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Abstract

Although the vertebrate limb bud has been studied for decades as a model system for spatial pattern formation and cell
specification, the cellular basis of its distally oriented elongation has been a relatively neglected topic by comparison. The
conventional view is that a gradient of isotropic proliferation exists along the limb, with high proliferation rates at the distal
tip and lower rates towards the body, and that this gradient is the driving force behind outgrowth. Here we test this
hypothesis by combining quantitative empirical data sets with computer modelling to assess the potential role of spatially
controlled proliferation rates in the process of directional limb bud outgrowth. In particular, we generate two new empirical
data sets for the mouse hind limb—a numerical description of shape change and a quantitative 3D map of cell cycle
times—and combine these with a new 3D finite element model of tissue growth. By developing a parameter optimization
approach (which explores spatial patterns of tissue growth) our computer simulations reveal that the observed distribution
of proliferation rates plays no significant role in controlling the distally extending limb shape, and suggests that directional
cell activities are likely to be the driving force behind limb bud outgrowth. This theoretical prediction prompted us to search
for evidence of directional cell orientations in the limb bud mesenchyme, and we thus discovered a striking highly branched
and extended cell shape composed of dynamically extending and retracting filopodia, a distally oriented bias in Golgi
position, and also a bias in the orientation of cell division. We therefore provide both theoretical and empirical evidence that
limb bud elongation is achieved by directional cell activities, rather than a PD gradient of proliferation rates.
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Introduction

Vertebrate limb development is a classical model system which

has contributed to some of the key concepts in the developmental

field [1,2]. Over a period of 1–2 d a roughly homogeneous mass of

undifferentiated mesenchymal cells develops into a complex

collection of different cell types (including cartilage, bone, tendons,

and dermis) which are spatially organized to create a functional

organ. In the mouse and chick, the limb bud starts as a small bulge

from the lateral flank of the embryo. It possesses a very simple

structure, composed of a central mass of mesenchymal cells

covered by a single-cell ectodermal epithelium. Very early in

development the ectoderm develops a thickened ridge (the apical

ectodermal ridge, or AER) which runs along the antero-posterior

(AP) axis and marks the anatomical boundary between dorsal and

ventral ectoderm (Figure 1A). Subsequent growth of the bud shows

a preferential orientation—extension in the distal direction (away

from the body) is dramatic, while by comparison the increase in

width and height is much slower. Although great strides have been

made in understanding the molecular basis of patterning and cell

specification [3,4,5,6,7], the cellular basis of distally oriented limb

bud outgrowth remains unclear.

The oldest and still the most prominent hypothesis to explain

the physical morphogenesis of limb bud outgrowth is the

‘‘proliferation gradient’’ model (Figure 1B), first described by

Ede and Law in 1969 [8]. This idea states that a diffusible signal

from the AER acts primarily as a mitogen [9] which ‘‘…signals the

mesenchyme immediately underlying it, termed the progress or

proliferative zone, to proliferate, resulting in directed proximo-

distal outgrowth’’ [10]. Much evidence appears to support this

hypothesis, in particular a graded distribution of proliferation rates

along the proximo-distal axis has been reported for both mouse

and chick limb buds (as observed by mitotic index counting [11],

BrdU incorporation [12], [3H]thymidine labelling [9], and cell-

cycle specific antibody labelling [13]). During the 1990s concrete

evidence was presented for the molecules responsible for this

mitogenic effect—FGF4 and FGF8 were shown to be expressed

specifically in the AER, to be able to diffuse away from the source

cells [14] and to have mitogenic influence in cell culture and

various organ systems [10,15,16].
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A few other hypotheses have been proposed to explain limb bud

morphogenesis. Oriented cell divisions are known to be involved

in other morphogenetic processes like vertebrate gastrulation [17]

or Drosophila wing disc development [18], however no evidence for

a preferred direction of cell division has been shown during limb

bud extension [11] or subsequently been reported. Programmed

cell death is known to occur in a few localized regions of the

developing bud [13], but it cannot explain the distally directed

extension of the limb. More importantly, Li and Muneoka [19]

performed an elegant experiment demonstrating that at least some

of the mesenchymal cells in the chick wing bud can move towards

an ectopic source of FGF4 implanted in the centre of the bud. This

raised the intriguing possibility that mesenchymal cells might treat

the FGF gradient as a chemoattractant rather than a mitogen, and

respond by active migration towards the AER. Finally, it was

speculated in 1970 [11] that the ectoderm might play a

mechanical role in shaping the growing limb bud, however it

has been demonstrated that limb development can proceed quite

normally in the absence of significant regions of dorsal ectoderm

[20,21].

Despite these suggested alternatives, the ‘‘proliferation gradi-

ent’’ model has remained the dominant hypothesis for the last 40

years [22,23,24]. Although the concept was first articulated by Ede

and Law [8], it was their own pioneering computer simulation

(from the late 1960s) which first questioned the model. However,

the strength of their conclusions rested on a rather abstract 2D

cellular automaton approach, and more recent computer

simulations have adopted the idea. In 1999 Dillon and Othmer

[22] created the first realistic 2D finite element model (FEM) of

limb development, and although their simulation was not aimed at

exploring the cellular basis of directional outgrowth, they

nevertheless directly incorporated the proliferation gradient

hypothesis into their model by allowing growth rates to be

controlled by a molecule diffusing from the distal tip. In contrast to

Dillon and Othmer, more recent computer simulations have

specifically aimed to explore the proliferation gradient model and

concluded that the hypothesis can indeed explain limb outgrowth.

Poplawski et al. incorporated the gradient hypothesis within a

Cellular Potts framework to show that distally restricted growth

could produce bud elongation [25], while Morishita and Iwasa

employed a cell-based 2D spring lattice [23] to demonstrate a

similar result. This last study renames the concept with the more

explicit term ‘‘growth-based morphogenesis,’’ emphasizing that al-

though the global shape changes are directional, they result from

local cell behaviours which are non-directional [23]. This

highlights our key question to be addressed here: Are the

important cell activities for outgrowth directional or isotropic?

All active cell behaviours can be classified into these two

categories. Processes such as migration and intercalation are

directional—they depend on cells having a sense of orientation (for

example by sensing gradients or using the PCP system). By

contrast, behaviours such as cell death are not oriented (i.e. they

are isotropic), and therefore cause contraction of tissue equally in all

directions. Cell proliferation can fall into either of these two

categories: in some cases the orientation of cell division is known to

be carefully controlled (like Drosophila wing disc development [18]),

but in other cases there appears to be no control of orientation, for

example in the developing limb bud it is believed that cells divide

randomly in any orientation [11]. The popular notion of growth-

based morphogenesis (which is equivalent to the established prolifer-

ation gradient model) states that controlling the rates of isotropic

proliferation is enough [23], and that cells do not require

directional information.

Here we develop a new interdisciplinary approach to address

this question. Rather than explore a range of different hypotheses,

our goal is to focus on the most popular one—growth-based

morphogenesis [23]—and to rigorously test its sufficiency as an

explanation of limb bud outgrowth. In other words, we explore

whether non-directional (isotropic) cell behaviours can explain

limb bud elongation. Firstly, we develop novel data-capture and

processing techniques to generate empirical quantitative data-sets

for two distinct aspects of the developing mouse limb bud: (i)

accurate 3D geometry of the shape changes and (ii) a quantitative

map of cell cycle times. Secondly, to our knowledge, we create the

first dynamic 3D computer simulation of limb outgrowth, which is

directly based on these data. By developing a novel 3D parameter-

optimisation approach we demonstrate that the observed spatial

control of proliferation rates has little impact on morphogenesis

and cannot explain distally directed limb bud outgrowth. We

conclude that isotropic cell behaviours in general, such as non-

Figure 1. Gradient based morphogenesis. (A) Schematic of the 3D
organization of the vertebrate limb bud. Elongation occurs along the
proximo-distal axis (away from the body), and the apical ectodermal
ridge (AER) runs along the distal-most part of the bud. (B) The
proliferation gradient model (or growth-based morphogenesis, Morishita
and Iwasa [23]) proposes that a zone of high proliferation close to the
AER drives distally directed limb elongation.
doi:10.1371/journal.pbio.1000420.g001

Author Summary

Although the vertebrate limb bud has been studied for
decades as a classical model system for the spatial control
of cell fates, the question of how the limb bud physically
elongates has been much less studied. One particular
hypothesis has been dominant in the field, known either as
the proliferation gradient hypothesis or growth-based
morphogenesis. This states that elongation is achieved by
distal cells (furthest from the body) being stimulated to
divide faster than proximal cells. Importantly, this hypoth-
esis does not propose any kind of oriented or directional
cell behaviours—high distal rates of non-oriented prolifer-
ation are considered to be sufficient—and indeed several
2D computer simulations have reproduced this concept in
silico. However, thus far quantitative data from the limb
bud has not been incorporated into these models. Here,
we extended computer simulations into 3D and incorpo-
rated quantitative data on both shape changes and
proliferation rates. These new simulations demonstrated
that gradients of non-oriented proliferation are unable to
explain limb bud elongation. We thus experimentally
tested for evidence of oriented cell behaviours and indeed
found that the cell shape, Golgi orientation, and cell
divisions all display a non-random bias during limb bud
outgrowth. Our data run contrary to the proliferation
gradient hypothesis, indicating instead that oriented cell
behaviours are important for driving elongation.

The Role of Proliferation in Limb Morphogenesis
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oriented cell proliferation and programmed cell death, provide

little or no contribution to the major observed shape changes. The

main role of proliferation must be simply to provide enough

progenitor cells for the organ. We predict that shape generation

(elongation) must instead be driven by directional cell activities,

such as active migration or cell intercalation. Prompted by this

theoretical prediction, we go back to the real system to examine

cell shape and markers of cell orientation in the developing chick

limb bud. We find that most mesenchymal cells have a striking

highly branched and extended cell shape composed of dynamically

extending and retracting filopodia, a distally oriented bias in Golgi

position, and also a bias in the orientation of cell division. The

discovery of this collection of oriented cellular activities opens a

new area of enquiry into how active mesenchymal behaviours

(such as migration and intercalation) contribute to morphogenesis

of the limb, which has only been addressed by one pioneering

study so far [19].

