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Abstract

Organisms have evolved a bewildering diversity of mechanisms to generate the two sexes. The honeybee (Apis mellifera)
employs an interesting system in which sex is determined by heterozygosity at a single locus (the Sex Determination Locus)
harbouring the complementary sex determiner (csd) gene. Bees heterozygous at Sex Determination Locus are females,
whereas bees homozygous or hemizygous are males. Little is known, however, about the regulation that links sex
determination to sexual differentiation. To investigate the control of sexual development in honeybees, we analyzed the
functions and the regulatory interactions of genes involved in the sex determination pathway. We show that heterozygous
csd is only required to induce the female pathway, while the feminizer (fem) gene maintains this decision throughout
development. By RNAi induced knockdown we show that the fem gene is essential for entire female development and that
the csd gene exclusively processes the heterozygous state. Fem activity is also required to maintain the female determined
pathway throughout development, which we show by mosaic structures in fem-repressed intersexuals. We use expression
of Fem protein in males to demonstrate that the female maintenance mechanism is controlled by a positive feedback
splicing loop in which Fem proteins mediate their own synthesis by directing female fem mRNA splicing. The csd gene is
only necessary to induce this positive feedback loop in early embryogenesis by directing splicing of fem mRNAs. Finally, fem
also controls the splicing of Am-doublesex transcripts encoding conserved male- and female-specific transcription factors
involved in sexual differentiation. Our findings reveal how the sex determination process is realized in honeybees differing
from Drosophila melanogaster.
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Introduction

In 1845 Dzierzon reported that the sex in the honeybee (Apis

mellifera) is determined by the fertilization and non-fertilization of

eggs [1], and this was more than 50 years before the discovery of

sex chromosomes [2,3]. Dzierzon’s key observation was that a

virgin queen that has not taken a mating flight (queens mate only

while in free flight away from nest) produces only male progeny.

From this result he inferred that unfertilized eggs develop into

males, whereas fertilized eggs differentiate into queens and worker

bees, which was later confirmed by cytological studies [4]. The

unfertilized eggs have a haploid set of 16 chromosomes when

compared with fertilized eggs, in which 32 chromosomes were

identified [5]. Despite this, neither the fertilization process nor the

haploid or diploid state of the eggs provides the sex determination

signal in honeybees. This is shown by the regular occurrence of

males in inbred crosses that are derived from diploid, fertilized

eggs [6–9]. This finding led to the hypothesis of complementary

sex determination in honeybees, a mechanism that was first

provided by genetic studies in another hymenopteran insect, the

parasitic wasp Bracon hebetor [10,11]. Fertilized eggs are either

homozygous at the Sex Determination Locus (SDL) and

differentiate into diploid males or are heterozygous and develop

into females. The diploid males, however, don’t survive in a bee

colony as they are eaten by worker bees shortly after hatching

from the egg. Fertile males are produced by the queen’s

unfertilized, haploid eggs that are hemizygous at SDL.

The single-locus nature of complementary sex determination in

honeybees was confirmed by genetic linkage analysis [12,13],

physical mapping [14], and the genetic linkage map [15]. Part of the

SDL was characterized by positional cloning and a fine scale

mapping approach that led to the identification of the complementary

sex determiner (csd) gene [16]. The gene encodes an SR-type protein

and is a potential splicing factor. The csd gene satisfies the criteria of

a primary signal of complementary sex determination [16]: (1) csd

exists in at least 15 allelic variants that differ on average in ,3% of

their amino acid residues [17,18], (2) females are heterozygous and

diploid males are homozygous at the csd locus [16], and (3) the gene

product is necessary for female development [16]. The latter has

been shown in RNAi-induced knockdown experiments of csd.

Females treated with csd dsRNA develop entire male gonads,

whereas the treatment of males had no sex-transforming effect.
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Disappointingly little, however, is known about the regulatory

interactions and mechanisms that link sex determination to sexual

differentiation. So far we have no evidence that SDL encodes

another gene that, in conjunction with csd, operates to establish the

sex determined state by heterozygosity. We have recently isolated

the entire genomic region of SDL and identified the feminizer (fem)

gene, which is the ancestral progenitor gene from which csd

derived by gene duplication [19] and lies 12 kb upstream of csd.

