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Abstract

A series of reports over the last few years have indicated that a much larger portion of the mammalian genome is
transcribed than can be accounted for by currently annotated genes, but the quantity and nature of these additional
transcripts remains unclear. Here, we have used data from single- and paired-end RNA-Seq and tiling arrays to assess the
quantity and composition of transcripts in PolyA+ RNA from human and mouse tissues. Relative to tiling arrays, RNA-Seq
identifies many fewer transcribed regions (‘‘seqfrags’’) outside known exons and ncRNAs. Most nonexonic seqfrags are in
introns, raising the possibility that they are fragments of pre-mRNAs. The chromosomal locations of the majority of
intergenic seqfrags in RNA-Seq data are near known genes, consistent with alternative cleavage and polyadenylation site
usage, promoter- and terminator-associated transcripts, or new alternative exons; indeed, reads that bridge splice sites
identified 4,544 new exons, affecting 3,554 genes. Most of the remaining seqfrags correspond to either single reads that
display characteristics of random sampling from a low-level background or several thousand small transcripts (median
length = 111 bp) present at higher levels, which also tend to display sequence conservation and originate from regions with
open chromatin. We conclude that, while there are bona fide new intergenic transcripts, their number and abundance is
generally low in comparison to known exons, and the genome is not as pervasively transcribed as previously reported.
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Introduction

In recent years established views of transcription have been

challenged by the observation that a much larger portion of the

human and mouse genomes is transcribed than can be accounted

for by currently annotated coding and noncoding genes. The bulk

of these findings have come from experiments using ‘‘tiling’’

microarrays with probes that cover the non-repetitive genome at

regular intervals [1–9], or from sequencing efforts of full-length

cDNA libraries enriched for rare transcripts [10,11]. Additionally,

capped analysis of gene expression (CAGE) in human and mouse

show that a significant number of sequenced 59 tags map to

intergenic regions [12]. Estimates of the proportion of transcripts

that map to locations separate from known exons range from 47%

to 80% and are distributed approximately equally between introns

and intergenic regions. Dubbed transcriptional ‘‘dark matter’’

[13], the ‘‘hidden’’ transcriptome [1], or transcripts of unknown

function (TUFs) [4,14], the exact nature of much of this additional

transcription is unclear, but it has been presumed to comprise a

combination of novel protein coding transcripts, extensions of

existing transcripts, noncoding RNAs (ncRNAs), antisense tran-

scripts, and biological or experimental background. Determining

the relative contributions of each of these potential sources is

important for understanding the nature and possible biological

function of transcriptional dark matter.

Homology searches for transcripts mapping outside known

annotation boundaries [10], as well as cDNA sequencing efforts,

indicate that it is still possible to find new exons of protein coding

genes [10,15,16]. The genomic positions of TUFs are also biased

towards known transcripts [8], suggesting that at least a portion

may represent extensions of current gene annotations. Neverthe-

less, the majority of dark matter transcripts is thought to be

noncoding [2,4,5,10]. Previous efforts to characterize dark matter

transcripts have revealed the existence of thousands of ncRNAs

with evidence for tissue-specific expression [17,18], as well as over

a thousand large intervening noncoding RNAs (lincRNAs)

originating from intergenic regions bearing chromatin marks

associated with transcription [19]. Other studies have reported

new classes of ncRNAs, such as those that cluster close to the

transcription start sites (TSSs) of protein coding genes [20–24].

These promoter-associated RNAs (pasRNAs) typically initiate in

the nucleosome free regions that mark a TSS, with transcription

occurring in both directions. Finally, results from the ENCODE

pilot project have suggested a highly interleaved structure of the
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human transcriptome, with an estimate that as much as 93% of

the human genome may give rise to primary transcripts [9].

Though this estimate was based on a combination of sources that

included rapid amplification of cDNA ends coupled to detection

on tiling arrays (RACE-tiling), manually curated GENCODE

annotations, and paired-end sequencing of long cDNAs (GIS-

PET), it was dominated by the results of RACE-tiling experiments

that alone found 80% genome coverage, compared to 64.6% and

66.4% for GENCODE annotations and GIS-PET, respectively.

The fact that most TUFs do not appear to be under

evolutionary selective pressure [25] has prompted suggestions that

at least some of the transcriptional dark matter may constitute

‘‘leaky’’ background transcription [9,26]. Consistent with this

notion, many of the intergenic and intronic transcripts are

detected at low levels, close to the detection limit of qPCR or

Northern blots [13]. Presumably as a consequence, validation rates

for unannotated transcribed regions detected in tiling array

experiments have varied between 25% and 70% [1,5,27], and a

comparison [13] of human chromosome 22 data from three major

tiling array studies done on different platforms [1,3,27] also

revealed little overlap of expressed probes, with 89% of

overlapping positive probes mapping to exons or introns of known

transcripts. While this low overlap may be due to differences in the

samples analyzed [4], there is also evidence that some dark matter

transcripts may be due to experimental artifacts. For example, a

reassessment of the analysis parameters used in the tiling array

study by Kampa et al. [2] revealed a similar number of transcribed

fragments in real and randomized microarray data [28]. These

issues make it difficult to assess the level of false positives in tiling

array experiments.

Transcriptome sequencing (RNA-Seq) has emerged as a new

technology that does not suffer from many of the limitations of

array platforms such as cross-hybridization [29]. The technique

has a wide dynamic range spanning at least four to five orders of

magnitude [30,31] and allows accurate quantitation of expression

levels, as determined by experiments using externally spiked-in

RNA controls and quantitative PCR [30]. These characteristics

make RNA-Seq suitable to accurately assess the relative

proportion of sequence from the known versus the dark matter

transcriptome. Comparisons between studies of eukaryotic tran-

scriptomes have shown that the estimated proportion of

transcriptional dark matter reported in RNA-Seq studies is

consistently lower than estimates from tiling arrays [32]. Although

most RNA-Seq studies to date have focused on polyadenylated

(PolyA+) RNA, which would be enriched for coding transcripts,

this cannot fully account for the differences, as most tiling array

studies show nearly the same degree of nonexonic transcription for

PolyA+ as for total RNA sources [1–9]. Indeed, it was reported

that even in the most mature form of PolyA+ RNA isolated from

the cytosol, approximately half of the transcribed sequence does

not correspond to known exons [5]. Moreover, RNA-Seq data

from Arabidobsis rRNA-depleted total RNA samples contained a

relatively small proportion (3.5%) of intergenic reads [33]. These

results may not be characteristic of the larger and more complex

human and mouse transcriptomes, but they do present an example

in which the proportion of dark matter transcripts is relatively low

in a more heterogeneous RNA pool. Other studies, in contrast,

reported a higher proportion of nonexonic reads in yeast [34] and

for total RNA in human [35], leaving unresolved the question of

the quantity and character of dark matter transcripts.

To investigate the extent and nature of transcriptional dark

matter, we have analyzed a diverse set of human and mouse tissues

and cell lines using tiling microarrays and RNA-Seq. A meta-

analysis of single- and paired-end read RNA-Seq data reveals that

the proportion of transcripts originating from intergenic and

intronic regions is much lower than identified by whole-genome

tiling arrays, which appear to suffer from high false-positive rates

for transcripts expressed at low levels. The majority of RNA-Seq

reads that map to intergenic regions either display a high degree of

correlation with neighboring genes or are associated with more

than 10,000 potential novel exonic fragments we identified in

human and mouse. A genome-wide analysis of ‘‘de novo’’ splice

junctions in human samples further revealed 2,789 previously

uncharacterized transcript fragments that have no overlap with

exons of known gene annotations, 1,259 of which map to

intergenic regions. We also find 4,544 additional exons for

annotated transcripts, 723 of which extend transcripts at the 59

end and include likely alternative promoters. The novel exons

from spliced transcripts are supported by EST data, are generally

more conserved, and derive from coding as well as noncoding

transcripts. We conclude that analysis of data from tiling arrays

leads to vast overestimates of the proportion of transcriptional dark

matter. However, the mammalian transcriptome does contain

thousands of unannotated transcripts, exons, promoters, and

termination sites. Intriguingly, there is a strong overlap of short

intergenic transcripts with DNase I hypersensitive sites, suggesting

that they may be the equivalent of pasRNAs for distant enhancers.

Results

High False-Positive Rate from Tiling Arrays
We directly compared the accuracy of tiling arrays and RNA-

Seq in identifying known transcribed regions from polyadenylated

(PolyA+) RNA. To avoid potential genomic abnormalities of cell

lines we mainly focused on transcriptome data from tissue sources.

For microarray expression profiling, we used Affymetrix whole-

genome tiling arrays at a 35 bp resolution for four human and four

mouse tissues. In addition, we generated RNA-Seq data for cDNA

fragments from human whole brain tissue (multiple donors) and a

mixture of cell lines, which were sequenced at both ends on an

Author Summary

The human genome was sequenced a decade ago, but its
exact gene composition remains a subject of debate. The
number of protein-coding genes is much lower than
initially expected, and the number of distinct transcripts is
much larger than the number of protein-coding genes.
Moreover, the proportion of the genome that is tran-
scribed in any given cell type remains an open question:
results from ‘‘tiling’’ microarray analyses suggest that
transcription is pervasive and that most of the genome is
transcribed, whereas new deep sequencing-based meth-
ods suggest that most transcripts originate from known
genes. We have addressed this discrepancy by comparing
samples from the same tissues using both technologies.
Our analyses indicate that RNA sequencing appears more
reliable for transcripts with low expression levels, that
most transcripts correspond to known genes or are near
known genes, and that many transcripts may represent
new exons or aberrant products of the transcription
process. We also identify several thousand small transcripts
that map outside known genes; their sequences are often
conserved and are often encoded in regions of open
chromatin. We propose that most of these transcripts may
be by-products of the activity of enhancers, which
associate with promoters as part of their role as long-
range gene regulatory sites. Overall, however, we find that
most of the genome is not appreciably transcribed.

