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Abstract

For nearly all life forms, perceptual systems provide access to a host of environmental cues, including the availability of food
and mates as well as the presence of disease and predators. Presumably, individuals use this information to assess the
current and future states of the environment and to enact appropriate developmental, behavioral, and regulatory decisions.
Recent work using the nematode worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster, has established
that aging is subject to modulation through neurosensory systems and that this regulation is evolutionarily conserved. To
date, sensory manipulations shown to impact Drosophila aging have involved general loss of function or manipulation of
complex stimuli. We therefore know little about the specific inputs, sensors, or associated neural circuits that affect these life
and death decisions. We find that a specialized population of olfactory neurons that express receptor Gr63a (a component
of the olfactory receptor for gaseous phase CO2) affects fly lifespan and physiology. Gr63a loss of function leads to extended
lifespan, increased fat deposition, and enhanced resistance to some (but not all) environmental stresses. Furthermore, we
find that the reduced lifespan that accompanies exposure to odors from live yeast is dependent on Gr63a. Together these
data implicate a specific sensory cue (CO2) and its associated receptor as having the ability to modulate fly lifespan and alter
organism stress response and physiology. Because Gr63a is expressed in a well-defined population of neurons, future work
may now be directed at dissecting more complex neurosensory and neuroendocrine circuits that modulate aging in
Drosophila.
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Introduction

The sensory neurons that constitute perceptual systems trigger

countless decisions on a daily basis. By providing a viewport to the

world, neurosensory systems help individuals to assess the current

and future states of their surroundings and to enact appropriate

responses. Whether to consume food, accept a mate, or simply

move in a particular direction is influenced by inputs involving

senses such as sight, taste, and smell. Such overt behavioral

decisions can have obvious consequences: the proper identification

of nutritious food might help you live another day, whereas the

inability to correctly recognize a predator could mean you become

food for one better equipped.

Not all sensory-mediated responses are so easily identified.

Chemical cues associated with predation, fear, or anxiety may

evoke a chronic stress response in rats involving subtle activation

of the neuroendocrine stress axis and changes in central nervous

system limbic circuitry [1,2]. In mice, small populations of

neurons in the hypothalamus may integrate metabolic and sexual

odorant cues to initiate changes that foster reproduction [3]. Even

highly conserved processes that were thought to be regulated

predominantly at the cellular level may depend on sensory input.

In the nematode worm, Caenorhabditis elegans, the molecular

response to misfolded proteins, which has traditionally been

studied as a cell-autonomous process, is strongly modulated by

general neuronal signaling [4]. A second putative cell-autono-

mous response in the worm, the heat shock response, depends on

a single thermosensory neuron, which is responsible for sensing

ambient temperature [5].

Perhaps most remarkable has been the discovery that aging

itself can be subject to neurosensory regulation. Indeed, such

regulation has been shown to be evolutionarily conserved and

important for modulating lifespan in both C. elegans, and the fruit

fly, Drosophila melanogaster. Ablation of key sensory neurons in the

nematode or mutations that result in their loss of function can

modulate lifespan, with some neurons limiting lifespan and others

promoting it [6,7]. In the fruit fly, D. melanogaster, a loss-of-function

mutation in Odorant Receptor 83b (Or83b), which broadly

reduces olfactory capabilities, produces a significant increase in

stress resistance and lifespan [8]. Fat deposition is also altered in

these mutant flies, suggesting that olfaction may impact global

energy balance [8]. Furthermore, expression of the transcription

factor skn-1 in two sensory neurons in C. elegans is required for

reduced nutrient availability (also called dietary restriction, which

increases longevity) to affect nematode lifespan, albeit that this

effect seems to be independent of environmental sensing [9]. Even
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temperature may modulate worm aging at least partially through

its activation of thermosensory neurons [10].

What are the sensory cues and neural circuits that activate

longevity programs? These remain largely unknown. There are,

however, a few clues. Exposing Drosophila to food-derived odorants

(odors from live yeast in particular) reduces lifespan when flies are

confined to conditions of dietary restriction [8]. This effect is absent

when they are fully fed, suggesting that the perception of high

nutrient availability is sufficient to reverse some of the benefits of diet

restriction. Similarly, in C. elegans, lifespan extension from bacterial

deprivation is partially suppressed by a diffusible component of the

bacterial food source [11]. Crude pheromone extracts have also

been reported to impact nematode lifespan [12], but the active

component is still in question [7,12]. The identification of specific

sensory cues and their receptors that modulate lifespan would help

decipher the ‘‘sensory code’’ that modulates conserved mechanisms

of physiology and aging. Because signals that originate from the

sensory structures must be communicated to distant tissues to

coordinate pro-longevity events, it would also facilitate the dissection

of neurosensory and neuroendocrine circuits that specify longevity

programs as well as the identification of molecular signaling

pathways in distal tissues that enact them.

Here, we establish that a specialized population of olfactory

neurons modulates the lifespan and physiology of D. melanogaster. In

particular, we find that loss of function in Gustatory Receptor 63a

(Gr63a), which serves as a component of the olfactory receptor for

gaseous phase CO2, extends fly longevity and enhances fat

deposition. Extended lifespan is accompanied by increased

reproductive output and enhanced resistance to some (but not

all) environmental stresses. Unlike previous reports involving more

general olfactory manipulations, extended longevity via loss of

Gr63a occurs through a mechanism that is likely independent of

dietary restriction. We do, however, find that Gr63a is required for

odorants from live yeast to affect longevity, suggesting that with

respect to lifespan, CO2 is an active component of this complex

odor. Because Gr63a is expressed in a highly specific population of

CO2-sensing neurons (the ab1C neurons) that innervate a single

glomerulus in the antennal lobe (the V glomerulus), these data

implicate a specific sensory cue and its associated neurosensory

circuit as having the ability to modulate fly lifespan and alter

organismal stress response and physiology. Our results set the stage

for the dissection of more complex neurosensory and neuroendo-

crine circuits that modulate aging in Drosophila.

Results

Carbon dioxide is a ubiquitous ecological stimulus that has been

shown to play important roles in insect ecology. Honeybees initiate

behaviors that ventilate the hive in response to high CO2 levels.

Blood-feeding insects use CO2 to track down hosts [13], and

herbivorous insects use CO2 to detect desirable leaves, flowers, or

fruits [14]. In D. melanogaster, sensory perception of CO2 may

provide information on the availability of food sources; living and

rotting fruit tissue produce CO2, as does respiration in live yeast.