The fem gene is required for female development as shown by the

sexual transformation of the head of fem-repressed females. Fem

activity is not achieved by heterozygosity. Instead, the fem pre-

mRNAs are sexually processed into the productive female mode.

In the current study we characterized the sex-transforming

function of other candidate genes located at SDL. We then

investigated the function of sex-determining genes in controlling

all aspects of development. Our previous studies were restricted to

the control of basic aspects of soma differentiation [16,19], but the

signals that specify the sex of germ cells may differ from those

utilized in the soma [20]. For example, in Drosophila the gene

transformer (tra), which is the likely ortholog of the fem gene [19], is

required for the sexual development of the soma but not directly

for the sexual fate of germ line cells [21–23]. We repressed sex-

determining genes in early embryogenesis and scored the sexual

development of subtle soma and germ line characters. Finally, we

analyzed the regulatory interactions of the sex-determining genes

and addressed the question of how these interactions are utilized to

maintain sexual fate throughout development. In a previous study

we proposed that continuously expressed csd is a potential source

of information to maintain sexual fate throughout development

[16]. In order to study these regulatory interactions, we either

repressed or expressed genes and assayed the sexual expression of

target genes.

Our findings reveal how the regulation and function of the csd

and the fem gene realizes the sex determination process throughout

development.

Results

Characterization of Genes Present in SDL
In our previous study we reported the full assembly of the SDL

genomic region [19] in a high resolution mapping approach [24].

The involvement of two SDL genes, fem and csd, in sexual

development have thus far been characterized [16,19]. We

hypothesized that this region may harbour additional genes that

operate in conjunction with csd in the establishment of the primary

sex determined state. Three other genes at SDL have been

previously predicted, but their involvement in sex determination is

unknown. Genes GB11211 and GB13727 are located upstream of

the fem gene, whereas the gene GB30480 (corresponding to Ex4.8–

5.8 gene [16]) is located downstream of csd (Figure 1). We explored

whether the SDL harbours further genes. Potential exons were

identified by exon-finding algorithms and homology searches to

EST and gene databases. We also identified exons by RT-PCR

experiments using cDNA synthesized from embryonic mRNA

preparations. Exons testing positive in these experiments were

combined, but no further transcription units beside the three

previous predicted genes were identified. We extended cDNA

fragments using RACE PCR, which resulted in the description of

two transcripts (EU101387, EU101392), which corresponds to the

two known genes, GB11211 and GB13727 (Figure 1A and 1B).

The same sequences were isolated from both males and females

implying that the transcripts are not sex-specifically processed. We

obtained 3,330 bases of the transcript of gene GB11211, which

divides into four exons (Figure 1B). The 59 end of this transcript

has not been isolated by RACE PCR; thus additional translational

start codons may lie upstream from the known transcribed

sequence. This partial transcript encodes a 926 amino acid protein

with partial similarity to a domain from a Tribolium castaneum

hypothetical protein (LOC655741) of unknown function. We

isolated 803 bases of the transcript of gene GB13727, which splits

into six exons (Figure 1B) and which is located on the opposite

strand from the other SDL genes. The 39 end of the transcript has

not been identified by our RACE experiments. The partial ORF

encodes a protein of 193 amino acids. The protein contains a

DUF2464 domain of unknown function that is conserved from

worms to humans. No other mRNAs have been detected,

suggesting that SDL harbours a total of five protein encoding

genes. We studied the involvement of genes GB11211, GB13727,

and GB30480 in sex determination. We injected dsRNA into male

and female syncytial embryos in order to repress transcripts of the

new genes and recorded gonad differentiation of 5th instar larva.

We used gonad differentiation as an informative indicator of sex

determination as it is induced early in development [16]. We also

analyzed the fem gene, for which we have no information on gonad

differentiation, and csd, which served as a control for entirely

switched gonad development. The syncytial female and haploid

male embryos were obtained from single-male (drone) inseminated

queens and virgin queens, respectively.

Our injections of dsRNAs targeted at repressing the function of the

GB11211 and GB13727 genes produced individuals with unchanged

gonad development (Table 1, Figure 2D–2G), suggesting that neither

gene is required for sex determination. We confirmed the knockdown

of these genes by showing a reduction of the amount of mRNAs in real

time RT-PCR experiments (t-test, p,0.02 for GB11211 dsRNAs and

p,0.001 for GB13727 dsRNAs treated embryos when compared with

mock dsRNA treated controls). Our series of fem repression

experiments induced by fem siRNAs produced 74% females whose

gonads had entirely differentiated into male testes (Table 1, Figure 2H).

