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Abstract

Changes in gene expression play an important role in evolution, yet the molecular mechanisms underlying regulatory evolution
are poorly understood. Here we compare genome-wide binding of the six transcription factors that initiate segmentation along
the anterior-posterior axis in embryos of two closely related species: Drosophila melanogaster and Drosophila yakuba. Where we
observe binding by a factor in one species, we almost always observe binding by that factor to the orthologous sequence in the
other species. Levels of binding, however, vary considerably. The magnitude and direction of the interspecies differences in
binding levels of all six factors are strongly correlated, suggesting a role for chromatin or other factor-independent forces in
mediating the divergence of transcription factor binding. Nonetheless, factor-specific quantitative variation in binding is
common, and we show that it is driven to a large extent by the gain and loss of cognate recognition sequences for the given
factor. We find only a weak correlation between binding variation and regulatory function. These data provide the first genome-
wide picture of how modest levels of sequence divergence between highly morphologically similar species affect a system of
coordinately acting transcription factors during animal development, and highlight the dominant role of quantitative variation
in transcription factor binding over short evolutionary distances.
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Introduction

Despite four decades of interest in the evolution of transcrip-

tional regulation, we still have a poor understanding of the

molecular bases for regulatory divergence and the constraints

under which cis-regulatory sequences evolve. Most regulatory

sequences appear to be under strong selection to maintain their

transcriptional output, and as a result, binding sites for the

sequence-specific transcription factors that regulate mRNA

synthesis are preferentially conserved [1,2]. However, even in

regulatory sequences with highly conserved function, transcription

factor binding sites can be gained and lost over time at a high rate,

leading to considerable differences in the composition and

arrangement of binding sites between even closely related species

[2–10]. Whether and how this binding site turnover affects

transcription factor binding, and what the consequences of

changes in binding on transcription might be, remains unknown.

After years in which the study of regulatory evolution was

primarily a computational exercise, a series of recent studies have

compared genome-wide in vivo binding of transcription factors in

the same conditions or tissues of related species [11–14]. Among

yeasts of the genus Saccharomyces [11,12] and between human and

mouse [13,14], a substantial fraction of experimentally observed

interactions between transcription factors and DNA are species-

specific. While these differences could, in principle, be due to

divergence of transcription factors and other trans-acting factors,

binding differences appear to be driven primarily in cis [13],

suggesting that differences in the sequences, and not the factors

binding to them, drive the divergence in binding. Species-specific

binding is generally associated with the gain/loss of sequence
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motifs recognized by the relevant factor [11,14], although the

correlations are weak.

Here we examine how the binding of a group of six factors that

direct temporal and spatial patterns of gene expression along the

anterior-posterior (A-P) axis during early development differs

between Drosophila melanogaster and its sister species D. yakuba. These

two species, whose genomes have been fully sequenced [15,16],

diverged only five million years ago [17]. They are separated by a

molecular distance less than half that between mouse and human

[18], and D. yakuba orthologs of virtually all D. melanogaster genomic

regions can be readily identified and aligned. Though there are

some subtle changes in the levels of expression of key regulators

between these species (our unpublished data), there is little

difference in either their spatial expression patterns or those of

their targets, a product at least in part of strong selection to

maintain them [10].

In our earlier work on the binding of these factors in D.

melanogaster, we showed that they bind to an overlapping set of

thousands of genomic regions in vivo [19,20], as has subsequently

been observed for many other animal transcription factors [21]. A

wealth of evidence suggests that, at least in D. melanogaster, and

probably generally, only the several hundred most highly bound

regions are directly involved in transcriptional regulation, with the

remainder having a different, or more likely no, function [19,20].

Thus these two fly species provide an ideal opportunity to

study the effects of modest sequence divergence on transcription

factor binding, its origins in changes in genomic sequence, and its

functional consequences. We expected binding differences

between D. melanogaster and D. yakuba to be more modest than

those observed between mouse and human, or between

Saccharomyces species. However, we hoped that the more modest

differences in their genomes would improve our ability to

associate sequence and binding divergence, and that our earlier

work establishing the relationship for these factors between

binding levels and regulatory function would provide an

invaluable context for analyzing the functional consequences of

the binding differences we observe.

Results

We collected embryos spanning the hour immediately preced-

ing gastrulation, during which the regulatory events that initiate

patterning along the A-P axis occur, from large laboratory

populations of D. melanogaster (Oregon R) and D. yakuba (Tai8E2),

and immediately immersed them in formaldehyde to covalently

stabilize protein-DNA interactions. We isolated chromatin from

each species, and immunoprecipitated bound regions with affinity

purified rabbit polyclonal antibodies raised against the D.

melanogaster versions of the key A-P regulators: Bicoid (BCD),

Hunchback (HB), Krüppel (KR), Giant (GT), Knirps (KNI), and

Caudal (CAD). We sequenced recovered fragments on an Illumina

Genome Analyzer II, mapped reads to the reference genomes of

each species using Bowtie [22], and calculated fragment coverage

based on the average fragment length in the immunoprecipitated

material (Table 1 gives statistics on the numbers of sequenced and

mapped tags for each experiment in both genomes). We

normalized the signal between species so that the average binding

across a diverse set of known targets of these factors was equal, and

projected the normalized binding signals from each species onto

the coordinates of a whole-genome pairwise alignment computed

using Mercator [23] and FSA [24].

We began our analysis of binding divergence by examining

previously identified targets of these six factors (Figure 1) [19].

Overall, binding to these loci is remarkably similar between species

(Figure 1A), with both bound regions and their relative binding

intensities similar for most factors across most loci (we note that the

normalization did not consider the pattern of binding—just levels

across the locus). Several types of binding divergence are evident,

including the gain or loss of binding (Figure 1B), shifts in the

precise location of binding (Figure 1C), and changes in the height,

but not location, of binding peaks (Figure 1D). Note that with only

two species it is impossible to determine whether features found in

one species but not the other represent gains or losses relative to

the common ancestor.

To get a comprehensive picture of this variation, we identified

genomic regions significantly bound by each factor indepen-

dently in both species using MACS [25] with total chromatin as

controls (‘‘Input’’ controls). While the signal-to-noise ratio was

higher in D. melanogaster than in D. yakuba, yielding more

detected peaks in D. melanogaster for all factors (Table 2), the

relative numbers of peaks identified for each factor were similar

in the two genomes. For each bound region in each species we

quantified the number of sequence reads observed in the region

in the source species and in the orthologous region of the other

species.