A Characterization of ‘‘Dark Matter’’ Transcripts
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Illumina genome analyzer to an average depth of 23 M paired

50 nt reads per sample. To match coverage across a wider variety

of tissues, we supplemented the paired-end RNA-Seq data with

publicly available 32 nt single-end PolyA+ selected datasets,

sequenced to an average depth of 22 M reads for 8 human tissues

from single donors [16]. RNA-Seq data for mouse were obtained

from Mortazavi et al. [36] and consisted of 25 nt single-end data

for PolyA+ RNA from three tissues, sequenced to an average

depth of 73 M reads. The resulting combined dataset contained

tissue-matched RNA-Seq and tiling array data for 4 human and 3

mouse tissues. For our analyses, we only considered RNA-Seq

reads that could be unequivocally mapped to unique positions in

the genome. This avoided erroneous identification of transcribed

regions and facilitated comparisons to data obtained from tiling

arrays, which were designed for the non-repetitive part of the

genome. Overall the total number of uniquely mapped reads

numbered 185.6 M and 79.8 M for the human and mouse

genomes, respectively (see Table S1 for a breakdown per tissue).

Since the arrays contained only perfect-match probes, the raw

intensity data were normalized against a genomic DNA reference

to correct for any bias in probe sequence composition (Materials

and Methods).

We compared the performance of tiling arrays and RNA-Seq

for human total brain tissue, since it had the highest combined

sequence coverage of any tissue used in this study (50.2 M

uniquely mapped reads from three independent samples, corre-

sponding to 2.1 Gb of sequencing data). Figures 1A and 1B show

the relation between the fraction of detected transcript fragments

on tiling arrays (transfrags) or in RNA-Seq data (seqfrags) that

overlap known RefSeq exons (i.e., precision) and the total fraction

of exons recovered (i.e., recall). Tiling array transfrags were

identified by selecting consecutive probes that scored above a

range of intensity thresholds, with additional limits on the

minimum length of each transfrag (minrun) and the maximum

gap between probes meeting the threshold (maxgap). The analysis

was performed directly on the normalized intensity data, or after

applying additional median smoothing across neighboring probes

in the genome within a sliding window, to reduce intensity

variability. Seqfrags were defined as consecutively transcribed

regions in the uniquely mapped RNA-Seq data, and performance

was evaluated over a range of thresholds set on the minimum

number of reads per seqfrag. We find that RNA-Seq offers

superior precision in identifying RefSeq exons compared to tiling

arrays, while achieving a high level of recall (Figure 1A, 1B). This

difference remains apparent even over a broad range of parameter

settings typically used to identify transcribed regions in tiling array

data. These observations do not directly demonstrate that tiling

arrays have a higher false-positive rate, as a lower precision would

also be expected if the majority of the genome were transcribed:

the difference between platforms could also reflect a lack of

sensitivity to detect unannotated transcripts expressed at lower

levels in RNA-Seq data, due to insufficient sequencing depth. If

this were the case, however, we would expect that the precision-

recall curves for RNA-Seq data would look progressively more

similar to those of the tiling arrays with increasing read counts.

Instead, when we examined the effect of varying sequencing depth

by sampling smaller subsets of reads from the combined human

brain RNA-Seq datasets we found that increased sequencing

improves recall without a loss in precision (Figure 1B). Thus, the

discrepancy with tiling arrays increases rather than decreases with

greater sequencing depths.

We also directly compared RNA-Seq read coverage with tiling

array measurements at the same genomic location. Figure 1C

shows a direct comparison between the number of reads and the

normalized probe signal intensity. Consistent with the precision-

recall curves that show that high precision in tiling array

experiments is only achieved at the most stringent intensity

thresholds (Figure 1A), we find that the agreement between

sequencing data and array intensities data is poor for all but the

most highly transcribed regions. Indeed, the normalized intensity

distribution for tiling array probes overlapping transcribed regions

in RNA-Seq data with single-read coverage is essentially random

(Figure 1D), consistent with previous observations that the

correlation between RNA-Seq data and tiling arrays is poor for

transcripts expressed at low levels [29,36]. We do note, however,

that the tiling arrays and RNA-Seq data generally agree on the

location of the greatest transcript mass (Figure 1C, red line). The

increased precision of RNA-Seq is presumably due to reduced

ambiguity in detecting transcripts at lower expression levels,

relative to microarrays, in which signal from cross-hybridization

increasingly contributes to false-positive detection at low expres-

sion levels. It is thus conceivable that the proportion of dark matter

transcripts based on tiling array experiments is considerably

overestimated. Given the improved performance of RNA-Seq over

tiling arrays, we therefore focused on RNA-Seq data to revisit the

nature of dark matter transcripts.

Dark Matter Transcripts Make up a Small Fraction of the
Total Sequenced Transcript Mass

To assess the proportion of unique sequence-mapping reads

accounted for by dark matter transcripts in RNA-Seq data, we

compared the mapped sequencing data to the combined set of

known gene annotations from the three major genome databases

(UCSC, NCBI, and ENSEMBL, together referred to here as

‘‘annotated’’ or ‘‘known’’ genes). When considering uniquely

mapped reads in all human and mouse samples, the vast majority

of reads (88%) originate from exonic regions of known genes

(Figure 2A). These figures are consistent with previously reported

fractions of exonic reads of between 75% and 96% for unique

reads [16,33,36–38], including those of the original studies from

which some of the RNA-Seq data in this study were derived.

When including introns, as much as 92%–93% of all reads can be

accounted for by annotated gene regions. A further 4%–5% of

reads map to unannotated genomic regions that can be aligned to

spliced ESTs and mRNAs from high-throughput cDNA sequenc-

ing efforts, and only 2.2%–2.5% of reads cannot be explained by

any of the aforementioned categories. The proportions of mapped

reads are consistent between tissues and cell lines and independent

of read sequence length (Table S1). Altogether, dark matter

transcripts only account for a small proportion of PolyA+
transcripts.

While annotated exons can explain the majority of reads, they

make up a much smaller proportion of the total transcribed area of

the genome: 22.3% in human and 50.6% in mouse (Figure 2B).

Nevertheless, complete annotated gene structures in both

organisms still account for ,75% of the total transcribed area.

The apparent discrepancy in transcribed intronic versus exonic

area in human versus mouse is directly related to the combined

increased sequencing depth for the human samples (Table S2).

This is illustrated in Figure 2C, which shows the relationship

between the amount of sequence coverage in the combined

PolyA+ RNA-Seq data from human brain samples and the

transcribed area. While the exonic transcribed area levels off

quickly at around 500 Mb of RNA-Seq coverage, intergenic and

intronic areas keep increasing at roughly constant rates. When we

extrapolate from the observed relationship between the amount of

mapped sequence data and genomic area covered (Figure 2D), we

find that given sufficient sequencing depth the whole genome may

A Characterization of ‘‘Dark Matter’’ Transcripts
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Figure 1. Low precision for tiling arrays compared to RNA-Seq data. (A) Precision-recall curves for detection of exons in human RefSeq gene
annotations on tiling arrays. Transcribed genomic regions (transfrags) were selected based on a range of parameters that were applied before or after
median smoothing with a bandwidth of 70 bp: max gap, the maximum distance between two positive probes; min run, the minimum size of a
transcribed region. The log2 normalized intensity threshold used to select positive probes was varied between 21 and 2 to plot each line. (B)
Precision-recall curves for the combined RNA-Seq data from three human brain samples, at different read depths (0.2 to 2.1 Gb). Transcribed regions
(seqfrags) were identified on the basis of uniquely mapped reads, and the threshold for the minimal read count per seqfrag was varied between 1
and 100 to plot each line. (C) Comparison of RNA-Seq read counts and tiling array probe intensities for the pooled set of human brain RNA-Seq reads
(three samples). The number of RNA-Seq reads overlapping each mapped probe coordinate was determined and used to draw a boxplot of the
intensity distributions measured for probes overlapped by varying numbers of RNA-Seq reads, as indicated (gray boxes). The intensity distribution
across all probes is shown in comparison (white box). Line graphs indicating the cumulative fraction of RNA-Seq read area (green) and read count
(red) covered at each read coverage level are superimposed on the barplot, with the scale shown on the right. (D) Kernel-density plot of probe
intensities for high- and low-coverage probe groups from (A), as indicated.
doi:10.1371/journal.pbio.1000371.g001
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Figure 2. RNA-Seq read mapping overview. (A) Proportion of reads with a unique match in the genome mapping to known genes, mRNAs, and
spliced ESTs. Reads were pooled across all human or mouse RNA-Seq samples and sequentially matched against a non-redundant set of known
genes, mRNA, and spliced EST data. Any remaining reads were classified as ‘‘other.’’ (B) Same as in (A) but considering the total amount of transcribed
genomic area, rather than read count. (C) The relationship between the RNA-Seq read depth and the transcribed area in the genome for human brain
RNA-Seq reads, based on 50.2 million reads pooled from the three independent samples that were assayed separately. The total transcribed area is
indicated for all reads, as well as those that map to known exons, known introns, and intergenic regions. (D) Extrapolation of transcribed genomic

A Characterization of ‘‘Dark Matter’’ Transcripts
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appear as transcripts. However, the fact that such pervasive

transcription would only be detected at sequencing depths more

than two orders of magnitude above current levels suggests that

these transcripts may largely be attributed to biological and/or

technical background. Indeed, the vast majority of intergenic and

intronic seqfrags have very low sequence coverage (Figure 2E, 2F),

exemplified by the fact that 70% (human) to 80% (mouse) of the

transcribed area in these regions is detected by a single RNA-Seq

read in only one sample, much of which is consistent with random

placement (see below).