No sex-transformed effects occurred in fem-repressed males. The testes

of fem-repressed females were smaller and contained fewer and shorter

testioles in all cases, irrespective of whether we compared larvae of the

same age or the same stage with the controls, suggesting that this

difference is not just a slowdown of development caused by the effect of

RNAi. Nevertheless, this finding extends our previous observations

[19] and suggests that fem gene products are also required for female

gonad differentiation. Our series of csd knockdown experiments

induced by siRNAs resulted in females with fully developed, normal-

sized male gonads (Table 1, Figure 2J). Males treated with csd siRNAs

Author Summary

Sexual differentiation is a fundamental process in the
animal kingdom, and different species have evolved a
bewildering diversity of mechanisms to generate the two
sexes in the proper proportions. Sex determination in
honeybees (Apis mellifera) provides an interesting and
unusual system to study, as it is governed by heterozy-
gosity of a single locus harbouring the complementary sex
determiner gene (csd), in contrast to the well-studied sex
chromosome system of Drosophila melanogaster. We show
that the female sex determination pathway is exclusively
induced by the csd gene in early embryogenesis. Later on
and throughout development this inductive signal is
maintained via a positive feedback loop of the feminizer
(fem) gene, in which the Fem protein mediates its own
synthesis. The findings reveal how the sex determination
process in honeybees is realized by the regulation and
function of two genes differing from Drosophila.
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showed unchanged development. Knockdown of GB30480, the most

downstream gene of the SDL locus, did not influence the

differentiation of male or female gonads (Table 1, Figure 2L, 2M).

Taken together, our knockdown experiments indicate that no mRNA-

encoding genes at SDL other than fem and csd have sex determination

functions.

The Role of fem and csd Gene in Soma and Germ Line
Differentiation

In Drosophila the tra gene—the proposed functional and structural

ortholog of the fem gene [19]—does not dictate the sexual fate of

female germ cells, but controls all aspects of somatic differentiation

[20,21]. Combined with our results of smaller testis formation in

fem-repressed individuals, we hypothesized that the fem gene of the

honeybee is also not involved in the sexual differentiation of germ

cells. To dissect the involvement of fem and csd in the sexual fate of

either the germ or the soma, we injected fem or csd siRNAs into

syncytial embryos, but in this study we reared individuals to the late

pupal stage (P3). In these experiments we injected into embryos that

were derived from two inbred and three non-inbred crosses. The

inbred crosses naturally produce 50% diploid male and 50% female

progeny, which we identified by genotyping csd alleles. This allowed

Figure 1. Genomic organization of mRNA producing genes of the SDL. (A) Diagram of genes within the SDL, which is always heterozygous
in females as deduced by high resolution genetic mapping [19,24]. Genes are orientated 59 to 39 according to the direction of arrows; the names of
functionally characterized genes are underlined. GB30480 corresponds to gene Ex4.8–5.8 [16]. (B) Exon and intron structure diagram of genes
encoded at SDL. Exons are shown as boxes and introns by connecting lines. The deduced open reading frames are marked in grey and the presumed
start and stop codons are indicated.
doi:10.1371/journal.pbio.1000222.g001

Table 1. Gonad development of 5th instar larvae treated with dsRNAs and siRNAs.

Treatment Females Haploid Males

Number of
Embryos

Number of
Recovered

Number of
Sexual
Transformed

Relative
Transformation
(%)

Number of
Embryos

Number of
Recovered

Number of
Sexual
Transformed

Relative
Transformation
(%)

Non-treated 246 55 0 0 44 7 0 0

mock dsRNA 87 17 0 0 n.p. n.p. n.p. n.p.

Mock siRNA 193 67 0 0 509 33 0 0

GB11211 dsRNA 135 52 0 0 137 10 0 0

GB13727 dsRNA 226 38 0 0 126 9 0 0

fem siRNA 545 159 118 74 900 48 0 0

csd siRNA 520 187 164 88 542 41 0 0

GB30480 dsRNA 206 31 0 0 121 12 0 0

n.p., not performed.
doi:10.1371/journal.pbio.1000222.t001
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us to compare the male-transformed characters of diploid females

with wild type characters of diploid males. This is of importance as

characters of haploid and diploid males can differ slightly.