Before analyzing species-specific differences in binding in detail,

we sought to establish that observed differences between D.

melanogaster and D. yakuba were due to bona fide interspecies

differences in binding, and not experimental noise or bias. As in

our earlier work [19], we performed chromatin immunoprecipi-

tation (ChIP) with antibodies recognizing different domains of

several of the targeted proteins. Antibodies recognizing the N and

C terminal domains of HB and KR give nearly identical results in

Author Summary

The differentiation of cells, tissues, and organs during
animal development is established by a process in which
genes that control cell identity and behavior are turned on
and off at specific times and places. This process is
choreographed, to a large extent, by a collection of
proteins known as transcription factors that bind to
specific sequences in DNA and thereby modulate the
expression of neighboring genes. Because of the central
role that transcription factors play in shaping organismal
form and function, they have long been suggested to be
major players in phenotypic evolution. However, we have
a poor understanding of how changes to DNA affect
transcription factor binding in living systems. Here, we use
a combination of biochemical and genomic techniques to
compare, between two closely related species of fruit flies
in the genus Drosophila, the binding of six transcription
factors that help establish the characteristic segments that
form along the anterior-posterior (head to tail) axis in
developing flies. We show that the patterns of transcrip-
tion factor binding between these closely related species
are broadly conserved, consistent with the nearly identical
development and appearance of these species. However,
we also show that, whereas the DNA changes that have
accumulated between these species in the five million
years since their divergence—roughly one difference per
10 basepairs—have not altered the locations where these
factors bind, they have had a considerable effect on the
amount of factor bound at each site across a population of
embryos. We can trace these quantitative differences in
binding to the gain and loss of the short sequences known
to be preferentially recognized by these factors, giving us
key insights into the effect that sequence changes have on
the biochemical events that underlie animal development.

Quantitative TF Binding Variation
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both species, with correlations of 0.99 and 0.97 over called peaks

for these antibodies in D. melanogaster and correlations of 0.98 and

0.94 in D. yakuba (Figure S1). In contrast, correlations of the

binding levels for the same antibody between species range from

0.57 to 0.75, demonstrating that the binding differences are not

due to experimental noise. It is also highly unlikely that these

difference arise from differential affinity of the antisera for

transcription factors from the two species, as there are three or

fewer amino acid changes between the species for five of the six

factors (KR has more than 10).

We were also concerned that differences in sequence compo-

sition or chromatin state might interact with the sequencing

protocol to produce apparent interspecies differences in binding.

To evaluate this, we examined genome-wide variation in the total

chromatin sequencing signal (‘‘Input’’ control). There was no

correlation between the Input signal and binding in the individual

species (Figures S2 and S3) and only a weak correlation between

interspecies differences in ChIP and Input signals (from 0.04 to

0.14; Figure S4). This latter correlation is likely due to interspecies

differences in chromatin state and corresponding differences in

fragmentation [26], but is too weak to explain the observed

differences in factor binding.

Quantitative Changes Dominate Binding Differences
between D. melanogaster and D. yakuba

Unlike in the yeast and mammalian studies described above, the

gain or loss of bound regions between D. melanogaster and D. yakuba

was rare, with fewer than 1% to 5% of peaks (depending on the

factor) found in one species clearly absent or displaced in the other

(Table 2). The rate of gain/loss near known targets of the A-P

factors was similar to the genome-wide rate (Table 2).

The measured binding at orthologous regions bound in both

species varied considerably (Figures 2, S5, and S6) both in the

highly bound regions that our previous studies suggested are

functional targets of these factors [19,20] and in the poorly bound

regions that likely are not. The more highly bound regions showed

a greater total variation in binding (Figure S7), with the

normalized divergence (difference in binding over average binding

level) roughly constant across binding levels (Figures 3 and S8) and

relative to annotations (Figure S9).

The divergence was marginally lower within the 44 character-

ized D. melanogaster cis-regulatory modules (CRMs) known to be

targeted by one or more of these factors (correlation rA-P from 0.62

to 0.91 compared to 0.57 to 0.75) [27] and in peaks near genes

(within 10 Kb of the 59 end) known to be regulated by these A-P

factors (correlation rA-P from 0.59 to 0.92, depending on the

factor).

Binding Site Turnover Is a Major Source of Quantitative
Variation in Binding

We sought to determine the extent to which sequence changes

in the bound regions drove quantitative differences in binding. We

first examined overall measures of sequence divergence. Levels of

single-nucleotide divergence (sequence identity) and frequency of

insertions and deletions in the 100 base pairs centered on the

inferred peak of binding exhibited only low to moderate

correlations with binding divergence (0.07 to 0.24; Figures S10

and S11), consistent with our expectation that changes to specific

short sequences, rather than entire regions, would have a

disproportionate effect on binding.

We next sought to identify short sequences (e.g., transcription

factor binding sites) whose gain or loss was associated with changes

in binding levels. We devised an unbiased statistical approach that

assessed the impact on binding of changes to a short sequence

(word) by comparing the distribution of binding intensities in all

bound regions where the word was conserved to the distribution in

all bound regions where the word was present in one species but

not the other (defining bound regions as the 100 bp centered on

peaks of maximal binding intensity). If alterations to a word affect

binding, then these distributions should be different. We identified

such words (which we call divergence-driving words, or DDWs) by

comparing the conserved and non-conserved distributions for all

16,384 words of length 7 bp and picking those that showed a

statistically significant difference. We found DDWs for four of the

six factors, and in each case, virtually all of these DDWs matched

the known sequence specificities of the corresponding factor

(Figure 4).

To quantify the fraction of binding divergence that is explained

by the DDWs, we developed a method that used the gain and loss

of DDWs to predict binding divergence between the species. For

each factor for which we had identified DDWs, we built a simple

linear model relating the divergence of DDWs in a bound region

to interspecies difference in binding at that bound region. In the

model, each divergent DDW in a bound region contributed a fixed

amount to the predicted binding difference, with the effect of

multiple divergence DDWs adding independently. The contribu-

Table 1. Sequencing and mapping statistics.

Antibody Average Fragment Length Tags (D. melanogaster) Fraction Mapped Tags (D. yakuba) Fraction Mapped

BCD1 225 16,937,253 57.2% 6,394,260 44.6%

HB1 225 6,047,901 57.4% 4,495,105 36.5%

HB2 225 5,765,064 52.3% 4,317,045 35.6%

KR1 250 8,943,424 57.9% 10,405,884 38.3%

KR2 250 8,411,030 60.3% 10,209,264 44.1%

GT2 225 8,005,966 58.7% 6,766,174 54.7%

KNI2 225 7,431,816 55.5% 6,231,400 47.0%

CAD1 250 8,272,512 56.8% 9,822,743 42.6%

Input 225 25,120,853 55.5% 10,430,577 53.4%

Input 250 8,653,362 61.0% 6,167,546 51.6%

We required that sequenced tags map uniquely to the genome with at most one mismatch. The Input controls were segregated based on the average fragment length
(225 or 250 bp); identical fragment lengths were used in both species for particular antibodies.
doi:10.1371/journal.pbio.1000343.t001
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Figure 1. Modes of cis-regulatory conservation and divergence. Representative loci showing (A) broad conservation of binding, (B) complete
gain and loss of binding peaks, (C) shifts in binding site location, and (D) changes in peak strength with peak location preserved. The line plots show
binding to orthologous sequences in D. melanogaster (red) and D. yakuba (green), along with gene models and known regulatory elements in D.
melanogaster (top track), where the binding signal is the inferred fragment density. Gaps in the black lines (top two tracks) for each species indicate
gaps in the pairwise alignment of the two genomes. The plots are in alignment coordinates, and the chromosome positions indicated with tick marks
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tion of each DDW was determined by a regression using the least

angle regression method [28] with extensive cross-validation (see

Methods).

