

high levels of Ttk in the cone cells. First, we attempted to monitor

ttk transcriptional activity using in situ hybridization, and although

we were able to detect ttk transcripts when the gene was over-

expressed (sev-G4; UAS-ttk), we could not detect the wild type level

of transcription (not shown), and could not therefore determine

whether it was reduced when N activity was attenuated. Second,

we examined the ttk-lacZ reporter line [7] and did not detect any

down-regulation in the N[ts] background (not shown).

We next asked what happens to Ttk protein levels when N

activity is reduced. Figure 6B shows protein expression in a N[ts]

eye disc that has been held at the restrictive temperature for 24 h.

Control stainings for Svp and Senseless show robust expression

levels and pattern disruptions typical of loss of N function. For

example, Senseless is expressed in the R8 cells, and multiple

Senseless-expressing cells are induced in the anterior regions of

such discs (Figure 6B0), consistent with a large depletion in N

activity. In these discs Ttk accumulation is severely reduced

(Figure 6B). This observation allows us to correlate the loss of Ttk

expression with the loss on N activity, and we infer that when the

block on photoreceptor determination is removed there is a

corresponding loss of Ttk protein. We next examined the Ttk

protein levels in the R1/6/7 cells of sev0; sev.N* eye discs. These

cells are normally destined to form photoreceptors, but the

presence of the high-level N activity instead specifies them as cone

cells. In these cells we see ectopic high levels of Ttk protein

(Figure 6C), and the effect of N in blocking the photoreceptor fate

correlates with ectopic high levels of Ttk protein. Thus when N

signaling is raised or lowered there is a corresponding raising or

lowering of Ttk levels that mirrors the effects of N in blocking

photoreceptor specification.

Discussion

We examine here the signaling that specifies three Drosophila

ommatidial cell types: the R1/6 and R7 photoreceptors and the

non-neural cone cells. We separate the fate choice into two binary

decisions. The first is RTK-dependent and determines whether a

cell is specified as a photoreceptor or not. If RTK signaling is

sufficiently high, Ttk is degraded and the cell becomes a photo-

receptor (Figure 1E); if not it becomes a cone cell. The second

binary decision occurs once the choice to become a photoreceptor

is made and dictates either the R7 or R1/6 fate. Here we examine

the function of N in these two binary decisions and infer that it

plays at least three roles. Two of these relate to the decision to

become a photoreceptor: one role promotes the photoreceptor fate

and the other opposes it. The third role distinguishes between the

R7 and R1/6 types. We infer that all three roles operate in the

specification of R7 itself, and such a complexity of N signaling was

hitherto unsuspected. Below we evaluate the evidence for these

three roles.

(i) N activates sev transcription to allow R7 precursors to

adopt the photoreceptor fate. Three pieces of evidence

indicate that N signaling regulates sev expression in the R1/6,

R7 and cone cell precursors. First, ectopic N activity cell-auto-

nomously up-regulates sev transcription. Second, and conversely,

compromising N activity reduces sev transcription. Third, both

the sev.N* and sev.Su(H)EnR transgenes, which depend on the N-

responsive sev enhancer, show the expected auto-regulatory be-

havior: sev.N* is a potent amplifier of its own expression, whereas

sev.Su(H)EnR is subject to a ‘‘governor effect’’ which limits its own

expression.

Furthermore, we provide evidence that the high levels of sev

supplied by N activity are essential for R7 specification. When sev

is low or absent R7 precursors differentiate as cone cells, but when

sev levels are high they differentiate as photoreceptors.

(ii) N activity dictates the choice of the R7 versus the R1/6

fate independently of the requirement for N in up-

regulating sev. In the GMR.sev-rescued background, sev

transcription is supplied at high levels in a blanket manner.

Importantly, the endogenous sev gene is absent and cannot be up-

regulated by N signaling. In this background we have manipulated

N signaling in three different ways, and in all cases we find that

high N activity dictates the R7 fate whereas low activity dictates

the R1/6 fate. Thus, independent of its role in specifying photo-

receptor versus non-photoreceptor (up-regulation of sev tran-

scription), N activity determines the type of photoreceptor that an

R1/6/7 precursor becomes.