Flies are generally repelled by levels of CO2 as low as 0.1% above

ambient, however; perhaps as a result of its postulated role as a

component of an avoidance pheromone released by stressed adults

[15]. Based on a possible dual role in mediating perception of food

and stress—both of which are known modulators of aging—we

decided to test the hypothesis that systems involved in the detection

of CO2 modulate lifespan and physiology in the adult fly.

The CO2 Olfactory Receptor Modulates Lifespan in
Drosophila

Drosophila detect CO2 from the atmosphere using a small

subpopulation of sensory neurons that are located in the antennae

and that have been designated ab1C [16]. These neurons are

required for CO2 avoidance behavior, and they express at least

two gustatory receptor genes, Gr63a and Gr21a, which together

comprise a CO2 odorant receptor [17–19]. They innervate a

single, ventrally located glomerulus (the V glomerulus), which

responds selectively to CO2 [18].

We obtained flies that lack a functional CO2 receptor due to a null

mutant allele of Gr63a (Gr63a1; see also [18]). To insure proper

control of genetic background, which has a significant potential to

confound longevity studies, we backcrossed the Gr63a mutant flies at

least ten generations to two independent, genetically heterogeneous

laboratory stocks (yw and w1118). Gr63a1 mutant ab1C neurons have

been shown to lack an electrophysiological response to CO2, and

mutant flies fail to show a wild-type avoidance behavior when

exposed to CO2 in a T-maze [18]. Following backcrossing, we

therefore confirmed the loss of Gr63a transcript (Figure 1D) and

CO2 avoidance response in the backcrossed mutant lines (Figure S1).

To determine whether a lack of CO2 sensing affected longevity,

we measured the lifespans of male and female Gr63a1 mutant flies.

We controlled for maternal effects and differences in larval

environment by comparing sibling homozygous mutant animals

and wild-type control animals from a cross of heterozygous parents.

We found that female mutant flies exhibited a significantly longer

lifespan (up to 30%) than their sibling controls in both w1118 and yw

genetic backgrounds (Figure 1A, 1B, and Table S1). Surprisingly,

lifespan extension was observed only for females; male longevity was

unaffected by the mutation (Figure S2A, Table S1). As further

evidence for the Gr63a mutant effect, we measured longevity in the

w1118 background after an additional ten generations of backcross-

ing (for a total of 20) and found a comparable longevity extension

(Figure S2B, Table S1). Gr63a loss of function increases lifespan

predominantly by a reduction in the baseline mortality rate, rather

than a change in the slope of mortality (Figure S2C) [8,20]. These

data suggest that loss of function of Gr63a extends lifespan in a sex-

specific manner and that this lifespan extension is robust to

variability in genetic background.

To further establish a connection between CO2 sensing and

longevity, we measured the lifespans of heterozygous flies carrying

one copy of the Gr63a1 mutation and one wild-type allele. Published

data suggest that, with regard to the function of CO2 sensing, the

Gr63a1 null allele is recessive [18]. We would therefore predict this

to be true of longevity as well. To protect against a confounding of

Author Summary

Sensory inputs, including taste and smell, can modulate
lifespan in organisms such as fruit flies and nematodes. For
example, the smell of live yeast is sufficient to accelerate
aging in fruit flies that are nutrient restricted. However, the
sensory pathways and specific olfactory cues that modu-
late aging are unknown. Here, we show that the olfactory
receptor for carbon dioxide, Gustatory Receptor 63a
(Gr63a), plays a role in determining longevity in Drosophila
melanogaster. Flies lacking Gr63a function live longer, have
increased fat storage, and exhibit greater reproductive
output than control flies. Ablation of the neurons that
express Gr63a also results in long-lived flies. Notably, the
smell of live yeast does not affect the lifespan of flies that
lack a functional Gr63a receptor, which suggests that
carbon dioxide is a key regulatory molecule of this
complex odor. Because Gr63a expression is restricted to
a very select population of neurons, these results implicate
a specific neural circuit in the modulation of fly lifespan.

CO2 Sensing Affects Fly Aging
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the results by hybrid vigor, we first backcrossed the Gr63a1 mutation

for 12 generations into the w1118 background. We then allowed flies

with both wild-type and mutant alleles to intermix in an unselected

population for another six generations (total 18 generations). Eggs

were collected from parents of mixed genotype and aliquoted in

equal numbers to fly bottles for rearing. Siblings were then

separated based on eye color as either wild-type, heterozygous, or

homozygous for the Gr63a mutation. We found that, despite

extreme genetic and environmental homogeneity, the Gr63a

homozygous mutant flies lived longer than both wild-type

(p = 461025) and heterozygous animals (p = 161027), whereas the

lifespan of heterozygous flies was indistinguishable from that of wild-

type flies (p = 0.24) (Figure S3A). Gr63a1 is therefore recessive with

respect to longevity extension, as it is for CO2 sensing.

Transgenic Expression of Gr63a Rescues Longevity in
Gr63a1 Mutants

To ensure that the longevity extension observed in Gr63a1 mutant

females was due to the Gr63a mutation itself, we executed a genetic

rescue using the Gal4/UAS bipartite system [21]. A fly line carrying
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Figure 1. Flies with loss of function in Gr63a are long lived. (A and B) Survivorship of female flies homozygous for Gr63a1 loss-of-function
(null) allele (green solid lines) and their respective background control (red dashed lines) (A) w1118 background (n = 249 and 254 for mutant and
control flies, respectively), (B) yw background (n = 219 and 216 for mutant and control flies, respectively); p,1610215 in both cases. (C) Survivorship
of flies from a transgenic rescue experiment. Expression of Gr63a cDNA under the control of its endogenous promoter region using the UAS/GAL4
system restored the natural lifespan of Gr63a1 mutant flies (compare green solid lines to blue dot-dash line and red dashed line; p = 0.15), whereas
overexpression of Gr63a had modest negative effect on lifespan (yellow dot dashed line vs. red dashed lines; p = 0.005). Samples sizes are as follows:
control, 230; Gr63a2/2, 228; overexpression, 230; rescue, 240. (D) Quantitative real-time PCR using RNA extracted from fly heads revealed that Gr63a1

mutant flies lacked measureable Gr63a mRNA (no amplification was observed). Furthermore, transgenic rescue restored Gr63a mRNA to levels that
were indistinguishable from w1118 control (p = 0.59), and overexpression resulted in a roughly 2-fold increase in Gr63a transcript (but this was not
significant; p = 0.32). Forty fly heads were used per RNA extraction, and expression measures were obtained from multiple quantitative PCR reactions
each from at least three independent replicate RNA extractions. Error bars represent standard errors of the mean.
doi:10.1371/journal.pbio.1000356.g001