Results

OPT Can Accurately Measure the 3D Geometry of Limb
Bud Shapes

To build a data-driven computer model we wished to have an

accurate representation of the changing shape of the growing

mouse limb bud. A numerical simulation requires a defined spatial

domain, and previous studies have employed 2D abstract

approximations of the growing limb bud shapes. In this study

we have improved on previous work in two ways: Firstly, the

simulation (and therefore the shape information) is 3D instead of

2D. This is important as we aim to model mechanical forces which

cannot be correctly captured in a 2D abstraction (for example the

2D simulation of Dillon and Othmer [22] required virtual springs

to be added from the dorsal ectoderm to the ventral ectoderm, to

compensate for the lack of the full 3D structure). Secondly, rather

than a simple mathematically defined ‘‘bulging’’ shape, we wished

to use real empirical shape features to define the spatial domain of

our simulation. We therefore employed state-of-the-art 3D

imaging technology to generate accurate quantitative shape

information of real embryonic mouse limb buds (Figure 2).

For each embryo examined, detailed 3D shape information was

generated using optical projection tomography (OPT)—an

imaging technology ideally suited for scanning mesoscopic

biological specimens [26]. Using an OPT scanner we captured

400 projection images of the autofluorescence from the embryo,

rotating it by 0.9u between images. A filtered back-projection

algorithm [27] was then used to reconstruct a voxel dataset from

the raw projections, and from this a 3D intensity iso-surface was

generated for the embryo (this is a 3D contour which encloses all

regions above a certain threshold intensity, Figure 2C). From these

static 3D representations, the right hind limb was then virtually

dissected away from the rest of the embryo for further analysis

(Figure 2D,2E).

We selected two limb buds of different developmental ages for

3D scanning: an earlier stage with shape denoted by St0

representing the initial condition for the simulation and a later

stage St1 which defines the target shape that real limb development

achieves. These shapes are given by the isosurfaces extracted from

the empirical OPT data, as described in the previous paragraph.

The general strategy followed is to simulate the growth of the limb

starting with initial shape St0 and then to compare the shapes

predicted by the simulation (predicted = pSt1) with the real target

shape St1. Three criteria were important in choosing suitable

developmental stages for St0 and St1. The shape change must be

significant enough to distinguish between good and bad results of

the simulation, but the time-interval should also be short enough

to be computationally efficient. Also, for the purposes of building

the computer model we wish to assume uniform physical

properties for the mesenchyme, and we therefore require a

developmental stage when internal mesenchymal condensations

have not yet formed. Based on these criteria we selected two limb

buds (E11.0 and E11.25) which are 6 h apart in normal

development (see Figure 2A,B). The shapes of six embryos at

each stage were examined to ensure that the shape change due to

growth was much greater than the shape variability between

embryos of the same stage (Figure S1). Mesenchymal cell density

was also checked at different positions of the older limb bud

(E11.25), and despite the expression of early skeletal markers such

as Sox9 and Noggin, localised regions of higher density

(mesenchymal condensations) have not yet formed (Figure S2).

Staging was performed by comparison to a collection of 200

embryos harvested at precise time-points between E10.5 and

E12.5. The resulting isosurface St0 could then be used to create the

full 3D tetrahedral mesh required for subsequent modelling

(Figure 2G; this was done using the program NetGen [28]).

We have therefore created for the first time a numerical

(geometric) representation of the mouse limb bud shape change in

3D. Using this resource we can assess the limb bud length (PD) of

St0 and St1 (1,020 mm and 1,450 mm, respectively) and calculate an

average extension rate of 75 microns/h, or a total extension of

43% over 6 h (note that the scales in Figures 2A–E are not the

same). In contrast, the extension along the DV and AP axis is

much less: ,1% and 12%, respectively. The volumes for the two

time-points are 0.551 mm3 and 0.914 mm3, respectively.

Measuring and Mapping the 3D Distribution of Cell
Proliferation Rates

The second dataset required for our study is a quantitative 3D

map of cell proliferation rates in the limb. Common approaches

for measuring cell proliferation include mitotic index counting,

BrdU, and anti-pH3 staining. In 1970 Hornbruch and Wolpert

[11] used haematoxylin and eosin staining to analyze the mitotic

index of mesenchymal cells in the chick limb and identified a

gradient of high proliferation at the distal tip and lower

proliferation proximally at stages HH23–27. More recently

Fernández-Terán et al. [13] studied the cell proliferation

activity in the mouse and chick limbs using anti-pH3

immunohistochemistry and found a similar general pattern.

However, single labelling techniques like these have an

important limitation. Determining the number of cells in one

cell cycle phase as a fraction of the total number of cells (for

example the proportion of BrdU-labelled cells in S-phase) is a

relative measurement and cannot provide information on how

long that phase lasts in minutes or hours. This limitation applies

to all single-labelling approaches, whether using BrdU, pH3,

Ki67, PCNA, or tritiated-thymidine. Previous studies have

therefore provided information on the relative rates across

different regions of the limb, but have never quantified these

spatial patterns in terms of cell cycle time.

Pulse-chase experiments overcome this limitation through the

use of two or more labels administered to the living cells at

different times [29]; however, this has typically been done on

dissociated cell populations, thereby losing all spatial information.

To overcome this problem we adapted a double-labelling

technique successfully used by Martynoga et al. [30] to quantify

proliferation rates on 2D sections of the developing telencephalon

(adapted from Shibui et al. [31]). This approach allows

measurement of the average cell cycle time of a population of

cells by sequentially labelling them with two different markers at a

The Role of Proliferation in Limb Morphogenesis
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known time interval (Figure 3A). Pregnant females are injected

first with IddU and then after time interval Ti are injected again

with BrdU. Embryos harvested 30 min later are fixed, embedded,

sectioned, and then analysed using two different fluorescent

secondary antibodies plus DAPI staining, which allows the

identification of three cell populations: unlabelled (blue), single-

labelled (blue and green), and double-labelled. In effect this creates

a new artificial phase of the cell cycle whose exact duration is

known: single-labelled cells are those which left S-phase during

time Ti (called leaving cells, the number of which is Lcells [29]). Since

the cell population is dividing asynchronously, then the different

phases of the cell cycle will be sampled equally (Figure 3A). The

Figure 2. The changing 3D geometry during limb development. (A) The right hind limb bud at stage E11.0 from the freshly dissected embryo,
and (B) a right hind limb bud from another embryo at stage E11.25, 6 h older than (A). (C) The OPT scans were converted into an iso-surface, a 3D
contour of the embryo. The limb bud shapes St0, (D) and St1 (E) were virtually dissected from the whole-embryo iso-surface. (F) A comparison between
the two empirically measured shapes St0 (white) and St1 (blue) which highlights the shape change over 6 h of development. The main axes are shown
anterio-posterior (AP), dorso-ventral (DV), and proximo-distal (PD). (G) A virtual slice through the fully tetrahedtralised St0 mesh. The surface is
discretised with a triangular mesh (green), and the internal mesenchymal volume is discretised with a 3D tetrahedral mesh (red).
doi:10.1371/journal.pbio.1000420.g002

The Role of Proliferation in Limb Morphogenesis
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ratio of the total number of cells to Lcells therefore equals the ratio

of the total cell cycle, Tc, to Ti:

Totalcells

Lcells

~
Tc

Ti

ð1Þ

Tc can therefore easily be calculated for each local population of

labelled cells:

Tc~Ti

Totalcells

Lcells

ð2Þ

To create our quantitative 3D map of cell proliferation rates a

limb bud was chosen (having an age in between those of St0 and

St1) and was cut into sections 7 mm thick (Figure 3B,C). After

fluorescent immunohistochemistry we analysed how smoothly the

Tc values vary across the sections and subsequently selected 30

areas to capture this spatial distribution. For each of these areas

the differently labelled cells in a circular region with a diameter of

215 mm were manually counted and the cell-cycle time calculated

(Figure 3B). A 3D mapping between the 30 areas and St0 was

created (Figure 3D). This gave a sparse representation of

proliferation rates for the limb. These values were then

interpolated across the remaining vertices of the tetrahedral

mesh corresponding to St0 (from Figure 2G) using a radial basis

function (RBF, see Materials and Methods), creating a full map

of Tc values which vary smoothly across the 3D space of the

limb bud.

Figure 3. A quantitative 3D map of proliferation rates. (A) The four phases of the cell cycle: Gap 1 (G1), Synthesis (S-phase), Gap 2 (G2), and
Mitosis (M phase). IddU was injected into the mouse and incorporated into the limb bud cells in S-phase (left-hand side, green bar). After time interval
Ti a second injection is made, this time of BrdU, which again labels the cells in S-phase at that moment (right-hand side, red bar). At this point some of
the IddU-labelled cells from the first injection (green) have left S-phase and are now in G2. These are the ‘‘Leaving cells,’’ or Lcells, and were counted to
calculate Tc using equation (2). (B) 7 mm thick paraffin sections were imaged by confocal microscopy. For each of the 30 counting regions (white
circles on sections, 215 mm diametre), the total number of cells is counted and also the number of Lcells (blue and green IddU-labelled cells, which
display no red). (C) The positions of the 13 sections overlaid onto a photo of the same limb. (D) The calculated Tc values are assigned to the
corresponding vertices on the 3D mesh (indicated by small coloured spheres) and are interpolated onto the remaining vertices. (E) Schematic of
virtual sections anterio-posterior (AP) and dorso-ventral (DV). (F) Colors show the distribution of the Tc values in hours for the virtual sections
indicated in (E). A core of low proliferation (proximal central) and areas of high proliferation (dorsal and ventral), as well as a ridge of high proliferation
(anterior-distal) can be seen.
doi:10.1371/journal.pbio.1000420.g003
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We have thus created the first quantitative 3D map of

proliferation rates for a growing vertebrate limb bud. The

qualitative pattern agrees with previous studies (with higher

proliferation rates in distal regions and closer to the ridge, and

lower rates at the proximal end) [13], however a map of absolute

Tc values across the tissue has not previously been achieved. We

performed this analysis for a few limb buds at different ages and

revealed that over the 6 h period from E11.0 to E11.25 the

changes in proliferation rate are insignificant. This makes sense

when one considers that the fastest cell cycle time was itself ,10 h.