Repression of the fem gene resulted in 74% and 85% of the

females (derived from the non-inbred and inbred crosses,

respectively) showing all aspects of male differentiation (Table 2).

These pseudomales have fully developed internal male reproduc-

tive organs, including pairs of testes, mucus glands, and an

endophallus (Figure 3C). The pair of testes is, however, reduced in

size when compared with those of diploid males. Upon

Figure 2. Reproductive organ development of 5th instar male and female larvae in the repression analysis of SDL genes. (A–C)
Reproductive organ development of untreated individuals: (A) A pair of normally developed ovaries (ov) and oviducts (od) from an untreated female.
(B) A pair of normally differentiated testes from untreated haploid males consisting of densely packed layers of folded testioles. The paired
spermducts are not shown. (C) A pair of normally differentiated testes from untreated diploid males consisting of less densely packed layers of folded
testioles. The paired spermducts are not shown. (D–G) Repression analysis of gene GB11211 and GB13727. Normally developed gonads of females and
haploid males injected with dsRNA devoted to repress the function of gene GB11211 (D–E) and GB13727 (F–G). (H–I) Repression analysis of the fem
gene. (H) Pair of underdeveloped testes from a female treated with fem siRNA. The testes of this female individual are covered with oversized
epithelial sheaths. The testioles are reduced in length and number when compared with the haploid (B) or diploid (C) males or the pseudomales after
csd siRNA injection (J). The shape and course of spermducts appear normal. (I) Normally developed testes from a haploid male injected with fem
siRNAs. (J–K) Repression analysis of the csd gene. (J) Pair of fully developed testes from a female treated with csd siRNAs. The number, length, and
arrangement of testioles resemble entirely of those dissected from diploid males (C). (K) Normally developed testes from a haploid male injected with
csd siRNA. (L–M) Repression analysis of the GB30480 gene. Normally developed gonads of females (L) and haploid males (M) injected with GB30480
dsRNA. Gonads were stained with aceto-orcein (reddish colouring of gonads), which facilitated the dissection process. Scale bars, 1 mm.
doi:10.1371/journal.pbio.1000222.g002

Sex Determination in Honeybees

PLoS Biology | www.plosbiology.org 4 October 2009 | Volume 7 | Issue 10 | e1000222



microscopic analysis of sections of testicular tubules we observed

elongated bundles, the spermatids, but no indication of the

undifferentiated cell type that we found in sections of ovariole

tissue from untreated females (Figure 3I). In some sections we

found empty testicular tubules (unpublished data) implying that

some mature spermatids had already migrated into the seminal

vesicles. The fully switched germ cells indicate that fem controls

germ cell differentiation as well as the soma. The tibia and the first

tarsus of sexually transformed female hind legs have a male-like

shape (Fig 3O) and lack the female-specific structures such as the

pollen basket (unpublished), the pollen comb, and the pollen

brush, which is composed of symmetrically arranged rows of

bristles (see the hind leg of an untreated female Figure 3M for a

comparison). In 7% of fem siRNA treated females derived from

non-inbred cross (Table 2) we found both disordered (male-like)

and symmetrical (female-like) bristles adjacent to one another on

the first tarsal segment (Figure 3P). In addition, the individual in

Figure 3P lacks the female-specific lobe on the first tarsus but

displays the pollen comb on the tibia. This suggests that these hind

legs are composed of fully differentiated male and female

structures. Knockdown of csd produced 76% females that

displayed all the aspects of male differentiation in external and

internal morphology (Table 2, Figure 3). These pseudomales had

fully developed male reproductive organs (Figure 3E) and, in

contrast to the fem-repressed individuals, testes of normal size. The

hind legs showed the full spectrum of male structures (Figure 3R).

Upon examination of the cytology of testicular tubules we

observed the structures of spermatids in all cases (Figure 3K).

The repression of fem or csd in diploid males (Table 2, Figure 3)

does not affect the internal and external morphology, indicating

that neither fem nor csd activity is necessary for male differentiation.

These experiments imply that the paralogous gene pair fem and csd

are required for controlling female differentiation of both the soma

and the germ cells.