(iii) N activity creates a barrier to photoreceptor

differentiation. N has long been implicated in antagonizing

photoreceptor specification. For example, when N function is

reduced in developing eyes in the region of the furrow, almost all

cells become specified as photoreceptors [28]. Our work here has

defined a specific inhibitory role for N within the R7 precursor.

In wild type ommatidia DER signaling directs the R1/6

precursor cells to adopt the R1/6 fate. However, if N is ectopically

activated in these cells and sev is concomitantly removed (sevo;

sev.N*) they become cone cells. In contrast, if we leave sev function

intact (sev.N*) the R1/6 precursors develop as R7 photoreceptors.

Hence, we infer that N activity imposes a barrier to photoreceptor

specification that cannot be overcome by DER signaling but can
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be negated when Sev is active (Figure 7B). Notably, we can also

induce these cells to differentiate as R7 photoreceptors if we supply

them with constitutively active Ras rather than native Sev

function.

Since high-level Ras activation overcomes the N-induced block,

we infer that Sev is able to activate Ras to a higher level than

DER. Although DER appears insufficient to overcome the block,

we have not yet activated Sev in the absence of DER to determine

whether it alone can overcome the inhibition.

The cells in which the block is active also have high levels of Ttk

expression. From this we surmise that N activity works indirectly

to prevent the degradation of Ttk. We expect this block to act

Figure 6. Ttk expression and its correlation with the failure to differentiate as a photoreceptor. (A) Wild type expression of Ttk. Ttk
(green) is expressed at high levels in the cone cells in the apical regions. (A’) But is only weakly expressed in the nuclei of the basal layer. Note, the
strong staining at the back of the disc is from apical tissue curving down in the disc. (A0) shows the same disc also stained for Svp and Runt to label
the R1/6/3/4 and R7/8 cells respectively, to allow clear identification of the Ttk-expressing cone cells. (B) A N[ts] disc held at 30uC for 24 h and stained
for Ttk (green), which is significantly reduced. (B’ and B0) show the same disc, respectively, stained for Svp (red) and Sens (blue) to show the persistent
expression of other proteins. (C) A sevu; sev.N* eye disc stained for Ttk (green) and Svp (red). (C’) shows a blow-up in which the cells in the R1/6/7
positions (asterisks) express high levels of Ttk. (D) is a wild type disc for comparison with (C). Here R1/6/7 do not express high levels of Ttk, but instead
express high levels of either Svp (R1/6) or Runt (R7).
doi:10.1371/journal.pbio.1001132.g006
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somewhere between the RTKs themselves and the final output of

Ttk degradation (e.g., at any of the steps and their intermediates

shown in Figure 1E).

A Model of Cell Fate Specification in the Developing
Drosophila Eye

N signaling in the presumptive R7 appears to activate two

competing pathways: one repressing the photoreceptor fate and

the other facilitating it. Why would this be? We speculate that it

relates to an ancient function of N in limiting photoreceptor

number. The phyll mutation was named [5] after Phyllopoda

crustaceans in which the ommatidia have only five photoreceptors

[29], corresponding to the R2, R3, R4, R5 and R8 precluster cells.

We suggest that in the ancient condition the five photoreceptor

cells express Dl (or another N ligand) to prevent additional cells

from becoming photoreceptors. With this view in mind we

propose the following model of cell fate assignments for the cells

that join the precluster (Figure 7C).

(i) The precluster cells express a moderate level of Dl.

(ii) Three cells join the ommatidium in the R1/6/7 positions,

receive the Dl signal and experience mild N activation. Those in

the R1/6 positions contact R2 or R5 and occlude the cell in the

R7 position from doing so. R2/5 release Spitz, which activates

DER in the neighboring R1/6 precursors. Since N signaling is

mild in these cells the DER activation suffices to specify the cells as

photoreceptors. Spitz is a diffusible ligand and will later activate

DER in the cell in the R7 position.