The correlations between predicted and observed divergence in

binding of single factors across all peaks with at least one DDW in

the two genomes ranged from 0.3 for HB to 0.41 for BCD (Figures

S12–S27). While far from perfect, these correlations demonstrate

that changes in a highly restricted collection of sequences (for

example, BCD has only a single 7 bp DDW) drive an appreciable

fraction of binding divergence between species. We additionally

performed the same predictions using words derived from the in

vitro factor binding specificities described by [29]. The correla-

tions between predictions and observations ranged from 0.18 for

HB to 0.39 in BCD, similar to or lower than the correlations

resulting from our DDWs (unpublished data).

We investigated whether the lack of a strong relationship

between probable enhancer function and quantitative conserva-

tion of binding was associated with similar trends at the sequence

level. For each factor for which we identified DDWs, we quantified

motif enrichment and conservation as a function of the level of

transcription factor occupancy in D. melanogaster. Motif enrichment

and conservation were elevated within bound regions above

background levels across the genome (Figure 5). The fraction of

peaks with motifs showed a weak dependence on binding levels,

with the most strongly bound regions exhibiting the greatest

density of motifs. The level of conservation of these motifs was

weakly correlated with overall binding levels, consistent with our

observation that quantitative divergence in binding strength

decreased slightly near genes regulated by these factors.

Binding Divergence of All Six Factors Is Strongly
Correlated

In our initial comparison of binding between species, we noticed

that increases in binding of a single factor were often correlated

with increases in binding of many other factors (Figures S28–S33).

For example, changes in the binding of KR correlated with

changes in the binding of other factors with r = 0.36 (KNI) to 0.62

(CAD), and such coordinated changes are recapitulated for all

pairs of factors. This widespread correlated change suggests a

factor-independent mode of binding divergence.

To obtain an unbiased assessment of the extent of these

correlated changes in binding, we quantified binding divergence

for all six factors in all regions significantly bound by any factor

and performed principal component analysis (PCA), a method for

analyzing variation between many factors simultaneously rather

than only pairs of factors, on these data (Figure 6A). The first

principal component, which represents the most significant axis of

variation in the dataset, has the same direction and similar

magnitude for all six factors, demonstrating that a pan-factor

coordinated binding shift is the dominant driver of A-P factor

binding divergence (this principle component explains 38% of the

overall variation in binding between the species). A similar effect

was observed when we performed PCA on the binding levels in

each species independently (Figure 6B and 6C), suggesting that a

common effect is responsible for much of the variation in binding

both between species and within a single genome.

The single-genome PCA revealed several interesting factor-

specific correlations: increases in binding of the repressor GT are

associated with decreases in binding of the activator HB (PC2 in

Figure 6B), increases in HB are associated with decreases in BCD

(PC3 in Figure 6B), etc. As expected, given the overall similarity of

binding between the species, the single-genome PCA analyses of

D. melanogaster and D. yakuba yielded essentially identical results.

To investigate whether the features captured by these different

principal components are related to specific sequences, we applied

the same motif discovery method described above to projections of

the binding data along each of the principal components shown in

Figure 6A. We discovered substantially more motifs in this analysis

(Figure 7) than in the single-factor analyses, likely because of the

increased statistical power derived from considering all regions

bound by any, as opposed to a single, factor.

Interestingly, one of the words whose divergence is associated

with the first principal component is the ‘‘TAGteam’’ motif,

Table 2. Gain and loss of peaks.

Factor Species
Total Peaks Called by
MACS

Peaks Absent in Ortholog
(A-P Genes)

Peaks Absent in
Ortholog (Non A-P Genes)

BCD D. melanogaster 2,004 1/95 (1.0%) 25/1,723 (1.5%)

D. yakuba 660 1/55 (1.8%) 9/567 (1.6%)

HB D. melanogaster 4,434 4/123 (3.3%) 251/3,951 (6.4%)

D. yakuba 1,581 6/73 (8.2%) 205/1,447 (14.2%)

KR D. melanogaster 6,209 4/158 (2.5%) 150/5,599 (2.7%)

D. yakuba 3,328 1/122 (0.8%) 104/3,106 (3.3%)

GT D. melanogaster 2,815 1/117 (0.9%) 72/2,471 (2.9%)

D. yakuba 2,508 2/102 (2.0%) 26/2,322 (1.1%)

KNI D. melanogaster 547 1/55 (1.8%) 15/448 (3.3%)

D. yakuba 377 0/40 (0.0%) 1/316 (0.3%)

CAD D. melanogaster 4,304 2/129 (1.6%) 89/3,894 (2.3%)

D. yakuba 1,870 1/98 (1.0%) 31/1,674 (1.9%)

Peaks were called as absent if the binding signal was reduced 10-fold or more in its ortholog. The denominators include only peaks where orthologs could be identified.
doi:10.1371/journal.pbio.1000343.t002

are sequence coordinates in D. melanogaster (FlyBase release 5). Levels of binding were scaled for each factor and panel as appropriate for display
and cannot be compared between factors or panels.
doi:10.1371/journal.pbio.1000343.g001
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Figure 2. Quantitative variation in binding between species. Comparison of binding levels in D. melanogaster and D. yakuba for all identified
bound regions. For each peak called in either species, we plotted the corresponding binding strengths in red for D. melanogaster and green for D.
yakuba; dark colors indicate peaks near known targets of A-P regulation. Peaks are ordered left-to-right on the x-axis according to their binding ranks
in D. melanogaster, and binding strengths in both genomes are plotted in log scale on the y-axis (binding units are arbitrary). Binding strength is well-
conserved for both peaks within 10 Kb of the 59 end of genes known to be regulated by A-P factors (‘‘rA-P’’) and those that are not (‘‘r’’) (list of A-P
target genes given in Methods).
doi:10.1371/journal.pbio.1000343.g002
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Figure 3. Fractional binding divergence is largely independent of binding strength. Comparison of the fractional binding divergence,
computed as |D. melanogaster 2 D. yakuba| / (D. melanogaster + D. yakuba), with total levels of binding. Each plotted point corresponds to the
median fractional binding divergence for overlapping cohorts of 250 peaks, and the error bars show the standard deviation of the fractional binding
divergence within these cohorts. Note that the sharp increases at the right-hand sides of the plots correspond to peaks that are present in D. yakuba
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CAGGTAG [30], the binding site for Zelda, an activator of the

early zygotic genome [31]. Zelda’s mechanism of action is

unknown, but the strong correlation between gain and loss of its

binding site with variation in changes in binding of all factors

supports a direct or indirect role for Zelda in nucleosome

positioning and chromatin remodeling.