CO2 Sensing Affects Fly Aging

PLoS Biology | www.plosbiology.org 3 April 2010 | Volume 8 | Issue 4 | e1000356



a transgenic construct that allowed the GAL4 transactivator to be

expressed under the control of the native Gr63a enhancer/promoter

elements (Gr63a-GAL4 flies [18]) was backcrossed to the w1118

background for seven generations. This was repeated with flies that

carried a copy of Gr63a coding sequence under the control of the

yeast upstream activating sequence (UAS-Gr63a flies; [18]). mRNA

expression of Gr63a was rescued to wild-type levels in Gr63a1 mutant

flies that carried a copy of both transgenes. Although wild-type flies

with a copy of both the GAL4 and UAS constructs appeared to

exhibit roughly 2-fold enhanced expression of Gr63a, the data were

variable and differences were not statistically significant (p = 0.32,

Figure 1D). We found that transgenic expression of Gr63a restored

mutant longevity back to wild-type levels (Figure 1C), which

provides strong evidence that longevity extension in these flies is due

to Gr63a loss of function. Overexpression of Gr63a did not

significantly alter lifespan (Figure 1C).

Genetic Ablation of ab1C Neurons Phenocopies the
Longevity Extension of a Gr63a Loss-of-Function
Mutation

To further verify that the lifespan extension of Gr63a1 mutants was

due to loss of neuronal function, we used the Gr63a-GAL4 lines to

express the proapoptotic gene reaper (UAS-rpr) to ablate the ab1C

neurons. Levels of Gr63a transcript were significantly reduced in

Gr63a-GAL4;UAS-rpr lines compared to controls (Figure 2A), and

neuron-ablated flies exhibited significantly reduced avoidance to

,4% CO2 when tested in a T-maze (Figure 2B, p = 0.002). Notably,

Gr63a-GAL4;UAS-rpr flies retained significant CO2-sensing capa-

bilities, suggesting that the ablation was not complete. Nevertheless,

we asked whether this degree of loss of function was sufficient to

impact lifespan of female flies. We found that neuron-ablated flies

experienced a significant increase in longevity over all wild-type and

single-construct control lines and that the magnitude of longevity

extension was comparable to that seen in Gr63a1 homozygous

mutant animals (Figure 2C). As with the mutants, increased lifespan

resulted primarily from a change in the initial mortality rate (Figure

S4). These data suggest that partial loss of ab1C neurons is sufficient

to impact CO2 perception and increase fly lifespan.

Loss of CO2 Sensing Alters Physiology and Stress
Response in Drosophila

Fat metabolism, reproduction, and stress response are often linked

with aging at the phenotypic level, yet the molecular mechanisms by

which they are coupled remain poorly understood. Aging is

associated with obesity, reproductive cessation, and chronic stress;
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Figure 2. Genetic ablation of Gr63a-expressing cells phenocop-
ies Gr63a mutant longevity. To further establish a role for Gr63a-

expressing neurons in the modulation of lifespan, we expressed the
proapoptotic gene reaper using GR63a-GAL4 to ablate the associated
neurons. (A) Gr63a mRNA is reduced in the heads of female flies with
both Gr63a-GAL4 and UAS-reaper compared to w1118 control (p = 0.01).
Expression was determined using at least three independent RNA
extractions of 40 fly heads each. (B) Gr63a.reaper flies are significantly
less repulsed by CO2 compared to control flies, UAS-reaper only, and
Gr63a-GAL4 only (p = 0.002, 0.0007, and 0.003 respectively). Data were
obtained using a T-maze assay and a stream of ,4% CO2. Forty flies
were used for each measure, and a minimum of eight measures were
made for each genotype. (C) Female Gr63a.reaper flies (green solid
line) are longer lived than corresponding controls, including w1118 wild
type (red dashed line), UAS-reaper only (dark gray dashed line), and
Gr63a-Gal4 only (orange dashed line) control (p,1610215 for
comparing Gr63a.reaper to any control line). There are no significant
differences among the survivorship curves from the three control lines
(p.0.05). Samples sizes are w1118, 292; GAL4/UAS, 286; UAS only, 282;
GAL4 only, 286. Error bars represent standard errors of the mean.
doi:10.1371/journal.pbio.1000356.g002
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and manipulations that extend lifespan often decrease reproductive

output while enhancing fat deposition and stress response [22,23]. In

certain cases, however, the phenotypes can be uncoupled, and these

instances provide insight into their underlying mechanisms [24].

We first asked whether the Gr63a1 mutation affects general

physiology. Gr63a1 mutant flies were of similar size and weight as

control animals and contained equivalent amounts of protein

(unpublished data). Triglyceride levels in Gr63a1 mutant flies,

however, were significantly increased in two genetic backgrounds

(Figure 3A). In observations that mirror the longevity data, flies

heterozygous for Gr63a1 exhibited normal levels of triglycerides

(Figure S3B), and the increased fat deposition seen in homozygous

mutant animals was rescued by transgenic expression of Gr63a

(Figure 3A). Surprisingly, in spite of this increase in triglyceride

storage, Gr63a1 mutants did not show an increase in starvation

resistance (Figures 3B). These results indicate that that Gr63a

modulates multiple aspects of fat metabolism in Drosophila.

We next measured daily egg production in Gr63a1 mutant females

and control mutant females for 10 d early in life. Virgin females of

both genotypes were collected and exposed individually to two

control males (w1118). Female Gr63a mutants laid more eggs than the

control females on each of the observed days. Although the daily

differences were not always statistically significant, the cumulative

number of eggs laid over the first 2 wk was significantly greater in the

Gr63a mutants (Figure 3C). When plotted on a log-scale, it is apparent

the mutant females laid proportionally greater numbers of eggs each

day (roughly 40% more, Figure 3C, inset). These data suggest that

enhanced longevity via Gr63a mutation does not require a reduction

in reproductive output and may result in increased reproduction.

