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Abstract

Scientists and clinicians who study genetic alterations and disease have traditionally described phenotypes in natural
language. The considerable variation in these free-text descriptions has posed a hindrance to the important task of
identifying candidate genes and models for human diseases and indicates the need for a computationally tractable method
to mine data resources for mutant phenotypes. In this study, we tested the hypothesis that ontological annotation of
disease phenotypes will facilitate the discovery of new genotype-phenotype relationships within and across species. To
describe phenotypes using ontologies, we used an Entity-Quality (EQ) methodology, wherein the affected entity (E) and
how it is affected (Q) are recorded using terms from a variety of ontologies. Using this EQ method, we annotated the
phenotypes of 11 gene-linked human diseases described in Online Mendelian Inheritance in Man (OMIM). These human
annotations were loaded into our Ontology-Based Database (OBD) along with other ontology-based phenotype
descriptions of mutants from various model organism databases. Phenotypes recorded with this EQ method can be
computationally compared based on the hierarchy of terms in the ontologies and the frequency of annotation. We utilized
four similarity metrics to compare phenotypes and developed an ontology of homologous and analogous anatomical
structures to compare phenotypes between species. Using these tools, we demonstrate that we can identify, through the
similarity of the recorded phenotypes, other alleles of the same gene, other members of a signaling pathway, and
orthologous genes and pathway members across species. We conclude that EQ-based annotation of phenotypes, in
conjunction with a cross-species ontology, and a variety of similarity metrics can identify biologically meaningful similarities
between genes by comparing phenotypes alone. This annotation and search method provides a novel and efficient means
to identify gene candidates and animal models of human disease, which may shorten the lengthy path to identification and
understanding of the genetic basis of human disease.
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Introduction

Our understanding of gene function is often informed by

comparing the phenotypic consequences of mutation with the

canonical ‘‘wild-type’’ in a single organism, as well as between

mutants of orthologous genes in different organisms. In particular,

model organisms have provided great insight into gene function in

humans. The importance and need for automating these cross-

species comparisons has become imperative as large-scale muta-

genesis screens are conducted in model organisms. A fundamental

roadblock for analysis is, however, the lack of a computationally

tractable method for describing phenotypes that is applicable

across multiple domains of biological knowledge and species (for

example, see [1]). Not only does each model organism have its

own vocabulary for describing the phenotypic consequences of

mutation, but these vocabularies are usually tied to the particular

anatomies or physiologies of the organism. Often these descrip-

tions are recorded as free text, and although wonderfully
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expressive, free text remains difficult to reliably compare with

computational methods. For example, a computer program would

not be able to recognize the fact that there is a significant similarity

between the PAX6 mutations that result in ‘‘small eyed’’ mice,

‘‘opaque cornea’’ in humans, a ‘‘malformed retina’’ in zebrafish,

and ‘‘eyeless’’ Drosophila (Figure 1).

Current methodologies traditionally identify animal models on

the basis of sequence orthology between the mutant animal model

and a human gene. For example, Schuhmacher et al. recently

developed a mouse model of human Costello syndrome (OMIM:

#218040), which is a neuro-cardio-facio-cutaneous developmental

syndrome resulting from mutations in the H-RAS gene [2]. The

mouse H-Ras gene was mutated in the orthologous position as in

Costello patients, and the resulting phenotype recapitulates the

disease. Occasionally, spontaneous models can be identified by the

observation of symptoms reminiscent of human disease, for

example the fat aussie mouse develops obesity, type 2 diabetes,

and male infertility. This phenotype is similar to human Alström

syndrome, which is caused by mutation in the ALMS1 gene [3].

Sequencing and further characterization of fat aussie revealed a

mutation in Alms1, and fat aussie is emerging as a good animal

model for understanding Alström syndrome and the function of

cilia-localized Alms1 [4]. These examples for identifying animal

models of disease relied on knowledge of the genetic basis of the

human disease, but there are many human diseases for which it is

not yet known. If a researcher could compare human model

organism, and even ancestral phenotypes directly, they would have

a mechanism to more rapidly identify candidate genes and models

of disease.

Model organism communities benefit from centralized collec-

tions of curated research, where a scientist can search for

extensively cross-referenced gene expression, phenotype, and

genomic data, referred to as ‘‘model organism databases’’

(MODs). Research in the field of human biology suffers because

Figure 1. Representation of phenotypes. Phenotypes of wild-type (top) and PAX6 ortholog mutations (bottom) in human, mouse, zebrafish, and
fly can be described with the EQ method. EQ annotations of the abnormal phenotypes are listed below each set of images per organism. Note that
the anatomical entities are from ssAOs and qualities are from the PATO ontology. These PAX6 phenotypes have been described textually as follows.
Human mutations may result in aniridia (absence of iris), corneal opacity (aniridia-related keratopathy), cataract (lens clouding), glaucoma, and long-
term retinal degeneration. For mouse, the mutants exhibit extreme microphthalmia with lens/corneal opacity and iris abnormality, and there is a
large plug of persistent epithelial cells that remains attached between the cornea and the lens. For zebrafish, the mutants express a variable and
modifiable phenotype that consists of decreased eye size, reduced lens size, and malformation of the retina. Drosophila ey (a PAX6 ortholog)
mutations cause loss of eye development. The genotypes shown are E15 mouse Pax614Neu/14Neu [68], 5 day zebrafish pax6btq253a/tq253a [69], human
PAX6+/2 [70], and Drosophila ey2/2 [71].
doi:10.1371/journal.pbio.1000247.g001

Author Summary

Model organisms such as fruit flies, mice, and zebrafish are
useful for investigating gene function because they are
easy to grow, dissect, and genetically manipulate in the
laboratory. By examining mutations in these organisms,
one can identify candidate genes that cause disease in
humans, and develop models to better understand human
disease and gene function. A fundamental roadblock for
analysis is, however, the lack of a computational method
for describing and comparing phenotypes of mutant
animals and of human diseases when the genetic basis is
unknown. We describe here a novel method using
ontologies to record and quantify the similarity between
phenotypes. We tested our method by using the
annotated mutant phenotype of one member of the
Hedgehog signaling pathway in zebrafish to identify other
pathway members with similar recorded phenotypes. We
also compared human disease phenotypes to those
produced by mutation in model organisms, and show
that orthologous and biologically relevant genes can be
identified by this method. Given that the genetic basis of
human disease is often unknown, this method provides a
means for identifying candidate genes, pathway members,
and disease models by computationally identifying similar
phenotypes within and across species.

Phenotype Comparison Using Ontologies
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there is no equivalent resource for the human research

community, and linking these diverse datasets requires searching

many detached resources. There are, however, several valuable

data resources for human phenotypic data, including the Online

Mendelian Inheritance in Man (OMIM) [5] published by the National

Center for Biotechnology Information (NCBI). OMIM contains

more than 19,000 records, divided between genes and pheno-

types/diseases. Approximately 53% of the gene records have

detailed allelic variant descriptions and/or general clinical

synopses, while 43% of phenotype/disease records have a known

molecular basis. OMIM is a text-based resource, and retrieval of

information suffers from this fact, as the Entrez searches in Table 1

show. For an individual researcher wanting to know which human

mutations may result in an increase in bone size, or a computer

script mining OMIM data, free text annotations do not provide

the rigor necessary for querying. While successful mining of the

literature to relate genes to phenotypes has been shown [6], it does

not provide a mechanism to compare phenotypes directly.

One of the most revolutionary tools for the biologist has been

the ability to compare sequences using algorithms such as BLAST

[7], which allows one to quantitatively assess similarity between

one or more sequences. However, the genetic basis of a disease is

often unknown, and in this case a sequence-comparison tool is

of no use to identify sequence mutations. If descriptions of

phenotypes were based on a common controlled vocabulary—an

ontology—they would be structured such that algorithms could be

written to compare phenotypes computationally. One of the

benefits of using ontologies is the ability to use general-purpose

logical inference tools called reasoners (for example, see [8]).

Reasoners can assist in query answering and analysis. As an

example, consider two different queries, one to find genes

expressed in the ZFA:gut, and the other to find genes

expressed in the ZFA:epithelium (we write ontology terms

prefixed with the name of the ontology; see Materials and

Methods for further explanation). We would expect both of these

searches to return annotations to the ZFA:intestinal
epithelium, because the intestines are a part_of the gut, and

the intestinal epithelium is_a type of epithelium (Figure 2).

Analogous to the nucleic and amino acid alphabets and distance

matrices used in the BLAST algorithm, ontology terms and their

relationships to one another can be used to group and compare

phenotypic and gene expression data and can be utilized for cross-

species phenotype analysis. A phenotype can be defined as the outcome of a given genotype

in a particular environment (for review see [9]) and can be

described using ontologies to facilitate comparisons. A description

of an individual phenotypic character can be recorded using a

bipartite ‘‘EQ’’ (Entity + Quality) method, where a bearer entity

(such as an anatomical part, cellular process, etc.) is described by a

quality (such as small, increased temperature, round, reduced

length, etc.). The EQ method is sufficient for the description of

many phenotypes, provided the source ontologies are rich

enough. The entity terms may be structures from any anatomy

ontology, or biological processes, cellular components, or

molecular functions from the Gene Ontology (GO) [10]. The

quality terms come from the Phenotype and Trait Ontology

(PATO), which is designed to be used in combination with

species-specific anatomical ontologies or other cross-species entity

ontologies (see, for example, [11–13]). For instance, a Drosophila

‘‘redness of eye’’ phenotype could be described using the terms

‘‘red’’ from PATO and ‘‘eye’’ from the Fly Anatomy ontology

(FBbt) into the EQ statement EQ = FBbt:eye + PATO:red.

The EQ method has been extended to include related qualities

and additional entities, and with a post-composition approach to

describe more granular entities. Many MODs already utilize

Table 1. OMIM query results.

OMIM Query Number of Records

‘‘large bones’’ 264

‘‘large bone’’ 785

‘‘enlarged bones’’ 87

‘‘enlarged bone’’ 156

‘‘big bones’’ 16

‘‘huge bones’’ 4

‘‘massive bones’’ 28

‘‘hyperplastic bones’’ 12

‘‘hyperplastic bone’’ 40

‘‘bone hyperplasia’’ 134

‘‘increased bone growth’’ 612

OMIM text-based query for variants of the phrase ‘‘large bones.’’
doi:10.1371/journal.pbio.1000247.t001

Figure 2. Ontology subsumption reasoning. This example shows
the relationships of the term ‘‘intestinal epithelium’’ to other anatomical
entities within the ZFA ontology. Gray arrows with an ‘‘i’’ indicate an
is_a relation, and blue arrows with a ‘‘p’’ indicate a part_of relation. The
numbers indicate IC of the node, which is the negative log of the
probability of that description being used to annotate a gene, allele, or
genotype (collectively called a feature). As terms get more general,
reading from bottom to top, they have a lower IC score because the
more general terms subsume the annotations made to more specific
terms.
doi:10.1371/journal.pbio.1000247.g002

Phenotype Comparison Using Ontologies
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community-specific anatomy ontologies, in addition to GO, for

annotation of gene expression and/or phenotype data [14,15],

and these methods are described in detail elsewhere [16,17].