Discussion

We have provided the first genome-wide picture of how modest

levels of sequence divergence between highly morphologically

similar species affect a system of coordinately acting transcription

factors during animal development. The pervasiveness of changes

in binding levels highlights the importance of treating transcription

factor binding as a quantitative trait. This is in contrast to previous

interspecies studies of in vivo binding [11,13,14], which focused on

the gain and loss of bound regions.

Although the gain/loss of bound regions is often associated with

the gain/loss of cognate binding sites, we establish here that the

primary biochemical effect of binding site turnover is to alter levels of

binding to existing bound regions. What remains unclear is whether

and how the small changes in the amount of bound factor affect

transcription, and under what circumstances such changes have

demonstrable phenotypic consequences. That there are no clear

differences in binding divergence between functional and non-

functional targets, and that the most strongly bound (and presumably

functional) regions show more absolute, and equal relative,

divergence suggests that much of the variation we observe between

these two species does not significantly affect organismal fitness,

consistent with the observation that binding site gain and loss in

active CRMs often does not result in significant changes in regulatory

function [6,10]. This is, however, far from definitive proof, and there

are many alternative explanations for this observation, such as

compensatory or directional selection on binding to functional

regulatory sequences. Exploring the molecular and developmental

consequences of quantitative variation in transcription factor binding

will be an exciting avenue for future research.

Although we and others have previously described a broad

correlation between factor binding in the Drosophila blastoderm

[19,20,32] and other systems, we were surprised at how strong this

common effect was in driving interspecies binding differences. It is

tempting to speculate that this effect arises from interspecies

differences in chromatin structure, which could readily produce

such a uniform effect on the binding of a large collection of factors.

However, the only direct evidence that chromatin differences may

cause binding differences is the association of the gain/loss of

CAGGTAG with the increase/decrease of the common factor

signal (PC1). CAGGTAG is the binding site for the factor Zelda, a

general zygotic activator of transcription with a putative

association with chromatin. CAGGTAG, however, explains only

a small fraction of the common signal.

Indirect cooperativity between factors, in which binding of

one factor alters chromatin state and thereby facilitates the

binding of other factors, may also play a significant role in

binding divergence. We have examined only six of the

approximately 40 transcription factors active at this stage of

embryogenesis. Given the extensive cross-binding of A-P and

dorsal-ventral regulators [19,33], it is likely that changes in the

binding of some of these additional factors influences the A-P

factor binding.

Lessons for Future Studies
Although D. melanogaster and D. yakuba are closely related, we

were not always able to accurately identify orthologous sequences,

largely due to ambiguities in the draft D. yakuba assembly. Even

where the orthology of regions was unambiguous, and despite this

close evolutionary distance, base-level alignments were frequently

uncertain. Our analysis of sequence-specific effects required a

precise alignment, and inevitable alignment errors will make

nucleotide-level analysis of regulatory changes challenging for

more distantly related species (although the alignment accuracy

estimates produced by FSA may help to identify reliably aligned

loci).

Several aspects of this experiment should help direct future

efforts to use comparative ChIP-Seq to study the relationship

between sequence and binding divergence. The widespread

quantitative binding divergence between D. melanogaster and D.

yakuba demonstrates that even relatively similar species can be used

Figure 4. Divergence is driven by turnover of transcription
factor binding sites. We identified a total of 26 divergence-driving
words (7 bp) for BCD (1), HB (12), KR (10), and GT (3). A red box in a
(row, column) entry indicates that the corresponding word (row) was
identified as a DDW for a particular factor (column); similarly, a solid
circle in a (row, column) indicates that a word (row) matches the DNA-
binding specificity of a factor analyzed here (column), and an empty
circle in a (row, column) indicates that a word (row) identified as a DDW
for a particular factor (column) matches the specificity of an A-P
transcription factor (plus Zelda), other than the six analyzed here, as
characterized by [29]. Sequence motifs and their reverse complements
are shown in the row labels.
doi:10.1371/journal.pbio.1000343.g004

but not in D. melanogaster. Figure S7 shows the same data but displays the fractional binding divergence for every peak rather than binning by
cohort (as here).
doi:10.1371/journal.pbio.1000343.g003
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to study binding changes. Indeed, given the magnitude of the

binding divergence that we observe, we expect there to be

quantitative differences between D. melanogaster and more closely

related species, such as D. simulans, as well as among D. melanogaster

individuals. While comparisons with more distantly related species

will likely reveal greater binding divergence, and will help explain

how such divergence affects expression and phenotype, the

difficulties with aligning genomes at this distance, and comparing

embryonic stages, may render sequence-based analyses less

powerful.

Even though we were working with very similar organisms, with

similar timing and structure of embryonic development, there

Figure 5. Enrichment and conservation of divergence-driving words. With the exception of BCD, we observed only a weak relationship
between binding strength and enrichment (red) and conservation (yellow) of motifs identified for single factors, despite our expectation that strongly
bound regions would be subject to greater functional constraint. The fraction of peaks containing one or more DDWs in D. melanogaster (red circles)
decreased quickly with binding strength for BCD only, and was consistently higher than the background across the genome (red dashed line) for all
factors. Notably, the fraction of these motifs that were conserved between D. melanogaster and D. yakuba (orange triangles) was largely independent
of binding strength, and was consistently higher than the background levels of conservation of these motifs across the genome (orange dashed line).
Motif enrichment (6 bp DDWs) in D. melanogaster and conservation in the two genomes were calculated for overlapping cohorts of 250 peaks.
doi:10.1371/journal.pbio.1000343.g005
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were undoubtedly subtle differences in our sampling of develop-

mental stages in the two species. Because transcription factor

binding is dynamic, such sampling differences have the potential to

manifest themselves as apparent interspecies differences in

binding. We do not believe this effect was significant in our data,

however, as it is unlikely that this type of false-positive binding

divergence would be associated with the specific sequence changes

that we repeatedly observed. Nonetheless, this will be a major

difficulty in future studies, especially when developmentally and

morphologically different organisms are compared, as precisely

those changes that make such comparisons interesting also make

them far more difficult.