We next asked whether Gr63a mutation increased resistance to

oxidative stress. In both the w1118 and yw genetic backgrounds,

Gr63a mutants exhibited significant resistance to 10 mM paraquat

(methyl-viologen), suggesting these flies have increased oxidative

stress resistance (Figures 3D and S5). Heterozygous animals were

no more resistant than wild-type controls (Figure S3C), which

correlates well with their similarity in longevity, fat storage, and

CO2-sensing phenotypes.

General activity patterns and the strength of the sleep–wake

cycle are affected by aging and may be considered functional

measures of health in the fly [25,26]. We therefore asked whether

loss of Gr63a affected either of these phenotypes. Based on

standard beam-crossing assays (e.g., using the Trikinetics DAM

equipment), we found no evidence for biologically relevant

changes in circadian activity patterns, reductions in overall

activity, or changes in general sleep patterns (Figure 3E). Although

Gr63a mutants exhibited a trend toward less sleep per day, this

only reached statistical significance in one of three experiments.

General activity patterns were confirmed on a subset of the

Trikinetics data using video-based analysis.

Gr63a Acts through Mechanisms Distinct from Dietary
Restriction to Modulate Lifespan

Dietary restriction, the reduction of nutrient uptake without

malnutrition, has been shown to increase the lifespan of many species

across a broad range of taxa, but the underlying causal mechanisms

remain largely unknown [27,28]. Work from invertebrate systems

suggests that there is a neural basis for its effects, and neurosensory

systems may play an important role [8,9,29,30]. We therefore asked

whether enhanced longevity through dietary restriction requires

Gr63a. Adult flies of both Gr63a mutant and control lines were

maintained in either a nutrient-replete environment or one of dietary

restriction. The diet-restriction medium was chosen to maximize diet-

dependent longevity extension [31,32]. Dietary restriction further

increased the longevity of Gr63a mutant flies (Figure 4A), and this

increase was of similar magnitude to that seen in control flies. We

found no evidence for differential food consumption in mutant flies

(Figure S3D). These data suggest that Gr63a acts through a pathway

independent of dietary restriction to impact fly lifespan.

Gr63a Is Required for Live Yeast Odorants to Modulate
Lifespan

Odorants derived from live yeast paste have been shown to affect

lifespan in flies [8]. It was suggested that this complex odor altered

longevity programs in response to perceived food availability because

diet-restricted flies were affected by the odors, but fully fed flies were

not [8]. The specific components of the yeast odor responsible for the

longevity effect, however, were not identified. As an ongoing effort in

our laboratory, we tested a wide range of chemically defined

odorants, both attractive and aversive, and found none to have a

significant effect on lifespan when presented chronically at nontoxic

levels (Figure 4B, Table S2). Indeed, although we were able to

repeatedly observe reduced lifespan upon exposure to live yeast

odors, even highly attractive odorants that might also be considered

indicative of a nutritious food source, such as mango scent [33] and

apple cider vinegar, had no effect or had a modest positive effect on

longevity (Figure 4B). It is therefore not sufficient for an odor to be

favorable or food-related to impact Drosophila longevity.

Unlike our mixtures, the yeast odor that impacts fly lifespan is

dynamic and generated by live organisms. We therefore decided to

investigate odors that would be characteristic of live preparations.

CO2 is released by live yeast as a byproduct of fermentation, and

having observed that loss of CO2 sensing in Gr63a mutants may

enhance longevity, we wondered whether CO2 might contribute

to the longevity-limiting effect of live yeast. We first asked whether

Gr63a affects the ability of flies to detect and respond to live yeast

paste. We found that Gr63a mutant flies were significantly less

successful locating yeast in a two-choice odor trap assay, suggesting

that the mutants are deficient in the ability to detect the yeast,

have reduced motivation to pursue it, or both (Figure S6A). When

live yeast was competed against yeast that were killed by

autoclaving, wild-type flies exhibited a significant preference for

live yeast, whereas Gr63a1 mutants were less able to distinguish

between the two (p = 0.03; unpublished data). These results suggest

that CO2 plays a role in the detection of live yeast paste and that

Gr63a is important for chemotaxis to this food source.

If CO2 is an important cue for modulating longevity from yeast

odorants, then live yeast should fail to impact the lifespan of

Gr63a1 mutant flies. Consistent with this prediction, we found that

the odor of live yeast modestly reduced lifespan compared to

controls in two wild-type genetic backgrounds (w1118 and yw) and

in replicate trials (Figure 4C, p,0.002), whereas in three out of

four cases, yeast paste odorants failed to significantly impact the

longevity of Gr63a mutant flies (Figure 4C). In the single instance

where there was a statistically significant effect, exposure to the

yeast odor resulted in a moderate increase in Gr63a lifespan.

Indeed, there was a trend in all four replicates for yeast paste to

increase the lifespan of flies with the Gr63a1 mutation (Figure 4C).

Notably, Or83b mutants, which are broadly anosmic but retain the

ability to sense CO2 [34], exhibited a normal longevity response to

odorants from live yeast (Figure 4D). Finally, consistent with a

requirement for the yeast to be alive, we found that autoclaved

yeast did not alter the lifespan of wild-type or Gr63a1 mutant flies

(Figure 4C, right, see also Figure S6B).

Discussion

Evidence from work in the nematode worm, C. elegans, and in

the fruit fly, D. melanogaster, has established that aging is strongly

CO2 Sensing Affects Fly Aging
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Figure 3. Flies with loss of function in Gr63a exhibit alterations in physiology and changes in resistance to particular stresses. (A)
Female Gr63a1 mutants exhibited higher triglyceride levels than control flies. This was observed in two independent genetic backgrounds, w1118 and
yw. Transgenic rescue of Gr63a restored mutant fat levels to that seen in wild-type flies. Overexpression of Gr63a had no effect on triglyceride levels.
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yeast-sucrose diet. Flies were moved to new vials daily, and eggs were counted each day for 10 d. The plot is representative of three independent
experiments (p,0.0001 for final cumulative egg count). (D) Gr63a mutant flies (solid green line) exhibited higher resistance to 10 mM paraquat
feeding than controls (dashed red lines; p = 161026). Paraquat (10 mM) in a 5% sucrose solution was fed to the flies. (E) Gr63a1 mutants exhibited
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modulated by sensory systems and that this modulation is