We therefore consider this 3D map to be a suitable representation

of the average rates during the 6 h period of the simulation.

A 3D FEM of Limb Bud Growth
The next aspect of this study was to define a suitable method for

integrating the data into a dynamic model of growth. Three

components are required: a method to represent the growing 3D

spatial domain of the simulation, a choice of model/equations to

represent the growing limb bud tissue and a numerical method to

solve the equations over time.

Previous models (which have all been 2D) have included a

variety of approaches, either considering a space larger than the

limb bud itself (using the immersed-boundary method to represent

the limb within the larger space [22]) or representing the 2D shape

of the limb bud itself with an irregular triangular mesh, which can

be used as the framework for a finite element method [32] or a

spring-lattice method [23]. For our 3D model we used a

tetrahedralised mesh to approximate the geometric domain. We

used NetGen [28] to transform the closed 3D iso-surface St0 into a

fully tetrahedralised mesh suitable for the FEM simulation

(Figure 2G). A variety of meshes were generated with different

spatial resolution (defining how fine or coarse the mesh is), and

from these we chose a 3D mesh with approximately 6,000 vertices

and 27,000 tetrahedrons, as a balance between computational

expense and accuracy.

Philips et al. reported that vertebrate mesenchymal tissue

behaves like an elastic solid over very short time scales but displays

a liquid-like characteristic in response to stress in long-term culture

[33]. The first FEM of limb development (2D) therefore employed

the Navier-Stokes equations to represent the mesenchyme as a

viscous incompressible fluid whose volume increases correspond-

ing to a distributed source term, s, which represents the patterns of

cell division [22]. Due to the small size of the limb bud, and the

extremely low velocities involved (,75 mm/h, described above) we

chose a modified version of the Navier-Stokes equation to describe

the movement of mesenchyme in our 3D model, in agreement

with other cases where convection is negligible [32,34,35]. This

also agrees with the recent lattice model proposed by Morishita

[23]. We have also performed comparative simulations with and

without convection to demonstrate that it has no significant effect

on the results (unpublished data). We used the following equations

which describe the balance of forces acting at any given region of

the fluid as follows:

Lv

Lt
z+p{

1

Re
+: +v½ �~0 ð3Þ

+:v~0 ð4Þ

where, v is velocity, p is pressure, and Re is the Reynolds number.

Equation (4) describes fluid continuity, which usually represents

the conservation of mass. In our case (following Dillon and

Othmer [22] and Murea and Hentschel [32]) we alter this

equation to allow a distributed material source term s which can

vary arbitrarily across space and time:

+:v~s x,y,z,tð Þ ð5Þ

In this way, the s field (tissue growth) can drive the velocity (tissue

movements) of the system. Positive s values result in tissue growth

at the position x,y,z at time t. In fact, s represents the proportional

volumetric growth per unit time (otherwise known as the growth

constant k, or the growth-frequency), so a value of 0.1 h21 means

that the volume expands by 10% in 1 h.

An important question is how to relate s to real cellular

activities. We consider cell density (d) to be the number of cells (N)

per unit volume (V ):

d~
N

V
ð6Þ

The volumetric growth rate ( _VV ) for a given region of tissue can

therefore be completely defined as a function of two variables: the

rate of cell number change ( _NN ) and the rate of cell density change

( _dd ). At some stages of development these two factors effectively

cancel out; for example the first few rounds of zygotic cell division

simply divide the existing cellular material into a larger number of

smaller regions (cells). In other words, as the cell number increases,

so does the cell density such that overall volume remains

unchanged. By contrast, in limb development cell density does

not change much during our 6 h time interval, such that growth is

mostly driven by cell proliferation. It is also known that

programmed cell death only occurs in three small well-defined

regions in the limb buds of both mouse and chick [13].

For simplicity, we will start by assuming that d is constant. In

this case _VV is proportional to _NN , and s is equal to sp, which we

define as the proportional growth rate due to proliferation alone.

Constant sp describes exponential growth, and in general then, the

number of cells Nt at a time point t can therefore be calculated

from the number of cells at an earlier timepoint N0 by the

following equation:

Nt~N0espt ð7Þ

When t equals the cell doubling time (Tc), then Nt1 must be double

the value of Nto; therefore sp can be calculated from Tc for each

region of tissue as follows:

sp~
ln 2

Tc
ð8Þ

It can be seen from this equation the intuitive fact that sp is

inversely proportional to Tc—as the cell cycle becomes longer

(slower), then growth rate decreases. Using equation (8) we can

therefore approximate a 3D field of sp values that represents tissue

growth. If we use hours as the unit of time, a cell cycle time of 10 h

translates into an sp value of 0.07 h21.

We next wished to check whether cell density changes

significantly during the 6 h period between t0 and t1. Analysis of

nuclear-stained sections from four stages of limb bud development

showed that although there are no spatial variations in cell density

(mesenchymal condensations have not yet formed) there is a small

but clear increase in the uniform cell density over time (Figure S2).

From E11.0 to E11.25 the cell density increases at ,1.7% per

hour, which can therefore be represented by sd = 0.017 (the

The Role of Proliferation in Limb Morphogenesis
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proportional rate of volumetric change due to cell density

changes). An increase in cell density means that the cells are

packed closer together (either due to a reduction in secretion of

extra-cellular matrix (ECM), or a reduction in average cell size),

and this therefore leads to a decrease in volume. The overall

proportional volumetric growth rate is therefore defined as follows:

s~sp{sd ð9Þ

In other words, if the proliferation causes volumetric expansion of

10% per hour, and density increase causes volumetric shrinkage of

1% per hour, the net growth will be 9% per hour.

We used the commercial software package FastFlo to solve these

equations [36] and employed the artificial compressibility method

to derive a solvable equation for pressure [37]. The suitability of

this approach was tested using simple geometric figures (spheres)

with a variety of source terms to confirm that the correct result was

computed. The domain was implemented as a Lagrangian mesh—

in other words the 3D mesh grows in unison with the growth of the

limb bud. Each tetrahedron therefore represents a given piece of

growing tissue within the bud. Although each of these tissue

regions increases in size over the 6 h, we assume that the s value

for each region is constant during the 6 h period (as justified

above) and is thus carried along with the vertices of the mesh.

Cell Proliferation Rates Cannot Explain Limb Bud
Morphogenesis

After generating the two sets of quantitative 3D data on shape

St0 and St1 and constructing the FEM of tissue growth we could

start exploring the ‘‘growth-based morphogenesis’’ hypothesis. The 3D

distribution of the source term s was directly calculated from our

atlas of cell cycle times (using equations 8 and 9), and from St0 the

simulation was run forwards over a period of 6 h to determine the

new predicted limb bud shape pSt1.

Solving the equations requires a value for the Reynold’s

number, and previous studies have chosen a single value

(equivalent to the viscosity of water) to explore limb growth

dynamics [22]. However, the real effective viscosity of mesenchy-

mal tissue is not known, and we therefore chose to explore a wide

range of values, to ensure that our conclusions would not be

dependent on this unknown parameter. We performed 6

simulations, covering 5 orders of magnitude from 1021down to

1026 (a viscosity similar to honey). Results of these simulations

revealed that viscosity had only a minor impact on the final shape

(Figure S3). Over the 5 orders of magnitude in range of Re

explored, limb bud elongation varied by just 9% points. The real

limb shows an outgrowth of 43% whereas the simulations showed

an increase in PD length of between 3% and 12%. Thus, we

conclude that the exact value of the viscosity used in these

simulations is not a critical parameter.

The predicted shapes are all similar to each other (Figure S3),

and none of them match the empirically measured St1. A detailed

analysis of one of these simulations (Re = 1022) is highlighted in

Figure 4A–D. Rather than a distally oriented outgrowth, the

virtual limb bud shows fairly uniform growth in all directions

(green arrows in Figure 4B) resulting in a predicted shape (green

surface in Figure 4C,D) which is unlike the real measured shape

(blue surface in Figure 4D). In order to confirm the general

importance of this conclusion for limb bud development, we also

repeated the entire analysis for a younger stage of hindlimb: 3D

imaging by OPT, BrdU/IddU analysis, cell density counting, and

finite element modelling was performed for an earlier limb bud

shape (E10.5 growing to E10.75). As before, the proliferation

pattern shows a slight gradient of values along the PD axis

(Figure 4E) which in principle could agree with the ‘‘growth-based

morphogenesis’’ hypothesis. However, the simulations using these

empirical values confirmed again that the correct shape cannot be

achieved using this model (Figure 4F–H).

In both simulations the final predicted volume of the limb bud is

smaller than the real volume (a 15% and 21% deficit for the

younger and older simulations, respectively). This is most likely

explained by the fact that some cells are still entering the limb bud

from the main body flank during early developmental stages.

Although we are confident of the estimate of Tc values, we also

wished to double-check that a hypothetical error in our Tc

calculation method could not account for the failure of elongation.

We therefore performed an extra pair of simulations in which the

estimated s values were uniformly scaled up such that the final

volume equalled the real volume. This required average Tc values

of 8.1 h and 9.5 h, respectively, for the younger and older

simulations. Both of these ‘‘volume-corrected’’ simulations show

the same result as before—a general increase in limb bud size in all

directions, rather than distal-specific elongation (Figure S4).

Additionally, we performed one final test, in which the average

measured Tc value was distributed uniformly across the limb bud.

The resulting shape was visually indistinguishable from the

simulation using the measured gradient of Tc values, highlighting

that this observed proliferation gradient has no significant effect

compared to a flat distribution.