Methods

In Vivo Formaldehyde Cross-Linking of Embryos and ChIP
in D. melanogaster and D. yakuba

Both D. melanogaster and D. yakuba embryos were collected from

population cages for 1 h, and then allowed to develop to late stage

4 and early stage 5 before being harvested and fixed with

formaldehyde. The embryos from the two species developed very

similarly, and the aging times to reach the desired age were 2 h for

D. melanogaster embryos and 1 h and 45 min for D. yakuba embryos.

The staged embryos were harvested and cross-linked with

formaldehyde, and the chromatin was isolated through CsCl

gradient ultracentrifugation essentially as previously described [19].

The chromatin used for immunoprecipitation was fragmented

through sonication using a Branson Sonifier 450 to an average

fragment size of 225 to 250 bp, which is shorter than the average

size of chromatin used in our previous ChIP-chip experiments

[19]. ChIP was carried out using affinity purified rabbit polyclonal

antibodies, and for two of the factors, HB and KR, two affinity

purified antibodies that recognize non-overlapping parts of each

factor were used. These antibodies and the ChIP procedure were

identical to those described in [19].

Sequencing of DNA from ChIP
The DNA libraries for sequencing were prepared from the ChIP

reaction and from Input DNA following the Illumina protocol for

preparing samples for ChIP sequencing of DNA using the reagents

provided in the genomic-DNA or ChIP-DNA sample preparation

kits, with some modifications. Briefly, the DNA fragments were

converted to phosphorylated blunt ends using T4 DNA polymer-

ase, Klenow DNA polymerase, and T4 polymerase kinase, a 39 A

base overhang was added using Klenow DNA polymerase exo- (39

to 59 exo minus), and Illumina adapters were ligated to the

fragments. We carried out the PCR step for enrichment of

adapter-modified DNA prior to the library size selection, and

limited the amplification to 10–13 cycles to minimize the potential

Figure 6. Principal component analysis of binding of all factors.
PCA of (A) the relative change in binding strength across all peaks, and
the binding in (B) D. melanogaster and (C) D. yakuba. Each row
represents a factor, and each column is a principal component of the
relevant data. The color represents the sign (red positive, green
negative) and magnitude (color intensity) of each value in each
principal component vector. Note that in each case the sign of the first
principal component is the same for all six factors, indicating that the
dominant driver of both interspecies divergence and quantitative
variation within single species is a coordinated change in binding
strength of all factors. This effect, which could be due to changes in
chromatin state, explained 38% of the variation between species, and
62% (D. melanogaster) and 55% (D. yakuba) of the variation within
species.
doi:10.1371/journal.pbio.1000343.g006
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bias associated with PCR amplification. After the amplification

step, we size-selected DNA fragments of 150–500 bp (including the

adapter sequence) for BCD, HB, GT, and KNI samples, and 200–

500 bp for KR and CAD. The DNA library was quantified by

QPCR using ABI Power SYBR green PCR master mix and pair

primers that match the adapter sequences. We used a Solexa DNA

library, which we generated with known concentration as a

standard. Due to the extreme sensitivity, the DNA used in the

reactions ranged from 0.0001–0.01 ng. The sequencing of the

library DNA was performed on the Solexa/Illumina platform

according to the manufacturer’s instruction. Each library was

analyzed in two lanes on the flow cell.

Mapping Sequenced Tags to Genomes
We used the Apr. 2006 assembly (dm3, BDGP Release 5) of

the D. melanogaster genome, downloaded from http://hgdownload.

cse.ucsc.edu/goldenPath/dm3/bigZips/chromFa.tar.gz, and the

Nov. 2005 assembly (droYak2) of the D. yakuba genome,

downloaded from http://hgdownload.cse.ucsc.edu/goldenPath/

droYak2/bigZips/chromFa.tar.gz.

We trimmed all sequenced tags to 20 bp and mapped the tags to

the genomes using Bowtie v0.9.9.1 [22] with command-line

options ‘-v 1 -m 1’, thereby keeping only tags that mapped

uniquely to the genome with at most one mismatch. Table 1 gives

statistics on the total numbers of sequenced and mapped tags for

all experiments. Note that while we mapped tags to the entire

genomes, we did not use the heterochromatic chromosomes or

unassembled sequence for any analyses.

We used annotations from FlyBase r5.15 [34] for analyses using

genes in D. melanogaster.

Peak Calling
We called peaks for each experiment using MACS v1.3.5 [25]

with the option ‘--pvalue 0.00001’. We used total chromatin as

background controls, and set the ‘--mfold’ option to the maximum

value for which MACS could find a sufficient number of paired

peaks. In order to only consider peaks for which we could reliably

assign orthology and to control for potential assembly errors in the

draft D. yakuba genome, we used exonerate [35] to search for peaks

whose associated sequence was duplicated in either genome. For

each peak, we (1) searched for duplicated sequence in the genome

where the peak was called and (2) used the whole-genome

alignment to pull out the orthologous sequence in the other

genome and searched for duplicates of that sequence in the other

genome, which frequently indicated a potential assembly error due

to the unfinished nature of the D. yakuba assembly. We discarded

any peaks whose associated sequence was duplicated in either

genome.

Figure 7. Divergence-driving words for principal components.
We identified divergence-driving words for each of the principal
components in Figure 6A. Few words are shared by the different
principal components, suggesting that distinct sets of motifs and A-P
regulators govern the different patterns of variation revealed by PCA. The
CAGGTAG binding site for the early zygotic activator Zelda drives
divergence of coherent binding of all factors (principal component 1). A
red box in a (row, column) entry indicates that the corresponding word
(row) was identified as a DDW for a particular principal component
(column); a solid circle in a (row, column) indicates that a word (row)
matches the DNA-binding specificity of a factor analyzed here, plus Zelda
(column). In contrast to Figure 4, where empty circles are used to indicate
matches to A-P factors other than the six analyzed here, no empty circles
are shown here because all words match the specificities of one or more
additional A-P regulators, as characterized by [29]. Sequence motifs and
their reverse complements are shown in the row labels.
doi:10.1371/journal.pbio.1000343.g007
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Whole-Genome Alignment and Orthology Comparisons
We used a large-scale orthology mapping created by Mercator

[23] to identify syntenic regions of the genomes, which were

each aligned with FSA v1.11.0 with the options ‘--exonerate

--softmasked --refinement -1 --mercator cons seqs.fasta’. The

resulting whole-genome alignment can be downloaded here:

http://www.biostat.wisc.edu/,cdewey/data/fsa_mercator_alignments/

drosophila_melanogaster-5.0-drosophila_yakuba-2.0-1.0.tar.gz.

Signal Normalization between Genomes
We first normalized the total number of sequenced tags to a

fixed number for each experiment, the standard method of

controlling for the variable success of amplification and sequenc-

ing. This normalization, however, is insufficient for our purposes,

since it does not take into account differences in genome size and

background between the species. We therefore performed an

additional comparative normalization step. Assuming that the

total amount of binding near known regulatory targets of the six

factors studied here (A-P and D-V genes, as identified in [19] and

listed below) is constant, we scaled the total number of sequenced

tags in D. yakuba for each factor such that the total difference in

inferred binding strength across the 50 most highly bound peaks in

each genome (for a total of 100) within 10 kb of A-P targets was

minimized (using a least-squares linear regression).