evolutionarily conserved. In the worm, ablation of specific sensory

neurons increases lifespan, as do mutations in genes required for

sensory signal transduction [6,7]. In flies, exposure to food-based

odorants is sufficient to reduce lifespan and partially reverse the

beneficial effects of dietary restriction [8]. Furthermore, odorant

normal daily activity patterns (left), overall activity, and overall sleep (right). Activity data are representative of at least three independent experiments
using Trikinetics activity monitoring hardware. Each trace is the composite average of 5 d of recording and 16+ animals per group. General trends
were confirmed using video-based analysis. Error bars represent standard errors of the mean. ZT, zeitgeber.
doi:10.1371/journal.pbio.1000356.g003
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Figure 4. The role of Gr63a in longevity through diet restriction and exposure to food-derived odors. (A) Longevity of Gr63a1 mutant
flies was further extended by dietary restriction. Gr63a mutants live significantly longer when fed a low-nutrient diet (5% sugar-yeast diet, green solid
line) than when fed a high-nutrient diet (15% sugar-yeast diet; red solid line, p,1610215). A similar diet-dependent extension of lifespan was
observed in control animals (red vs. green dashed lines; p = 1610210). Sample sizes are as follows: fully fed: control, 269; mutant, 270; diet restriction:
control, 251; mutant, 235. (B) Of a range of food-based odorants tested, such as mango scent and apple cider vinegar, only odors from live yeast
consistently affected lifespan of w1118 female flies (see Table S2 for additional details). Samples sizes are water, 258; mango, 262; vinegar, 260; and
yeast, 244. (C) Yeast odors failed to impact lifespan of Gr63a1 mutants. In multiple experiments involving control and mutant flies in two independent
genetic backgrounds (w1118 and yw), Gr63a mutants did not exhibit reduced lifespan when exposed to odor from live yeast. In all four experiments,
there was a tendency for yeast odor to increase Gr63a1 mutant lifespan, but the effect was small and statistically significant in only one instance.
Killing of the yeast through autoclaving removes the lifespan-shortening effects in wild-type flies. (**p,0.001, *p,0.01; see also Figure S6B). (D) Flies
that are homozygous for a null mutation in Or83b have greatly reduced general olfactory capabilities but are able to sense CO2 normally. The lifespan
of Or83b animals was also reduced by live yeast odor (p = 161028). Samples sizes are: control, 274; yeast-odor supplemented, 279. All odorant-
supplemented longevity experiments were carried out using 5% (low nutrient) sugar-yeast medium. Error bars represent standard errors of the mean.
doi:10.1371/journal.pbio.1000356.g004

CO2 Sensing Affects Fly Aging

PLoS Biology | www.plosbiology.org 7 April 2010 | Volume 8 | Issue 4 | e1000356



receptor Or83b loss of function, which abolishes olfactory

responses in a majority of olfactory neurons and leaves flies

broadly anosmic, results in significantly increased lifespan.

Olfactory signaling also impacts stress response and energy

balance; Or83b mutant flies are resistant to starvation and

hyperoxia, and females have gross alterations in fat deposition [8].

There are at least two possible explanations for the Or83b mutant

phenotype. First, global loss of chemosensory function and a general

lack of olfaction may be required for extended longevity.

Alternatively, it may be that the longevity observed in Or83b mutant

animals results from an inability to detect a small number of specific

odorants, as identified and processed by specific odorant receptors.

To distinguish these alternatives, we have begun investigating the

lifespans of flies with loss of function in individual odorant receptors

that are known to have ecologically important ligands.

We focused on Gr63a because of its specialized role in CO2

sensing. At low concentrations, CO2 serves as a stress pheromone

and elicits avoidance behavior [15], whereas in other contexts, it

may carry information about nutritious food sources [14]. Unlike

Or83b, Gr63a is associated with highly specific olfactory functions.

It is expressed in only a small number of specialized olfactory

neurons, which are found in the ab1 sensilla of the antennae

[16,17]. These neurons send axons to a single glomerulus, the V

glomerulus, in the most ventral portion of the antennal lobe of the

brain, which responds selectively to CO2 [15]. Recent work has

established that Gr63a colocalizes with a second receptor, Gr21a,

and both are required for gaseous CO2 chemosensation [17,18].

CO2 sensing is likely confined to Gr63a/Gr21a-expressing neurons;

of 39 other chemosensory receptors examined, none exhibited a

comparable response to CO2 [17].

Our results support a model in which the sensing of CO2 limits

lifespan, fat storage, and some aspects of stress resistance. Flies

homozygous for a null allele of Gr63a (Gr63a1) are long-lived, fat,

and resistant to the oxidative stress–generating compound

paraquat. Ablation of Gr63a-expressing cells phenocopies the

mutant longevity phenotype. Furthermore, the Gr63a receptor is

required for sensory perception of live yeast to have an influence

on fly lifespan. Together, these data implicate a highly specialized

neurosensory circuit involving CO2 detection and subsequent

activation of ab1C neurons and the V glomerulus as sufficient to

modulate fly lifespan and physiology.

Why does perception of CO2 lead to changes in lifespan? One

possibility is that it is an important component of complex, food-

based smells and provides information about nutrient availability.

Faucher et al. postulated that CO2 plays a role in the behavioral

response to profitable food sources [14], and certain food sources

that emit CO2 also emit odorants that reduce CO2 sensitivity and

inhibit avoidance behaviors [35]. Compared to control animals,

Gr63a1 mutants were less attracted to live yeast. It must be kept in

mind, however, that Gr63a mutant animals exhibited enhanced fat

storage. This difference in energy reserves may translate into

reduced motivation to locate food in our odor trap assay in which

flies become increasingly food deprived. Nevertheless, wild-type

flies are less attracted to killed yeast than they are to live yeast,

which provides further support for this idea (unpublished data). If

food perception is the key to the longevity effect, then it is

somewhat perplexing that lifespan extension through Gr63a acts

additively with standard diet manipulation. A second possibility

derives from the suggested role of CO2 as a stress pheromone [15].

In our aging experiments, flies are kept together as small groups in

vials where it is conceivable that CO2 levels are slightly elevated

compared to ambient air. Perhaps Gr63a mutant flies experience

less chronic stress and are healthier as a result. This explanation is

unlikely. We measured CO2 levels in the vials and were unable to

detect a significant difference from normal room air (unpublished

data). We also observed similar increases in Gr63a lifespan when

flies were maintained at lower densities (unpublished data).

Further analysis of the molecular and physiological changes

induced by CO2 sensing or Gr63a loss of function may help

distinguish these alternatives.