One way that a general isotropic increase in volume could be

converted into a distal elongation is if the mesenchyme was

‘‘squeezed’’ by the ectoderm, and this idea has been proposed a

few times [11,22,38]. This concept predicts that the mesenchyme

exerts an outward force, which is mechanically resisted by the

ectoderm. The strongest evidence against this idea was first

described in the classical work of Saunders [20], in which he

showed that removal of large segments of the dorsal ectoderm (up

to three-fourths of the dorsal surface) did not interfere with

relatively normal limb development—in particular that the

mesenchymal tissue did not spill out through the ectodermal hole.

This was later re-confirmed by Martin and Lewis [21] in

experiments which specifically destroyed the dorsal ectoderm of

the chick limb bud with UV radiation, while leaving the AER

intact. We have also made similar observations in mouse limb

buds grown in in vitro culture (Figure S5), and we therefore rule

out the possibility that distal elongation is the product of an

isotropic mesenchymal expansion being squeezed and restricted by

an external ectodermal force.

Taken together our simulation results strongly suggest that in

the absence of any directional cell behaviours the empirically

measured proliferation pattern cannot produce the correct limb

bud shape. Although this spatial pattern is apparently controlled

quite precisely [13], with lower rates proximally and higher rates

distally and near the ectoderm (Figure 3F), nevertheless this spatial

gradient does not appear to be important for limb elongation.

Exploring the Parameter Space of the Model
Our data-driven simulations strongly suggest that isotropic

growth can be ruled out as the main force for distally directed limb

bud elongation. However, despite our confidence that these are

the most accurate empirical data sets generated for the limb bud so

far (on 3D shape change and cell cycle times), nevertheless the

possibility for some numerical errors remains. As our simulations

depend heavily on the numerical details of these data sets, it is

therefore essential to perform a systematic exploration of the

parameters of the model: Within which bounds will our

conclusions hold true? In other words, could a different set of
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Figure 4. Numerical simulations based on empirical proliferation rates. Detailed analysis of the simulation with Re = 1022. (A) The initial
limb shape St0 with the measured proliferation pattern converted into source term. High proliferating zones can be found ventrally and distally, as
well as a small area dorsally. Medium levels of proliferation can be found distally and ventrally, and a core of low proliferation centrally at the proximal
end. (B) The tissue displacement calculated from (A) (green arrows) is fairly uniform surface expansion, resulting in an increased size rather than a
shape change. (C) The initial shape St0 (white surface) was grown in silico into the predicted shape pSt1 (green surface), which is larger but shows the
same shape. (D) The predicted result pSt1 (green surface) shows significant differences with the empirical measured limb St1 (blue). (E–H) show the
same as above for a simulation of a younger E10.5 limb. Despite the simpler limb bud shape (compared to E11.0) this simulation also fails to generate
the correct shape change.
doi:10.1371/journal.pbio.1000420.g004
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isotropic growth rates be consistent with growth-based morphogenesis?

Are there in fact multiple growth patterns that could be

compatible? If so, how different would these proliferation rates

be to our measured data?

To answer these questions we formulated our model as an

inverse question. Rather than starting with the initial shape St0 and

the growth data TC and asking what shape pSt1 they predict (as

done in the previous section), we start with the initial and final

shapes (St0 and St1) and ask the computer to search for a theoretical

growth pattern which could produce this result. The inverse

approach has previously been used for other complex develop-

mental questions, such as deducing gene network design from the

resulting expression patterns in Drosophila [39,40]. The approach

requires three components: (i) a parameterisation of the problem,

(ii) a fitness function, and (iii) a method to find optimal solutions to

the problem.

(i) The parameters we explore are the growth values in

different regions of the limb bud. For an optimisation

project, this is a novel type of parameter compared to

previous studies—rather than global constants of the system

(for example the Reynolds number of the tissue or a gene

interaction strength [39]) here we wish to optimise a spatially

distributed set of local values. We therefore had to choose a

parameter set which could define any arbitrary 3D

distribution of scalar values—a new challenge in the field

of biological model optimisation. To minimise the con-

straints on these spatial patterns, we first explored the simple

idea of assigning an independent growth parameter to every

vertex of the tetrahedral mesh. Although successful, this

method was inefficient—Tc values always vary smoothly

over space (Figure 3B,F), and therefore significant redun-

dancy is introduced by employing a parameter for each of

the 5,959 vertices. We therefore sought a spatially coarser

parameterisation method and implemented a regular,

orthogonal grid which is superimposed into the same 3D

space as the limb mesh (Figure 5A and Video S1). The

spatial resolution of the grid can be adjusted independently

of the tetrahedral limb mesh, and the full smoothly varying

growth pattern can therefore be defined by a lower number

of parameters (assigned to the vertices of the cube-mesh and

then interpolated onto the limb mesh). For this study we

chose a mesh in which 525 vertices define the full 3D pattern

for the limb bud (see Methods for more details).

(ii) The fitness function (or objective function) should be a single

value which indicates how good a simulation is, thereby

guiding the optimization process to find the best result. In

our case, the fitness function is a measure of shape difference

between the computer prediction pSt1 and the real limb

shape St1 (Figure 5A). As this value tends to zero the two

shapes converge, implying a perfect solution. We imple-

mented a fast shape-difference estimator by summing the

absolute distances of every surface-vertex in the predicted

shape to the closest surface-triangle in the real shape.

(iii) Parameter optimization can be described through the

concept of a fitness landscape (by analogy with a real

mountain landscape). The full space of the landscape

represents the full range of parameter combinations (i.e.

the range of possible 3D growth patterns), and the height of

the landscape at any given position represents the fitness of

those particular parameters. The algorithm can only

determine the fitness of a given point by performing a

complete simulation with those parameter values, but a

comprehensive survey of the whole landscape is far too

computationally expensive (many millions of simulations

would have to be performed). The goal of an optimization

method is therefore to find the best solution by a series of

carefully selected simulations, thereby exploring its way

through the landscape towards the higher mountains. (In

practice our fitness function is the shape difference, and it

therefore decreases in value as the fitness improves. We

describe the optimization analogy here as an upward hill-

climbing process merely as the usual convention to illustrate

the concepts.)

In general, two classes of optimization methods are distin-

guished: local and global (recently reviewed in Ashyraliyev et al.

[41]). Global search methods are necessary when the search space

is likely to have many fitness optima (known as a rugged

landscape), making it hard to locate the true global best result.

They mostly employ stochastic functions to avoid getting trapped

in local optima (for example Simulated Annealing [42]). Local

optimization methods by contrast can be used for either low

dimensional or constrained problems (known as a correlated

fitness landscape). Local methods start from a specific initial set of

parameter values (i.e. an initial position in the landscape) and

assume that a continuous ‘‘uphill’’ path leads to the global

optimum.

Theoretical considerations suggested that our choice of

parameterization (defining an independent growth value for each

region of tissue) would create a smooth, correlated landscape. We

therefore explored the use of a local search method. (This choice is

verified in the next section.) Due to the rather slow running time of

a single simulation (5–8 min) we chose the Hooke and Jeeves

direct search method (rather than a gradient-based method) [43].

At each iteration of the optimization, all 525 parameters are tested

individually to assess whether a small local increase or decrease in

the growth rate improves the solution. At the end of each iteration

a new candidate solution is constructed by combining all the

individual improvements (thereby implementing a diagonal move

in parameter space). The magnitude of the increments/decre-

ments is reduced during the course of the optimization process to

allow finer adjustments as the solution improves (similar to the

cooling schedule employed in Simulated Annealing [42]).

Growth-Based Morphogenesis Is Theoretically Possible But
Not Realistic

Once developed, we used this optimization strategy to ask if a

3D proliferation pattern could be found that would give us a shape

similar to the empirical measured St1—in other words, is it at all

possible that a 3D distribution of purely isotropic behaviours can

explain normal limb bud development? We restricted the

optimized s term to be positive, so that despite the belief that

some cells enter into the limb bud from the flank, it is nevertheless

reasonable to compare the optimized s values to the results from

our BrdU/IddU double-labelling experiments. Other possible

influences like cell death were thus intentionally neglected. After

75 iterations of optimization a shape was produced which showed

a significantly higher similarity to the St1 shape than our previous

result (using the empirical BrdU/IddU data Figure 4), although

the DV and AP growth was still greater than the real St1

(Figure 5B–E). This improved shape change was explained by a

dramatic difference in proliferation pattern. This optimized

pattern shows a much stronger spatial gradient along the PD

axis—with s ranging from just above zero in much of the bud to

0.47 h21 in the distal-most regions (Figure 5B). This contrasts with

the empirical cell cycle data which range from s = 0.03 h21 to just

0.07 h21 (Figure 4B).
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Since the resulting simulated shape still did not match the

empirical St1 we next asked a more general question. Rather than

restricting the exploration of s to positive values—which could

correspond specifically to proliferation (equation 7)—we extended

the possible range of s into negative values, thereby allowing active

tissue shrinkage to also play a role, which in principle could occur

by programmed cell death or local increases in cell density. In

practice this allows s to represent the combined effect of any

isotropic cell behaviours. Adding this change and rerunning the

optimization achieved a large improvement in the match between

the shapes of pSt1 and St1 (Video S2). However, before analyzing

this result in detail we wished to confirm that our choice of a local

search method was suitable for this problem—in other words to

determine whether this optimization process would become

trapped on local optima rather than finding a genuine global

result.

A common strategy to address this question is to start the

simulation at multiple different initial conditions (i.e. different

positions in the landscape) and explore whether it always

converges to similar solutions. In addition to the two previous

optimisations (which were started with all s values set to zero) we

chose five additional initial conditions—two different linear

gradients of proliferation in different directions, two radial

gradients (either increasing or decreasing from the centre) and

Figure 5. Exploring parameter space. (A) The optimization process is a loop where (1) the proliferation values are interpolated onto the limb
mesh, (2) the simulation predicts a new shape pSt1 according to the proliferation values, (3) the fitness function compares the predicted shape pSt1

with the real shape St1, and (4) the parameter optimization adapts the parameters according to the results of the shape comparison. This process is
repeated (based on a Hooke and Jeeves direct search method [43]) until a stable proliferation pattern is obtained. (B) The proliferation pattern for
positive isotropic growth shows low proliferation dorsally and ventrally, while high proliferation can be seen along the distal ridge with a trend
towards the posterior side. (C) Directed tissue displacement in the PD direction is the result of the high proliferating in the distal zone. (D) Compared
to the St0 limb shape (white), a clear shape change is evident for pSt1 (green). (E) Comparing the predicted limb shape pSt1 to the empirical measured
St1 shows a high degree of similarity, but still overextended outgrowth, especially along the DV axis. Limb orientations are as shown in Figure 2F.
doi:10.1371/journal.pbio.1000420.g005
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one pattern with a random distribution of values. These initial

patterns were chosen to represent a collection of extreme

alternative spatial distributions (Figure S6), thereby covering a

wide region of parameter space. These tests all resulted in a very

similar final optimized distribution within about 25 iterations.