The low coverage and ubiquitous character of the intronic

seqfrags suggests that they may represent random sampling from

partially processed or unprocessed RNAs. We also note that 4.5%

of all mapped (non-unique) human RNA-Seq reads correspond to

rRNAs and sn(o)RNAs, suggesting that the PolyA+ selection did

not fully exclude RNAs that are not polyadenylated. Alternatively,

some of these transcripts may be polyadenylated under normal

conditions, or they could correspond to degradation intermediates

[39]. We note that, as the number of reads increases, the amount

of transcribed area in intergenic regions increases at a much lower

rate than in intronic regions (Figure 2C), even though intergenic

regions make up a larger proportion of the human genome

(1.7 Gb compared to 1.3 Gb for introns), further supporting the

notion of random sampling of introns. In the complete set of

uniquely mapped human brain RNA-Seq data, intergenic reads

appear 3.8-fold less often than reads in intronic regions. In

contrast, the cumulative read coverage is much higher for mRNA

and EST exons than it is for either introns or intergenic regions

(Figure 2E, 2F), indicating that many mRNAs and ESTs likely

constitute valid transcripts that are not currently annotated in the

three major genome databases. In summary, even though the

genome may be randomly transcribed at very low levels, the vast

majority of sequence reads in PolyA+ samples corresponds to

known genes and transcripts, arguing against widespread tran-

scription to the extent reported previously.

Most Intergenic Transcripts Are Adjacent to Known
Genes

We next sought to gain further insight into the nature of dark

matter seqfrags, focusing mainly on intergenic regions to avoid

possible interference from unprocessed RNAs in introns. Potential

sources of seqfrags in intergenic regions include 59 and 39

extensions of known genes, aberrant termination products,

pasRNAs, and novel genes. We therefore began our character-

ization of intergenic seqfrags by examining their relationship to

neighboring genes. In both human and mouse PolyA+ RNA-Seq

data, we observed that the average read density in intergenic

regions is dramatically higher near the starts and ends of

annotated genes (Figure 3A) and can extend up to a distance of

,10 kb from both the transcription start and ends. We also

observed bias towards genes in our tiling array analysis

(unpublished data), as did a previous analysis using tiling arrays

[8], but this study found the bias to be equal between 59 and 39

ends. In RNA-Seq data, the effect is stronger at the 39 compared

to the 59 end of genes. Most transcripts at 39 ends are consistent

with alternative cleavage and polyadenylation (APA) site usage and

unannotated UTR extensions of genes [16] or 39 associated RNAs

[12], rather than new exons, since in our splicing analysis (see

below) we found very few instances of 39 intergenic seqfrags linked

to new 39 exons (unpublished data). The increased number of

transcripts at the 39 end of genes is consistent with observations

that RNA polymerase II can remain associated with DNA for up

to 2 kb following the annotated ends of known mRNAs [40].

To determine the strand of origin of the positionally biased

intergenic transcripts and to assess whether this bias was limited to

PolyA+ RNA, we examined additional available sequencing-based

transcriptome datasets. These included strand-specific RNA-Seq

data from human rRNA-depleted whole brain and universal

reference RNA [35], as well as from mouse brain PolyA+ [41] and

rRNA-depleted total RNA (NCBI short read archive,

SRX012528). We also incorporated data from CAGE-tag [12]

and Paired-End diTag (GIS-PET) sequencing studies [42], which

specifically targeted transcript ends. In all these datasets we find

that most reads originate from known exons (Table S3), and

among intergenic reads we find the same striking increase in read

frequency in intergenic regions proximal to genes (Figure 3B,

Figure S1, Table S3) as in PolyA+ samples. The enrichment of

CAGE tags is consistent with peaks found at both the 59 and 39

ends of genes [12], and the majority of transcripts at the 39 end of

genes are in a sense orientation relative to the neighboring genes

(Figure 3B). While CAGE tags are also enriched at 39 ends of

genes in the same orientation, the effect is less pronounced

compared to RNA-Seq reads, suggesting that a significant number

of transcripts in these regions result from alternative termination of

protein-coding genes. Transcripts in intergenic regions flanking

TSSs are approximately equally distributed between the sense and

antisense strand (Figures 3B, S1A, and S1B), consistent with

divergent transcription from promoter regions [12,20–24], as well

as unannotated 59 transcript ends.

To examine the relationship between genes and gene-associated

transcripts in greater detail, we next determined whether the

increased sequence coverage of seqfrags in intergenic regions

flanking genes correlated with the coverage of genic trancripts

across the 11 human PolyA+ RNA-Seq samples (the same analysis

could not be done for the mouse data, as the number of available

samples was too low to reliably estimate correlations). To this end,

we first identified intergenic seqfrags by merging overlapping

RNA-Seq reads from all human samples and then determined the

sequence coverage for seqfrags and genes in each sample.

Figure 3C shows that the correlation in coverage between

intergenic seqfrags and neighboring genes is much higher than it

is for randomly selected genes, indicating that expression in

intergenic regions is positively associated with that of the flanking

genes. This effect is strongest up to a distance of 10 kb from the

gene but persists to a lesser degree over larger distances

(Figure 3D). After setting a threshold of p,0.05, based on how

often the correlation coefficient between a given seqfrag and

neighboring gene was expected to occur at random (Materials and

Methods), we find a significantly increased correlation with

intergenic seqfrags for 2,970 annotated genes, 934 of which

remain after multiple testing correction (Table 1). Consistent with

the increased read frequency at 39 ends of genes, the number of

genes with correlated intergenic seqfrags at the 39 end is 3-fold

greater than at 59 ends of genes (Table 1). Many of the correlated

seqfrags at 39 ends are directly adjacent to the annotated genes (see

Figure 3E for a representative example), adding further support to

our hypothesis that many of these transcripts are linked in their

expression. Additionally, we found a small number of extensions at

area at increasing read depths, based on the distribution of all reads in (C). The model fitted on the uniquely mapped reads is shown in the inset. (E, F)
Cumulative fraction of seqfrags as a function of the number of reads mapped to each seqfrags in the combined set of human and mouse samples,
respectively.
doi:10.1371/journal.pbio.1000371.g002
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larger distances, which are consistent with unannotated novel 39

and 59 exons (unpublished data and see below).

The total number of genes with correlated 59 and 39 intergenic

seqfrags is likely underestimated in our analysis, as a minimum

number of sequence reads in each sample are needed to calculate a

correlation coefficient. Many transcribed intergenic regions

detected at very low coverage had to be excluded from the

correlation analysis, even though these low coverage regions are

clearly enriched in regions flanking known genes (Figure S2).

Consequently, some positional bias is still observed after removing

the regions identified in this analysis (unpublished data), and

correlated transcription in regions flanking genes is likely far more

widespread. This is particularly relevant because while the 10 kb

flanking regions make up only ,18% of the total intergenic area,

they account for as much as 78% of the intergenic reads in human

and mouse PolyA+ RNA. The same trend holds true for CAGE

and GIS-PET datasets, as well as RNA-Seq datasets from rRNA-

depleted human total RNA (Table S3). Although gene-flanking

regions in rRNA-depleted mouse brain total RNA accounted for

only 30.7% of intergenic reads, further inspection revealed that

most of the reads outside these regions were linked to a small

number of seqfrags (21) with excessive read counts (.10,000)

confined to a small area (5 kb). This strongly suggests that there

are a very small number of unannotated specific transcripts

expressed at high levels, and after excluding these outliers, 71.1%

of intergenic reads are found near genes (Table S3). The majority

of intergenic dark matter transcripts are therefore linked to

annotated protein-coding genes, either as extended transcripts or

separate noncoding transcripts such as pasRNAs.

Intergenic Regions Harbor a Limited Number of Novel
Transcripts

Even when combining RNA-Seq data from all human or mouse

tissues, read coverage in intergenic regions is very low (Figure 2B,

2C). To determine whether intergenic seqfrags are the result of

low-level random background initiation, or whether they instead

derive from a limited set of unannotated transcripts, we

investigated the RNA-Seq read distribution in these regions. If

the low-coverage intergenic seqfrags are indeed due to a uniform

level of background initiation, reads should be spread evenly and

the number of reads per kb of intergenic sequence should follow a

random (Poisson) distribution. Given the observed transcriptional

bias in regions flanking genes, we only considered intergenic

regions that were at least 10 kb away from annotated genes

(corresponding to ,82% of all intergenic sequence). These

trimmed regions account for 0.8% of the total number of reads

in the human PolyA+ RNA-Seq data (1.64% for mouse), with an

average coverage that is 9.4-fold lower than in intronic regions

(3.3-fold for mouse). We find a clear departure from a random

distribution in the trimmed intergenic regions of both species

(Figure 4A, 4B), including several thousand loci with greater than

20 reads, which should not occur under our null hypothesis. We

also independently assessed seqfrags that are supported by only a

single RNA-Seq read in one tissue (‘‘singletons’’), which account

for ,70% of transcribed area in the trimmed intergenic regions in

the human and mouse genomes. The distribution of singleton

seqfrags is much closer to the random distribution (Figure 4D, 4E),

although some deviation still persists for these low-coverage

regions. To exclude that our observations are due to an inherent

bias in cDNA library amplification or sequencing, e.g., due to GC

content, we repeated the same analysis for an equal number of

genomic DNA-Seq reads from HeLa cells [43] or a pool of human

sperm DNA from four donors [44]. Both of these datasets were

similarly generated on an Illumina genome analyzer and closely

follow a random distribution (Figure S3). Taken together, these

results indicate that while most reads .10 kb away from

annotated genes are placed in a way that resembles random

distribution across the genome, some have a non-random

character, including several thousand regions with high read

coverage that may be derived from unannotated novel transcripts.