Perhaps some understanding of the influence of CO2 in Drosophila

can be gleaned from its sex-specific effects. We find that loss of

function in Gr63a clearly affects female lifespan but not the lifespan

of males. Sex-specific effects on lifespan in Drosophila have been

reported for dietary restriction [36] and insulin signaling [37,38]

(with females more affected), and more recently for ecdysone

signaling [39] (with males more affected). Overall, however, sexual

dimorphisms in the response to longevity-extending manipulations

have not been explored, and there is very little understanding of the

underlying mechanisms [40]. Particularly relevant for this work, it

was recently shown that female flies exhibit a different behavioral

sensitivity to CO2 compared to males. The presence of food-related

odors, for example, sensitizes females, but not males, to avoid low

concentrations of the gas [14]. This may be related to physiological

requirements; female flies require high protein–based food sources

to support egg laying. Consistent with this interpretation, we found

that male lifespan was unaffected by Gr63a mutation or the odor of

live yeast paste. The sex-specific effects of Gr63a on lifespan may

therefore be due to differences in olfactory stimulation or in the

processing of odor information or both.

There is growing evidence that different odorants, and their

cognate odorant receptors, may be capable of modulating lifespan

in different ways and with different effects [7,29]. Although the data

are not conclusive, our results suggest that food-based odors may

have both lifespan-extending and lifespan-shortening components.

Unlike control animals, Gr63a mutant flies tended to exhibit an

increased lifespan in the presence of live yeast odor. This effect was

always small, but it reached statistical significance in one of four

experiments. Wild-type flies sensing apple cider vinegar, another

food-based odorant, had a small but significantly increased lifespan

compared to those exposed to a pure water control (Figure 4B,

Table S1). Therefore, although our results suggest that CO2 is the

dominant component of yeast odor that limits fly lifespan, there are

indications of other odorants with beneficial effects.

Do the two olfactory receptors that impact fly lifespan, Or83b

and Gr63a, impinge on the same molecular pathways to affect

aging? Both mutants have similar effects on fat deposition (they

increase it) and on some aspects of stress resistance (both are

resistant to particular forms of oxidative stress). Both lack obvious

defects in growth, general activity, or reproduction. Nevertheless,

several lines of evidence point to their acting through at least partly

distinct signaling pathways. First, Or83b mutants are broadly

anosmic, but their CO2-sensing capabilities are largely intact

[34,41]. This is the opposite of Gr63a mutants, whose functional

deficits are thought to be confined to CO2 sensing. Second, Or83b

mutant flies exhibit enhanced resistance to a broad spectrum of

environmental stressors, whereas Gr63a mutants are resistant to only

select stresses (paraquat, but not starvation, for example). Third,

longevity extension through loss of Or83b function is observed in

both sexes and is partly dependent on diet. Gr63a mutation affects

female longevity only, and we find no evidence for an interaction

between dietary restriction and Gr63a mutation with respect to

longevity extension. These considerations suggest the presence of at

least two distinct neurosensory signaling pathways that act through

independent neurosensory circuits to modulate fly aging.

We postulate that although different species may have distinct

abilities to detect and characterize odors, the biological impact of

the perceived information may be evolutionarily conserved and
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important for human biology [42]. For us, it may not be the smell

of yeast, for example, or the sensing of CO2 that affects aging, but

it may be the perception of food or danger. For example, the

human cephalic phase response, which is elicited by the sight,

smell, and taste of food, stimulates the release of hormones,

including insulin and glucagon, that have been linked to aging in

several model systems [29]. If true, such a model lends itself to

intriguing possibilities. Sensory systems, because of their peripheral

nature, are ideal targets for intervention. An incisive combination

involving targeted knockdown of certain sensory inputs and

stimulation of others, either through gene therapy or controlled

perceptual experience, might form the basis of a simple, yet

powerful, program of disease prevention and healthy aging.

Materials and Methods

Fly Strains
All fly stocks were obtained from the Bloomington Stock center.

The stock numbers are: Gr63a1 (9941), UAS-reaper (5824), UAS-

Gr63a (23143), and Gr63a-GAL4 (9943). All fly stocks were

backcrossed to control line(s) at least seven times to control for

genomic variation.

Lifespan Studies
To control the density of developing larvae and synchronize the

emergence of adults, an equal volume of eggs was distributed into

bottles containing 30 ml of cornmeal-sugar-yeast food (see recipes

below in Materials and Methods and in Table S3). To ensure a

tight cohort of same-age flies at the onset of the experiment, adults

were collected within 24 h of eclosion and transferred to 10%

sugar-yeast food for mating. On day 3, flies were then sorted under

light CO2 anesthesia (flies were anesthetized for 3–5 min under

100% CO2 flowing at 5 l/min through a Flow Buddy and

standard fly pushing pad from FlyStuff.com). At least eight

replicate vials of 30 flies (males or females) were established for

each genotype/treatment. Unless otherwise noted, all longevity

experiments were performed in high nutrient conditions (15% SY

medium, see below). In certain cases, for example in experiments

examining lifespan of heterozygous animals, heterozygous mutant

parents were crossed, and all experimental flies developed together

as larvae. Adults were then treated as described above, and

genotypes were sorted by eye color. Flies were transferred to fresh

medium every other day, at which time dead flies were removed

and recorded. Flies were kept in constant temperature (25uC) and

humidity (60%) with 12:12 light:dark cycle.

Quantitative PCR
Flies were staged, collected, and sexed according to the procedures

outlined above for lifespan assays. On day 10 posteclosion, total

RNA was extracted using Trizol from Invitrogen. For each

genotype/treatment, at least three independent extractions were

performed using 40 fly heads for each extraction. Extracted RNA

was treated with 1 U DNAse I from Invitrogen and then reverse-

transcribed using Superscript III First-Strand Synthesis kit, also from

Invitrogen. Real-time PCR was performed using RT2 SYBR green/

Rox PCR master mix from SA Biosciences and an ABI 7000. The

following primers were used: Gr63aF (AATTCCGGACACAGT-

CTCTC), Gr63aR (ATTAGCACTGTTCAGCGGTT), RP49F

(ACTCAATGGATACTGCCAG), and RP49R (CAAGGTGT-

CCCACTAATGCAT).

Triglyceride Assay
Flies were collected and sorted according to the procedures

outlined above for lifespan assays. For each measure, five females

were collected on day 10 posteclosion and were homogenized in

300 ml of PBS/0.05% Triton-X. Fly homogenate (10 ml) was then

added to 200 ml of Infinity Triglyceride Reagent (Thermo

Electron Corp) and incubated at 37uC for 15 min with constant

agitation. Triglyceride levels were determined by measuring

absorbance at 520 nm and total amounts were determined using

a triglyceride standard. Data were normalized to protein levels

measured via Bradford assay. Each data point was based on six

replicates from three different vials.