Ontological reasoning can also be applied to EQ descriptions, just

as for a single ontology, because they too represent nodes in a

graph structure. For example, queries for cranial cartilage position

should return genotypes that have the phenotype ZFA: cera-
tohyal + PATO:mislocalised_ventrally. Similarly,

queries for superstructures of the ceratohyal cartilage, such as

cranial cartilage, should also return these genotypes (Figure 3).

Any EQ description can be combined with other EQ descriptions

and data, such as genotype, environment, and stage identifiers from

other databases or ontologies, to fully express the phenotypic state of

an individual or group. For example, one could record the zebrafish

phenotype EQ = ZFA:median fin fold + PATO:atte-
nuate at the embryonic stage ZFS:26-somite with genotype

fbn2bgw1/gw1(AB) (defined in the Zebrafish Information Network,

ZFIN). With this method, phenotypes can be recorded using

multiple ontologies in a highly expressive and finely detailed manner

while maintaining correct logic and computability.

Existing computational tools are inadequate to store and

analyze this ontology-based phenotype annotation data in a

generic, species-neutral way. In particular, there is a lack of tools

for the cross-species comparisons needed to identify gene

candidates and animal models of disease. Many existing

algorithms have been developed and tested using the GO to

measure the semantic similarity of annotations and provide a good

starting point for analysis (for example, see [18–21]). It was unclear

how well these algorithms would work for analyzing datasets using

a combination of ontologies. Additionally, cross-species compar-

isons would not be possible because there were no links between

the various anatomical ontologies. Schlicker and Albrecht [22]

suggest an information content (IC)–based approach to analyzing

phenotypic profiles made with multiple ontologies, although they

only tested their results with annotations made with the species-

neutral GO. Their FunSimMat tool requires a specific list of

proteins to compare and therefore does not provide a means to

comprehensively search for phenotypically similar genes. Pheno-

micDB [23] is a cross-species resource that has pulled together

annotations from diverse resources and mined free-text pheno-

types to provide ‘‘phenoclusters’’ of phenotype-related genes.

However, their analysis did not make use of the relationships in the

source ontologies. Although known interacting proteins were

clustered together, they note that their resulting ‘‘phenoclusters’’

tended to be species-specific due in large part to the community-

specific terminologies that were used in the annotations, and not

necessarily due to the underlying biology. These existing methods

were insufficient for our needs because they were either free-text

based or used a limited set of ontologies for annotation, and

because they lacked a framework to integrate and compare

anatomical entities between organisms. They also lacked metrics

for determining significance in similarity calculations. Lastly, apart

from the querying aspect, none included a species-neutral method

for recording phenotypes de novo.

Figure 3. Subsumption reasoning EQ descriptions. The relationship between an EQ description and its contributing ontologies (flanking
panels) are shown. The entities are from the ZFA ontology in blue, and the qualities from PATO in green. The full EQ hierarchy (all possible EQ
combinations) between ZFA:ceratohyal cartilage + PATO:mislocalized ventrally and ZFA:cranial carti-
lage + PATO:position are shown, illustrating subsumption across graph nodes comprised of multiple ontology terms. Relationships are as
indicated in Figure 2. As with the single ontology in Figure 2, IC scores can be calculated for EQ nodes, where more general EQ nodes having a lower
score than more specific EQs.
doi:10.1371/journal.pbio.1000247.g003
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By annotating phenotypes using this EQ method, together with

appropriate computational analysis tools, we have a unique

opportunity to standardize and query phenotypic data in a

rigorous and illuminating manner. In this study, we tested the

hypothesis that EQ annotation of disease phenotypes will facilitate

the discovery of new genotype-phenotype relationships within and

across species. We EQ-annotated 11 human disease genes from

free-text OMIM descriptions with Phenote software [24] to

provide a dataset for cross-species comparison. We compared

these annotations to annotations of the mouse and zebrafish

orthologs, which required the development of a cross-species

unifying ontology (UBERON) to provide a bridge between

different anatomy ontologies. We also developed new, and

extended existing, metrics for measuring the phenotypic similarity

between genes. We assessed their relative performance through

analysis of known signaling pathways and genetic interactions and

show that these data can be queried and compared by phenotype

alone to identify biologically meaningful similarities. Furthermore,

these annotations provide a resource for a better understanding of

existing disease phenotypes. We conclude that this method can

facilitate the discovery of new genotype-phenotype associations

within and between species.

Results

Selection, Annotation, and Analysis of OMIM Genes
Although many MODs curate phenotype data using the EQ

method, no such annotations existed for human disease genes.

Because we required annotations of human diseases in the EQ

style for comparison, we proceeded to annotate a small set of gene

records from OMIM: ATP2A1, EPB41, EXT2, EYA1, FECH,

PAX2, SHH, SOX9, SOX10, TTN, and TNNT2. These 11 genes

were selected because they were known to be causal for a variety of

human diseases and had known mutant orthologs in flies, mice,

and/or fish with corresponding EQ descriptions available for

comparative analysis.

Specifically, our curation process involved translating OMIM

textual descriptions into associations between genotypes and

phenotypes, where the phenotypes were delineated using EQ

descriptions. Specific ontologies were chosen based on their

community-wide acceptance and use, as well as their species-

specificity and granularity. For annotation of human disease genes

from OMIM, and their resulting phenotypes, we utilized the

Foundational Model of Anatomy for adult human gross anatomy

(FMA [25]) and the human developmental anatomy ontology

(EHDAA) for developing anatomical structures. Additionally we

utilized the cell ontology for cell types (CL [26]), CHEBI for

chemicals [27], the GO for sub-cellular components and biological

processes, and PATO as the source of qualities presented by these

varied entities.

Free-text phenotype or disease description was translated into

one or more individual EQ phenotypic descriptions, so that a

single genotype (i.e., one or more variant alleles plus the genetic

background, to whatever extent it is known) could be associated

with multiple EQ descriptions. In the following sections, we refer

to a ‘‘phenotypic profile’’ as the sum-total of the EQ descriptions

for an individual genotype. For example, Figure 1 shows

phenotypic profiles for eye phenotypes of PAX6 ortholog

mutations in mouse, human, zebrafish, and fruitfly (also see

Table 2). An important thing to note is that any given individual

organism presenting a phenotype may manifest only a subset of

the EQ descriptions of a complete phenotypic profile for a

particular genotype. The PAX6 and ortholog EQ descriptions are

based on gross observations of individual eyes, at a particular

developmental stage. These genotypes have additional phenotypes

not shown in Figure 1 (different anatomical structures, at other

developmental stages, and so forth) that would contribute to their

complete phenotypic profile. Alternatively, other PAX6 genotypes

may have different (or similar) phenotypic profiles. Therefore, the

phenotypic profile for each genotype grows with time as more

observations are made, and this information is easily associated

with the allele or gene level for comparison.

For the 11 selected human disease genes, curators annotated the

general description of the phenotypes contained within the body of

each OMIM gene record to a general OMIM gene identifier (i.e.,

OMIM:601653). Additionally, any mention of specific alleles was

curated to the allelic variant ID (i.e., OMIM:601653.0001).

Therefore, the general OMIM ID is representative of all non-

indicated alleles, rather than a general phenotype description of all

alleles. Five of the 11 genes were recorded independently by three

curators to test for annotation consistency (to be published

elsewhere). In total, 1,848 annotations comprising 709 distinct

descriptions were collected for all 11 genes with 114 alleles

(Table 3). Some descriptions were frequently identical, such as the

description EQ = FMA:palate + PATO:cleft being used to

annotate 25 genotypes of 3 genes. Of these 709 descriptions, 487

used FMA, 110 used GO, and 4 used CL ontologies to describe

the entities.

Comparative Analysis between Phenotypic Profiles
We loaded all annotations and source ontologies (Table 4) into a

single OBD instance [28]. Briefly, this is an information system

that allows for the construction of complex descriptions using

multiple ontologies, and logical reasoning over these descriptions

and the annotations that utilize them. OBD also has analysis

capabilities that support comparison of like entities (such as genes,

alleles, and genotypes) based on their shared attributes (such as

their phenotype profiles). The reasoning step is required for the

comparison step.

Table 2. Free-text to phenotypic profile extraction example.

EQ Descriptions

Entity Quality

GO:sensory perception of
sound

PATO:disrupted

FMA:External_ear PATO:structure

FMA:Middle_ear PATO:structure

FMA:internal_ear PATO:structure

EHDAA:branchial_arch PATO:structure,
cavities

EHDAA:branchial_arch PATO: cystic

FMA:Kidney PATO:decreased size

GO:kidney_development PATO:arrested

FMA:Kidney PATO:absent

GO:sensory perception of
sound

PATO:disrupted

The following free-text describing the branchiootorenal syndrome I
(OMIM#113650) phenotype is annotated using multiple EQ phenotype
descriptions: ‘‘sensorineural, conductive, or mixed hearing loss, structural
defects of the outer, middle, and inner ear, branchial fistulas or cysts, and renal
abnormalities ranging from mild hypoplasia to complete absence.’’ EHDAA,
Human Developmental Anatomy; FMA, Foundational Model of Anatomy; GO,
Gene Ontology; PATO, quality ontology.
doi:10.1371/journal.pbio.1000247.t002
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OBD assigns an IC score to every term or EQ description used to

annotate a gene, allele, or genotype. The IC score is a measure of

how informative a term or a description is, based on the frequency

of annotations with the term and depth in the ontology. The IC

score will thus vary depending on the background set of

annotations. OBD uses a reasoner to compute IC scores, such that

annotations ‘‘propagate up the graph,’’ and consequently more

general terms receive lower IC scores. For example, Figure 2 shows

nodes from the zebrafish anatomy (ZFA) ontology, each with an IC

score. Terms deeper in the ontology are more distinguishing and

informative (i.e., a term such as ZFA:intestinal epithe-
lium has a higher score, IC = 12.4) than those at the root (i.e.,

ZFA:anatomical structure, IC = 2.72), because all

intestinal epithelium phenotypes are also anatomical structure

phenotypes. OBD treats phenotypic EQ descriptions in the same

way as other terms, and these nodes are assigned IC scores in the

same fashion. Just as for the terms, the reasoner can calculate

annotation frequencies such that more general EQ descriptions

such as ZFA:cranial cartilage + PATO:position
have lower IC scores than more specific, less frequently used, and

thus more informative descriptions such as ZFA:ceratohyal
cartilage + PATO:misplaced ventrally (Figure 3).