This comparative normalization procedure assumes there are

no differences in the total number of molecules bound to A-P

targets in the two genomes. Although this may not always be the

case, we do not expect to see such global differences between such

closely related species. It is also possible that by using the 50 most

highly bound peaks near known A-P target genes for normaliza-

tion we would underestimate variation in these genes. However,

the effect of any single peak on the normalization was minimal,

and the inferred divergence for any of these peaks did not change

significantly when they were not included in the normalization

(unpublished data).

Binding Strength Comparison between Genomes
We assessed binding strength by estimating a fragment density

by extending each sequenced tag to the average fragment length

based on the selected size distribution. We modified the SynPlot

program [36] to display quantitative data along an alignment in

order to create the plot in Figure 1.

We compared binding between the two genomes as follows:

Given a peak called in one genome, we used the whole-genome

alignment to project the 100 bp containing the peak onto the

other genome and computed the maximum binding strength

within that homologous sequence in the other genome. Note that

therefore our maximum spatial resolution when assessing binding

divergence is 50 bp, implying that if, for example, a binding site is

present in D. melanogaster, and lost in D. yakuba but replaced by

another site 30 bp away, then we will not detect any binding

divergence if the two sites are bound at similar levels.

We labeled peaks that were within 10 Kb of a gene in D.

melanogaster known to be regulated by A-P factors as A-P target loci.

We used the following list of genes: Brk, D, Doc1, Doc2, E(spl), Kr,

Phm, SoxN, Vnd, bowl, btd, cad, croc, dpp, ems, eve, fkh, ftz, gt, h, hb, hkb,

ind, kni, knil, noc, nub, oc, odd, opa, os, pdm2, pnr, prd, pxb, rho, run, salm,

shn, sim, slp1, slp2, sna, sob, sog, ths, tld, tll, tsh, tup, twi, vn, wntD, zen.

Sequence Motif Identification
We identified DDWs for each factor as follows. For each word

of a fixed length k, we identified all (non-softmasked) instances of

the word (on both strands) within a 100 bp window centered on

the empirical maximum of peaks called in D. melanogaster for that

factor. We then accumulated two distributions of binding strength

divergence (D. melanogaster 2 D. yakuba) for the word, pcons and pdiv,

with pcons consisting of instances where the word was exactly

conserved in D. yakuba and pdiv consisting of instances where the

word was diverged in D. yakuba. We used a non-parametric

statistical test, Kolmogorov-Smirnov test, to test for equality of

distribution pcons , pdiv. If equality of distribution could be rejected

with p,0.01, then we called the word a candidate DDW. We then

performed the identical procedure in the opposite direction,

wherein we examined peaks called in D. yakuba and assessed the

conservation of words in D. melanogaster, and identified a second set

of candidate DDWs. We took the intersection of these two sets to

obtain final lists of DDWs. We performed this procedure to

identify words of length k = 6 and 7.

We assessed whether sequence motifs matched the known

DNA-binding specificities of A-P factors with position weight

matrices (PWM) from [29]. When creating Figures 4 and 7, we

said that a word matched the specificity for a factor if it matched a

subsequence of the corresponding PWM with ln (p value) ,24 as

reported by Patser [37].

Prediction of Binding Divergence
We used the Least Angle Regression (LARS) algorithm [28],

implemented in the package lars for R [38], to learn a linear model

of binding divergence using DDWs of length k = 6. We performed

5-fold cross-validation to estimate the mean-squared prediction

error (MSE) associated with each value of the lasso regularization

parameter b and then chose the model given by the b that yielded

the lowest MSE. This cross-validation procedure helps to prevent

the over-fitting characteristic of standard least-squares linear

regression, making the correlations that we estimated robust to

generalization error.

In order to ensure that (1) the DDWs that we identified truly

have predictive value and (2) that the correlations reported are not

due solely to base-composition effects, we randomly shuffled the

nucleotides of each DDW to create a set of shuffled words with

unchanged base composition, and then built a predictive model

using these shuffled words. Models constructed using these shuffled

words had no predictive value, indicating that the correlations that

we report for our DDWs are not statistical artifacts. Figures S12–

S27 show lasso variable selection curves and cross-validation

curves for all values of b, as well as scatterplots of predicted and

observed binding divergences, for predictive models constructed

using our DDWs as well as their shuffled counterparts. The cross-

validation curves make clear that while the DDWs are correlated

with binding strength, the shuffled words are not: MSE decreases

as more DDWs are included into the model, indicating the gain

and loss of these words correlates with changes in observed

binding strength, whereas MSE increases as more shuffled words

are included into the model, indicating that these words are

uncorrelated with binding. This provides clear evidence that our

cross-validation procedure correctly chooses the model with the

minimum generalization error, for example, that the models are

not over-fit to the data.

We performed an identical analysis using words derived from

the in vitro binding specificity data described in [29]. We

enumerated all k-mers that matched a subsequence of the

corresponding PWM with ln (p value) ,28 as reported by

Patser [37], identifying four 6-mers for BCD, HB, and GT and

sixteen 6-mers for KR, and then used the learning procedure

described above to learn models of binding divergence using

these words.
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PCA
We calculated binding strengths of the six factors across all

called peaks, subtracted the empirical means for each factor, and

scaled the data for each factor such that it had unit variance. We

used the singular value decomposition routine in IT++, a linear

algebra library for C++, to perform PCA, and created heatmaps of

the PCA results using a modified version of the aspectHeatmap

function in the ClassDiscovery package.

In order to confirm that the putative chromatin signal

represented by the first principal component did reflect coherent

increases and decreases in binding of all six factors in our data, we

randomly interchanged the measured binding strengths for a single

factor across called peaks while holding all others unchanged

(Figure S34, panels A–F) and similarly randomly interchanged the

binding strengths of all factors (Figure S34, panel G), thereby

removing spatial correlations between the binding of single factors

and the other five (Figure S34, panels A–F) and removing spatial

correlations between the binding of any factors (Figure S34, panel

G). As expected, the chromatin signal disappeared after perform-

ing any of these transformations on the data.

We identified sequence motifs associated with interspecies

divergence of each principal component using the same procedure

described above, but with the data projected along the principal

component of interest. For each principal component, we

accumulated the distributions pcons and pdiv across all peaks called

for any of the six factors.

Data Availability
All sequence reads from the experiments described are available

from the NCBI’s GEO database with accession number

GSE20369. Processed datasets, including mapped reads, called

regions and peaks, D. melanogaster 2 D. yakuba alignments, and all

software described here, are available at http://rana.lbl.gov/data/

melyak.