Identifying the Regulatory Relationships between csd,
fem, and the Am-dsx Gene

Our analyses have identified csd and fem as different components

of the sex determination pathway that are required for all aspects

of female differentiation. The next obvious component of the

pathway is the doublesex (dsx) gene. Dsx is a transcription factor that

in Drosophila controls the activity of the final target genes necessary

for both male and female somatic differentiation [25,26]. The sex-

specific activity of the Drosophila gene is brought about by sexually

processed transcripts encoding polypeptides that have male- and

female-specific domains at their carboxyl-termini. The female

splice pattern is mediated by the female Tra protein [27,28],

which is the proposed ortholog of the Fem protein [19]. Previous

studies have identified the ortholog, Am-dsx, in the honeybee

genome [29–31] encoding an atypical zinc-finger domain, the so

called OD1 domain. The gene expresses sex-specific mRNAs and

presumably proteins. The central role of dsx orthologs in sexual

differentiation of insects has been provided by the housefly Musca

domestica [32] and in the moth Bombyx mori [33], but functional

evidence for the honeybee are so far missing. In order to

determine the regulatory interactions within the honeybee sex

determination pathway, we generated pseudomales by the

injection of csd or fem siRNAs and examined the sexual expression

of fem and Am-dsx mRNAs in 5th instar larvae by RT-PCR

targeting fragments that corresponds to female- and male-specific

mRNAs. If the activity of the gene is repressed in females, we

expect to find the male mRNAs of downstream components.

Pseudomales produced through the repression of csd predom-

inantly displayed fragments that correspond to male fem and Am-

dsx mRNAs (Figure 4A), implying that the production of female fem

and Am-dsx mRNAs require csd activity. This finding is consistent

with the expectation that csd is the primary signal that determines

all aspects of female differentiation. Csd activity is, however, not

required to induce male fem or Am-dsx mRNAs, indicating that the

male transcripts do not require any sex-specifying signal and that

this is the default regulatory state. The repression of fem also

produced pseudomales that have male fem and Am-dsx mRNAs

(Figure 4B). The finding of male Am-dsx mRNAs in fem-repressed

females indicates that fem activity is necessary to induce female Am-

dsx mRNAs. The observation of male fem mRNAs also suggests

that fem mRNA production was resumed in later developmental

stages after fem activity was experimentally repressed in early

embryos. From the presence of male mRNAs under conditions of

resumed fem mRNA production, we conclude that the csd gene has

lost its ability to direct the processing of fem into the female mode.

Thus, it appears that in the absence of the female-specifying signal,

the male variant is produced that is the default regulatory state.

Maintenance of the Sex Determined State
Our data so far indicate that the ability of csd to direct the

processing of fem is restricted to a critical window in early

development. This prompted us to investigate how the sexual state

induced by the csd gene is maintained throughout development.

Examination of the expression of fem during development indicates

that female fem mRNAs are present in the late blastoderm stage

and remain expressed throughout embryonic, late larval, and

pupal development (Figure 5). Together with our finding that csd is

not employed to direct the processing of fem in late larvae and

pupae, we conclude that an additional mechanism of regulation

Table 2. Sexual development of late pupae (P3) treated with siRNAs.

Treatment
Number of
Crosses

Number of
Embryos Females Diploid Males

Number of
Recovered

Number of
Sexual
Transformed

Relative
Transformation
(%)

Number of
Gynander

Relative
Gynander
(%)

Number of
Recovered

Number of
Sexual
Transformed

Relative
Transformation
(%)