OBD can utilize the IC scores of each node to compute various

measures of similarity between any two pairs of annotations or

phenotypic profiles. We utilized three IC-based metrics as calcu-

lated in OBD to perform our analysis in this paper: similarity based

on Information Content (simIC), Information Content of the

Common Subsumer (ICCS), and maximal Information Content of

a pair (maxIC). A non-IC-based metric, the Jaccard similarity

coefficient (simJ), was also included in our analysis. These metrics are

detailed in [28] and [18] and in the Materials and Methods section

below. Figure 4 shows an example of how these different metrics

result from a set of genotypes being compared and how phenotypic

profiles are promoted to the alleles and genes for comparison at those

levels. The simIC metric quantifies the similarity between two

phenotypic profiles using the reasoner to determine which EQ

phenotype descriptions are shared based on the subsumption

hierarchy. If two phenotypic profiles are very similar, we expect

their profiles to converge more quickly and share quite specific

phenotype descriptions (i.e., with high IC scores); conversely,

dissimilar profiles will share only a few very general phenotype

descriptions in common (i.e., with low IC scores). Each subsuming

EQ also has an IC, and the average of the resulting set of the EQs in

common provides the ICCS score. Of this set of EQs that subsume

two phenotypic profiles, one will have the highest IC, the maxIC of

all pairs. The simJ metric does not use IC but is rather a ratio of the

count of all nodes in common to nodes not in common based on the

hierarchy.

We can directly compare any two items of the same type, such as

two genotypes, two alleles, or two genes by promoting annotations

from the genotype carrying a particular allele up to the allele itself,

or to the affected gene. Figure 4 illustrates the comparison of two

phenotypic profiles at the genotype and gene levels, and the

calculation of similarity metrics at those different levels. The two

profiles share a total of four common subsumers; some of the

annotations have a single common subsumer of the different

genotypes; others map to two different common subsumers. In this

example, genotypes A1/A1 and A3/A3 share an identical

annotation to ZFA:ceratohyal cartilage + PATO:mislo-
calizedventrally with an IC = 12.5, which is therefore one

of the common subsuming annotations and, in this case, also the

highest scoring common subsumer, or maxIC. As detailed in

Figure 3, ZFA:ceratohyal cartilage + PATO:mislo-
calized ventrally and ZFA:pharyngeal arch car-
tilage + PATO:mislocalized phenotypes share the

common subsuming parent ZFA:cranial cartilage + PATO:mi-
slocalized. Therefore, the common phenotypes that subsume

genotypes A1/A1 and A3/A3 include both of these parent EQ

descriptions. The phenotypes of A1/A1 and A3/A3 are promoted

up to the alleles A1 and A3, respectively, and in turn to gene A. In

this example, when the comparison is made at the gene level, the

highest scoring common subsumer (the phenotype with the maxIC)

is GO:neural crest cell migration + PATO:dura-
tion. The common subsumers of annotations to the anatomy

terms are at more generic nodes, due to their convergence point in

the ontologies (Figures 2 and 3).

Phenotype Comparison between Allelic Variants
The first test to assess how well the EQ annotation and

phenotype comparison methods work was to correctly identify

alleles of the same gene based on their phenotype descriptions. We

Table 4. Annotation Sources.

Source Ontologies Used
Number of
Genes

Number
of Unique
Descriptions

OMIM1 EDHAA, FMA, GO, SO, ChEBI, PATO 11 709

MGI2 MP, GO, PATO 10,579 5,266

ZFIN3 ZFA, ZFS, GO, PATO 2,911 5,157

GAD4 MP, DO 2,674 1,792

Data were comprised of annotations and ontologies from a variety of sources.
Listed are the ontologies used in the annotations from each data source, along
with the number of genes annotated, and the number of unique phenotype
descriptions (EQs). Annotations from MGI and GAD were made using the pre-
coordinated ontologies MP and DO.
1this study.
2http://mgi.org.
3http://www.zfin.org.
4http://www.gad.org.
doi:10.1371/journal.pbio.1000247.t004

Table 3. Phenotype profile statistics for EQ-annotated OMIM
genes.

Gene
Number of
Genotypes

Number of
Annotations Distinct EQs

ATP2A1 5 16 3

EPB41 5 18 8

EXT2 5 35 7

EYA1 20 567 137

FECH 14 37 9

PAX2 17 178 87

SHH 23 215 31

SOX9 14 329 164

SOX10 19 298 155

TNNT2 10 36 7

TTN 27 143 59

For each OMIM gene, the number of alleles annotated and the total number of
EQ annotations are listed. Of these total number of annotations, the number of
which were unique amongst the set are also listed. This set of annotations
provides the basis for the analysis presented in Figure 5. Genes annotated in
triplicate are indicated in bold.
doi:10.1371/journal.pbio.1000247.t003
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Figure 4. Phenotypic profile comparison and phenotype promotion. Multiple EQ descriptions annotated to a genotype comprise a
phenotypic profile, and these profiles can be compared using subsumption logic. Phenotypes annotated to genotypes are propagated to their
allele(s), and in turn to the gene, indicated with upward arrows. Similarity is analyzed between any two nodes of the same type, such as between
gene A-vs-B, allele A3-vs-B1, genotypes A1/A1-vs-A3/A3, or A3/A3-vs-B1/B1. Genotypes are shown as rounded boxes, alleles as circles, and genes as
squares. The phenotypic profile of genotype A1/A1 is detailed in purple, genotype A3/A3 in blue, and B1/B1 in red. The common subsuming
phenotypes between A1/A1-vs-A3/A3 and gene A-vs-B are itemized in white boxes. Arrows between the original phenotypic descriptions and their
common subsuming phenotypic description are indicated. Some individual phenotypic descriptions can have two common subsumers. For each
phenotypic description (EQ), the calculated IC is shown. When comparing two items, four scores are determined: maxIC, the maximum IC score for
the common subsuming EQ, which may be a direct (in the case of A1/A1-vs-A3/A3) or inferred (in the case of gene A-vs-gene B) phenotype, circled in
red; avgICCS, the average of all common subsuming IC scores; simIC, the similarity score which computes the ratio of the sum of IC values for EQ
descriptions (including subsuming descriptions) held in common (intersection) to that of the total set (union); simJ, non-IC-based similarity score
calculated with the Jaccard algorithm which is the ratio of the count of all nodes in common to nodes not in common. These scores are also indicated
for the comparisons between alleles A3-vs-B1 and A3/A3-vs-B1/B1, although the full profile is not being shown.
doi:10.1371/journal.pbio.1000247.g004
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compared the phenotypic profiles of all pair-wise combinations of

alleles annotated for each of the 11 OMIM genes using four

scoring metrics in OBD (simIC, ICCS, simJ, and maxIC). Our

hypothesis was that similarity scores between alleles of the same

gene (i.e., intra-gene) would be significantly higher than similarity

scores between either one of these alleles and alleles of other genes

(i.e., inter-gene). Only monogenic phenotypic profiles were

included in this part of our analysis; digenic genotypes were not

included (for example, OMIM:600725.0011/OMIM:603073 has

a double mutation in SHH and ZIC2).

Figure 5 summarizes the results, showing that without

exception, intra-gene allelic variants were more phenotypically

similar (p,0.0001 in two-tailed t-test) to each other than to those

of other genes using any of the four metrics. Another way to

examine the similarity between genetic variants is to use each allele

to query all other alleles to determine which other allele is most

similar. Out of all 118 alleles in the analysis, all had their most

phenotypically similar genotype in the same gene. Together, these

results support our hypothesis that EQ-based phenotype descrip-

tions capture the similarities between alleles of the same gene, and

these ontology-based similarity metrics are effective in retrieving

related alleles and quantifying their phenotypic similarity.

Retrieval of Pathway Genes by Phenotype Query
Members of a signaling pathway frequently exhibit similar

mutant phenotypes, and therefore we predicted that a query based

on the phenotype due to a mutation in one member of a pathway

would retrieve other known members of that pathway. We tested

this hypothesis on the well-characterized hedgehog-signaling

pathway, which regulates patterning and midline development in

animals [29]. ZFIN has .2,900 genes with mutant phenotypes

annotated with the EQ method [13], including 20 of the 64 known

hedgehog pathway members identified in ZFIN [30]. The entity

terms were typically drawn from the zebrafish-specific anatomical

ontology, as well as from GO, and the quality terms were from

PATO. The annotations from ZFIN (17,494 total, 5,157 unique

descriptions) were loaded together with the source ontologies

(Table 4).

We queried OBD for genes with mutant phenotypes similar to

the mutant phenotype of the zebrafish shha gene (ZDB-GENE-

980526-166). Figure 6 illustrates these results based on the

zebrafish hedgehog signaling pathway diagram from KEGG

[31], to which some additional genes have been added based on

current knowledge [30]. Table 5 lists the hedgehog pathway

members, and other phenotypes significantly similar to shha, in

order of their rank by simIC, together with their ranks and scores

by the four metrics. Six of the 11 genes scoring as most similar by

simIC are known to be members of the hedgehog signaling

pathway, seven by simJ, five by ICCS, and three of the top eight

by maxIC (many genes were tied for ninth place, see Table S1).

This set of the most similar genes to shha comprised 23 genes total,

of which 11 were known pathway members. Assuming a

hypergeometric distribution, the chances of retrieving 11 of the

20 mutant pathway members in the top 23 out of 2,908 genes at

random is very low (p,E-19). Three known pathway members,

bmp2b, hhip, and sufu, were not identified in the top 10 most similar.

sufu was the lowest ranking of these at 628 of the 2,908 genes

compared by simIC (see Table S1 for additional metrics). To

further test the similarity algorithm, we performed the reverse

query to determine if any hedgehog pathway members were

similar to sufu. The most similar pathway member to sufu was hhip

(rank 3 by simIC).

Intriguing are the additional zebrafish mutants found to have

highly similar phenotypes (for example, lama1, dharma, ntl, and doc),

Figure 5. Similarity metrics analysis of phenotype profiles
between and within genes. Each of the four panels shows one of the
four similarity measurements, comparing the score for alleles of the same
gene (intra, in black) versus alleles of all other genes (inter, in gray), for each
of the 11 OMIM genes annotated. The average of all 11 OMIM gene
comparisons for each similarity metric are shown in the grayed portion of
the graph on the right. Metrics are (as described in Figure 4): (A) simIC, (B)
simJ, (C) ICCS, and (D) maxIC. For each metric, there was a significantly
higher similarity value (p,0.0001) for the intra-genic comparisons as
compared to the inter-genic comparisons. Significance was tested using a
two-tailed Student’s t-test, for the pairwise comparison (intra versus inter)
for all four metrics for each gene. Error bars are standard error of the mean.
doi:10.1371/journal.pbio.1000247.g005
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but which are as yet unlinked to the hedgehog pathway, either

because they are not yet mapped or are untested in this role. These

results show that known, and potentially new, pathway members

within the same species can be identified using EQ methodology

and the similarity algorithms available within OBD.