To estimate the proportion of intergenic regions transcribed

above background levels, we selected all 1 kb regions with a

significantly higher read count compared to the random

distribution (p,0.05) for all reads, or singleton reads only. At

the lower thresholds based on singleton read frequencies, 3.0%

(39.1 Mb) and 0.9% (11.4 Mb) of trimmed intergenic regions

Figure 3. Intergenic expression is positionally biased towards known genes. (A) Relative enrichment of RNA-Seq read frequency in
intergenic regions as a function of the distance to 59 and 39 ends of annotated genes in the human (red) and mouse genomes (green). The
distribution in genomic DNA-Seq reads from HeLa cells [42] is shown as a control (gray). All intergenic regions in the human and mouse genomes
were aligned relative to the annotated transcription start (TSS) or termination (TTS) sites of flanking genes. The robust average number of reads per
10 million uniquely mapped reads across all samples was then determined in 1 kb segments (RPKB) from the TSS or TTS, up to a distance of 30 kb,
and the relative enrichment ratio in each segment was calculated by dividing by the median RPKB at distances more than 30 kb away from genes
(baseline). Robust averages were calculated after removing the top 0.5% outliers, to avoid very highly expressed regions from having a
disproportionate effect. (B) Same plots as in (A) for the combined reads from total RNA samples taken from human brain tissue and a universal human
reference sample [35], uniquely mapped to the sense (blue) or antisense strand (yellow) relative to the neighboring gene region. (C) Histogram
showing the distribution of correlation coefficients (red) between the read coverage in intergenic seqfrags and the nearest neighboring gene, across
11 human RNA-Seq samples. Read coverage was calculated as the number of reads per base per 10 million RNA-Seq reads across seqfrags and exonic
regions of neighboring genes. Correlation coefficients were only calculated if the number of reads mapping to seqfrags and neighboring genes was
greater than 10 in at least five out of eleven samples. The background distribution of correlation coefficients between seqfrags and randomly
selected genes that met these thresholds is shown in comparison (gray). (D) Boxplot showing the correlation between the read coverage of
intergenic transcripts and closest neighboring genes (red) or random genes (gray) across 11 human RNA-Seq tissue samples, as a function of their
distance. (E) Representative example of intergenic transcription directly adjacent to the 39 end of FAM114A1. The region with significant correlation is
indicated by a red box. Mapped read coverage for the PolyA+ (black) and total RNA (blue) samples was standardized on a sequencing depth of 10
million reads and plotted in graphs scaled from 1- to 25-fold coverage.
doi:10.1371/journal.pbio.1000371.g003

Table 1. Human transcripts with significantly correlated 39

and 59 seqfrags.

Transcripts Seqfrags

Correlation Cutoff Category Counts Fraction Counts Fraction

p#0.05 All 2,970 6,109

39 end 2,074 69.8% 4,612 75.5%

59 end 994 30.2% 1,497 24.5%

FDR #0.05 All 934 1,474

39 end 698 74.7% 1,145 77.7%

59 end 251 26.9% 329 22.3%

doi:10.1371/journal.pbio.1000371.t001
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Figure 4. Evidence for specific expression in intergenic regions. Rootograms of the distribution of the number of the total number of RNA-
Seq reads per kb of trimmed intergenic sequence for the combined (A) human PolyA+, (B) mouse PolyA+, and (C) human total RNA sequence data
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contain transcripts in the human and mouse genomes, respective-

ly, decreasing to 1.2% (15.8 Mb) and 0.42% (5.25 Mb) at the

more stringent thresholds. The increased area in the human

compared to the mouse genome is consistent with the broader

range of tissues assayed by RNA-Seq. The fraction of trimmed

intergenic regions with significantly increased read counts is higher

in human total RNA compared to PolyA+ RNA (Figure 4C, 4F):

4.1% (53.9 Mb) or 2.5% (32.8 Mb) at the lower and higher

stringency levels, respectively. Considering that the total RNA

sequence data was derived from a smaller sample set, this suggests

that there are additional unprocessed and/or noncoding tran-

scripts in intergenic regions not detected in PolyA+ RNA.

We also applied an additional threshold to identify putative

novel exonic regions in the trimmed intergenic areas, selecting for

seqfrags with a PolyA+ RNA-Seq read count greater than or

equal to that of the top 5% of seqfrags detected in known introns

(6 reads for human and 4 for mouse). At these thresholds we find

16,268 potentially ‘‘exonic’’ seqfrags in human (spanning 2.5 Mb)

and 11,533 in mouse (spanning 0.66 Mb), which account for

56.9% and 87.4% of the reads in the trimmed intergenic regions

in each organism, respectively. The area covered by the putative

exonic seqfrags is 3.8% of the total area covered by seqfrags

overlapping known exons in the human genome and 1.4% for the

mouse genome. The putative exonic seqfrags tend to be well

conserved at the sequence level compared to a random selection

of intergenic sequences (Figure 5A, 5B), as judged by PhastCons

conservation score based on multiple alignments among 18–22

mammalian genomes. This is significant, considering that the

overall conservation for intergenic and intronic reads is close to

random (Figure 5C, 5D). Taken together, our results show that a

limited number of conserved novel exonic seqfrags can explain

the majority of intergenic transcript mass detected in

PolyA+ RNA, with a small proportion of low-level transcripts

over a broad area that may be due to random initiation

events.

Global Splice Junction Analysis Identifies New Transcript
Structures

We next attempted to identify novel transcript structures by

detecting splice junctions between transcribed regions in the

genome using Tophat [45]. Tophat uses a two-stage approach that

first aligns unspliced RNA-Seq reads to the genome to identify

transcribed areas, which are then examined in the second stage to

identify junction sequences spanning all possible 59 and 39

combinations of these regions, using the reads that could not be

mapped in the first stage. The main advantage of this approach is

that it does not require a predefined set of annotated exons and it

can therefore identify splicing between unannotated regions of the

genome. Moreover, as the analysis takes the canonical splice

junction donor and acceptor sites (GT-AG) into account, it is

possible to determine the strand of origin for each junction, despite

the fact that the PolyA+ RNA-Seq data used in this study were not

generated in a strand-specific manner. We restricted our analysis

to human samples, since we found the reads in the mouse dataset

to be too short to reliably detect junction sequences.

Overall, we found 160,516 unique splice junctions in the 11

PolyA+ human RNA-Seq samples, 151,708 (94.5%) of which can

be classified as ‘‘known,’’ meaning that they span any two exons

within a single annotated transcript (Table S4). The remaining

8,808 novel junctions involved a single known exon or spanned

two unannotated regions in the genome. In total, we could detect

57.8% of all exons in the combined set of gene annotations by at

least one junction. Only 300 junctions bridged exons between

transcripts, and almost all mapped to tandem-repeated regions in

the genome (Table S5). Considering the high degree of sequence

similarity between the repeated regions, some of these are

presumably due to mapping inaccuracies. A significant proportion

of bridging junctions (47%, 25% with confirmed deletions) also

overlap regions with validated copy number variations (CNVs)

that are common in the general population [46], suggesting that

others may result from gene fusions following deletion events.

These findings further argue against pervasive transcription to the

extent reported in previous studies.

We assessed the false positive rate in the detected junctions by

randomizing the sequences of potential splice junction reads and

determined it to be 0.054% for paired-end reads and 2.7% for

single-end reads (see Materials and Methods). The higher accuracy

for paired-end reads demonstrates the considerable advantage of

using longer reads to accurately assess splice junctions. Indeed, we

found that the shorter 32 mer reads are particularly sensitive to

false positive detections due to the presence of low-complexity

regions and PolyA/T repeats, and we therefore applied additional

filtering steps to exclude the affected junctions (see Materials and

Methods for details). The longer read lengths of the paired-end

compared to single-end RNA-Seq samples, combined with a 4-fold

increase in sequencing depth, also resulted in a more than 3-fold

higher splice junction detection rate.

The fact that short RNA-Seq reads typically cover only a single

junction between exons makes it difficult to determine which

combinations of alternative splice junctions correspond to

transcripts observed in vivo. We therefore instead focused on

identifying transcriptional units (TUs) that represent the aggregate

assembly of all connected splice junctions. Thus, a completely

reconstructed TU for an annotated gene will comprise the full

complement of exonic regions, though these may be used in

different configurations in alternatively spliced transcripts. Splice

junctions were considered connected if they were directly adjacent

to each other on the same strand, arranged in a head-to-tail

configuration, and (i) the ‘‘facing’’ junction ends overlapped, or (ii)

the complete region between facing splice junctions was

transcribed, or (iii) facing junctions were within a distance of

200 bp (i.e., the approximate average exon size).

The vast majority of TUs we identified (91.2%) overlap with at

least one exon of an annotated gene (Table 2), and 92.1% of exons

in these TUs overlap known gene annotations (Table 3). We also

detected 3,451 unannotated internal exons in 2,720 genes, as well

as 723 and 370 unannotated 59 and 39 exons, affecting 544 and

290 genes, respectively. Among the TUs that are not connected to

known gene annotations (i.e., independent TUs), 1,259 map to

intergenic regions, the majority of which (82.6%) consist of a single

junction. Only a minor fraction of independent TUs (4.8% of the

total number of TUs) overlap genic regions on the sense or

antisense strand. As it is possible that additional rare splice

junctions are not detected in our analysis, some independent TUs

overlapping genes in the sense direction may yet turn out to be

connected to the gene they overlap. The majority of novel exons in

the reconstructed TUs overlap with exons from the UCSC mRNA

and spliced EST tracks (Table 3), providing further evidence that

(gray bars), in comparison to the expected random distribution for the same number of reads (red lines). Ten kb intergenic regions flanking known
gene annotations were excluded from the analysis. (D, E, and F) Same as (A), (B), and (C), but considering only intergenic transcribed regions with
single-read coverage (singletons). The derived random distribution was adjusted accordingly.
doi:10.1371/journal.pbio.1000371.g004
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they are derived from true splicing events. A small number (73)

further overlap exons predicted by Wang et al. [16], which were

derived from an analysis of splice junctions associated with

computationally predicted exons. Taken together, our findings

confirm that the vast majority of spliced transcripts in PolyA+
RNA are linked to known gene annotations and argue against

widespread interleaved transcription of protein-coding genes in the

human genome. The full set of TUs and junctions has been made
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Figure 5. Seqfrags with read counts above background are conserved at the sequence level. Distribution of maximum PhastCons
conservation score measured across seqfrags mapping to trimmed intergenic regions in the pooled (A) human and (B) mouse RNA-Seq samples as a
function of read coverage (red). PhastCons scores were obtained from the UCSC genome browser and reflect the degree of conservation in multiple
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doi:10.1371/journal.pbio.1000371.g005
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available on our supplementary website (http://hugheslab.ccbr.

utoronto.ca/supplementary-data/hm_transcriptome/).