Non-treated 4 non-inbred 197 44 0 0 0 0 — — —

2 inbred 390 39 0 0 0 0 13 0 0

fem siRNA 3 non-inbred 336 27 20 74 2 7 — — —

2 inbred 223 20 17 85 0 0 24 0 0

csd siRNA 2 inbred 204 29 22 76 0 0 19 0 0

doi:10.1371/journal.pbio.1000222.t002
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Figure 3. Soma and germ line development of female and diploid male late pupae in the knockdown analysis of the fem and the csd
gene. (A–F) Development of the reproductive organ. (A) Normal pair of ovaries, oviducts (od), and unpaired vagina (va) of an untreated female
(worker bee). The ovaries are composed of less than five ovarioles (ovl). (B) Normally developed pairs of testes, spermducts (sd), mucus glands (mg),
and unpaired endophallus (ep) of a diploid male. The testes consist of hundreds of thickly packed and folded testioles (tl). (C) Male reproductive
organ from a female injected with fem siRNAs. The testes are reduced in size and composed of fewer testioles of reduced length. (E) Male
reproductive organ from a female treated with csd siRNAs. The testes from these pseudomales are of normal size and structure and appear equivalent
to the testes from diploid males (B). (D and F) Normally differentiated reproductive organ from a male treated with fem or csd siRNAs, respectively.
Reproductive apparatus was stained with aceto-orcein (reddish colouring), which facilitated the dissection process. Scale bars, 1 mm. (G–L)
Differentiation of germ cells in microscopic sections through ovarioles and testicular tubules. (G) Undifferentiated cells in an ovariole of an untreated
female. The ovariole is surrounded by an epithelial sheath (white arrowhead). (H) Bundles of spermatids in a testicular tubule (testioles) of a non-
injected diploid male. The testicular tubules are composed of spermatocystes containing the spermatids (black arrow) and nurse cells (black
arrowhead). (I) Spermatids formed in a fully male differentiated testis of a fem siRNA injected female. (K) Spermatids in a fully male-like developed
testis from a csd siRNA treated female. (J and L) Normal testis and germ cell differentiation of fem (J) and csd (L) siRNA injected diploid males. Sections
were stained with toluidine blue. Scale bars, 10 mm. (M–S) Development of the inner tibia and tarsus surface of the left hind leg. (M) Normally
differentiated pollen brush, pollen comb, and lobe of an untreated female worker. The first tarsal segment displays symmetrically arranged rows of
bristles, which are used to brush pollen from the body surface (pollen brush, pb). The upper posterior part of the first tarsal segment forms a lobe
(black arrow). Spines at the distal part of the tibia form the pollen comb (grey arrow) in which pollen is detached from the pollen brush. (N) Normally
developed tibia and first tarsal segment of non-injected diploid males that lack the symmetrical organization of bristles (pollen brush), the lobe, and
the pollen comb. (O) Male differentiated hind leg from a female injected with fem siRNAs. (P) Development of a mosaic intersex upon fem siRNA
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exists to maintain fem processing into the productive female mode

in these late stages. In Drosophila, the sex determination gene Sex-

lethal (Sxl) encodes a protein that directs the splicing of its own

transcript into the productive female mode [34,35]. This self-

splicing loop maintains the female-determined state throughout

development [36]. A similar mechanism has been proposed for the

medfly Ceratitis capitata at the level of the sex-determining tra (Cc-tra)

gene [37,38], a gene which has a common ancestry with the fem

gene [19]. These findings prompted us to hypothesize that a

positive autoregulatory activity of fem provides the mechanism for

maintaining the female-determined state and provides a source of

a female-specific signal implementing the sexual development

pathway. To test our hypothesis we transiently expressed the fem

gene in males by injecting fem encoding mRNAs that we

synthesized in vitro. We assayed the processing of the putative

target—the endogenous fem mRNA—by RT-PCR amplifications.

This experiment shows (Figure 6) that expression of fem induces a

partial switch from male into female mRNAs, suggesting that the

provided fem activity trans-activates the endogenous fem gene. We

conclude from this finding that expression of Fem protein induces

its own synthesis by directing the processing of fem pre-mRNA into

the productive female mode. This finding would establish a

positive regulatory feedback loop at the level of the fem gene.