Odor Trap Assays
Flies were collected and sorted according to the procedures

outlined above for lifespan assays. Following mating, 3-d-old

females were separated from males using light CO2 anesthesia and

placed into vials (30 flies per vial) containing 10% sugar-yeast food.

Flies were transferred to new vials every other day (without

anesthesia) for 7 d. The evening of the ninth day, females were

place in fresh vials containing only 1% agar for overnight food

deprivation. On the morning of day 10, multiple cages were

established with 30 females. Each chamber contained two traps:

one yeast trap and one control trap (water). Flies were monitored

continuously, and the number of flies in each trap was recorded

every 30 min. These data were used to calculate an attraction

index (AI), which is computed as the (# of flies in yeast trap 2 #
of flies in control trap)/(total # of flies). Flies that failed to enter

one of the traps after 24 h were omitted from the total. For assays

comparing autoclaved versus live yeast, the traps consisted of one

live yeast trap and one trap with yeast paste that had been

autoclaved on a 30-min cycle.

T-Maze Test for CO2 Avoidance
Flies were collected and sorted according to the procedures

outlined above for lifespan assays. Following mating, 3-d-old

females were separated from males under light CO2 anesthesia

and placed into vials (40 flies per vial) containing 10% sugar-yeast

food. Flies were transferred to new vials every other day (without

anesthesia) for seven days. On day 10, flies were collected without

anesthesia and subjected to a T-maze. For each measure, 40

females were placed into a T-maze with ,4% CO2 air stream on

one side and room air on the other. Flies were given 1 min in the

absence of light to decide between the two sides. For each

measure, an attraction index was calculated as the (# of flies

moving toward CO2 2 # of flies moving away)/(total # of flies).

Flies that failed to make a choice were discarded. At least eight

replicate measures were collected for each genotype/treatment.

Behavioral Monitoring
For most experiments, we used the DAM5 activity monitoring

system (Trikinetics) for recording photobeam crosses by individual

flies. Summary and statistical analyses were conducted using

custom scripts with the R statistical computing platform. Flies were

between 10–20 d old and monitored on 10% SY food. At least 16

flies were used per group, and locations were randomized to avoid

position effects. Data were collected in 1-min bins for 5–6 d; the

first day was discarded to avoid effects of CO2 anesthesia and

adjustment to the environment. A subset of the Trikinetics data

were verified using a continuous video-based monitoring system.

For these experiments, video cameras were suspended above

DAM5 monitors, and flies were recorded continuously for 5 d.

Video analysis software developed in our laboratory was used to

confirm the Trikinetics data by tracking individual animals and

calculating movement frequency, distance traveled, sleep time,

sleep position, and a variety of other measures. For all

experiments, light, temperature, and humidity were maintained
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at 12-h light:12-h dark, 25uC, and 60%, respectively. Flies with

.5 min of consecutive inactivity were considered to be in sleep.

Egg Laying/Fecundity
For each genotype/treatment, 13–15 virgin female flies were

collected and placed individually into vials with 15% sugar-yeast

food. After 3 d, two control males were placed into each vial. Flies

were transferred to fresh vials every day, and eggs were counted

daily for 2 wk. Flies that did not survive the experiment were

omitted.

Oxidative Stress (Paraquat)
Flies were collected and sorted according to the procedures

outlined above for lifespan assays. Following mating, 3-d-old

females were separated from males under light CO2 anesthesia

and placed into vials (20 flies per vial) containing 10% sugar-yeast

food. Flies were transferred to new vials every other day (without

anesthesia) for 7 d. On the evening of the ninth day, females were

placed in fresh vials containing 1% agar for overnight food

deprivation. On the morning of day 10, flies were transferred into

vials containing 10 mM methylviologen (Invitrogen) dissolved in

5% sucrose dispensed onto filter paper. Survivorship was

determined at least twice per day.

Starvation
Flies were collected and sorted according to the procedures

outlined above for lifespan assays. Following mating, 3-d-old

females were separated from males under light CO2 anesthesia

and placed into vials (20 flies per vial) containing 10% sugar-yeast

food. Flies were then transferred to new vials every other day

(without anesthesia) for 7 d. The morning of the tenth day, females

were placed in fresh vials containing 1% agar. Survivorship was

determined at least once per day.

Odor Longevity Experiments
Flies were collected and sorted according to the procedures

outlined above for lifespan assays. Flies were placed into vials as

for standard longevity, but the vials were then placed into closed

acrylic chambers where air was streamed into the chambers at the

rate of 0.5 l per min using an Air Delivery System from ARS, Inc.

(http://www.ars-fla.com/Mainpages/AirDelivery/ADS_systems.

html). To insure proper airflow and to prevent air pressure

changes, air left the chamber via an outlet on the opposite side. In

each case, air was pumped through a particular solution prior to

entering the chamber. This solution contained water-based

mixtures with the appropriate odorant or vehicle control. For

yeast odorants, live yeast pellets (Fleischmann’s active dry) were

added to water, and these solutions were changed daily. Other

solutions were changed as needed. Instead of normal vial plugs,

experimental vials had specially designed wire-mesh tops to allow

free flow of air and odorants to the flies. The flies were transferred

to fresh medium every 2–3 d, and the dead flies were removed and

recorded. Low-nutrient medium (5% SY, see below) was used to

maximize the longevity effect [8]. Flies were kept in constant

temperature (25uC) and humidity (60%) with 12:12 light:dark

cycle. The scents described in the experiment were: (1) mango

scent: ethanol, acetic acid, and 2-phenylethanol were mixed in a

ratio of 1:22:5. This mixture was then mixed 1:99 with water. See

[33] for additional details; (2) apple cider vinegar: 10% store-

bought apple cider vinegar mixed in water; (3) yeast paste: 5 g of

live bakers’ yeast added to 50 ml of water; (4) dead yeast paste: live

yeast were autoclaved for 30-min gravity cycle, and then used at

5 g/50 ml as for live yeast paste; (5) ethanol: 3% ethanol in water;

(6) hexanol: 1% hexanol dissolved in paraffin oil; and (7) isoamyl

acetate: 1% isoamyl acetate in paraffin oil.