Comparing Phenotypes of Cross-Species Orthologs
One of the primary goals of this study was to compare

phenotypes across species directly, particularly human to model

systems. This goal presented two challenges; first, we needed to

include more annotations from additional sources, specifically

mouse annotations from MGI [32,33], and disease associations

from the human Gene Association Database (GAD) [34].

However, these annotations were described using neither PATO

nor an anatomical ontology. The MGI annotations use the

Mammalian Phenotype (MP) ontology, and the GAD uses textual

descriptors. To integrate these valuable data, we first created an

equivalence mapping of MP terms to EQ descriptions [17]. We

also mapped the GAD descriptors to Disease Ontology (DO) terms

and created a mapping of DO terms to the FMA. These

annotations, together with their source ontologies, were loaded

into OBD (Table 4). The second challenge in making cross-species

comparisons is that each species of interest has its own unique

anatomical ontology. This means that there is no automated

method to determine that a zebrafish ZFA:cranial nerve
VII phenotype is in fact related to a human FMA:facial
nerve phenotype. In initial tests, orthologs scored very poorly in

terms of phenotypic profile matches, as might be expected

(unpublished data). The majority (85%) of annotations in OBD

were made using these species-specific anatomical ontologies, and

without a means for linking them across species, only species-

neutral ontologies such as GO, CL, and PATO could be used for

comparisons. We recognized that the comparisons would be

greatly enhanced by providing links between the anatomical

structures in the different organismal anatomy ontologies that

would allow the search algorithm to identify commonalities in the

phenotypic profiles of different organisms. Therefore, we added

UBERON to OBD, a multi-species ontology which generalizes

over the types of structures represented in the species-centric

anatomical ontologies and provides links between these terms and

UBERON terms (see Methods) [16]. For example, Figure 7 shows

how phenotype annotations to the mouse MA:cochlea, the

zebrafish ZFA:macula, and the human FMA:pinna may be

related via the common superclass ear in UBERON.

Our final hypothesis was that sequence orthologs would exhibit

similar mutant phenotypes and therefore phenotype descriptions

alone would be sufficient to identify orthologs and pathway

members. To test this, we queried the complete set of zebrafish

and mouse phenotypes, using the phenotypic profiles of the 11

human disease genes annotated from OMIM and our four scoring

metrics. Table 6 shows the score and rank of the mouse and

zebrafish orthologs when compared to the human disease gene for

all four metrics. The full set of returned genes for zebrafish and

mouse using all four metrics are available in Table S2–S23. In the

case of the human-zebrafish comparison, seven out of the 11

orthologous genes were returned in the most similar 100 by any

metric, with five being in the top 10 by two or more metrics. Three

zebrafish genes, pax2a, sox10, and ttna, were found to be the most

similar to their human ortholog (rank 1 by ICCS and maxIC

metrics, as well as by simIC for sox10). The human-mouse

comparison revealed fewer orthologous findings, with only 5 of

the 10 orthologs (no annotations for mouse Tnnt2 were available at

the time of analysis) being identified in the most similar 100 genes by

any of the metrics. Of these five, four were in the top 10 by two or

more metrics. Two mouse genes, Ebp4.1 and Eya1, were the most

similar to the human ortholog by two metrics. In some cases, the

rankings of the orthologous gene were very similar by the different

metrics. For example, comparison of human and mouse EPB41

ranked the mouse ortholog first in the case of ICCS and maxIC,

sixth for the simJ metric, and third for the simIC metric. In other

cases, the rankings were more variable for the different metrics. For

example, mouse Pax2 was ranked as only 45th by the simJ metric,

but in the top 10 most similar genes by the simIC and ICCS metrics.

Because the most phenotypically similar gene by the four metrics

was often not the sequence ortholog, we took a closer look at which

genes were the most similar. Table 7 lists the mouse and zebrafish

genes most phenotypically similar (rank 1) to the 11 human disease

Figure 6. A similarity search for mutant phenotypes similar to
zebrafish shha retrieves many known pathway members. Based
on the diagram from KEGG [31], the double gray line represents the
plasma membrane, and the dashed line the nuclear membrane. All
known shha pathway members are shown; those with recorded mutant
EQ annotations are yellow. Pathway members retrieved in the top 23
most similar genes are indicated by red boxes. Known pathway
members in ZFIN are shown with their current nomenclature, with the
exception of those with uninformative nomenclature, which are listed
with their KEGG reference gene family nomenclature and are
capitalized. KEGG reference pathway members not yet identified in
zebrafish (Fu) are grayed out.
doi:10.1371/journal.pbio.1000247.g006
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genes, for each of the four metrics. In general, there did not appear to

be a significant bias towards one metric in the first-place ranking of

orthologs. One ortholog was returned as most similar by each metric

in the mouse, and one by simIC, and three each by maxIC and ICCS

in the zebrafish. Some of the most similar genes are in the same family

as the ortholog (for example, mouse Epb4.1, Epb4.2, and Epb4.9; and

zebrafish sox9a and sox10). Other similar genes may participate in the

same pathway, for example, mouse Shh and Cdon. Some of the

returned genes are known to function in similar locations, such as

atp2a1 and ryr1b, which are both sarcoplasmic reticulum calcium

channels. These results show that the EQ method of describing

phenotypes with species-specific ontologies (FMA, ZFA, and MP),

when combined with species-neutral ontologies (PATO, GO, CL,

and ChEBI) and a species-neutral linking ontology (UBERON), can

be used to successfully query for similar phenotypes across species

using the similarity algorithms available in OBD.

Discussion

Assessing the Method
This is the first effort to systematically record, and computation-

ally compare, phenotype descriptions with the goal of providing a

Table 5. Zebrafish genes with similar phenotypes to zebrafish shha.

Gene simIC simJ ICCS maxIC Role in Hedgehog Pathway Ref

disp1a 1 1 38 43 Regulates secretion of lipid modified shh from midline. [72]

gli2aa 2 3 1 1 Zinc finger transcription factor target of shh signaling. [73]

lama1 3 2 35 127 Basement membrane protein important for eye/body axis development. [74]

smoa 4 4 2 1 Membrane protein binds shh receptor ptc1. [75]

scube2a 5 18 118 43 May act during shh signal transduction at the plasma membrane. [76]

prdm1aa 6 10 31 43 Zinc-finger domain transcription factor, downstream target of shh signaling. [77]

dharma 7 5 56 57 Paired type homeodomain protein that has dorsal organizer inducing activity and is regulated by wnt signaling. [78]

gli1a 8 6 21 57 Zinc finger transcription factor target of shh signaling. [79]

extl3 9 7 75 127 Glycosyltransferase involved in heparan sulfate biosynthesis, required for optic tract sorting by robo2. [80]

ext2 10 11 133 127 Glycosyltransferase involved in heparan sulfate biosynthesis, required for limb development. [81,82]

hdac1a 11 8 4 7 Transcriptional regulator required for shh mediated expression of olig2 in ventral hindbrain. [83]

ndr2a 14 9 36 57 TGFbeta family member upstream of hedgehog signaling in the ventral neural tube (aka cyclops). [84]

kny 15 14 6 9 Glypican component of the wnt/PCP pathway. [85]

doc 16 48 94 43 Unmapped; identified in large-scale screen with several other pathway members; affects notochord, somite
formation, and patterning.

[40]

vangl2 20 17 5 9 Modulates wnt/PCP signaling pathway during gastrulation. [36]

wnt11a 22 21 8 32 Extracellular cysteine rich glycoprotein required for gli2/3 induced mesoderm development. [86]

wnt5ba 29 33 3 32 Extracellular cysteine rich glycoprotein required for convergent extension movements during posterior
segmentation.

[87]

robo2 44 50 17 1 Signals olfactory axon guidance along midline in forebrain (Shh acts as axon guidance ligand through
robo-related proteins Boc/Cdon in mouse).

[88,89]

cho 50 81 7 9 Unmapped; identified in large-scale screen with several other pathway members; affects somite patterning
and pigment cells.

[40]

bmp2ba 71 72 62 103 Downstream target of gli2 gene repression. [90]

chd 78 44 16 1 Negative regulator of bmp signaling, normally coexpressed with shh in notochord (chick). [91,92]

tbx24 141 395 10 7 A T-box transcription factor expressed in presomitic mesoderm (PSM) and involved in PSM maturation,
independent of Notch.

[93]

ptc2a 154 102 24 43 Membrane receptor for shh. [94]

cdh2 171 126 9 21 A cell adhesion molecule expressed in the neural tube and required for neural tube closure, regulated by ndr1/2. [95]

ptc1a 188 140 33 43 Membrane receptor for shh. [96]

chaf1b 194 148 25 1 A chromatin assembly factor that requires shh and hdac1 activity—required for cell cycle exit and
differentiation in zf retina.

[97]

plxna3 212 285 22 1 A membrane protein, semaphorin receptor, which regulates intraspinal motor axon guidance (shh known
to act as axon guidance ligand).

[98,99]

ndr1a 224 262 20 9 TGFbeta family member upstream of hedgehog signaling in the ventral neural tube (aka ‘‘squint’’). [95]

hhipa 325 300 262 321 Binds shh in membrane and modulates interaction with smo. [75]

sufua 628 553 257 395 Signal transduction of hh signal. [100]

All genes ranking in the top 23 are listed, ordered by rank of simIC, together with their ranks by all metrics and a short description of a putative function of the gene
product with particular reference to the hedgehog pathway. Known hedgehog pathway members indicated with an a. The rank for each score (simIC, simJ, ICCS, and
maxIC) was determined by its position in a sorted list, with tied rankings representing a shared score; next-lower scores ranked at their position in the list. The set of the
top 23 most similar genes includes the top 10 by each metric, with the exception of maxIC, where the top eight were included due to many ties. The chances of
retrieving 11 of the 20 pathway members, based on a hypergeometric distribution, in the top 23 out of 2,908 genes is very low (p,E-19). Genes that scored in the top
23 are in bold. A full table of results is listed in Table S1.
doi:10.1371/journal.pbio.1000247.t005
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new tool for discovering genotype-phenotype relationships within

and across species. We tested our methods incrementally, showing:

first, that allelic variants were most phenotypically similar to other

allelic variants of the same gene; second, that we could retrieve

known pathway members based on the similarity of the mutant

phenotypes; and third, that we could identify orthologous genes

across species. Together, these tests indicate that automated

similarity analysis of structured phenotype descriptions can

successfully identify sets of genes with important and informative

biological relevance. Specifically, EQ phenotype description used in

combination with IC-based similarity metrics and anatomical

mapping between organisms provides the resources necessary for

both precisely recording the phenotypes observed and subsequent

computational comparisons, which are unconstrained by termino-

logical differences between research communities.