(iii) Dl is expressed by all cells of the ommatidia as they begin to

differentiate [30,31] and R1/6/7 appear to express higher levels

than the precluster photoreceptors [32]. Hence as R1/6 begin to

Figure 7. Summary diagrams. (A) R7, R1/6 and the cone cells form an equivalence group. Manipulations of the RTK/N pathways can freely
transform fates between the R7, R1/6 and the cone cell types. Any cell can form any of the three fates depending on the signals that it receives. (B) N
activates a repressor of photoreceptor development that DER cannot overcome but Sev can. In the upper level, the wild type situation is depicted.
Here we infer that a DER activating signal from the R2 (red arrow) specifies the R1 precursor as a photoreceptor (R1/6 type). In the middle level, when
N is ectopically active in the R1 precursor in the absence of sev, the DER activating signal is unable to specify the R1 precursor as a photoreceptor. In
the lower level, when N is ectopically active in the R1 precursor in the presence of the sev gene, the cell is specified as a photoreceptor (R7 type). (C) A
model of fate R1/6/7/cone cell specification. (i) The precluster cells express low levels of Dl (black arrows). (ii) Cells are recruited into defined niches;
the first three being those on the R5/8/2 face. Three cells occupy these positions and Dl from the precluster activates mild N signaling (weak shade of
gray), which provides a weak block to photoreceptor specification. Spitz expressed by R2/5 (red arrows) activates DER in the cells in the R1/6 position
and overcomes the N block. (C) R1/6 begin differentiation as photoreceptors and express high levels of Dl as cells join the niches of the two flanking
cone cells. The cell in the R7 position and these presumptive cone cells receive Dl from R1/6 and N is activated to high levels (dark gray). This provides
a potent barrier to photoreceptor specification and also activates sev transcription. Binding of Sev to Boss on R8 provides high-level RTK activity (blue
arrow). (iv) The RTK signaling specifies the R7 precursor as photoreceptor and the concomitant presence of activated N directs the R7 rather than the
R1/6 photoreceptor type. R7 proceeds to express high levels of Dl, as do the two cone cells and R3. As the subsequent cone cells join, they receive
these Dl signals and activate both the barrier to photoreceptor differentiation and sev expression. (V) None of the cone cell precursors contact R8 so
none have activated Sev, and Spitz diffusing from R2/5 is unable to trigger the photoreceptor fate because of the high N activity.
doi:10.1371/journal.pbio.1001132.g007
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differentiate they induce a high-level of N activation in the R7

precursor and induce a N activity level in the flanking anterior and

posterior cone cells, which is too high to be overcome by the DER

activation, triggered by the arriving Spitz molecules. The N

signaling also turns on sev transcription, providing high levels of

Sev to these cells. R7 contacts the Boss-expressing R8 cell leading

to a high-level activation of the Ras/MAPK pathway that

overcomes the N barrier and allows photoreceptor specification.

The presence of activated N then specifies the cell as an R7 rather

than an R1/6 type.

(iv) As R7 and the cone cells begin differentiating they express

Dl. On the other side of the cluster the R3/4 pair undergo a N/Dl

interaction leading to high Dl expression in R3. These Dl

expressions then activate N in the two further cone cells that join

the ommatidium. The four cone cells experience high N activity

and express high levels of Sev, which remains inactive because the

cells do not contact R8. With Sev signaling inactive, the high-level

N activity suffices to prevent the diffusing Spitz signal from

specifying these cells as photoreceptors.

The Roles of DER and the Diffusion of Its Ligand
Implicit in the model above is the idea that Spitz diffuses from

the precluster and reaches more distant cells with time. This

concept was introduced by Freeman [14] and it explains many of

the results we observe. First, consider the R7 precursor in which N

activity is reduced. This cell becomes an R1/6 type. We suggest

that when diffusing Spitz reaches this R7 precursor it finds the N-

induced barrier absent and DER activation suffices for photore-

ceptor specification. Second, consider the cone cell precursors in

which N signaling is also reduced. Here again the photoreceptor

inhibition is weakened, and when the diffusing Spitz reaches them

they too are specified as photoreceptors. Thus, we infer that in the

absence of the strong N activity (providing a barrier to

photoreceptor specification), diffusing Spitz can liberally induce

the formation of ectopic photoreceptors.

The RTK and N Signals Propagate by Different Means
Above we consider the case of the cone cell which receives high

N activation from Dl expressed by its differentiating neighbors,

and DER activation from Spitz diffusing from the R2/5 cells.

Here we see two antagonistic signals propagating from the

precluster and reaching distant cells by two distinct mechanisms.

The N signal is relayed by the sequential incorporation of cells into

the growing structure; as they begin to differentiate they express

Dl. By this cell-to-cell propagation, the Dl signal progressively

reaches more distant cells. The DER activation occurs by the

diffusion of Spitz; it reaches more distant cells with time.