Plotting the shape difference over iterations of the optimisation

process shows all five cases converging rapidly to a good fit (blue

lines in Figure 6A). Interestingly, they converged faster than the

previous case (when s values could not go below zero), which

required 75 iterations before stabilizing (red line in Figure 6A).

Examination of the final patterns showed that despite some small

variations, they had all converged on the same solution (see also

Figure S6), strongly suggesting that the fitness landscape for this

problem contains one global optimum, which is reachable along a

continuous path of incremental fitness improvements from many

different starting positions.

To further verify this conclusion we monitored the change in s
values during the optimization process at four specific positions

within the limb bud: distal, central, dorsal, and ventral. In the first

example all s values started at zero (Figure 6B). During

optimization the s values for distal tissue increased up to around

0.4 h21, central values increased a small amount, and dorsal/

ventral values decreased to negative values. In the second

example, the initial pattern of s values displayed a variety of

different values for different regions—distal tissue started with low

values, and central tissue with high values. During optimization,

these values ‘‘crossed over’’ to converge on a final pattern similar

to the previous case (with high distal values around 0.4 h21,

medium central values of around 0.15 h21, and again negative

values for dorsal/ventral tissue). These results strengthen the

conclusion that one global optimal solution exists which is

repeatedly found, irrespective of the starting values.

One of these optimization results is shown in more detail in

Figure 6D–G. The much closer correspondence of the limb bud

shapes can be seen by the more complex intersection between the

green and blue surfaces in Figure 6G (representing the predicted

and real shapes, respectively), as compared to Figures 4D and 5E.

More specifically, the shape comparison is ,70% better than the

shape produced by the real BrdU/IddU data (blue graphs

compared to green line in Figure 6A). This is only achieved by

having very high proliferation in a very narrow distal region and

negative values in much of the mesenchyme. In fact 22.5% of the

volume of the mesenchymal tissue adopts a negative s value (all

the blue regions in Figure 6D), suggesting that if cells only perform

isotropic activities, significant tissue shrinkage would be necessary

to achieve the correct shape (more than 10% shrinkage per hour in

large regions of the bud).

The primary motivation for this parameter exploration was to

determine whether numerical errors in our cell cycle data could

account for the model’s inability to generate the correct limb bud

shape. The optimization experiments produced two main results.

(1) The concept of growth-based morphogenesis is theoretically

possible—a pattern exists (Figure 6D) which can indeed produce

the observed shape changes. (2) However, this pattern is

dramatically different from our measured BrdU/IddU data

(Figure 4B), both quantitatively and qualitatively. For example,

in the optimised result, the volumetric growth in the distal region

must be as high as .0.5 h21. Since cell density does not

significantly change over these developmental stages (described

above), the major source of volumetric growth is indeed cell

division, and the model would require a cell cycle time of less than

1.5 h, which has never been observed in the growing mouse limb

bud. Additionally, the predicted regions of strong tissue shrinkage

cannot be explained by programmed cell death, as this is well

known to occur in just three small regions [13], rather than the

large predicted 22% volume of the limb bud. At a more general

level we have shown that purely isotropic cell behaviours (such as

cell proliferation, cell death, and change in cell density) can be

ruled out as the driving force for limb bud outgrowth.

Mesenchymal Cells Display Complex, Highly Dynamic 3D
Shapes and a Strong Orientation Bias

Our computer modelling makes the prediction that correct limb

bud morphogenesis requires some kind of directional cellular

activities. To verify this prediction we went back to the limb bud,

to search for evidence of oriented cellular structure within the

mesenchyme. Determining the shape of individual cells can be

facilitated in two ways: (a) Membrane-specific labels dramatically

increase the chance of visualizing the fine-structure of the cell

outline. Cytosolic labels by comparison tend to produce an intense

signal from the main cell body that outshines fine details of the

membrane. (b) However, labelling too many adjacent cells can

make it impossible to delineate each one clearly, and so membrane

dyes such as bodipyceramide are unhelpful. The ideal approach

labels the membranes of just a small subset of cells within an

unlabelled tissue, thereby allowing each cell shape to be

highlighted precisely. We therefore chose to electroporate a

membrane-targeted GFP construct into the lateral plate mesoderm

of HH15 chick embryos in ovo, to achieve stochastic cell labelling

in the limb bud mesenchyme 24 h later (HH21).

Confocal microscopy of labelled cells revealed a striking

morphology. The vast majority of mesenchymal cells have very

complex 3D shapes, exhibiting long filopodial processes which

branch extensively and extend up to 3 cell diameters away

(Figure 7A–C). These shapes do not strongly resemble the

‘‘classical’’ 2D migrating cell morphology with a broad leading

edge and narrow trailing edge, although this could be due to the

genuinely 3D nature of the mesenchymal environment—indeed

for some cells the Golgi-side appears to have more filopodia than

the opposite side (Figure 7C–E). Although an unambiguous

orientation is not clear for individual cells, when many adjacent

cells are labelled a gross orientation of the cellular processes can be

discerned (double-headed arrow in Figure 7B). This rough

orientation is towards the nearby ectoderm and therefore

perpendicular to the main PD axis, rather than towards the

AER, possibly suggesting a cell intercalatory mechanism rather

than a simple distal-wards migration. Apart from the extensive

filopodia, we failed to detect another type of cellular process that

has previously been described for limb bud mesenchymal cells:

cytonemes, which are long processes (up to 700 mm) which are

much thinner than typical filopodia and with a constant cross-

sectional profile approximately 0.2 mm across.

Since the complex 3D distribution of filopodia could be the

driving force behind cell migration or intercalation, we performed

time-lapse imaging of the electroporated limb buds in ovo, to

determine how active they are. This imaging revealed a highly

dynamic nature of the filopodial protrusions—contracting and re-

extending in a manner reminiscent to migrating fibroblasts

(Figure 7F). Considering that almost all labelled mesenchymal

cells display this complex array of dynamic filopodia, these

observations considerably alter the classical view of the limb bud

mesenchyme which has been repeatedly modelled as if cell

divisions and cell growth represented the main source of force-

generation [22,23,25,32]. As before, a single preferential direction

for filopodial activity was not evident, arguing against a simple

model of chemotactic migration towards the AER.

To further explore the possible orientation of these cells we

labelled the Golgi apparatus, because in many actively migrating
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Figure 6. Assessing the parameter optimisations. (A) A plot of the fitness improvements (decrease in shape difference on the y-axis) against
the successive iterations of the optimisation process (x-axis). At each iteration the shape difference decreases until it converges to a stable minimum.
For comparison, the green line shows the difference between St1 and pSt1 when using the BrdU/IddU data (i.e. not optimised). The red line shows the
result of the optimisation with only positive proliferation (Figure 5B–E), which achieves a lower shape difference. The blue curves are the results of
optimisations which allowed negative s values (tissue shrinkage). The multiple blue lines represent optimisations starting with different initial
proliferation patterns, and all converge to similar results which are ,70% lower (better) than the BrdU/IddU data (green line). Although the optimal
shape difference was the minimal difference, we have illustrated the global optimum of the landscape as a high peak, following the convention of
the hill-climbing analogy. Starting from different points of the fitness landscape, the parameter optimisation converges to the same ‘‘mountain peak’’
with the same basic pattern of growth values. In (B) and (C) the x-axis is the same as (A), but the y-axis plots the changing s values for different
positions within the limb bud. Neighbouring pairs of vertices are tracked for each of four regions (distal, central, dorsal, and ventral) and illustrate that
although the two cases start with different distributions of initial s values, these parameters converge to the same general layout, with high growth in
distal regions, low in central regions, and tissue shrinkage in dorsal and ventral regions. (D–G) shows the results in more detail for one of the
optimisation runs. The final growth pattern (D) clearly shows a discrete region of very high proliferation at the distal tip (red/yellow) and shrinking
areas dorsal and ventrally (blue). The resulting tissue displacements (E) generate a new shape pSt1 (green surface in F,G) which is much flatter than
before and shows a close correspondence to the real shape St1 (blue in G). Limb orientations are as shown in Figure 2F.
doi:10.1371/journal.pbio.1000420.g006
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Figure 7. Limb bud mesenchymal cells display complex 3D shapes with highly dynamic filopodia. (A) Overview of a typical in ovo
electroporation result. All cell nuclei are labelled with DAPI (blue) and the GFP expression can be seen in green. (B) When many cells are labelled a
general alignment of cellular processes is evident, oriented perpendicular (white double arrow) to the nearest ectoderm (bottom-right). (C) A section
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cells it displays a biased position between the nucleus and the

leading edge [44]. Golgi orientation in the developing limb bud

mesenchyme has previously been explored with respect to the

ectoderm [45] and the developing mesenchymal condensations

[46,47]. Interestingly, whereas a slight bias towards the ectoderm

was previously reported at later stages of limb development

(.E12.5 in the mouse or HH24 in chick), we already see a clear

bias at HH21 (Figure 8A,B). In more than 70% of cells the Golgi is

positioned on the distal side of the cell (n = 565). Interestingly,

although Golgi orientation shows more of a distal bias than the

general cell shape, it is also not aligned strictly towards the AER—

it appears to be influenced both by the AER and by the nearby

ectoderm. In other words despite a general distal-wards bias, we

do not find a precise alignment between Golgi position and the

direction of limb elongation. If cell orientation is an important

aspect of normal morphogenesis, then it is possible that the

presence of cells pointing in the opposite direction is the

consequence of cell divisions, during which the daughter cells

must at least temporarily have their Golgi on opposite sides of the

cell (due to the movements of spindle formation and chromosome

segregation). This would effectively reduce the strength of the

measurable orientation bias.