Characterization of Novel Exons and Multi-Exon
Transcript Units

To further characterize the 4,544 novel exons connected to

existing transcripts, as well as the 2,789 novel independent TUs

(i.e., multi-exon transcripts), we assessed their expression levels,

degree of conservation, and coding potential. As expected, novel

exons detected as part of TUs that overlap annotated transcripts

show evidence of increased conservation compared to randomly

positioned exons (Figure 6A). Consistent with our analysis, a

significant proportion of these exons overlap with Exoniphy

predictions of evolutionary conserved protein-coding exons [47],

most notably for novel 39 (20.5%) and 59 exons (18.9%) (Table

S6A). The degree of overlap was significantly higher compared to

random selections from intergenic regions (p,0.0001). In contrast,

we observed little overlap with conserved RNA secondary

structures as predicted by the Evofold [48] and RNAz algorithms

[49] (Table S6A). We further examined whether the novel 59

exons overlapped regions of open chromatin that typically mark

regulatory regions [50–52] and which can be identified using

digital DNase I hypersensitivity assays [53]. To this end, we used

publicly available genome-wide data on DNase I hypersensitivity

hotspots generated by the UW ENCODE group for 11 cell lines

[54]. Consistent with their expected association with promoter

regions, we found that the majority of novel 59 exons overlapped

the complete set of DNase I hypersensitivity zones identified by the

HotSpot algorithm [53] in all 11 cell lines, as well as a more

restricted set that only included hotspots found in both replicates

for 8 cell lines (p,0.0001) (Table S6A).

Most of the novel exons are expressed at lower levels compared

to the other exons of the gene they are linked to, which suggests

that they derive from low-frequency alternative splicing events in

the tissues we examined (Figure 6B). Indeed, we find direct

evidence of alternative splicing for 2,526 (73%) of the novel

internal exons and 2,370 of these (94%) are overlapped by

junctions that bypass the novel exon. For novel exons at the 59 and

39 termini there is direct evidence for alternative splicing for 310

(43%) and 144 (39%), respectively. Among these are 145 cases of

clear alternative promoter usage, where we find splice junctions

between internal exons and the annotated promoter, as well as

alternative junctions that link to a more distal promoter (Table S7).

Figure 7A shows an example of one such alternative promoter for

the SLC41A1 gene, encoding a solute carrier family protein.

In contrast to many of the transcribed fragments reported in

tiling array studies, we find evidence for higher overall

conservation for exons in independent TUs in intergenic regions,

and those overlapping genes on the sense or antisense strand

(Figure 6A). We assessed the coding potential of the independent

TUs using a support vector machine classifier that incorporates

quality measures of the available open reading frames (ORF) and

blastx results [55]. Larger independent TUs with three or more

exons show a general tendency to be coding: 60.8% in the case of

intergenic TUs, and 70.8% and 41% for TUs overlapping genes

on the sense and antisense strand, respectively. An example of a

coding transcript with a translated ORF that has high sequence

similarity to the elongation factor TU GTP binding domain is

shown in Figure 7B. Some of the other translated TUs with clear

similarities to existing proteins have stop codon mutations within

the ORF, indicating that they could be pseudogenes.

Table 2. Overview of transcript units identified in human RNA-Seq samples.

Transcript Units Breakdown by # of Exons

Category Count Fraction Exons Transcript Count Fraction

Exon overlap with known gene 29,029 91.2% 2 9,546 32.9%

3 4,414 15.2%

.3 15,069 51.9%

Non-exon gene overlap, sense strand 475 1.5% 2 422 88.8%

3 29 6.1%

.3 24 5.1%

Non-exon gene overlap, antisense strand 1,055 3.3% 2 927 87.9%

3 94 8.9%

.3 34 3.2%

Intergenic 1,259 4.1% 2 1,040 82.6%

3 168 13.3%

.3 51 4.1%

doi:10.1371/journal.pbio.1000371.t002

Table 3. Exon overview for transcript units in human RNA-
Seq samples.

Exons EST + mRNA Overlap

Category Count Fraction Count Fraction

Known gene 174,693 94.2%

New exon for known gene 4,544 2.5% 3,060 67.3%

Internal 3,451 1.9% 2,291 66.3%

External, 59 end 723 0.4% 523 72.3%

External, 39 end 370 0.2% 246 66.4%

Overlapping known gene 3,364 1.8% 2,223 66.0%

Sense strand 1,069 0.6% 609 57.0%

Antisense strand 2,295 1.2% 1,614 70.3%

Intergenic 2,821 1.5% 1,686 60.0%

doi:10.1371/journal.pbio.1000371.t003
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None of the smaller intergenic TUs (containing only a single

splice junction) were classified as coding. We note, however, that it

is challenging to reliably detect the coding potential of small

transcript fragments, and some of the TU fragments may in fact be

part of larger coding transcripts. Indeed, when we extended the

independent TUs by incorporating seqfrags overlapping the

flanking junction sequences in the detected TUs, the proportion

of potential coding transcripts increased to 8.3% for TUs

overlapping gene regions on the antisense strand and to ,17%

for TUs overlapping genic regions on the sense strand and

intergenic TUs. Moreover, we find a significant overlap with

Exoniphy predictions of coding exons, ranging between 10.5% for

intergenic TUs and 21% for antisense TUs (Table S6B). Further

investigation will be required to characterize these smaller TUs.

Even among the larger intergenic TUs with three or more

exons, there is a subset of 116 transcripts that appear to be

noncoding and are thus potential human lincRNAs, one example

of which is shown in Figure 7C. The fact that we could not

perform a comprehensive splice junction analysis in the mouse

RNA-Seq data precludes us from making a detailed comparison

with the previously identified mouse lincRNAs [19], however we

do find a significant overlap between 95 of the mouse intergenic

seqfrags with a read count above background and 30 of the

lincRNA regions (Table S8A,B). The observation that there is little

overlap (0%–1%) between reconstructed TUs and Evofold and

RNAz predictions (Table S6B) suggests that most transcripts

identified here do not fold into conserved RNA structures. In

summary, our results reveal novel alternatively spliced exons and

promoters in the human genome that are used at relatively low

frequencies, as well as new lincRNA candidates.

Many Transcripts in Intergenic Regions Distal from Genes
Are Short, Unspliced, and Associated with DNase
I-Hypersensitive Regions

Only a small proportion (3.6%) of the 16,268 human

intergenic seqfrags we identified with a read count above

background were found to be part of TUs, which was surprising

given that we could identify splice junctions for the majority of

seqfrags in annotated exons. The lack of junctions connecting

intergenic seqfrags cannot simply be explained by a reduced

detection rate due to lower read counts compared to exonic

seqfrags, as the proportion of intergenic seqfrags with detected

junctions is consistently lower even at high coverage levels

(Figure 8A). We therefore conclude that the majority of intergenic

seqfrags are derived from unspliced single-exon transcripts.

However, the remaining 15,646 human seqfrags that are not

part of TUs are often spaced closely together, suggesting that they

may be part of a single transcript, or are processed individually

from larger precursor transcripts. Indeed, in many cases the

intervening sequence between consecutive seqfrags is classified as

transcribed when allowing reads mapping to multiple positions in

the genome (see, for example, Figure 8B). When we group

neighboring seqfrags with a maximum gap of 500 bp, 8,536

seqfrag clusters remain in human (7,976 of which show no

evidence of splicing) and 5,506 in mouse.

We used the support vector machine classifier and Exoniphy

predictions of coding exons, described above, to examine the

coding potential of the unspliced intergenic seqfrags. Only 1.4%

and 3.5% of human and mouse intergenic seqfrags with a read

count above background overlap Exoniphy predictions, respec-

tively (Table S8A,B). Moreover, out of the top 5% largest human

intergenic seqfrags, ranging in size between 0.4 and 3.8 kb, only

12% were classified as coding. Taken together, these observations

strongly suggest that the majority of the small intergenic seqfrags

we identified are noncoding. As in the case of intergenic TUs,

these transcripts also display little overlap with Evofold and RNAz

regions.