The Niche Model of Cell Incorporation
A key concept in the model presented here is that cells are

‘‘blind’’ to the fate-specifying signals emanating from the

precluster until they enter the ommatidium. That is, cells undergo

a two-step process of cell fate specification. First they occupy a

niche (a specific position into which a cell can be recruited) and

then they receive their fate-specifying signals. Consider the cluster

shown in Figure 1F. In image (i) the precluster is surrounded by

many cells. From these, three are recruited to the R1/6/7

positions (white cells – image (ii)). We suggest that these cells now

respond to the signals from the cluster, the others do not. As more

cells differentiate more niches become available and more cells

become incorporated. The molecular nature of this recruitment

mechanism remains unknown, but it plays a critical role in

preventing the ectopic and premature responses of the cells to the

RTK and N signaling pathways.

R1/6/7 and the Cone Cells Form an Equivalence Group
Since sev0 R7 cells became cone cells, and cone cells with

activated Sev became R7s, these cells were thought to belong to an

equivalence group [27]. How this R7/cone cell equivalence group

was established separate from the other cells that join the

precluster remained unclear. Here by manipulation of N and

RTK signaling in the R1/6, R7 and cone cells, we could

transform any one of these into any other (Figure 7A). We infer

therefore that all these cells form an equivalence group. Before

they enter the ommatidium they are equipotent and it is the signals

provided by the growing cluster that directs their fate rather than

any pre-pattern that may exist in these cells prior to their

incorporation.

DER Signaling Independent of Photoreceptor
Specification

We have highlighted here the role of RTK signaling in the

specification of photoreceptor fate, but we note that it is also

required for the appropriate specification of the cone cells [12,14].

These cells receive a high N signal (and the concomitant barrier to

photoreceptor specification) but appear to adequately transduce

DER for the role in the cone cells. This again raises the question of

where in the RTK pathway the N-induced barrier acts. The RTK

pathway can be separated into the canonical transduction from the

membrane to the nucleus, and the specific gene targets in the

nucleus. Consider the photoreceptor pathway, here phyll tran-

scription is required for the degradation of Ttk, and anything

lowering phyll transcription or its downstream outputs would

oppose photoreceptor specification but leave other RTK outputs

unaffected. Here we view the barrier as specifically targeting the

photoreceptor output of the RTK pathway. Conversely, the

barrier could affect the transduction through the cytoplasm to the

nucleus and affect all outputs. In this situation we envisage that

cone cell specification requires only a low-level activation of the

RTK pathway.

Conclusions
We have examined what initially appeared to be a relatively

simple process in cell fate assignment: the mechanism by which

RTK and N signaling specify the R7 fate. We uncovered a

complex signaling inter-relationship that probably results from the

evolutionary history of the R7 cell. What appears paradoxical

from the developmental perspective may be expected from the

evolutionary view. The tractability of R7 as a model for fate

specification has allowed the many functions of N to be uncovered

here, but in other studies where manipulations cannot be as

effectively performed, such complexity may go unrecognized.

Materials and Methods

All methods were previously described [20], except for PLP

fixation, which was used for the Ttk antibody following [3].

Stocks
sev[d2], Dl[rev10], sev.w+.N[act], sev.w+.Su(H-EnR), sev.N[ecn]

[26], sev.lacZ [33], Ttk.lacZ [7], N[ts]. To make sev.Su(H)EnR clones

the following chromosome was constructed: hs-flip, ubi-GFP,

sev.Su(H)EnR, FRT 19A. This was crossed to FRT 19A and heat

shocked for 1 h at 37uC between 24 and 48 h AEL.

Antibodies
Elav.7E8A10, Cut (DSHB), Runt (gift J. Reinitz), Svp (gift Y.

Hiromi), Bar (gift K. Saigo), Ttk (gift P. Badenhorst), GFP
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(Molecular Probes), Senseless (gift H. Bellen), Sev (Santa Cruz

Biotechnology), and Beta-Galactocidase (Cappel).

N[ts] Experiments
N[ts] flies were reared at 18uC and shifted to 30uC in the third

instar for 24 h followed by dissection. For clones, N[ts] was

recombined with FRT 19A and clones were induced with hs-flipase

or eye-flipase.
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