Supporting Information

Figure S1 Correlation between binding levels for peaks
called for distinct antibodies (A) HB in D. melanogaster,
(B) KR in D. melanogaster, (C) HB in D. yakuba, and (D)
KR in D. yakuba. Correlations rounded to two significant digits.

Found at: doi:10.1371/journal.pbio.1000343.s001 (1.75 MB PDF)

Figure S2 Correlations between Input and ChIP signals
for D. melanogaster. Binding strength (goldenrod) and Input

signal (black) for each peak called in D. melanogaster.

Found at: doi:10.1371/journal.pbio.1000343.s002 (2.16 MB PDF)

Figure S3 Correlations between Input and ChIP signals
for D. yakuba. Binding strength (goldenrod) and Input signal

(black) for each peak called in D. yakuba.

Found at: doi:10.1371/journal.pbio.1000343.s003 (1.14 MB PDF)

Figure S4 Correlations between divergence in Input and
ChIP signals. Divergence in binding strength and Input signal

for peaks called in either species.

Found at: doi:10.1371/journal.pbio.1000343.s004 (1.65 MB PDF)

Figure S5 Comparison of binding between D. melano-
gaster and D. yakuba. Scatterplots of binding strengths at

peaks called in either species for each factor. The x- and y-axes

show the logarithms of the binding strengths in D. melanogaster and

D. yakuba.

Found at: doi:10.1371/journal.pbio.1000343.s005 (1.63 MB PDF)

Figure S6 Quantitative variation in binding between
species. Comparison of binding levels in D. melanogaster and D.

yakuba for all identified bound regions. For each peak called in

either species, we plotted the corresponding binding strengths in

red for D. melanogaster and green for D. yakuba; dark colors indicate

known cis-regulatory modules (compare with Figure 2, where dark

colors indicate peaks near genes regulated by A-P factors). Peaks

are ordered left-to-right on the x-axis according to their binding

ranks in D. melanogaster and binding strengths in both genomes are

plotted in log scale on the y-axis (binding units are arbitrary).

Found at: doi:10.1371/journal.pbio.1000343.s006 (3.26 MB PDF)

Figure S7 Absolute binding divergence as a function of
binding strength. Absolute binding divergence, computed as

|D. melanogaster 2 D. yakuba|, for overlapping cohorts of 250 peaks

called in either species. The error bars indicate the standard

deviations of each cohort. As with Figure S7, the rising tails are

due to peaks called in D. yakuba with little or no binding in D.

melanogaster.

Found at: doi:10.1371/journal.pbio.1000343.s007 (1.64 MB PDF)

Figure S8 Fractional binding divergence for all peaks.
Fractional binding divergence, computed as (D. melanogaster 2 D.

yakuba) / (D. melanogaster + D. yakuba), for peaks called in either

species. The downward trend of the datapoints from left to right is

due to our comparative normalization procedure, which is based

only on the ,100 most highly bound regions near genes regulated

by the A-P factors, and the ordering of the x-axis by binding rank

in D. melanogaster. Peaks that are highly bound in D. yakuba but not

in D. melanogaster tend to be placed on the right-hand side of the

plot (since they are of low rank in D. melanogaster), and furthermore

frequently have a negative fractional binding divergence since they

are highly bound in D. yakuba but not in D. melanogaster. Similarly,

the tails to the right correspond to peaks called in D. yakuba with

little or no binding in D. melanogaster. Fractional binding divergence

is similar for both highly bound and weakly bound regions.

Figure 3 is similar to this figure, but shows median fractional

binding divergence for cohorts of peaks rather than for every peak.

Found at: doi:10.1371/journal.pbio.1000343.s008 (0.04 MB PDF)

Figure S9 Relationship between fractional binding
divergence and distance to nearest gene.

Found at: doi:10.1371/journal.pbio.1000343.s009 (0.08 MB PDF)

Figure S10 Correlation between single-nucleotide di-
vergence and fractional binding divergence. Best-fit linear

models shown.

Found at: doi:10.1371/journal.pbio.1000343.s010 (1.64 MB PDF)

Figure S11 Correlation between insertion/deletion fre-
quency and fractional binding divergence. Best-fit linear

models shown.

Found at: doi:10.1371/journal.pbio.1000343.s011 (1.63 MB PDF)

Figure S12 Linear model of BCD binding divergence.
Linear model of binding divergence using divergence-driving

words (6 bp) identified for BCD. Left panel shows the model

coefficients for each word as a function of the lasso regularization

parameter b; right panel shows the mean-squared prediction error

associated with each value of b based on a 5-fold cross-validation

procedure. The constant decrease in prediction error indicates

that including more words in the linear model helps with

prediction, suggesting that the DDWs that we identified do guide

factor binding. Figure created by the lars package in R.

Found at: doi:10.1371/journal.pbio.1000343.s012 (0.02 MB PDF)

Figure S13 Accuracy of linear model predictions for
BCD. Scatterplot of measured and predicted binding divergence

for BCD. Predictions used the linear model illustrated in Figure
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S12, where model coefficients were chosen to minimize the cross-

validation prediction error.

Found at: doi:10.1371/journal.pbio.1000343.s013 (0.05 MB PDF)

Figure S14 Linear model of HB binding divergence.
Linear model of binding divergence using divergence-driving

words (6 bp) identified for HB. Left panel shows the model

coefficients for each word as a function of the lasso regularization

parameter b; right panel shows the mean-squared prediction error

associated with each value of b based on a 5-fold cross-validation

procedure. The constant decrease in prediction error indicates

that including more words in the linear model helps with

prediction, suggesting that the DDWs that we identified do guide

factor binding. Figure created by the lars package in R.

Found at: doi:10.1371/journal.pbio.1000343.s014 (0.06 MB PDF)

Figure S15 Accuracy of linear model predictions for HB.
Scatterplot of measured and predicted binding divergence for HB.

Predictions used the linear model illustrated in Figure S14, where

model coefficients were chosen to minimize the cross-validation

prediction error.

Found at: doi:10.1371/journal.pbio.1000343.s015 (0.30 MB PDF)

Figure S16 Linear model of KR binding divergence.
Linear model of binding divergence using divergence-driving

words (6 bp) identified for KR. Left panel shows the model

coefficients for each word as a function of the lasso regularization

parameter b; right panel shows the mean-squared prediction error

associated with each value of b based on a 5-fold cross-validation

procedure. The constant decrease in prediction error indicates

that including more words in the linear model helps with

prediction, suggesting that the DDWs that we identified do guide

factor binding. Figure created by the lars package in R.

Found at: doi:10.1371/journal.pbio.1000343.s016 (0.13 MB PDF)

Figure S17 Accuracy of linear model predictions for KR.
Scatterplot of measured and predicted binding divergence for KR.