The most striking property of the unspliced seqfrags is their

strong association with open chromatin: 6,407 out of the 15,646

(40.9%) human intergenic seqfrags overlap with DNase I

hypersensitivity hotspots identified in one of the 11 cell lines that

were assayed, 3.4-fold more than would be expected by chance
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Figure 6. Conservation and usage of human TU exons. (A) The
distribution of PhastCons scores for novel exons in each category as in
(A) (darker bars), compared to the distribution of scores from the same
set of exons after random reshuffling their positions in the genome
(lighter bars). (B) Plot of the ratios between the read coverage of novel
exons (calculated in RPB) and the genes they are associated with, either
by overlap (sense or antisense) or as additions to known gene
structures (59 end, 39 end, and internal). The ratios for predicted exons
overlapping exons of known gene structures are shown in comparison.
doi:10.1371/journal.pbio.1000371.g006
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(Table S8A). Figure 8C shows a clear enrichment in tags from

hypersensitive sites for RA-differentiated SK-N-SH neuroblastoma

cells across the full length of brain-expressed seqfrags. Moreover,

the typical size of the unspliced seqfrags (median 111 bp) is smaller

than that of the DNase I-hypersensitive regions (median 248 bp),

and unlike coding transcripts and other ncRNAs, many of the

seqfrags appear to be contained entirely within the DNase I-

hypersensitive regions. We expect that the true number of seqfrags

associated with DNase I hypersensitive regions may be larger,

considering that the cell lines assayed only account for a small

selection of the cell types represented in the tissues and cell types

assayed by RNA-Seq. Thus, these analyses reveal the existence of

thousands of small intergenic transcripts associated with open

chromatin.
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Figure 7. Examples of identified TUs. (A) Evidence for the presence of an alternative promoter at the human SLC41A1 gene. Splice junctions
connecting to the alternative promoter region are indicated in red. Mapped RNA-Seq data for the UHR paired-end (PE) read sample is shown for
reference (black). The PhastCons conservation track scores were based on multiple alignments of 28 vertebrates. (B) Protein-coding TU detected in an
intergenic region on chromosome 17, with high similarity to the elongation factor Tu GTP binding domain. The two additional upstream transcribed
regions may be part of the same transcript, though no junction sequences were detected. (C) Intergenic TU (red) detected on chromosome 15 based
on junctions in the PE brain, PE UHR, and SE testes RNA-Seq samples.
doi:10.1371/journal.pbio.1000371.g007
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Discussion

In contrast to earlier studies based on oligonucleotide tiling

array analysis of RNA [1–9], GIS-PET [9], and RACE-tiling

arrays [9], but consistent with other RNA-Seq studies [16,33,36–

38], we find that the proportion of dark matter transcripts among

polyadenylated RNA from a large variety of different tissue types is

small. Our comparison between tiling arrays and RNA-Seq data

from the same tissues indicates that tiling arrays are ill-suited to

accurately detect transcripts expressed at low levels. The major

fraction of nonexonic transcripts in RNA-Seq data is associated

with known genes and includes thousands of new alternative exons

and hundreds of alternative promoters. However, we do not find

evidence for widespread interleaved transcripts as previously

described [9]; virtually all exon-exon junctions detected corre-

spond to junctions within the same gene. Aside from new exons,

most of the transcripts that are within or proximal to known genes

can be explained as pasRNAs or terminator-associated RNAs, pre-

mRNA fragments, or by alternative cleavage and polyadenylation

site usage. The relatively small fraction of seqfrags that are not

associated with known genes corresponds strongly to DNase I-

hypersensitive regions. Altogether, we propose that most of the

dark matter transcriptome may result from the process of

transcribing known genes. Pervasive transcription of intergenic

regions as described in previous studies occurs at a significantly

reduced level and is of a random character.

Figure 8. Most intergenic transcripts are unspliced and associated with open chromatin. (A) Relationship between read count and the
fraction of seqfrags with at least one identified junction sequence for seqfrags in exonic (gray) or trimmed intergenic (red) regions. (B) Cluster of
ubiquitously expressed seqfrags derived from uniquely mapped reads on chromosome 15. An additional track with multireads from SE testes RNA-
Seq data (blue) shows that many of the uniquely mapped seqfrags are part of a larger, continuously transcribed region. (C) Digital DNase I
hypersensitivity profiles in RA-differentiated SK-N-SH cells for 11,416 seqfrags (red) and 5,819 seqfrag clusters (green) expressed in human brain.
Hypersensitivity is shown as the average density of in vivo cleavage fragment reads per kb (RPKB, normalized to 20 million reads) across all seqfrags
or clusters, measured in 100 bp windows flanking the center position of each seqfrag or cluster up to a distance of 2 kb. The DNase I hypersensitivity
at random positions in intergenic regions is shown as a control (gray). The box-and-whisker plots at the bottom of the graph indicate the median
(box) and the 95th percentile (whiskers) of the seqfrag- (red) and seqfrag cluster size range (green).
doi:10.1371/journal.pbio.1000371.g008
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The intergenic regions that are transcribed above background

consist of a mix of both coding and noncoding transcripts. In

contrast to the extensive intergenic transcription reported in tiling

array studies, we found relatively few transcripts in these regions

(16,268 seqfrags expressed above background levels in human and

11,533 in mouse). These numbers may be smaller, as some

adjacent seqfrags may be parts of a single transcript that contain

regions with sequence mapping ambiguities, or they may be larger

as more tissues and cell types are surveyed.

The fact that non-exonic transcripts do not overlap with

Evofold or RNAz regions argues against widespread roles as

structural RNA. The most compelling support that these

transcripts may have an independent function comes from the

fact that they overlap with DNase I hypersensitive regions and

that, unlike the many transcripts found by tiling array studies and

from deep sequencing of subtracted cDNA libraries [11], the

transcripts found by RNA-Seq show a significantly higher degree

of conservation between species. We note, however, that these

same two properties are consistent with low-level transcription

from enhancers. Indeed, in yeast, it is known that placement of a

strong activating transcription factor binding site in random

regions of the genome results in the formation of a promoter [56].

Thus, single-exon intergenic seqfrags may represent the analog of

pasRNAs for enhancers.

Our findings are based primarily on analysis of PolyA+ enriched

RNA; however, our conclusions are corroborated by CAGE tags,

GIS-PET, and RNA-Seq analysis of rRNA-depleted total RNA.

Similar conclusions to ours were also reached in an independent

RNA-Seq analysis of rRNA-depleted human total RNA (G.

Schroth, pers. communication). It does not appear as if additional

sequencing would substantially alter our conclusions, since

coverage bias towards known exons increases with the number

of reads. Moreover, while RNA-Seq analysis of PolyA+ RNA

biases against very long and very short RNAs, this would not be

expected to affect our ability to detect the widespread and

pervasive transcription reported previously. Nonetheless, analysis

of further tissues and cell types would be expected to identify

additional intergenic ncRNA seqfrags that are more abundant but

expressed in rare or specialized cell types. It is also likely that total

RNA harbors additional transcripts not seen in PolyA+ enriched

RNA and that are not evident in current total RNA-Seq analyses

due to limitations in read counts.

A major remaining question is the possible function of the novel

intergenic transcripts, if any. Undoubtedly, there are many

functional ncRNAs remaining to be characterized [57]. However,

we and others have emphasized that expression, conservation, and

even localization and physical interactions of these RNAs do not

constitute direct evidence for function [32]. Promoters and

terminators are known to produce transcripts that appear to be

associated primarily with the mechanics of gene expression and do

not have known independent functions. To be conservative, a null

hypothesis should perhaps be that novel transcripts—particularly

those that are small and low-abundance—are a by-product rather

than an independent functional unit [58]. Searching for

phenotypes caused by genetic perturbation may be the most

useful approach to disproving the null hypothesis.

Materials and Methods

Sample Sources
Total and PolyA+ samples for tiling array hybridizations from

pooled human and mouse heart, liver, testis, and whole brain

tissues were obtained from Clontech (Table S9). All human RNA

samples were derived from tissues of individuals that suffered

sudden death. The human whole brain PolyA+ RNA used for

paired-end sequencing came from a Microarray Quality Control

(MAQC) sample (Ambion) that consisted of a mixture of RNA

from 23 Caucasian males. The PolyA+ selected universal human

reference sample (Stratagene) consisted of pooled RNA from 10

human cell lines (Adenocarcinoma, mammary gland; Hepatoblas-

toma, liver; Adenocarcinoma, cervix; Embryonal carcinoma,

testis; Glioblastoma, brain; Melanoma; Liposarcoma; Histiocytic

Lymphoma, hystocyte; Lymphoblastic leukemia, T lymphoblast;

Plasmacytoma, B lymphocyte).

Microarray Hybridizations
All RNA samples were DNase treated with 10 units of DNase

I (Fermentas) per 50 ug of RNA prior to cDNA synthesis and

purified with RNeasy spin columns (Qiagen) using a modified

protocol that retains small RNAs ,200 nt. Double stranded

cDNA synthesis was done as previously described in Kapranov

et al. [5]. Briefly, 9 ug of total RNA was reverse transcribed in a

reaction that contained 1,800 units of SuperScript II enzyme

(Invitrogen) and 83.3 ng of random hexamers and Oligo(dT)

primers per ug of RNA. The cDNA was then used for second

strand synthesis, after which the double-stranded cDNA (ds-

cDNA) was purified using PCR purification columns (Qiagen) in

combination with the nucleotide cleanup kit protocols. Follow-

ing fragmentation and biotin labeling, 7 ug of ds-dDNA was

hybridized per array.

Mapping of Genomic Coordinates for Tiling Array Probes
The Affymetrix Human and mouse tiling arrays version 2.0R

were originally designed for the NCBI genome assemblies v34 and

v33, respectively, and were remapped to more recent genome

builds (v36 for human and v37 for mouse) using BLAT [59], not

allowing for any mismatches in the alignments. A small number of

probes mapping to multiple locations in the genome were assigned

a position that would conserve probe order relative to the original

array design. In cases where this was not possible, the position on

the same chromosome nearest to the original probe location was

selected, or a match was randomly selected if none could be found

on the same chromosome. In total, 99.5% of probe sequences

could be remapped to the new mouse genome assembly, and for

the human arrays this number was close to 100%. Updated

bpmap files are available on request.