Phenotypic similarity of alleles. In applying the

phenotypic similarity metrics to our data, we first compared the

alleles of 11 human genes and found that the four metrics (simJ,

simIC, ICCS, and maxIC) all ranked other alleles of the same gene

as the most similar (Figure 5). On average, alleles of the same gene

scored 2-fold more similar than alleles of different genes. These

results suggested that EQ-based phenotype descriptions, and the

similarity scores computed based on these descriptions, were

sufficient to retrieve related alleles and measure their relative

phenotypic similarity.

Phenotypic similarity of signaling pathway

members. Our second test was to determine whether we could

retrieve other known pathway members based on their having

similar mutant phenotypes. A query using the zebrafish shha gene

Figure 7. UBERON links multiple species-specific anatomy
ontologies. The entities for selected human, zebrafish, and mouse
EYA1 phenotypes were annotated using species-specific anatomy
ontologies (FMA, ZFA, and MA, respectively) as indicated by the solid
squares. Outlined squares indicate entities of subsuming annotations,
color coded to match the source ontology. Annotations can be associated
with common subsuming nodes via UBERON. In this example, each of the
annotated entities can be linked through the UBERON:ear (black).
doi:10.1371/journal.pbio.1000247.g007

Table 6. Ortholog rankings of phenotype similarity search using human disease genes.

Mouse Zebrafish

simIC simJ ICCS maxIC simIC simJ ICCS maxIC

ATP2A1 rank NF NF NF NF NF NF NF NF

score 0.005 0.054 0.844 1.52 0.025 0.086 1.99 4.2

EPB41 rank 3 6 1 1 180 130 185 134

score 0.09 0.197 5.39 10.41 0.017 0.121 1.55 2.88

EXT2 rank NF NF NF NF NF NF NF NF

score 0.017 0.101 2.08 3.63 0.009 0.07 1.29 2.71

EYA1 rank 1 1 5 26 4 5 2 22

score 0.075 0.159 5.43 10.56 0.029 0.085 4.4 10.27

FECH rank NF NF NF NF NF NF NF NF

score 0.034 0.119 3.14 9.83 0.005 0.066 0.63 1.67

PAX2 rank 7 45 3 31 9 16 1 1

score 0.077 0.168 4.83 9.09 0.039 0.096 4.6 12.73

SHH rank NF NF NF NF 15 16 63 18

score 0.062 0.116 4.69 10.93 0.04 0.119 3.26 6.89

SOX9 rank 3 2 4 11 7 8 2 2

score 0.066 0.132 5.07 11.15 0.025 0.079 4.08 12.15

SOX10 rank NF NF NF NF 1 2 1 1

score 0.098 0.077 4.23 9.62 0.06 0.126 5.38 12.73

TNNT2 rank — — — — 117 210 161 22

score — — — — 0.018 0.093 4.66 2.16

TTN rank 23 31 35 6 2 2 1 1

score 0.05 0.131 4.31 10.73 0.038 0.116 4.92 12.73

The four similarity metrics are reported for each human-mouse or human-zebrafish ortholog pair. The rank shows where the ortholog is returned using each similarity
metric in the top 250 most similar genes (by simJ) with the human gene queried against all mouse or zebrafish genes, respectively. ‘‘NF’’ indicates that the ortholog was
not found in the top 250 genes. Cases where the orthologs ranked in the top 10 are bold. No comparison between human TNNT2 and mouse Tnnt2 could be made,
because no mouse annotations were available at the time that OBD was loaded. In cases where two zebrafish paralogs existed, the ‘‘a’’ gene was used for comparison:
pax2a, shha, and sox9a.
doi:10.1371/journal.pbio.1000247.t006
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returned 16 of 20 EQ annotated known pathway members in the

top 10% by all metrics (select additional genes shown in Table 5, all

results in Table S1). Furthermore, in a combined list of the 23 most

similar genes by all metrics, 11 of the 20 annotated mutant pathway

members were identified. The chances of retrieving these randomly

are exceedingly low. Furthermore, based on current literature, the

additional genes that were found show strong potential for playing a

role in the hedgehog pathway and provide interesting candidates for

further study.

For example, lama1, a Laminin essential for normal lens

development, scores as highly similar by simIC (rank 3). At the

time of this writing, lama1 was not yet linked specifically to shha in

zebrafish. However, it has since been shown that mouse Shh

directly binds to Laminin and that the Shh-Laminin complex induces

cell proliferation in granule cell precursors in the external germinal

layer during CNS development [35]. Recently, lama1 has also been

shown to interact genetically with vangl2 in zebrafish, another gene

found to score as highly similar to shha (rank 3 by maxIC). vangl2 is

known to function in the non-canonical Wnt/PCP signaling

pathway during zebrafish gastrulation [36]. hdac1 (rank 2 by

maxIC) has been shown to regulate both the canonical and non-

canonical Wnt pathways [37], particularly for oligodendrocyte

specification in the CNS. dharma (rank 5 by simJ) is a dorsalizing

transcription factor that has been shown to repress the known

pathway member bmp2b directly [38]. Expression studies have also

shown positive effects of dharma on flh (rank 23 by ICCS)

expression, and a reduction of ntl (rank 11 by ICCS and maxIC)

along the dorsal midline [39], suggesting these genes may be

downstream of dharma.

Pathway members that were not returned as similar to shha

warranted further investigation. For example, sufu was the lowest

ranking pathway member, and there were multiple reasons why

sufu was ranked as dissimilar to shha. The first was that only a few

EQ descriptions were available for sufu mutants (7 total, from one

genotype) and many available for shha mutants (77 total from 9

genotypes). While a number of the shha EQ descriptions were not

unique, there were still a large number of annotations not-held-in-

common between the two genes (see discussion below). The second

reason sufu scored as dissimilar is because the recorded phenotype

was simply different. sufu was annotated to inner ear, lens, and lens

development, while shha annotations were to retina development

terms, in addition to many other structures including pectoral fin,

somites, brain, and muscle development terms. Because there are

so few annotations to sufu, this was a good test for the kind of

search that a researcher might perform when trying to identify

candidates for interaction or further genetic study. We performed

the reverse search (results in Table S24), wherein we looked for the

most similar genes to sufu to see how the shha pathway members

ranked. We found that hhip was the third most similar gene to sufu

by simIC (and second by maxIC), as both are annotated to lens

and inner ear terms. hhip and sufu are both negative-regulators of

the hedgehog pathway. kif11 is a kinesin-family member that

ranked sixth most similar to sufu (seventh) by simIC (simJ).

Although kif11 is untested for modulating the hedgehog pathway,

the fact that another family member, kif7 (cos2), directly interacts

with sufu suggests a potentially overlapping functionality between

kif7 and kif11 based on their phenotypic profiles. So although sufu

ranked as fairly dissimilar to shha, the reverse search results

strengthen its membership in the hedgehog pathway, perhaps in a

phenotypically distinct group of pathway members.

Some of the genes found to be highly similar to shha are

genomically unmapped, for example doc. These mutants were

identified in a large-scale screen wherein three phenotypic groups

were described: Motility, Organs, and Mesoderm [40]. shha (syu)

was identified in all three groups, while doc was in the Mesodermal

and Motility groups. Other genes falling into the Mesoderm

phenotypic group from Table 5 include lama1 (bal), ndr2 (cyc),

wnt11b (smt), disp1 (con), gli2a (yot), prm1a (ubo), dharma (mom), scube2

(you), cho, tbx24 (fss), and chd (din). doc scored in the top 20 most

similar genes to shha by its simIC score. The reverse-search, using

doc as the query against all zebrafish genes (Table S25), showed the

integral-membrane protein scube2 as the most-similar hedgehog

Table 7. Genes most phenotypically similar to human disease genes.

Mouse Zebrafish

Gene simIC simJ ICCS maxIC simIC simJ ICCS maxIC

ATP2A1 Jph1 Slc25a5 Aldh2, Cisd1 Jph1 ryr1b ryr1b ryr1b ryr1b

EPB41 Epb4.9 Mnek1a Epb4.1 Epb4.1, Epb4.2,
Epb4.9, Trf

smad5 gata1 dtl dtl, kiaa1279, sass6, stil

EXT2 Hoxd8 Hoxd8 Hoxc4 Sp7, Crtap unm t30212 unm t30539 unm t30611, unm t30441, unm
t30362, unm t30361, unm t30442,
unm t30604, unm t30748

dla, blo, exp, stb, unm
tz227c, unm tg310a

EYA1 Eya1 Eya1 Tbx1 Trps1, Gja1, Msx2 rerea fgf8a rerea axin1, chm, shy

FECH Abcg2 Abcg2 Abcg2 Anapc2, Usp8 tal1 abhd11 kita tal1

PAX2 Rpl24 Maf Mitf Mitf lamb1 sufu pax2a pax2a, flr, axin1

SHH Cdon Ctnnbip1 Alx1 Ift57 rerea fgf8a sox9a sox9a, tfap2a,

SOX9 Fgfr2 Ror2 Prrx1 Ror2, Fgfr3 fgf8a cdc16 fgf8a int

SOX10 Ednrb Ednrb Ednrb Ret sox10 mib sox10 sox10, pbx4, ache,
tfap2a, tcf7l2, psoriasis

TNNT2 Hdac9 Hdac9 Irx4 Hdac9+20 tied cx36.7 cx36.7 vmhc acvr1,ttna

TTN Myl2 Scn5a Mybpc3 Myl2, Nkx2–5 cx36.7 cx36.7 ttna ttna, mef2ca, ache, hey2

Shown are the highest scoring genes when comparing a human gene versus either mouse or zebrafish, using the four different similarity metrics (as in Table 6).
Sequence orthologs that are the top hit are in bold. For maxIC, there were often ties for the top rank, which are all listed with the exception of Tnnt2 versus mouse,
where there were 20 genes ranked as the most similar. Please see Tables S2–S23 for a full listing.
doi:10.1371/journal.pbio.1000247.t007
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pathway member (rank 1 by maxIC and rank 8 by simIC). The

most similar genes (by all metrics) were copb1/2, which are known

to facilitate the biosynthetic transport of cav-1 in humans [41].

Caveolin-1 is known to bind Shh for intracellular transport and to

associate with patched in cholesterol-rich microdomains of the

plasma membrane [42,43]. That these multiple integral-mem-

brane proteins show strong phenotypic similarity to doc suggests a

possible role for doc in the hedgehog pathway, potentially as

another membrane protein, or as an interacting protein. The

discovery of phenotypically similar yet genomically unmapped

mutations using these annotation methods and similarity algo-

rithms is extraordinarily promising, as it suggests that the

reciprocal search could provide a means of identifying candidate

genes when the genetic basis of the phenotype is unknown.

Phenotypic similarity of orthologs. One of the ultimate

goals of this methodology is to find model organism phenotypes

that are similar to a human disease for which the genetic basis is

unknown, thus providing candidate orthologous genes or pathway

members. Therefore, our final test of our method was to determine

if we could identify orthologous genes across species by comparing

phenotypes alone. We found that this functionality required the

UBERON ontology, which groups corresponding anatomical

entities by anatomical homology, functional analogy, and

structural similarity and therefore allows anatomical queries

across organisms [16]. Once UBERON was included in the

search algorithm, we could identify a number of orthologous genes

and pathway members (Tables 6 and 7, respectively). However,

the mouse and zebrafish genes most phenotypically similar to the

human disease genes were not necessarily the sequence orthologs.