Although a previous study had reported a lack of bias in the

orientation of cell division [11], our interest in possible directional

cell behaviours prompted us to re-evaluate this question. By

measuring the angle of the relative positions of daughter

chromatids at telophase (n = 187) we revealed that there is indeed

a clear bias in the cell division orientation in different regions of

the limb bud (Figure 8C–G). In regions close to the ectoderm this

bias is similar to the bias for Golgi positions (partly distal and

partly ectodermal). Indeed as mentioned above, these two

observations could be linked by the fact that during cell division

Golgi positions will be determined by the positions of the daughter

cells. However, in the central region of mesenchyme furthest from

the ectoderm, this correlation is not seen—Golgi bias is clearly

distally oriented, while the cell division shows a slight bias

perpendicular to this (i.e. along the DV axis). We also found a bias

in cell division orientation of mouse limb bud mesenchymal cells,

by tracking the angles of cytokenesis in time-lapse confocal movies

of mouse limb buds cultured in vitro (Figure S7, and methods in

Text S1).

Discussion

The Predictions of Growth-Based Morphogenesis Are
Inconsistent with Empirical Data

The cells in a developing organ can perform a wide range of

active behaviours and movements—for example cell division, cell

death, secretion of ECM, changes in cell size, active migration,

intercalation, and convergent extension. A central difficulty for

biologists is to pinpoint which behaviours are responsible for

tissue-level movements. With state-of-the-art time-lapse microsco-

py it is increasingly possible to watch these behaviours directly, but

observing a behaviour does not prove that it has a role in

generating the tissue-level forces. For example, cell intercalation

can either be the driving force behind convergent extension [48]

or can alternatively be the by-product of tissue movements driven

by other external forces. While a few previous studies on the limb

have sought to uncover which cell behaviours might contribute to

limb bud outgrowth [11,19], here we have chosen a very different

approach—to focus on the most popular concept, growth-based

morphogenesis, and to rigorously test its sufficiency as a mechanistic

explanation.

The concept of growth-based morphogenesis is both an intuitive and

popular explanation for limb bud outgrowth [9,10,23]. Even

studies which revealed a possible alternative force for outgrowth

still refer to the need for high proliferation localized specifically in

the progress zone, stimulated by the mitogenic effects of FGFs

secreted from the AER [19]. Similarly, studies which revealed the

proliferative influence of ectodermal WNTs across the whole limb

bud still also claimed a need for higher proliferation in the progress

zone due to the combined effects of general ectodermal signals

(WNTs) and specific AER signals (FGFs) [24]. The idea has twice

been translated into a formal computer model [22,23], however in

both cases the idea was only explored at a conceptual level. Both

models operated in 2D rather than 3D and did not attempt to

integrate empirical growth data. By contrast, through novel image

processing techniques we have measured the variables most

relevant for the concept (3D shape changes and proliferation rates)

and directly tested whether the theory is compatible with reality.

In particular, this was achieved by introducing a novel approach

for parameter optimization—rather than optimizing a low-

dimensional space of global parameters, we efficiently explored a

525-dimensional parameter space of local growth values, thereby

creating quantitative predictions about how the growth-based

morphogenesis concept could be theoretically possible (Figure S9).

Interestingly, our data-driven growth model is effectively an

extension of a 1D model produced over 30 years ago by Lewis

[49], in which he compiled the values of mitotic index along the

PD axis and performed a similar growth calculation for the goal of

creating a mathematical linear fate-map of the growing chick wing

bud. It is the use of new data-capture techniques and finite-

element modelling which has enabled us to overcome the

challenge of extending his approach into 3D.

An intriguing finding is that there is indeed a reproducible way

in which the theory can produce the correct 3D shape. The

successful growth pattern displays a very specific spatial distribu-

tion, and furthermore, this optimized pattern directly reflects the

general assumptions behind growth-based morphogenesis—that mes-

enchymal proliferation rates are highest close to the AER. The

correspondence between the predicted stripe of high proliferation

(red regions of limb buds in Figure 7A and Figure S6) and the

location of the AER is striking, because no information about the

ridge was included in the model. In principle, this result provides

general confirmation that the underlying concept of growth-based

morphogenesis is theoretically possible, as shown previously in 2D

[22,23].

However, because our model is 3D and includes accurate

information about the real shape of the limb, we can go a step

further and compare the values of parameters in the model with

real life measurements. It thus becomes clear that the growth

pattern required to make the model work (extremely high

proliferation just under the ridge, and negative values (tissue

shrinkage) in a large proportion of the mesenchyme) is not

reflected either in the quantification of real cell cycle times nor in

the known small zones of programmed cell death [13]. Figure 9

through the middle of a chick limb bud, showing the complex, branched and extended morphology of almost all the randomly labelling cells. (D–E)
High-magnification 3D images of a few labelled cells, showing how the Golgi (red) is consistently on the same side of the nucleus (asterisks in C, blue
shape in E) and revealing the extended cellular processes of the complex 3D geometry of each cell. (F) Frames from two time-lapse movies showing
the dynamic extension and retraction of the filopodia (white arrowheads) over a 2 h period.
doi:10.1371/journal.pbio.1000420.g007
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highlights this comparison through the use of two different colour

maps. Figure 8A shows the spatial pattern of real proliferation

rates in two orthogonal cross-sections through the limb bud, with a

colour map normalized with respect to the fastest and slowest

dividing cells (a cell cycle time of 11 h (red) and 25 h (blue),

respectively). Panel B shows the same information (the real cell

cycle times), but with a colour map which has been normalized

with respect to the fully optimised result from Figure 6D, which is

shown in panel C. To achieve growth-based morphogenesis the

proliferation rates must adopt extreme values—ranging from

20.1 h21 to 0.6 h21. If the real cell cycle times are displayed with

the same colour map (panel B) they constitute a very narrow range

between these extremes—hardly any variation is seen. This is

reflected in the observation that this real but shallow gradient of

cell cycle times (from 11 to 25 h) has no significant impact on limb

bud shape but only provides an increase in overall size (Figure 4D).

We therefore suggest that the major role of cell proliferation is

simply to provide enough progenitor cells for the ongoing

development of the limb and that the spatial pattern of

proliferative rates is likely to reflect other constraints, such as the

Figure 9. Comparing optimised versus real growth rates. Proliferation maps on two orthogonal virtual cross-sections through the limb, from
measured data and optimized simulations. (A and B) both show exactly the same empirical data (the real cell cycle times), but with two different colour
maps, whereas (C) shows the fully optimised result. In (A) the map has been normalized with respect to the fastest and slowest dividing cells (a cell cycle
time of 11 h (red) and 25 h (blue), respectively) and reveals a core of low proliferation in the central proximal region and areas of high proliferation in
ventral and anterior regions. In (B), which shows exactly the same empirical data as (A), the colour map has been normalized with respect to the fully
optimsed result shown in (C) and in Figure 6D. (C) To achieve growth-based morphogenesis the proliferation rates must adopt extreme values—with s
ranging from 20.1 h21 to 0.6 h21. When the real cell cycle times are displayed with the same colour map (B) they constitute a very narrow range
between these extremes—hardly any variation is seen. This is also highlighted by mapping the colour map for (A) under the colour map for (B) and (C),
where again it can be seen that the range of empirical values is a small fraction of the extreme values required for growth-based morphogenesis.
doi:10.1371/journal.pbio.1000420.g009

Figure 8. The Golgi and cell division orientations of limb bud mesenchymal cells. (A) A map of Golgi body orientation (relative to the
nucleus) on cells across the same transverse section as Figure 7C. (B) A summary of the orientation bias seen within four different regions of the
mesenchymal tissue (n = 565). Dashed blue line indicates the main PD axis of elongation. (C) A map of cell division orientation; the ends of the white
lines indicate the positions of daughter chromatids during telophase. (D) A summary of the bias in cell division orientation. Since each section
contains a limited number of cells in telophase, these results (n = 187) were collated from all four sections seen in (C) and (E–G).
doi:10.1371/journal.pbio.1000420.g008
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gradual condensation of skeletal elements in the core of the bud,

which is known to correlate with reduced proliferation rates [50].

This study started with real laboratory measurements (on shape

change and cell cycle times), combined them into a computational

model, and then ruled out isotropic cell behaviours as a possible

explanation for limb bud outgrowth. It thus makes a prediction

which brings us full-circle, back into the lab in search for biological

evidence of oriented cell activities. Our search has been fruitful in

uncovering clear evidence for a variety of oriented cell behaviours

(Figures 7 and 8). The complex, extensive, and dynamic cell

protrusions have not been previously described in the limb and

raise a number of fascinating questions. The cell shapes

themselves, plus the dynamic extension and retraction of filopodia,

are indicative of active cells which could perform migration or

active intercalation. The biased orientation of filopodia, Golgi, and

cell divisions is not strictly distal but does display some distal bias.

As a proof-of-concept we created a final simulation in which a

hypothetical distal ‘‘migratory’’ force was added to the outward

force generated by the isotropic growth pattern, creating a hybrid

force field which is partly distal and partly towards the ectoderm

(reflecting our observations above). This resulting hybrid growth

orientation was indeed able to generate a shape which resembles

the real shape change (Figure S8).

Cell migration has typically been studied in 2D contexts, so one

possibility is that migrating cells are present but hard to identify

because the genuinely 3D environment obscures any obvious

leading edge and trailing edge. However an alternative (which is

not mutually exclusive) is that the ectodermal orientation of these

processes reflects an intercalatory mechanism producing a

convergent-extension mode of tissue movement. In this scenario

cells would be selectively pulling against their neighbours in a

plane perpendicular to the PD axis (convergence), and the

resultant squeezing together would push cells out along the PD

axis (extension). Unlike classical cases of convergent-extension

[48], the convergence would be balanced by cell proliferation,

such that the limb bud does not become narrower over time. The

vertebrate limb may thus provide a new paradigm for under-

standing 3D collective cell movements which involves a complex

balance of oriented cell activities. Another intriguing question is

how cell mixing and/or migration can occur without the extended

cellular processes becoming entangled. Interestingly, Figure 7B

shows that a few cells in the field-of-view have rounded up into a

spherical shape, in a manner suggestive of cell division. If cells

retract their cellular processes every time they divide, as has been

observed in many other systems, then this could resolve the

problem of entanglement.