Microarray Data Analysis
Arrays were scanned using an Affymetrix GeneChip scanner

3000 and raw probe intensities were obtained using the Affymetrix

GeneChip Operating Software. Each array was quantile normal-

ized against a reference genomic DNA hybridization using the

Affymetrix Tiling Array Software v1.1 to obtain intensities

corrected for probe sequence bias (Figure S4). The probe intensity

data were further smoothed by calculating the pseudomedian of

genomic DNA-normalized intensity values of probes that lie within

a genomic sliding window around each probe [5]. The size of the

sliding window was determined by the bandwidth parameter (BW)

as follows: (26 BW) +1. Transcribed regions (transfrags) in tiling

array data were selected as previously described [5], by joining

positive probes together using three parameters: (i) an intensity

threshold to select positive probes, (ii) the maximal distance

(MAXGAP) that two neighboring positive probes can be separated

by, and (iii) the minimal transfrag length (MINRUN). A range of

BW, MAXGAP, and MINRUN parameter combinations were

applied and used to assess precision and recall of exons in known

transcripts.
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Illumina Sequencing Datasets
Libraries for paired-end sequencing were prepared according to

the manufacturer protocols. After selecting for cDNA fragments

with a size distribution around 200 bp, 50 bp on both ends were

sequenced in an Illumina Genome analyzer II. Single-end RNA-

Seq data with a read length of 32 nt for PolyA+ RNA for 8 human

tissues from individual donors (Adipose, Brain (26), Colon, Heart,

Liver, Lymph Node, Skeletal Muscle and Testis) were obtained

from a previous study by Wang et al. [16]. Twenty-five mer single-

end read data for PolyA+ RNA from three mouse tissues (Brain,

Liver, Skeletal muscle) were taken from Mortazavi et al. [36]. Both

literature datasets were produced following similar protocols that

included a fragmentation step followed by a size selection for

fragments of ,200 bp and sequencing on an Illumina Genome

analyzer. All paired-end RNA-Seq data are available on

our supplementary website (http://hugheslab.ccbr.utoronto.ca/

supplementary-data/hm_transcriptome/).

Mapping of Unspliced RNA-Seq Reads to Reference
Genomes

Single-end read RNA-Seq data were mapped to the NCBI

human and mouse genome assemblies v36 and v37, respectively,

using Seqmap v1.0.10 [60]. Several parameter settings were

tested, and the maximum number of uniquely mapped reads (best

unique hit) was obtained by restricting the read length to the first

25 bases and allowing for only one mismatch (Figure S5). These

settings were subsequently used for all single-end read mappings.

Paired-end reads from human brain and UHR samples were split

and independently mapped using bowtie [61], selecting only the

unique best hits from alignments that had a maximum of two

mismatches in the seed sequence (first 28 bases) and an overall sum

of mismatch phred quality scores no greater than 70. Single-end

reads or tags from strand-specific datasets (Table S3, Figure S1)

were also mapped using bowtie [61] to maintain strand

information.

For the overlap analysis with known gene annotations, we

combined the following tracks from the University of California

Santa Cruz (UCSC) genome browser: UCSC known genes,

Refseq genes, ENSEMBL genes, RNA genes, miRNAs, and

snoRNAs (February 2009). In addition, mRNA and spliced EST

tracks were obtained from the same source (September 2009) for a

secondary mapping of seqfrags or sequence reads that did not

match known gene annotations. Non-redundant sets of genes,

mRNAs, and spliced ESTs were prepared by merging overlapping

features, where the resulting exonic regions were defined as the

union of exons in the source annotations and introns as the

intervening regions between merged exons. For the calculation of

the proportion of reads accounted for by each annotation

category, reads were considered exonic if they partially or fully

overlapped a merged exon, and intronic or intergenic if they were

fully contained in these respective regions. The proportion of

transcribed area was calculated by intersecting the genomic

coordinates of continuously transcribed genomic regions (seqfrags)

and the various genome annotation categories.

Conservation of RNA-Seq Regions
PhastCons [62] conservation scores for the human and mouse

genomes were obtained from the UCSC website and were based

on multi-species alignments of 18 (hg18-phastCons18way) and 20

(mm9-phastCons20way) placental mammals, respectively. Con-

servation scores were assigned to each seqfrag by taking the

maximum PhastCons score in the genomic region covered by the

seqfrag. For comparison purposes, a background score was

determined for each seqfrag in the same manner, after reassigning

seqfrags to random positions in the genome or within intergenic

regions.

Correlation Analysis for Positional Bias
To calculate Pearson correlation coefficients between the

expression levels of transcribed intergenic regions and the closest

neighboring genes, overlapping mapped reads from all 11 human

RNA-Seq samples were first merged into seqfrags. For each

seqfrag, the nearest neighboring known transcript with read

coverage in at least five RNA-Seq samples was then selected from

the full set of transcripts in the UCSC known gene, Refseq gene,

ENSEMBL gene, RNA gene, miRNA, and snoRNA tracks. In

case multiple transcripts were found at the same distance (e.g.,

alternatively spliced transcripts), the transcript was selected that

maximized the number of available data points for correlation

analysis. The transcript expression levels in each tissue were

defined as the median read coverage per kb of exon sequence and

further adjusted for the difference in sequence coverage between

RNA-Seq samples. Read coverage for intergenic seqfrags was

determined analogously. Pearson correlation coefficients between

transcript and seqfrag expression levels were only calculated if the

read coverage for both the seqfrag and transcript were above zero

in at least five of eleven samples, and all other intergenic seqfrags

were removed from the analysis. The significance of the

correlations was determined by comparing seqfrag expression

levels to those of 1,000 randomly selected genes that met the same

cutoff criteria. Nominal p values were defined as the proportion of

random permutations where the correlation coefficient exceeded

the observed correlation with the closest neighboring gene.

Nominal p values were further adjusted for multiple testing by

applying a Benjamini-Hochberg FDR correction [63] using the

multtest R package from Bioconductor [64].

Assessment of the Intergenic Read Distribution
To determine whether RNA-Seq reads that map outside genes

follow a random (Poisson) distribution, intergenic regions were

divided into 1 kb segments and the total number of reads and the

number of singleton reads in each segment was counted. Regions

flanking genes up to a distance of 10 kb were excluded, as reads in

these regions are more frequent, and correlated with known genes.

For comparison, a random distribution was derived by sampling

an equal number of uniquely mapped random reads with the same

size distribution as the mapped RNA-Seq reads. To avoid a

potential bias from the paired-end reads, we only mapped one of

the reads in a pair. Comparisons between random and observed

distributions were visualized in rootograms, which plot the square

root of the number of segments as a function of the number of

reads in each segment, allowing for a better assessment of

differences at the tail of the frequency distribution.

Splice Junction Discovery
Analysis of novel splice junctions was performed using Tophat

[45], which uses a detection method outlined in Figure S6A.

Briefly, Tophat searches for splice junctions by first mapping

RNA-Seq reads to the genome to identify ‘‘islands’’ of expression,

which are equivalent to seqfrags. In contrast to the mapping of

unspliced RNA-Seq reads described above, Tophat allows

multiple genomic matches for each read (up to a maximum of

40 copies) during this mapping step. Each expression island is then

considered a potential exon and used to build a set of potential

splice junctions, taking into account the canonical splice donor and

acceptor sites (GT-AG) within each island and a small flanking

region of 45 bp. Subsequently, each possible pairing of neighbor-
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ing junction sequences up to a specified distance (determined by

the maximum allowed intron size) is compared to the set of

‘‘missing’’ RNA-Seq reads that could not be matched to the

genome in the first mapping step to identify sequences that span

junctions. Islands with high coverage are also examined for

internal junctions, to account for the possibility that the

intervening intronic region between two highly expressed exons

is fully transcribed at lower coverage. Paired-end reads were

analyzed with Tophat version 1.0.10, which features improve-

ments in splice junction detection specific to paired sequencing

data by taking the distance between read pairs into account. In

contrast, single-end read data were analyzed using Tophat version

0.8.3, as we found that this version offered greatly improved

sensitivity for shorter unpaired reads.

Splice junctions in paired-end read data were mapped allowing

for a maximum intron size of 500 kb, which is sufficient to

encompass 99.99% of all introns and 99% of all transcripts in the

complete set of annotated transcripts described above. The

minimum required read match size at each junction end (i.e.,

anchor size) was set to 8 nt. Finally, the minimum isoform fraction

was set to 0.15 to suppress junctions that were supported by too

few alignments relative to the junction exons. The isoform fraction

was calculated as S/D, where S is the number of reads supporting

each junction and D is the average coverage of the junction exon

with the highest coverage [45]. Splice junctions in single-end read

data were mapped using the full 32 mer read length, rather than

the shorter 25 mer reads used for the mapping of unspliced reads.

The Tophat parameter settings for single-end reads were the same

as for the paired-end reads, with the exception that the minimum

anchor size was set to 11 and the intron size was set to 20 kb

(sufficient to bridge the length of 93.98% of all annotated introns

and 53% of all transcripts). The adjusted parameters for single-end

read data increased precision due to the shorter read lengths

(Figure S7), at the expense of a somewhat reduced ability to detect

long-range splice junctions. Finally, junctions with identical

sequence that mapped to more than one genomic location in

both the single- or paired-end RNA-Seq data were dropped from

the analysis. Alternative splicing events were defined as junctions

that shared the same start position with another junction but

ended at a different position, or vice versa.

Estimation of False Positive Rate in Novel Splice
Junctions

In order to estimate the proportion of false positives in the splice

junction prediction, we adjusted Tophat to use a modified set of reads

in the splice junction detection step. The initial read mapping stage to

identify islands of expression was unchanged, but the sequence for the

set of ‘‘missing’’ reads used in the second stage to detect splice

junctions between islands was reversed (Figure S6A), resulting in a

scrambled set of potential junction sequences with very similar

sequence properties, in particular for low-complexity and repetitive

regions. In addition, the pairing of reads in the paired-end dataset was

randomized. With the modified sets of ‘‘missing’’ reads, 62 junctions

were detected in the brain and 60 in UHR sample, corresponding to

an estimated false positive rate of 0.054% for paired-end read samples

at the selected analysis thresholds.