Investigation of the genes most similar to the human disease

genes proved to be very interesting (Table 7). For example, the top

three most similar genes to human EPB41 in mouse by simIC,

ICCS, and maxIC (Epb4.9, ICCS = 6.01; Epb4.1, ICCS = 5.94;

and Epb4.2, ICCS = 5.69) are all Epb family members (see Table

S13 for all genes similar to EPB41 by each metric). These three

genes score as very similar because they share the highly specific

phenotype spheroid erythrocyte. Epb4.1 is linked to the human

disease Elliptocytosis (EL1; OMIM#611804), and Epb4.2 is

linked to Spherocytosis (SPH1; OMIM#182900). Both of these

human diseases have the common cause of having a destabilized

cytoskeletal scaffold of red blood cells. Epb4.9 mutations are not

linked to SPH1 or EL1 in MGI, although they may make good

models because they also exhibit spheroid erythrocytes and

abnormal erythrocyte lysis (MGI:2447353).

Another notable phenotype comparison is that with mouse

Cdon, which is returned in the top four most similar genes to human

SHH by all four metrics (simJ = 0.24, second; simIC = 0.12, first;

ICCS = 4.99, third; and maxIC = 0.65, fourth). Cdon encodes an

Ig/fibronectin repeat-containing protein that has been shown to

bind to Shh at the cell surface and positively regulate Shh signaling in

Shh expression domains in mouse [44]. Cdon and SHH mutations

result in similar phenotypes such as premaxilla morphology, lip

morphology, and lateral ventricle quality. Cdon has not yet been

added to KEGG, and zebrafish cdon has no phenotypes annotated at

this time. Based on these results, mouse Cdon and zebrafish cdon

mutants may be helpful in the further analysis of the hedgehog

pathway and may provide additional models of disease.

The only comparison that identified the same gene as being the

most similar by all four metrics was between human ATP2A1 and

zebrafish ryr1b. The three most specific phenotypes these genes have

in common are metal ion transmembrane transporter activity (IC

= 11.99), sarcoplasmic reticulum quality (IC = 10.54), and muscle

contraction (IC = 5.97). ATP2A1 is a calcium transporting ATPase

that restores Ca2+ homeostasis following excitation of skeletal

muscle. Mutations in the human gene results in Brody myopathy

(OMIM #601003), which is characterized by impairment of

muscular relaxation during exercise [45]. Zebrafish ryr1b is a

calcium release channel in the sarcoplasmic reticulum involved in

skeletal muscle fiber contraction [46]. RYR1 (OMIM#180901)

mutations in humans lead to congenital myopathy and multi-

minicore disease (MmD), which is characterized by amorphous

cores in muscle and is similar to those seen in the zebrafish ryr1b

mutant. Therefore, because ATP2A1 and RYR1 are required to

temporally coordinate calcium concentration, zebrafish ryr1b

mutants might provide a useful model for Brody myopathy and

MmD.

In some cases, such as for human-mouse SOX10, the phenotype

of the ortholog appeared similar but was not returned in the top

250 when ranked by simJ (Table 6). Even though both the human

disease alleles and mouse mutants had been annotated reasonably

specifically to neural crest, gastrointestinal, and pigmentation

terms, the sequence orthologs did not rank highly. The reason for

this low similarity is because simJ and simIC penalize phenotypic

profiles with many unique annotations, as was the case for SOX10.

The use of maxIC and ICCS attempts to overcome this deficiency

by examining the annotations in common. In this study, we used

simJ to return the 250 most similar phenotypic profiles and then

sorted the data to examine the other metrics. In the future it may

be possible to incorporate maxIC and ICCS within the similarity

algorithm itself to overcome this deficiency. Another reason that

the sequence orthologs did not always rank very high is that some

of the phenotypic data available for the orthologs were not very

rich. For example, some of the phenotype annotations from ZFIN

were made prior to the implementation of the EQ methodology

and resulted in fairly generic EQ descriptions. Two of these

generically annotated genes were not returned in the top 250 most

similar genes by simJ between human and zebrafish (atp2a1 and

fech). We expect that, as more data are accumulated using the EQ

methodology, annotation to generic nodes will comprise an

increasingly smaller percentage of the total annotations.

The genes identified by this similarity algorithm are good

candidates for further investigation of biological function, pathway

elucidation, and identification as animal models of disease.

Although some models of disease may already be in existence,

the importance of having a variety of animal models for the same

disease should not be underestimated. Different mutations in the

same gene or in related pathway members may exhibit variable

phenotypic consequences, for example lethality at different stages

of development. Most importantly, our results suggest that the

reciprocal search will work, where we will be able to identify

animal models of human disease (or disease pathways) where the

human gene is not yet known. In order to implement this, we

intend to annotate the remainder of OMIM using the EQ method

on OMIM phenotype synopses, and supplement the database with

other disease data, to provide the necessary phenotypes for

comparison. Because a mutated gene in an animal model is more

readily available or identifiable, our method may hasten the

identification of the genetic basis of human diseases.

Similarity Metrics
We used three IC-based metrics to compare phenotypic profiles:

simIC, ICCS, and maxIC of a pair. One non-IC-based metric, the

Jaccard index (simJ), was also included in our analysis [18]. Of

these metrics, ICCS has not been assessed in previous studies. To

our knowledge, this is the first attempt to use any of these metrics

to score similarity using composite EQ descriptions.

All metrics work in conjunction with a reasoner, thus

descriptions do not have to be exact matches in order to be
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considered similar. The simJ metric rewards more specific matches

by counting the total common subsuming descriptions over the

union of all subsumed descriptions. This means that simJ is

potentially open to bias in the ontology structure. We can see this if

we compare the GO with the FMA—terms of comparable

specificity are often located deeper in the FMA is_a hierarchy due

to the use of high-level abstract terms in the FMA. IC-based

metrics attempt to overcome biases in ontology structure by

associating significance with term usage. High-level terms such as

‘‘organ’’ are used frequently (recall that we use the reasoner to

compute indirect annotations), whereas more specific terms such

as ‘‘lens’’ are used less frequently. Such matches for lens

phenotypes are considered more significant than matches for

organ phenotypes. A danger with this method is that the set of

annotations may be biased, and therefore score lower than

expected.

We expected IC-based metrics to fare better with the inter-

species comparisons, because we have a reasonably well-sampled

distribution of annotations over UBERON. There are still some

biases—the zebrafish is well-suited to certain kinds of studies and

mouse to others, and the literature and annotations will reflect

these differences. For instance, many of the zebrafish annotations

are to early developmental processes and structures because this

model is well suited to developmental studies. This is a ubiquitous

problem when comparing gene expression or function across

species. However, it is much harder to evaluate IC-based metrics

versus simJ in the context of the inter-species comparisons. If we

make the assumption that orthology leads to similar phenotypes,

we can use the results in Table 6 to evaluate the metrics. While the

results of this study suggest that the derived IC-based metrics

maxIC and ICCS may overcome some of these biases (more

orthologs returned as the most similar genes), our dataset of 11

human genes does not constitute a large enough sample to

statistically compare the different metrics. In the future, we aim to

create a ‘‘gold standard’’ set of genotype-phenotype annotations

that would minimize literature or experimental bias and is

independently annotated by different curators to eliminate errors

of commission and omission. This would allow statistical testing of

sensitivity and specificity with regard to these similarity metrics.

Nevertheless, our results demonstrate conclusively that one can

compare phenotypes across organisms using ontology-based

metrics to find biologically meaningful results. Furthermore, it is

important to use multiple metrics to analyze and rank the overall

similarity between genes.

Limitations and Extensibility
The primary limitation of this method is the cost of curation

from the literature, both in terms of needing domain experts as

well as the time involved. There are several Natural Language

Processing efforts to facilitate partial-information extraction to

assist curators in identifying relevant material in the literature. For

example, Textpresso [47] is able to mark up full-text literature

articles for important biologically relevant terms. Adding PATO

or other quality ontologies into the workflow could greatly increase

the speed at which a curator could annotate the literature.

However, automated tools will have errors due to terminological

inaccuracy or inadequacy in published reports, and require human

curatorial staff to review. This is particularly true for the human

dysmorphology field, but recent efforts by a group of clinicians to

standardize the terminologies used to describe human phenotypes

[48] will be enormously helpful for further automated analysis.

Furthermore, coordinating these standardized terminologies with

the development of the Human Phenotype Ontology (HPO) [49]

and in creating OMIM clinical synopses will be a necessity. The

HPO was not yet available at the time of our annotation, and will

be especially valuable in future cross-species phenotype studies if

its development is coordinated with OMIM and the clinical

dysmorphology group, and follows the OBO Foundry principles

for maximal interoperability [50].

As evidenced by our evaluation of curatorial reproducibility (to

be published elsewhere), ontology development is also a factor that

must be considered. A fair degree of effort is required to build and

maintain ontologies and the relationships between them and this

effort must be informed and guided by collaborative interactions

with the curators. Some domains, such as behavior, which is

minimally represented in the GO, remain poorly represented by

ontologies. These insufficiencies are being addressed [51,52] and

the combinatorial nature of ontologies makes new ontologies easy

to add to the analysis as they become available. Another case in

point are the current efforts aimed at using ontologies for image

annotation (see, for example, [53] and [54]), wherein not only can

the images from which the ontology terms are in part defined be

easily located, but the term markup of the images themselves can

be updated as the ontologies change over time.

Some key players in the zebrafish shha search were not included

in our analysis because they were based on morpholino

knockdowns rather than traditional mutants. Similarly, morpho-

lino phenotype data from five of the 11 orthologs of the human

disease genes examined were also not included in the ortholog

analysis (shha, sox9a, sox10, tnnt2, and ttna). Future enhancements to

our database structure will accommodate various mechanisms for

diminishing gene function such as gene-specific morpholinos,

siRNAs, or chemicals, and this will greatly expand the available

dataset for comparison. Databases such as PharmGKB and the

Comparative Toxicogenomics Database (CTD), both of which

correlate the effects of drugs and/or toxicants to specific gene

dysfunction and/or disease states [55,56], and correlate these to

specific allelic variants (PharmGKB only), might also be integrated

into the system to provide additional reference data.

In order to prioritize candidate genes to be studied in the

laboratory for a mutation with a defined phenotype, some

combination of information is considered. The first we present

here, namely the discovery of organisms with similar pheno-

types in which the candidate gene may be more easily identified.