In conclusion, we provide both theoretical and empirical

evidence suggesting that distal elongation is driven by directional

cell behaviours, rather than the proliferation gradient hypothesis

(or growth-based morphogenesis). Oriented cell activities are often

controlled by the PCP system, and our prediction may therefore

help explain the phenotype of Wnt5a mutants. WNT signalling is

known to orient the PCP system in mesenchymal cells undergoing

convergent-extension [51], and intriguingly the phenotype of

Wnt5a knock-out mouse embryos includes reduced limb bud

elongation [52].

Material and Methods

OPT Scanning
First the tissue is washed 3 times in PBS, for 10 min each time,

to wash out excess fixative. It was then embedded in 1% LMP

agarose made with sterile dH2O. When set, the agarose block was

trimmed with a surgical blade, ensuring adequate agarose was left

surrounding the tissue, and glued to a cylindrical metal mount in

the desired orientation for scanning. The samples were then

placed into a clean glass container (height 5.5 cm) and tissue

dehydrated at room temperature overnight by the careful addition

of 100% MeOH to cover the sample. The following day, three

10 min washes are performed using MeOH, which was then

replaced with BABB (1 part Benzyl Alcohol (Sigma) to 2 parts

Benzyl Benzoate (Sigma)). With the lid removed, the bijou bottle is

allowed to stand overnight at room temperature in a fume hood, to

allow any remaining MeOH to evaporate. Samples were usually

kept in BABB overnight and scanned the following day.

Proliferation Measurement
Pregnant mice were administered IddU followed by BrdU by

sequential interperitoneal injections after a defined inter-injection

interval (Ti) of 150 min. Embryos were harvested and fixed

30 min later, as this is known to be long enough for BrdU to reach

the mesenchymal cells from the maternal blood stream and

incorporate into the replicating DNA [30,53].

Histology. To facilitate close histological analysis of thin

sections of limb tissue, the limbs were embedded in wax prior to

microtome sectioning. Prior to wax embedding, tissue stored in

100% MeOH was given two 10 min washes in 80% EtOH/dH2O

followed by two 10 min washes in 100% EtOH. This was followed

by three 15 min incubations in Xylene, the first of which was at

room temperature and the remaining two at 58uC. The embryo

was then incubated in 50% Xylene: 50% wax for 15 min, after

which it was put through three 20 min incubations in fresh molten

wax at 58uC. The wax containing the specimen was then tipped

out into a suitable mould. The embryo was orientated under a

microscope using forceps and the wax was left to set. The wax

block was then cut into a pentagonal shape conducive for

sectioning.

Wax embedded samples were sectioned at 7 mm on a

microtome and ribbons of sections were floated out in a 42uC
water bath. The sections were transferred on to Superfrost Plus

electro-statically charged slides (BDH) with the aid of a fine-tipped

brush. The slides were air dried and then transferred to a 55uC
oven to dry overnight which were then stored at 4uC.

Immuno-staining. For antigen retrieval, slides were left to sit

at room temperature in 60 mM sodium citrate (pH6). The buffer

was then boiled in the microwave (900W) for 30 min and then

allowed to cool for an hour. Slides were removed from the buffer

and placed in blocking solution (TBST, 0.05% Triton, 10% heat-

inactivated sheep serum) for an hour at room temperature.

Sections were then incubated in blocking solution containing rat

anti-BrdU (1:100; clone BUI/75 Abecam) and mouse anti-BrdU

(1:50; clone B44 from Becton Dickinson). Incubation was

completed at room temperature for 30 min and then 4uC
overnight, followed by a 1 h wash in TBST. Sections were

incubated with secondary antibodies Cy3 (1:200) and Alexa 488

(1:200; highly cross absorbed goat anti-mouse IgG antibodies) at

room temperature for 30 min and then 4uC overnight. Slides were

rinsed for an hour using TBST and then mounted using

vectashield mounting medium containing DAPI (1/600). Slides

were stored in the dark at 4uC for a maximum of 4 wk, after which

time the fluorescent signal is lost.

Microscopy. The wax sections were scanned using a Leica

TCS-SPE confocal microscope with a 106/0.3 ACS-APO AIR

objective.

Cell Shape Analysis
Electroporation. Fertilized eggs were purchased in a local

farm and incubated on 38uC for 65 h. In ovo electroporation was
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carried out as previously described [54]. Briefly, HH15 eggs were

windowed, the vitelline membrane was removed, and 1 ml of

0.01% Fast green (F2752, Sigma Aldrich) in PBS was added on

top of the embryo for better visualization. 1 ml of 1% Fast green

was added to 5 ml of pCAGGS-gpiGFP vector (kindly provided by

Fernando Giraldez Orgaz) at a concentration of 4 mg/ml. The

DNA solution was injected into the embryonic cleome with

microinjector (PicoPump PV820, WPI) and a sharp pulled glass

pipette. For electroporation, CUY-21EDIT electroporator (Nepa

Gene, Ichikawa, Japan) was used. A platinum anode was inserted

beneath the embryonic endoderm and a platinum cathode was

placed above the ectoderm surface. Three pulses of 4V, 60 ms

pulse-on, 50 ms pulse-off were applied immediately after DNA

injection. A small amount of 1% penicillin-streptomycin-

amphotericin B (A5955, Sigma Aldrich) in PBS was added

before the eggs were resealed and re-incubated for 24 h.

Immuno-staining. Embryos were dissected and fixed

overnight in 4% paraformaldehyde in PBS at 4uC, embedded in

5% low melting point agarose, and vibratome-sectioned at

200 mm. Sections were placed on Superfrost Plus glass slides and

blocked overnight on room temperature (RT) in blocking solution:

10% heat-inactivated goat serum (G9023, Sigma Aldrich) in

TBST (0.1% Tween 20 in 16TBS) with 0.01% Natrium Azide.

Sections were incubated for 24 h on RT in blocking solution

containing mouse anti-GM130 (1:250; 610822, BD Transduction

Laboratories) and rabbit anti-GFP (1:500; 632460, Clontech).

They were then rinsed in TBST with 0.01% Potassium azide

overnight on RT and incubated in blocking solution with anti-

mouse Alexa 568 (1:200; highly cross absorbed goat anti-mouse

IgG antibodies, A11031, Invitrogen), anti-rabbit Alexa 488 (1:200;

highly cross absorbed goat anti-rabbit IgG antibodies, A11034,

Invitrogen), and DAPI (1:500; D8417, Sigma Aldrich) for 24 h on

RT. Finally, slides were rinsed overnight on RT in TBST with

0.01% Potassium azide.

Imaging. Sections were scanned using Leica SP5 inverted

confocal microscope with 406/1.25 APO oil immersion and

636/1.40–0.60 APO oil l immersion objectives. For Golgi

analysis and iso-surfaces, z stacks were obtained with 1 mm or

0.1 mm z steps, respectively. Golgi orientation was analyzed with

ImageJ. Arrows were drawn from the center of the nucleus

through the middle of the Golgi on the entire z stack. The stack

was then maximum projected to visualize all the arrows. For cell

division analysis angles were measured (using ImageJ) of lines

joining the daughter chromatin centres at telophase. Imaris 664

was used to create the iso-surface images.

Time-lapse in ovo imaging technique was adapted from Kulesa

and Fraser [55]. Briefly, embryos were incubated and electropo-

rated as described above. After 24 h of reincubation (stage 21HH),

the eggs were reopened and the embryo was covered with Teflon

membrane (Fisher scientific, 13-298-83). The opening of the egg

was sealed with low melting point agarose and covered with a layer

of PBS. The internal GFP signal was imaged on Leica SP5 upright

confocal microscope with a 406/0.80 APO water dip-in lens

about every 10 min over a period of 2 h. A z stack with steps of

1mm and total volume of about 90 mm was made for each time

point. Images were processed with ImageJ.

Computing
Information about basic 3D image processing for OPT can be

found in supplementary methods Text S1.

Hardware. The simulations and parameter optimizations

were performed on a Red Hat Enterprise Linux v5.3 cluster. In

total 19 blades bl35p with 2 processors AMD Opteron Dual Core

2.4 GHz and 8 GB of RAM, 16 blades bl460c with 2 processors

Xeon QuadCore E4540 and 18GB of RAM. All blades are

running the Sun Grid Engine v6.2.

Navier–Stokes equation. The FEM solver used was Fastflo

3.1.2 in an adapted version to run in shell mode. An artificial

compressibility method was use to derive the equation for

pressure. From the continuity equation (5), we can assume that

the pressure p satisfies a pseudo-transient state:

Lp

Lt
~{b+:vzbs ð10Þ

where parameter t is the pseudo-time and b is the artificial

compressibility parameter [37]. Through a second-order Taylor

expansion of the term p and substitution of the Navier–Stokes

equation, we can arrive at a Poisson equation for pressure:

dp{b
Dtð Þ2

2
+2dp~{Dtb+:vzDtbs ð11Þ

where Dt is the pseudo-time step. This is a convenient method to

allow the s distribution to determine the pressure distribution,

which in turn drives the resultant velocities (using equation 3). The

third-order derivative of v can be neglected because we are dealing

with very low values for
Lp

Lt
. A zero-pressure boundary condition

was chosen, and the equation was coded in Fasttalk, as in [56]. To

solve for velocity with the Navier–Stokes equation, a slip flow

boundary condition (zero normal velocity gradient) was chosen,

apart from the flank boundary (junction between the limb bud and

the embryo flank) which had the extra constraint that movement

in the x-axis was not permitted. At each time step the vertex

coordinates were updated by the local velocity values (a

Lagrangian mesh approach) which allows the boundary

conditions to stay in the correct position (on the edge of the

limb bud shape) and also allows the s values to stay associated with

the same tissue element over time.