At 7.3%, false positive rates for single-end reads were

significantly higher, consistent with the shorter read lengths.

Further examination of junction sequences revealed an over-

representation of PolyA and PolyT repeats in junction sequences

of single- compared to paired-end read samples (Figure S8). We

believe that enrichment of these repeats is due to a bias in mapping

short reads sequenced from PolyA tails, and additional filtering

steps were therefore applied to exclude junctions with a PolyA/T

repeat size larger than 5. Moreover, any junction found to contain

more than 20% low-complexity regions as assessed by the DUST

algorithm (http://compbio.dfci.harvard.edu/tgi/software/) and

repeatmasker (http://www.repeatmasker.org) was discarded. After

applying these filters to the real and randomized junction set, the

false positive rate for detection of splice junctions in the single-end

read set was reduced to 2.7%.

Assembly of Splice Junctions into Transcript Units
TUs were defined as described in the main text. Facing splice

junctions arranged in a head-to-tail fashion were first assembled

into tissue-specific TUs if (i) splice junction ends overlapped (ii) the

complete region between facing splice junctions was transcribed or

(iii) if facing splice junctions were within a distance of 200 bp

(same range as the average exon size) (Figure S6B). TUs were then

combined across tissues where TUs with at least one overlapping

exon were merged to create a non-redundant set. Exons were

detected either partially, with junctions on only one side (e.g., 59

and 39 terminal exons), or completely, with supporting junctions

defining boundaries on both sides.

Assessment of Coding Potential of Novel TUs
The coding potential of novel transcript fragments was assessed

using a support vector machine classifier [55] that assesses the

protein-coding potential based on several sequence features that

incorporates quality assessments of the predicted ORF as well as

BLASTX comparisons with the NCBI non-redundant protein

database.

Significance Testing for Overlaps between Transcripts
and Genomic Feature Sets

Statistical significance for overlaps between genomic feature sets

(i.e., Exoniphy predicted coding exons [47], RNAz [49], and

EvoFold [48] conserved RNA structures, DNase I hypersensitivity

sites generated by the UW ENCODE group [54], and enhancer

sets [65,66]) and exons in transcript units or significant seqfrags in

trimmed intergenic regions was calculated by permutation

analysis. In each permutation round, seqfrags or TU exons were

assigned random positions within intergenic regions (for novel 59

and 39 exons connected to annotated genes), trimmed intergenic

regions (for seqfrags in intergenic regions at least 10 kb away from

genes), or introns (for novel internal exons for annotated genes, as

well as exons in independent sense and antisense TUs). p values

were defined as the proportion of times that an overlap count

greater than or equal to the number of observed overlaps was

found in 10,000 permutations. Coordinates of genomic feature sets

were obtained from the UCSC genome browser or the original

publications and mapped to the hg18 genome build using the

UCSC LiftOver tool when needed.

Accession Numbers
Affymetrix tiling array data are available at GEO (record

GSE19289).

Supporting Information

Figure S1 Positional bias towards known genes in other
genome-wide transcription datasets. Relative enrichment

of intergenic read/tag frequency near annotated genes in a variety

of datasets including (A) strand-specific RNA-Seq of mouse brain

PolyA+ RNA [41], (B) strand-specific RNA-Seq of mouse brain

rRNA-depleted total RNA (SRX012528, NCBI short read

archive), (C) Cap analysis of gene expression (CAGE) tags from

41 different human libraries [12], (D) CAGE tags from 145
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different mouse libraries [12], and (E) Gene Identification

Signature paired-end tags (GIS-PET) from two human cancer

cell lines (MCF7 and HCT116) [42]. RNA-Seq reads and CAGE

tags were mapped using Bowtie as described in the Materials and

Methods section. For the GIS-PET datasets, mapped ditag

positions for the hg17 version of the human genome were

obtained from the original publication [42] and converted to

coordinates in the hg18 assembly using the UCSC LiftOver tool

(http://genome.cse.ucsc.edu/). Relative enrichment ratios of

reads and tags in gene-flanking regions were calculated as

described for Figure 3A and 3B.

Found at: doi:10.1371/journal.pbio.1000371.s001 (0.14 MB PDF)

Figure S2 Low-coverage intergenic expression is posi-
tionally biased towards known genes. Relative enrichment

of read frequency for low-coverage transcribed regions in the

pooled RNA-Seq sets as a function of the distance to 59 and 39

ends of annotated genes in the human (red) and mouse (green)

genome. The distribution for genomic DNA-Seq reads from HeLa

cells is shown as a control (gray). Low coverage regions were

defined as seqfrags that were detected by only a single read in the

combined human and mouse RNA-Seq sets. Relative enrichment

ratios of reads and tags in gene-flanking regions were calculated as

described for Figure 3A and 3B.

Found at: doi:10.1371/journal.pbio.1000371.s002 (0.12 MB PDF)

Figure S3 Intergenic genomic DNA-Seq reads are
approximately randomly distributed. A sample of interge-

nic reads was selected from public DNA-Seq datasets (gray bars)

from human sperm genomic DNA and HeLa cells [43,44] and

used to draw distribution plots analogous to Figure 5 in the main

text. The number of selected DNA-Seq reads in the complete or

singleton sets was equal to the number of intergenic reads in the

pooled human RNA-Seq dataset. The expected random distribu-

tion is indicated by a red line.

Found at: doi:10.1371/journal.pbio.1000371.s003 (0.14 MB PDF)

Figure S4 Genomic DNA normalization reduces intensity
bias due to probe GC content. (A) Affymetrix tiling array image

of a mouse testis PolyA+ RNA hybridization, showing the probe

signal intensity in the top half and a heatmap of the GC content of the

same probes in the bottom half. Lighter shades of gray and orange

correspond to higher probe intensities and GC content, respectively.

(B) Running median average of probe signal intensities across mouse

chromosome 18 for testes PolyA+ RNA (red) and genomic DNA

(green), showing a similar baseline trend in both samples. After

quantile normalization of the PolyA+ sample against genomic DNA,

the non-specific baseline pattern is no longer present (blue).

Found at: doi:10.1371/journal.pbio.1000371.s004 (0.96 MB PDF)

Figure S5 Effect of alignment parameters on the
number of uniquely mapped reads. Singleton 32 mer reads

from 9 human tissues were mapped as either 25 mer or 32 mer,

allowing for 0–2 mismatches. The number of uniquely mapped

reads at each parameter combination is indicated.

Found at: doi:10.1371/journal.pbio.1000371.s005 (0.09 MB PDF)

Figure S6 Overview of splice junction detection and
reconstruction of gene structures. (A) Splice junction

detection by Tophat (modified from [45]). (B) Outline of the

method used to merge splice junctions into gene structures. See

Materials and Methods for a detailed description of this figure.

Found at: doi:10.1371/journal.pbio.1000371.s006 (0.11 MB PDF)

Figure S7 Precision-recall of known splice junctions in
human brain single- (A, B) and paired-end (C, D) read
data. Known junctions were defined as those that bridged any

two exons of a single annotated reference transcript. The effects of

three different parameters were tested: anchor size, junction read

coverage, and the number of times the same junction sequence

was found for different splice junctions. Numbering of points

corresponding to different coverage thresholds is indicated in the

top left panel and is analogous for all other lines drawn. The arrow

indicates the precision-recall values for the parameter settings used

in the Tophat analysis of single-end reads, before filtering

junctions with low-complexity sequences.

Found at: doi:10.1371/journal.pbio.1000371.s007 (0.15 MB PDF)

Figure S8 PolyA/T repeat bias in junction sequences
from single-end reads. Plots showing the percentage of

junction sequences containing (A) PolyA/PolyT repeats or (B)

PolyG/PolyC repeats, as a function of the repeat length. Lines

represent different human RNA-Seq samples and are colored as

indicated on the right.

Found at: doi:10.1371/journal.pbio.1000371.s008 (0.12 MB PDF)

Table S1 Read mass statistics for all RNA-Seq samples.
Found at: doi:10.1371/journal.pbio.1000371.s009 (0.05 MB PDF)

Table S2 Transcribed genomic area for all RNA-Seq
samples.
Found at: doi:10.1371/journal.pbio.1000371.s010 (0.05 MB PDF)

Table S3 Proportion of intergenic reads in 10-kb
regions flanking annotated genes.
Found at: doi:10.1371/journal.pbio.1000371.s011 (0.04 MB PDF)

Table S4 Human splice junction mapping statistics.
Found at: doi:10.1371/journal.pbio.1000371.s012 (0.04 MB PDF)

Table S5 Human splice junctions bridging exons be-
tween annotated genes.
Found at: doi:10.1371/journal.pbio.1000371.s013 (0.09 MB XLS)

Table S6 (A) Overlap between genomic features and
novel exons in human TUs attached to known genes. (B)

Overlap between genomic features and exons in human TUs

independent from known genes.

Found at: doi:10.1371/journal.pbio.1000371.s014 (0.05 MB PDF)

Table S7 Alternative splice junctions connecting to
unannotated upstream promoters in the human
genome.
Found at: doi:10.1371/journal.pbio.1000371.s015 (0.07 MB XLS)

Table S8 (A) Overlap between significant seqfrags in
trimmed intergenic regions and genomic features. (B)

Overlap between seqfrag clusters in trimmed intergenic regions

and genomic features.

Found at: doi:10.1371/journal.pbio.1000371.s016 (0.05 MB PDF)

Table S9 RNA sources for tiling array experiments.
Found at: doi:10.1371/journal.pbio.1000371.s017 (0.04 MB PDF)
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