Predictions used the linear model illustrated in Figure S16, where

model coefficients were chosen to minimize the cross-validation

prediction error.

Found at: doi:10.1371/journal.pbio.1000343.s017 (0.43 MB PDF)

Figure S18 Linear model of GT binding divergence.
Linear model of binding divergence using divergence-driving

words (6 bp) identified for GT. Left panel shows the model

coefficients for each word as a function of the lasso regularization

parameter b; right panel shows the mean-squared prediction error

associated with each value of b based on a 5-fold cross-validation

procedure. The constant decrease in prediction error indicates

that including more words in the linear model helps with

prediction, suggesting that the DDWs that we identified do guide

factor binding. Figure created by the lars package in R.

Found at: doi:10.1371/journal.pbio.1000343.s018 (0.06 MB PDF)

Figure S19 Accuracy of linear model predictions for GT.
Scatterplot of measured and predicted binding divergence for GT.

Predictions used the linear model illustrated in Figure S18, where

model coefficients were chosen to minimize the cross-validation

prediction error.

Found at: doi:10.1371/journal.pbio.1000343.s019 (0.18 MB PDF)

Figure S20 Linear model of BCD binding divergence
(control with shuffled words). Linear model of binding

divergence using shuffled versions of the divergence-driving words

(6 bp) identified for BCD. The increase in prediction error

indicates that including more shuffled words in the linear model

does not help with prediction, suggesting that the shuffled DDWs

that we identified do not guide factor binding. Compare with

Figure S12.

Found at: doi:10.1371/journal.pbio.1000343.s020 (0.03 MB PDF)

Figure S21 Accuracy of linear model predictions for
BCD (control with shuffled words). Scatterplot of measured

and predicted binding divergence for BCD. Predictions used the

linear model illustrated in Figure S20, where model coefficients

were chosen to minimize the cross-validation prediction error.

Compare with Figure S13.

Found at: doi:10.1371/journal.pbio.1000343.s021 (0.05 MB PDF)

Figure S22 Linear model of HB binding divergence
(control with shuffled words). Linear model of binding

divergence using shuffled versions of the divergence-driving words

(6 bp) identified for BCD. The increase in prediction error

indicates that including more shuffled words in the linear model

does not help with prediction, suggesting that the shuffled DDWs

that we identified do not guide factor binding. Compare with

Figure S14.

Found at: doi:10.1371/journal.pbio.1000343.s022 (0.10 MB PDF)

Figure S23 Accuracy of linear model predictions for HB
(control with shuffled words). Scatterplot of measured and

predicted binding divergence for BCD. Predictions used the linear

model illustrated in Figure S22, where model coefficients were

chosen to minimize the cross-validation prediction error. Compare

with Figure S15.

Found at: doi:10.1371/journal.pbio.1000343.s023 (0.30 MB PDF)

Figure S24 Linear model of KR binding divergence
(control with shuffled words). Linear model of binding

divergence using shuffled versions of the divergence-driving words

(6 bp) identified for BCD. The increase in prediction error

indicates that including more shuffled words in the linear model

does not help with prediction, suggesting that the shuffled DDWs

that we identified do not guide factor binding. Compare with

Figure S16.

Found at: doi:10.1371/journal.pbio.1000343.s024 (0.36 MB PDF)

Figure S25 Accuracy of linear model predictions with
KR (control with shuffled words). Scatterplot of measured

and predicted binding divergence for BCD. Predictions used the

linear model illustrated in Figure S24, where model coefficients

were chosen to minimize the cross-validation prediction error.

Compare with Figure S17.

Found at: doi:10.1371/journal.pbio.1000343.s025 (0.43 MB PDF)

Figure S26 Linear model of GT binding divergence
(control with shuffled words). Linear model of binding

divergence using shuffled versions of the divergence-driving words

(6 bp) identified for BCD. The increase in prediction error

indicates that including more shuffled words in the linear model

does not help with prediction, suggesting that the shuffled DDWs

that we identified do not guide factor binding. Compare with

Figure S18.

Found at: doi:10.1371/journal.pbio.1000343.s026 (0.13 MB PDF)

Figure S27 Accuracy of linear model predictions with
GT (control with shuffled words). Scatterplot of measured

and predicted binding divergence for BCD. Predictions used the

linear model illustrated in Figure S26, where model coefficients

were chosen to minimize the cross-validation prediction error.

Compare with Figure S19.

Found at: doi:10.1371/journal.pbio.1000343.s027 (0.18 MB PDF)

Figure S28 Correlations of fractional binding diver-
gence of BCD with other factors. Correlations for fractional
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binding divergence, defined as (D. melanogaster 2 D. yakuba) / (D.

melanogaster + D. yakuba).

Found at: doi:10.1371/journal.pbio.1000343.s028 (2.34 MB PDF)

Figure S29 Correlations of fractional binding diver-
gence of HB with other factors. Correlations for fractional

binding divergence, defined as (D. melanogaster 2 D. yakuba) / (D.

melanogaster + D. yakuba).

Found at: doi:10.1371/journal.pbio.1000343.s029 (3.24 MB PDF)

Figure S30 Correlations of fractional binding diver-
gence of KR with other factors. Correlations for fractional

binding divergence, defined as (D. melanogaster 2 D. yakuba) / (D.

melanogaster + D. yakuba).

Found at: doi:10.1371/journal.pbio.1000343.s030 (4.21 MB PDF)

Figure S31 Correlations of fractional binding diver-
gence of GT with other factors. Correlations for fractional

binding divergence, defined as (D. melanogaster 2 D. yakuba) / (D.

melanogaster + D. yakuba).

Found at: doi:10.1371/journal.pbio.1000343.s031 (3.08 MB PDF)

Figure S32 Correlations of fractional binding diver-
gence of KNI with other factors. Correlations for fractional

binding divergence, defined as (D. melanogaster 2 D. yakuba) / (D.

melanogaster + D. yakuba).

Found at: doi:10.1371/journal.pbio.1000343.s032 (1.89 MB PDF)

Figure S33 Correlations of fractional binding diver-
gence of CAD with other factors. Correlations for fractional

binding divergence, defined as (D. melanogaster 2 D. yakuba) / (D.

melanogaster + D. yakuba).

Found at: doi:10.1371/journal.pbio.1000343.s033 (3.30 MB PDF)

Figure S34 PCA controls. PCA after (A–F) randomly

interchanging the measured binding strengths for single factors

across called peaks while holding all others unchanged, and (G)

similarly randomly interchanging the binding strengths of all

factors. These operations remove spatial correlations between the

binding of single factors and the other five (A–F) and spatial

correlations between the binding of any factors (G). As expected,

the chromatin signal disappeared after performing any of these

transformations on the data.

Found at: doi:10.1371/journal.pbio.1000343.s034 (0.43 MB PDF)
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