However, additional information such as chromosomal position

and gene expression are also often used in prioritizing candidate

genes for sequencing. Since an aim of this method is to increase

the efficiency in identifying candidate genes, inclusion of

mapping and expression data into the workflow could further

refine the search results. MODs are already using anatomy

ontologies and the GO cellular component ontology for

annotating both gene expression and phenotypes, and this

information could be especially informative in cases where no

phenotypes have been annotated to the anatomical structures in

which they are expressed. In addition, recent literature suggests

that much of morphological evolution is tied to mutation in cis-

regulatory regions (for reviews, see [57,58]). If it is the case that

phenotypes fall into distinct classes, for example, morpholog-

ical, behavioral, or physiological, then it would be interesting to

see if groups of phenotypically similar genes are correlated with

specific genomic or biologically relevant phenomenon. This

type of contextual information can be mined from external

databases (genomic, protein binding results, co-expression, etc.)

and would not only facilitate candidate gene prioritization but

may also provide insight as to the molecular basis of gene

evolution.

Another biologically interesting question we considered was

whether zebrafish paralogs would have combined phenotypic
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profiles that are complementary in toto to their mammalian

ortholog. An interesting feature of zebrafish is that they had a

genome-wide duplication, which occurred as part of the teleost

radiation approximately 350 million years ago, and some of the

duplicated genes persist in the modern zebrafish genome [59]. The

occurrence of two orthologs in zebrafish of a single mammalian

gene provides a unique opportunity to examine the degree to

which the phenotypes of mutations in these paralogs are similar or

complementary. It is well known that a number of paralogs have

diverged so as to become complementary or expanded in their

expression patterns and/or functions, whereas others are redun-

dant or nonfunctional [60,61]. In many cases only one of a pair of

paralogs has been studied by mutational analysis, but the other has

been studied using morpholino knockdown reagents. Therefore,

the analysis of phenotypic similarity between paralogs will also be

facilitated by the future inclusion of the knockdown phenotypes

into our dataset.

A project that relates and extends this work is the Phenoscape

[62] project, which uses ontologies and the EQ method to record

evolutionarily variable morphological characters for a large clade

of fishes. This group has been very successful in having the

comparative morphology community annotate evolutionary phe-

notypes. The goal is to use these explicitly recorded character

states to query MODs for similar phenotypes, thus gaining

candidate genes for evolutionary change. It will be interesting to

utilize the phenotypic similarity of related species as an added

component to the methodology presented here. Both approaches

could well inform one another, providing a better understanding

of the evolution of signaling pathways and anatomical form.

In this study, we show that by using ontologies for phenotype

annotation, one can precisely record and quantify similar

phenotypes. Annotation of phenotypes using the EQ method will

not only facilitate the use of a common language necessary for

comparing phenotypes, it will also facilitate the identification of

genotypes with similar phenotypes within and across species,

providing candidate genes for human disease, evolutionary

change, and pathway characterization.

Materials and Methods

OMIM Statistics
Statistics for free-text query of OMIM records were obtained on

2/6/2009 (Table 1). Statistics for the number of OMIM gene

records with associated phenotypes were obtained by doing a

query in OMIM for any gene record (* or +) with a filter selecting

records with allelic variant descriptions and/or clinical synopses.

Statistics for the percentage of OMIM phenotype/disease records

with known molecular genetic basis were derived from the table

of OMIM statistics at http://www.ncbi.nlm.nih.gov/Omim/

mimstats.html, by dividing the count for records with a

‘‘Phenotype description, molecular basis known’’ by the total

number of phenotype records (statistics are as of 8/10/2009).

Selection of Genes/Records for Annotation
Human genes from OMIM were selected first by ranking by

those with known and described mutant homologs in Danio rerio

and Drosophila melanogaster, then by having the greatest number of

detailed descriptions of alleles in OMIM. We selected the

following 11 genes to be annotated from their OMIM record:

ATP2A1 (108730), EPB41 (130500), EXT2 (608210), EYA1

(601653), FECH (177000), PAX2 (167409), SHH (600725), SOX9

(608160), SOX10 (602229), TNNT2 (191045), and TTN (188840).

EYA1, PAX2, SOX9, SOX10, and TTN were selected for recording

by three independent curators to test for annotation consistency (to

be published elsewhere). Where an OMIM gene record referred to

a disease record, the annotators would capture as much general

phenotype information about that disease as possible.

Annotation Software and Storage
We write ontology terms prefixed with the name of the

ontology; abbreviations are provided at the beginning of this

paper. We use ZFA:gut in place of ZFA:0000112 for legibility

purposes. The actual computationally parseable form would use

the numeric IDs.

All OMIM annotations were created with Phenote [24]

software, using the ‘‘human’’ configuration. This included the

following ontologies: CL, CHEBI, FMA, GO, and EDHAA for

entity selection, and PATO for quality selection. All annotations

were recorded with provenance assigned to the PubMed identifier

(PMID) for the original publication as listed in the OMIM record.

Ontologies were updated daily during annotation, and any

annotations to obsolete terms were reconciled prior to analysis.

Annotations, together with reference ontologies, that were analyzed

for this paper can be found at the stable URL: http://obo.

svn.sourceforge.net/viewvc/obo/phenotype-commons/annotations/

OMIM/archive/2009/.

Additional Annotation Sources
Additional phenotype annotations were retrieved for cross-

species comparison from MGI [33], ZFIN [13], GAD [63], NCBI

gene [64], and homologene [65] in September 2008. Ontologies

used in the analysis were downloaded from the OBO Foundry

repository [66] in August 2008: BP-XP-UBERON (December

2008), ChEBI, CL, DO, DO-XP-FMA, EDHAA, FMA, GO-BP,

GO-CC, GO-MF, MA, MP-XP, PATO, SO, UBERON, ZFA,

and ZFS. To link cross-species annotations made to species-

specific anatomy ontologies (ssAOs), we created an ‘‘Uber-

ontology,’’ UBERON, to fill the gap between the general

Common Anatomy Reference Ontology (CARO) [67] and the

ssAOs. The first version of UBERON was generated automatically

by aligning existing ssAOs and anatomical reference ontologies,

and then partially manually curated. Ontologies referenced

include: FMA, MA, EHDAA, ZFA, TAO, NIF, GAID, CL,

XAO, MAT, FBbt, AAO, BILA, WBbt, and CARO. Additional

details can be found in [17] and [16]. All ontologies were loaded

into OBD, together with the annotations from the sources listed in

Table 4.

Reasoning
Reasoning was performed over the combined set of annotations,

ontologies, and ontology mappings. We used the OBD RuleBase-

dReasoner to compute the closure of transitive relations and to

compute inferred subsumption relationships between EQ descrip-

tions [28].

Analysis
The phenotype analysis was performed using the OBD System

[28] that implements a number of similarity metrics, described

as follows. All similarity metrics are based on the reasoned

graph, and annotations are propagated up the subsumption

hierarchy.

Most of these metrics use the IC (Equation 1) of a term or EQ

phenotype (collectively called a description), which is the negative

log of the probability of that description being used to annotate a

gene, allele, or genotype (collectively called a feature).

ICdescription~{log2 pdescription

� �
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where the probability of a description is the number of features

annotated with that description over the total number of features

in the database (Equation 2):

pdescription~
annotdescription

�� ��

annotj j

Here annotdescription denotes the number of features to which the

description applies, after reasoning has been performed. This

means that very general descriptions, such as ‘‘morphology of

anatomical structure,’’ which subsume many more specific

descriptions, are applicable to a greater number of features and

thus have a low IC.

maxIC
The maxIC is obtained by taking all descriptions shared by a

pair of features and finding the description(s) with the highest IC.

This may be an exact match, or it may be a subsuming description

inferred by the reasoner. One characteristic of the maxIC score is

that it can hide the contributions of annotations not in the maxIC

set. This score is equivalent to the ‘‘maximum’’ variant of the

Resnick similarity, as described in [18].

ICCS
This metric attempts to match every description directly

annotated in one feature with a directly annotated description in

the other feature. Each directly annotated description di is

compared against all the descriptions d’1, d’2,…in the other

feature being compared. The most specific (highest scoring)

common subsuming description is found, and the unique set of

these is called the common subsumers. The ICCS is the average

IC of all the common subsumers in this unique set.

This measure is shown in Figure 4 where the center triptych

shows the common subsumers. The ICCS metric is described in

[28] and has not been described previously to our knowledge. It

can be considered a composition of the average and maximum

Resnick measures as described in [18].

simIC
Given two phenotypic profiles, for example the phenotypic

profiles of two genes, or two genotypes, or the two profiles

generated by two curators annotating the same genotype, we can

calculate the sum of the IC scores for (a) those phenotype EQ

descriptions that are held in common (the intersection) and (b) the

combined total set of phenotype EQ descriptions (the union).

Looking at the ratio of these two sums (those that are shared versus

the totality), we can obtain a measure of how similar the two

phenotypic profiles are, with perfectly identical phenotypes having

a score of 1. The simIC measure is illustrated in (Equation 3).

simIC p,qð Þ~

P

d[ap\aq

IC dð Þ
P

d[ap|aq

IC dð Þ

Here ap denotes the total set of descriptions that can be applied to p,

including subsuming descriptions. As an example, given two

genotypes, p and q, the simIC is obtained by dividing the sum of

ICs for all descriptions in common by the sum of all descriptions in

the union. Here, descriptions include the actual descriptions used in

the profile, and all subsuming descriptions as determined by the

reasoner. This metric penalizes nodes that have differing annotations.

simJ
We used one additional similarity metric, the simJ, which does

not utilize the IC measures. The simJ between two profiles is

the ratio between the number of descriptions in common versus

the number of descriptions in both profiles. This is also called

the ‘‘Jaccard index’’ or the ‘‘Jaccard similarity coefficient.’’ The

number of descriptions in common is called simTO in [18]. The

simJ (Equation 4) is a variant of the normalized simTO:

simJ p,qð Þ~ ap\aqj j
ap|aqj j

Gene Comparisons
Note that for comparisons between two genes, all annotations

made to heterozygous and homozygous genotypes were first

propagated to the single (or both, if known) alleles, and then

propagated to their gene parent. The genotype annotations used

in each query were excluded from the background set in

calculating the overall score (Figure 5).

For the allele-to-allele comparisons, we calculated each metric

for all pairwise combinations of alleles. Similarity scores between a

pair of alleles were sorted into intra-gene (same gene) and inter-

gene (different genes) sets, and the mean scores for each gene

compared. The significance of the difference between the mean

scores for each gene was calculated using a two-tailed Student’s t-

test.

For the zebrafish shha query, we also compared this gene against

all other zebrafish genes (2,908 genes in the total set). For the inter-

species queries, we exhaustively compared each gene against all

other genes using simJ and then computed all metrics on the top

250.

Supporting Information

Table S1 Comparison between zebrafish shha and all
currently annotated zebrafish genes. Reported is an

expanded list of what is reported in Table 5, including ranks

and scores for each metric (simIC, simJ, avgICCS, and maxIC)

and phenotype giving the maxIC score. Known pathway genes are

highlighted in yellow, and others reported in the text are

highlighted in blue. Only the first 1,000 ranks are calculated.