Feeding Assay
Flies were collected and sorted according to the procedures

outlined above for lifespan assays. Fifteen-day-old female flies were

placed on 10% sugar-yeast food containing FD&C Blue #1 for

6 h beginning at noon. Each vial containing five flies was

homogenized in 75 ml of PBS +0.05% Triton X-100 using a

TissueLyser bead mill (Qiagen) and filtered to remove large

particles. Absorbance at 620 nm was measured and compared to a

standard curve. Dye levels were normalized to total protein as

measured by the bicinchoninic acid (BCA) method (Pierce). Each

column represents the data from eight different vials per group.

Statistical Analysis
Unless otherwise indicated, pairwise comparisons between

control and mutant survivorship curves were carried out using

the statistical package R with WinChecker, a survival analysis

package developed in the Pletcher Laboratory. p-Values were

obtained using log-rank test. For comparisons involving gene

expression, pairwise t-tests were carried using independent RNA

extractions as the unit of observation. Comparisons between

mutant and control lines for triglyceride levels and egg production

were obtained using t-test with vial (or group of flies) as the

observational unit, whereas activity measures were compared from

individual flies.

Fly Food
Please refer to Table S3 for the ingredients for each of the diets

used in this paper. Water (1) and agar were combined in a large

kettle. The solution was simmered under slow mixing for 40 min.

We then combined water (2), yeast, sucrose, dextrose (MP

Biomedicals), and cornmeal (SYSCO Corp.) in a separate

container and mixed well. This mixture was then added to the

agar solution, and mixing speed was increased while the food

boiled for 15 min. Heat was removed, and the food was allowed to

cool to 65uC, after which, tegosept and propionic acid were added,

and the food was dispensed into 150-ml bottles or 28.5695-mm

vials (Genesee Scientific).

Supporting Information

Figure S1 Verification of Gr63a1 mutant deficiency in
CO2 sensing. Flies were placed in a T-maze for 1 min without

light. One end of the T-maze contained air, and one end

contained ,4% CO2. Flies that did not enter either chamber were

discarded. Forty flies were used for each measure, and a minimum

of eight measures were made for each genotype.

Found at: doi:10.1371/journal.pbio.1000356.s001 (0.47 MB EPS)

Figure S2 Details of female-specific longevity extension
in Gr63a1 mutant flies. (A) Longevity extension in Gr63a

homozygous mutant flies is female specific. After 12 generations of

backcrossing, Gr63a male longevity was indistinguishable from

control males (p = 0.19, log-rank test). n = control, 224; mutant,

197. (B) Longevity extension in Gr63a mutant females persisted

after 20 generations of backcrossing (p = 261027). n = control,

228; mutant, 243. (C) Age-specific mortality rates for Gr63a

homozygous mutant and control females. Age-specific mortality is

calculated as 2ln(px) where px is the probably of surviving age x.

Mortality rates are presented on the natural log scale.

Found at: doi:10.1371/journal.pbio.1000356.s002 (1.05 MB

EPS)
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Figure S3 Flies heterozygous for the Gr63a1 exhibit no
obvious phenotypes. (A) Flies carrying only a single copy of the

Gr63a1 null allele exhibited lifespan similar to that seen in wild-

type flies (p = 0.24 comparing heterozygotes to wild-type). n =

control, 220; heterozygous mutants, 231, homozygous mutant,

213. (B) Gr63a1 heterozygotes have similar levels of triglyceride

that are statistically indistinguishable from controls (p = 0.24) but

significantly different from Gr63a homozygous mutants (p = 0.03).

(C) Gr63a1 heterozygous flies have normal resistance to paraquat

(p = 0.73). (D) Gr63a1 mutant flies consume food at the same rate as

wild-type animals (p = 0.52). Food consumption is expressed in

terms of micrograms of blue dye ingested per microgram of fly

protein, over a 6-h period.

Found at: doi:10.1371/journal.pbio.1000356.s003 (1.11 MB EPS)

Figure S4 Age-specific mortality rates for flies express-
ing the proapoptotic gene reaper using GR63a-GAL4 to
ablate the associated neurons. Female Gr63a.reaper flies

exhibited consistently lower mortality rate than corresponding

controls, including w1118 wild type, UAS-reaper only, and Gr63a-

Gal4-only. Age-specific mortality was calculated as 2ln(px) where

px is the probably of surviving age x. Mortality rates are presented

on the natural log scale.

Found at: doi:10.1371/journal.pbio.1000356.s004 (0.62 MB EPS)

Figure S5 Gr63a1 homozygous flies in the yw genetic
background exhibited higher resistance to oxidative
resistance paraquat. After backcrossing for ten generations,

Gr63a mutants show enhanced resistance to oxidative damage

when placed on 10 mM paraquat (p = 9610212).

Found at: doi:10.1371/journal.pbio.1000356.s005 (0.51 MB EPS)

Figure S6 Behavioral and longevity responses to live
yeast paste in Gr63a1 mutants. (A) Gr63a flies are less

attracted to odor from live yeast paste. For each measure, 30

females were placed in a chamber containing one yeast trap and

one control trap (water). Flies were counted at 30-min time

intervals. At least four replicate measures were obtained for each

genotype. Attraction index is calculates as (# of flies in yeast

trap 2 # of flies in control trap)/(total # of flies). Flies that did not

enter one of the traps overnight were omitted. (B) Yeast paste

odorants do not affect Gr63a longevity. One representative

experiment (of those shown in Figure 4C) showing the survivorship

data for Gr63a mutants, whose lifespan is unaffected by exposure

to live yeast–based odorants (p = 0.86). Autoclaved yeast does not

affect the lifespan of either wild-type or Gr63a homozygous mutant

flies. (p = 0.4 and 0.3, respectively). n = mutant flies: dead yeast,

228; live yeast, 211; water, 233. Control flies: dead yeast, 235; live

yeast, 231; water, 227.

Found at: doi:10.1371/journal.pbio.1000356.s006 (0.97 MB EPS)

Table S1 Summary of Gr63a mutant longevity data.

Found at: doi:10.1371/journal.pbio.1000356.s007 (0.02 MB XLS)

Table S2 Summary of odor-longevity data.

Found at: doi:10.1371/journal.pbio.1000356.s008 (0.04 MB

DOC)

Table S3 Fly media ingredients.

Found at: doi:10.1371/journal.pbio.1000356.s009 (0.04 MB

DOC)
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