Simulation with oriented cell movements. To implement

a force-field with a similar set of orientations to the cell data, we

combined two fields: the normal one generated by the measured

proliferation rates (which is largely ‘‘outwards,’’ towards the

ectoderm), and a new distally oriented field, which was defined as

pointing unidirectionally along the PD axis, and whose magnitude

increased in the distal direction.

RBF. Mapping the 30 Tc values onto the 3D tetrahedral mesh

was a two-step process. First, 30 vertices within the mesh were

chosen for their correspondence to the centres of the cell-counted

regions. This gave us a sparse representation of proliferation for

the limb. Second, an RBF was used to interpolate these 30 Tc

values onto the remaining vertices of the St0 mesh. A RBF is a

function approximation technique that can work in arbitrary

dimensions. In this case a function is created using the 3D

positions of the 30 selected vertices and corresponding Tc values as

input. This function can then interpolate the Tc value for any 3D

position. The software is coded in Matlab and is provided publicly

on the Matlab Central website (www.mathworks.com) by Alex

Chirokov [57].

Fitness function. The fitness function compared the two

shapes, predicted pt1 and real shape t1 from the empirical dataset.

It determines the quality of the match by measuring the distances

of each surface vertex of pt1 to the closest triangle on the surface of

t1. The distances are accumulated to a scalar value measurement

of difference. We carried out various tests comparing a range of

equal shapes and simple geometric shapes with different scalings

and translations to test if the comparisons are reliable (unpublished
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data). The tests showed that this is the case for convex shapes like

we are using in our optimization.

Cube mesh. To decrease the number of necessary

optimizations we segmented the limb domain by creating a

bounding box enclosing the limb mesh. This cube was subdivided

into 96969 cubes with a total of 729 vertices (Video S1). Each of

the cube vertices is assigned a proliferation value which is linearly

interpolated onto the tetrahedral limb mesh vertices. For cases

when a cube vertex only belongs to cubes that don’t contain

tetrahedral limb mesh vertices, the cube vertex is deactivated and

will not be used in the parameter optimization. This way the

number of individual optimization steps was reduces from 729 to

525.

Supporting Information

Figure S1 Reproducibility of limb shapes. Since the

assessment of simulations depends on detailed shape information

from two different specimens (for t0 and t1), it is important to

confirm the general reproducibility of mouse limb bud shapes. (A)

Six limb buds were chosen at stage E11.0. By extracting the

outline of each limb (both from a dorsal view and a posterior view)

we can overlay them to illustrate the minimal degree of shape

variation. (C) The same data were obtained for limb buds 6 h

older (E11.25). (B) By overlaying the two ages, we can confirm that

the developmental shape change between the two stages is large by

comparison with the variation within each group.

Found at: doi:10.1371/journal.pbio.1000420.s001 (3.00 MB TIF)

Figure S2 Analysis of mesenchymal cell density. (A)

Graph of cell density against age of hindlimb bud. The two

simulations in the paper correspond to the first and last third of

this plot (E10.5–E10.75 and E11.0–E11.25). From this graph we

could calculate that the density increases by 2.1% per hour for the

younger time interval and 1.7% per hour for the older interval. (B)

A limb bud of E11.25 was fluorescently stained for Sox9

expression—an early marker for the cartilage molecular pre-

pattern. Two sections were imaged under two different fluorescent

channels—the upper row shows only Sox9 expression (see

Heckscher-Sorenson and Sharpe [58] for technical details). The

inset panel illustrates where these sections lie on a photo of another

whole-mount in situ for the same gene. (C–H) The lower row of

square panels displays sub-regions from the two sections (positions

shown as white squares in (B), in which only the fluorescent

nuclear label is shown. In this way we were able to compare the

cell density from Sox9-expressing regions (pre-skeletal) with the

non Sox9 expressing mesenchyme. The cell counts show there is

no obvious sign of mesenchymal condensation yet, despite the

expression of Sox9.

Found at: doi:10.1371/journal.pbio.1000420.s002 (3.16 MB TIF)

Figure S3 Effect of the Reynolds number on the
simulations. The resulting shapes of the simulation with five

orders of magnitude difference in the Re number were compared.

The measured PD elongation varies between 3% and 12%,

whereas the real elongation is 43%.

Found at: doi:10.1371/journal.pbio.1000420.s003 (0.46 MB TIF)

Figure S4 Volume-corrected simulations. (A) The predict-

ed shape change achieved with the cell-cycle times obtained by

experimental data (as in Figure 4D). (B) Simulation in which the

Tc values were scaled up to create the correct volume for the real

t1 shape, proving that this correction does not improve the final

predicted shape—the predicted and real t1 shapes still fail to

match. (C–D) The same result for the E10.5 simulation.

Found at: doi:10.1371/journal.pbio.1000420.s004 (2.05 MB TIF)

Figure S5 Mesenchymal movements in the absence of
overlying ectoderm. An E12 mouse limb bud was cultured in

vitro for time-lapse imaging (see Boot et al. [59] for more technical

details). After the initial adjustment phase, the limb bud shape

changes were quite normal (although as usual for in vitro culture

growth was slower than in utero). After about 12 h a tear appeared

in the ventral ectoderm. This is highlighted at 13:30 with the

asterisk. In the subsequent frames (every 1.5 h) the damaged edges

of ectoderm can be seen slowly pulling away from each other

(black arrowheads), revealing the mesenchyme underneath. Visual

contrast in the mesenchymal tissue allowed us to track the

positions of three points of tissue (white dots) over the remaining

11 h. These frames show that the living, growing mesenchyme

does not spill out into the medium and instead continues to

actively expand parallel to the PD axis, despite the absence of

overlying ectoderm.

Found at: doi:10.1371/journal.pbio.1000420.s005 (0.45 MB TIF)

Figure S6 Fitness landscape analysis. The reliability of the

parameter optimisation was assessed by starting from six different

initial proliferation patterns. These patterns were not chosen

randomly but specifically represent extreme alternative spatial

distributions. The results show that, despite the dramatically

different initial conditions, the algorithm always converges at a

similar solution. All panels consist of a ventral view showing the

initial proliferation pattern (top) and the optimized result (bottom).

The following initial patterns were used: (A) AP-graded prolifer-

ation pattern with highest values on the anterior side, (B) a radial

pattern with a central core of high proliferation, (C) high

proliferation proximal and low values distal—this is the inverse

of the optimized pattern and therefore requires a complete reversal

of the pattern, (D) uniform zero proliferation, (E) a core of low

proliferation in the center of the limb and high values nearer the

ectoderm, and (F) a random spatial pattern.

Found at: doi:10.1371/journal.pbio.1000420.s006 (2.18 MB TIF)

Figure S7 Oriented cell divisions in mouse limb buds.
To explore whether the bias in cell division orientation was

conserved in the mouse we performed time-lapse imaging of

mouse hindlimb buds in culture. Three mouse limb buds were

labelled with bodipyceramide, cultured in vitro, and time-lapse

imaged with confocal microscopy (see Supplementary Methods).

This is an alternative measure of cell division orientation,

compared to the chick analysis of relative chromatid positions

during telophase. (A) Three frames from a time-lapse movie in

which a dividing cell can be tracked. (B) The orientation bias of

cell divisions from the three separate culture experiments. In all

three cases the bias was seen approximately towards the closest

ectoderm, as for the chick.

Found at: doi:10.1371/journal.pbio.1000420.s007 (0.38 MB TIF)

Figure S8 Simulation with directional cell activities.
Since we have shown that isotropic growth alone is insufficient to

explain limb bud shape changes, it is useful to perform a

simulation which includes a directional tissue movement, to

illustrate how the real growth patterns may appear. In this

simulation we combined the measured distribution of isotropic

growth (the s field, calculated from the Tc data and the measured

changes in cell density), with a hypothetical distally oriented force-

field f. The simple addition of this directional force is enough to

transform the unsuccessful shape change (A) into a realistic velocity

vector field (B) which produces a very accurate predicted shape

(C). This reasonable fit to the empirical shape change was

achieved just by optimizing the magnitude of the distal force. How

the combination of possible directional cell activities (migration,

cell intercalation, and cell division) combines to create a distally
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oriented resultant force is unclear but can hopefully be studied in

more detail in the future.

Found at: doi:10.1371/journal.pbio.1000420.s008 (2.44 MB TIF)

Figure S9 Flow chart of the parameter optimization
process. The flow chart demonstrates how the parameter

optimization is implemented. A farmer thread splits the problem

into smaller jobs that get distributed to a worker thread. When the

worker is finished the farmer collects the result and integrates it

into the current data set.

Found at: doi:10.1371/journal.pbio.1000420.s009 (0.60 MB TIF)

Text S1 Supplementary methods.
Found at: doi:10.1371/journal.pbio.1000420.s010 (0.04 MB

DOC)

Video S1 Discretization of space by the orthogonal cube
mesh. Although the limb bud itself is discretized into a

tetrahedral mesh with 5,959 vertices, we employ a coarser

orthogonal mesh to define the free parameters for optimizing

the growth pattern. The full orthogonal mesh contains 729 vertices

(96969), but as some of the cube elements do not enclose any of

the tetrahedral mesh, we can reduce the number of useful

(optimized) vertices down to 525.

Found at: doi:10.1371/journal.pbio.1000420.s011 (5.98 MB AVI)

Video S2 Optimisation of the 3D growth pattern. Each

frame of this movie shows one iteration of the optimization

process, which gradually converges on a growth pattern producing

a shape similar to the empirical t1. The distribution of colours

changes as the growth pattern improves. The shape displayed in

each frame is the resulting shape from a simulation with the

current growth pattern (the transparent surface indicates the

correct empirical t1 shape). Note this is not a movie of growth itself

(in which the colours would not change, because the growth

pattern is fixed for a given simulation).

Found at: doi:10.1371/journal.pbio.1000420.s012 (6.64 MB AVI)
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