Found at: doi:10.1371/journal.pbio.1000247.s001 (0.79 MB XLS)

Table S2 Comparison between human ATP2A1 and
zebrafish genes. The top 250 genes (by simJ) are reported,

together with the rank and score for each metric (simIC, simJ,

avgICCS, and maxIC). Additionally, the maxIC phenotype is

reported using ontology identifiers. See Materials and Methods for

a list of ontology prefixes. Known sequence orthologs are

highlighted in yellow and listed in Table 6, if present. Genes at

rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s002 (0.08 MB XLS)

Table S3 Comparison between human EPB41 and
zebrafish genes. The top 250 genes (by simJ) are reported,

together with the rank and score for each metric (simIC, simJ,

avgICCS, and maxIC). Additionally, the maxIC phenotype is

reported using ontology identifiers. See Materials and Methods for

a list of ontology prefixes. Known sequence orthologs are

highlighted in yellow and listed in Table 6, if present. Genes at

rank 1 are listed in Table 7.
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Found at: doi:10.1371/journal.pbio.1000247.s003 (0.08 MB XLS)

Table S4 Comparison between human EXT2 and zebra-
fish genes. The top 250 genes (by simJ) are reported, together

with the rank and score for each metric (simIC, simJ, avgICCS, and

maxIC). Additionally, the maxIC phenotype is reported using

ontology identifiers. See Materials and Methods for a list of ontology

prefixes. Known sequence orthologs are highlighted in yellow and

listed in Table 6, if present. Genes at rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s004 (0.09 MB XLS)

Table S5 Comparison between human EYA1 and zebra-
fish genes. The top 250 genes (by simJ) are reported, together with

the rank and score for each metric (simIC, simJ, avgICCS, and

maxIC). Additionally, the maxIC phenotype is reported using

ontology identifiers. See Materials and Methods for a list of ontology

prefixes. Known sequence orthologs are highlighted in yellow and

listed in Table 6, if present. Genes at rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s005 (0.09 MB XLS)

Table S6 Comparison between human FECH and
zebrafish genes. The top 250 genes (by simJ) are reported,

together with the rank and score for each metric (simIC, simJ,

avgICCS, and maxIC). Additionally, the maxIC phenotype is

reported using ontology identifiers. See Materials and Methods for

a list of ontology prefixes. Known sequence orthologs are

highlighted in yellow and listed in Table 6, if present. Genes at

rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s006 (0.08 MB XLS)

Table S7 Comparison between human PAX2 and zebra-
fish genes. The top 250 genes (by simJ) are reported, together

with the rank and score for each metric (simIC, simJ, avgICCS,

and maxIC). Additionally, the maxIC phenotype is reported using

ontology identifiers. See Materials and Methods for a list of

ontology prefixes. Known sequence orthologs are highlighted in

yellow and listed in Table 6, if present. Genes at rank 1 are listed

in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s007 (0.09 MB XLS)

Table S8 Comparison between human SHH and zebra-
fish genes. The top 250 genes (by simJ) are reported, together

with the rank and score for each metric (simIC, simJ, avgICCS,

and maxIC). Additionally, the maxIC phenotype is reported using

ontology identifiers. See Materials and Methods for a list of

ontology prefixes. Known sequence orthologs are highlighted in

yellow and listed in Table 6, if present. Genes at rank 1 are listed

in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s008 (0.09 MB XLS)

Table S9 Comparison between human SOX10 and
zebrafish genes. The top 250 genes (by simJ) are reported,

together with the rank and score for each metric (simIC, simJ,

avgICCS, and maxIC). Additionally, the maxIC phenotype is

reported using ontology identifiers. See Materials and Methods for

a list of ontology prefixes. Known sequence orthologs are

highlighted in yellow and listed in Table 6, if present. Genes at

rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s009 (0.09 MB XLS)

Table S10 Comparison between human SOX9 and
zebrafish genes. The top 250 genes (by simJ) are reported,

together with the rank and score for each metric (simIC, simJ,

avgICCS, and maxIC). Additionally, the maxIC phenotype is

reported using ontology identifiers. See Materials and Methods for

a list of ontology prefixes. Known sequence orthologs are

highlighted in yellow and listed in Table 6, if present. Genes at

rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s010 (0.09 MB XLS)

Table S11 Comparison between human TNNT2 and
zebrafish genes. The top 250 genes (by simJ) are reported,

together with the rank and score for each metric (simIC, simJ,

avgICCS, and maxIC). Additionally, the maxIC phenotype is

reported using ontology identifiers. See Materials and Methods for

a list of ontology prefixes. Known sequence orthologs are

highlighted in yellow and listed in Table 6, if present. Genes at

rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s011 (0.08 MB XLS)

Table S12 Comparison between human TTN and
zebrafish genes. The top 250 genes (by simJ) are reported,

together with the rank and score for each metric (simIC, simJ,

avgICCS, and maxIC). Additionally, the maxIC phenotype is

reported using ontology identifiers. See Materials and Methods for

a list of ontology prefixes. Known sequence orthologs are

highlighted in yellow and listed in Table 6, if present. Genes at

rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s012 (0.09 MB XLS)

Table S13 Comparison between human ATP2A1 and
mouse genes. The top 250 genes (by simJ) are reported, together

with the rank and score for each metric (simIC, simJ, avgICCS,

and maxIC). Additionally, the maxIC phenotype is reported using

ontology identifiers. See Materials and Methods for a list of

ontology prefixes. Known sequence orthologs are highlighted in

yellow and listed in Table 6, if present. Genes at rank 1 are listed

in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s013 (0.08 MB XLS)

Table S14 Comparison between human EPB41 and
mouse genes. The top 250 genes (by simJ) are reported,

together with the rank and score for each metric (simIC, simJ,

avgICCS, and maxIC). Additionally, the maxIC phenotype is

reported using ontology identifiers. See Materials and Methods for

a list of ontology prefixes. Known sequence orthologs are

highlighted in yellow and listed in Table 6, if present. Genes at

rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s014 (0.08 MB XLS)

Table S15 Comparison between human EXT2 and
mouse genes. The top 250 genes (by simJ) are reported,

together with the rank and score for each metric (simIC, simJ,

avgICCS, and maxIC). Additionally, the maxIC phenotype is

reported using ontology identifiers. See Materials and Methods for

a list of ontology prefixes. Known sequence orthologs are

highlighted in yellow and listed in Table 6, if present. Genes at

rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s015 (0.08 MB XLS)

Table S16 Comparison between human EYA1 and
mouse genes. The top 250 genes (by simJ) are reported,

together with the rank and score for each metric (simIC, simJ,

avgICCS, and maxIC). Additionally, the maxIC phenotype is

reported using ontology identifiers. See Materials and Methods for

a list of ontology prefixes. Known sequence orthologs are

highlighted in yellow and listed in Table 6, if present. Genes at

rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s016 (0.09 MB XLS)

Table S17 Comparison between human FECH and
mouse genes. The top 250 genes (by simJ) are reported, together

with the rank and score for each metric (simIC, simJ, avgICCS, and

maxIC). Additionally, the maxIC phenotype is reported using

ontology identifiers. See Materials and Methods for a list of ontology
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prefixes. Known sequence orthologs are highlighted in yellow and

listed in Table 6, if present. Genes at rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s017 (0.08 MB XLS)

Table S18 Comparison between human PAX2 and
mouse genes. The top 250 genes (by simJ) are reported,

together with the rank and score for each metric (simIC, simJ,

avgICCS, and maxIC). Additionally, the maxIC phenotype is

reported using ontology identifiers. See Materials and Methods for

a list of ontology prefixes. Known sequence orthologs are

highlighted in yellow and listed in Table 6, if present. Genes at

rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s018 (0.08 MB XLS)

Table S19 Comparison between human SHH and
mouse genes. The top 250 genes (by simJ) are reported,

together with the rank and score for each metric (simIC, simJ,

avgICCS, and maxIC). Additionally, the maxIC phenotype is

reported using ontology identifiers. See Materials and Methods for

a list of ontology prefixes. Known sequence orthologs are

highlighted in yellow and listed in Table 6, if present. Genes at

rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s019 (0.08 MB XLS)

Table S20 Comparison between human SOX10 and
mouse genes. The top 250 genes (by simJ) are reported, together

with the rank and score for each metric (simIC, simJ, avgICCS,

and maxIC). Additionally, the maxIC phenotype is reported using

ontology identifiers. See Materials and Methods for a list of

ontology prefixes. Known sequence orthologs are highlighted in

yellow and listed in Table 6, if present. Genes at rank 1 are listed

in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s020 (0.08 MB XLS)

Table S21 Comparison between human SOX9 and
mouse genes. The top 250 genes (by simJ) are reported, together

with the rank and score for each metric (simIC, simJ, avgICCS, and

maxIC). Additionally, the maxIC phenotype is reported using

ontology identifiers. See Materials and Methods for a list of ontology

prefixes. Known sequence orthologs are highlighted in yellow and

listed in Table 6, if present. Genes at rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s021 (0.09 MB XLS)

Table S22 Comparison between human TNNT2 and
mouse genes. The top 250 genes (by simJ) are reported, together

with the rank and score for each metric (simIC, simJ, avgICCS,

and maxIC). Additionally, the maxIC phenotype is reported using

ontology identifiers. See Materials and Methods for a list of

ontology prefixes. Known sequence orthologs are highlighted in

yellow and listed in Table 6, if present. Genes at rank 1 are listed

in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s022 (0.08 MB XLS)

Table S23 Comparison between human TTN and
mouse genes. The top 250 genes (by simJ) are reported,

together with the rank and score for each metric (simIC, simJ,

avgICCS, and maxIC). Additionally, the maxIC phenotype is

reported using ontology identifiers. See Materials and Methods for

a list of ontology prefixes. Known sequence orthologs are

highlighted in yellow and listed in Table 6, if present. Genes at

rank 1 are listed in Table 7.

Found at: doi:10.1371/journal.pbio.1000247.s023 (0.08 MB XLS)

Table S24 Comparison between zebrafish sufu and all
currently annotated zebrafish genes. Ranks and scores for

each metric (simIC, simJ, avgICCS, and maxIC) and phenotype

giving the maxIC score are reported. Known shh pathway genes

are highlighted in yellow. Only ranks for first 1,000 are calculated.

Found at: doi:10.1371/journal.pbio.1000247.s024 (0.25 MB XLS)

Table S25 Comparison between zebrafish doc and all
currently annotated zebrafish genes. Ranks and scores for

each metric (simIC, simJ, avgICCS, and maxIC) and phenotype

giving the maxIC score are reported. Known shh pathway genes

are highlighted in yellow. Only ranks for first 1,000 are calculated.

Found at: doi:10.1371/journal.pbio.1000247.s025 (0.27 MB XLS)
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