Discussion

The Foundation of Complementary Sex Determination Is
a Single Gene, csd

Sex in the honeybee is determined by the heterozygosity and

hemi/homozygosity at a single SDL. In this study we show that

this genomic locus harbours five mRNA encoding genes but that

only the csd gene fulfils criteria of a primary signal of

complementary sex determination, implying that the molecular

nature of complementary sex determination is csd. When csd is

repressed in early embryogenesis in females, we see an entire

switch into male development that affects all visible aspects of

soma and germ line development. We see comparable effects in

the soma and the germ line when we repress fem in females, which

is located 12 kb upstream of csd. Fem mRNA is, however, sex-

specifically processed in response to the heterozygous csd gene,

suggesting that fem is a target that directly responds to the activity

at the csd gene. We have not identified allelic variants of fem

transcripts that could encode different allelic specificities within

our crosses (unpublished data). We conclude that fem is the target

of csd that implements male or female differentiation by a

productive female, or a non-productive male splice variant. The

three other mRNA encoding genes of SDL are not necessary for

sex determination. Our experiments do not exclude the possibility

that SDL harbours a non-mRNA encoding gene (such as a

microRNA), but we find no evidence for such a gene. The

exclusion of other sex-determining factors at SDL suggests that

complementary sex determination entirely relies on heterozygous

combination of the csd gene. The primary signal of the honeybee is

a switch gene that has two regulatory states, the active female and

the non-active male state. We propose that induction of the female

pathway through gain of csd activity is due to the presence of two

Csd proteins derived from different alleles. Lack of csd activity, and

thus male development, results when Csd proteins are derived

from the same allele. We hypothesize that activation in females

relies entirely on the binding differences of Csd’s RS- and

asparagine/tyrosine-enriched domains. This region harbours

elevated nucleotide polymorphism and has been proposed as the

allele specifying domain in our population genetics analysis

[17,18].

Figure 4. The processing of fem and Am-dsx transcripts in the
response to the knockdowns of the csd and the fem gene
induced by RNAi. (A) The male and female fem and Am-dsx mRNAs of
eight 5th larval instar pseudomales that have been injected with csd
siRNAs. Fragments corresponding to the fem female (,350 bp) and
male (,1.6 kb) mRNAs and the Am-dsx female (,1.4 kb) and male
(,500 bp) mRNAs were amplified by RT-PCR and resolved by agarose
gel electrophoresis. The fragments obtained from untreated females
and males are shown in the 1st and 2nd lane, respectively. (B) Same
analysis as in (A) except that eight pseudomales have been treated with
fem instead of csd siRNAs.
doi:10.1371/journal.pbio.1000222.g004

Figure 5. Developmental profile of fem mRNA expression.
Fragments corresponding to female (A) and male (B) fem mRNAs were
independently amplified by RT-PCR and resolved by agarose gel
electrophoresis. The weak ,1,600 bp fragments observed in reactions
devoted to amplify the female-specific fragment correspond to the
male mRNAs. Differences in the amount of cDNAs in the different
samples were adjusted prior to PCR amplifications. For the embryonic
stages the hours after egg deposition are indicated. The early
blastoderm is formed ,12 h after egg deposition. L1 and L5 are 1st

and 5th instar larvae, P2 are pupae at medium stage.
doi:10.1371/journal.pbio.1000222.g005

injections. The posterior part of the first tarsus segment is male, lacks the female-specific lobe (black arrow), and displays bristles in a non-arranged
pattern. The anterior part of the tarsal segment is female and shows the symmetrical arrays of bristles. The distal part of the tibia harbours the spines
of the pollen comb (grey arrow) indicating a fully developed female structure. (R) Male developed hind leg from a female treated with csd siRNAs. (Q
and S) Normally developed hind legs from fem (Q) and csd (S) siRNA injected diploid males. Scale bars, 1 mm.
doi:10.1371/journal.pbio.1000222.g003
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The heterozygous activation of csd has some analogy to self-

incompatibility systems in plants and fungi [39–41], in which

different alleles of a single locus initiate a developmental program,

that in the case the S-locus system in plants controls the outgrowth

of a pollen grain. Molecular studies in these systems revealed that

the determination of heterozygous state relies on the operation of

two separate but closely linked genes [39–41]. Our analysis

indicates that the heterozygous state in the honeybee is processed

by a single gene. The comparison suggests a novel mechanism of

gene regulation to those previously identified.

The fem Gene Implements and Maintains Soma and
Germ Line Development

In order to determine sex, the activity of heterozygous csd must

implement sexually different activities to downstream genes. Our

identification of the fem gene also allowed us to identify female-

specific mRNAs [19]. Our analysis shows that the female fem

mRNAs are required for all visible aspects of female morphology.

Testes were, however, all smaller in fem-repressed females when

compared with wild type diploid males or csd-repressed females.

We speculate that the timing of fem and csd activity may affect

differently gonad differentiation when we experimentally repress

these genes. These testes form normally differentiated testicular

tubules harbouring fully developed spermatids, implying that the

fem gene also controls germ cell differentiation. Despite a common

evolutionary origin, the tra gene of Drosophila does not dictate the

sexual fate of germ cells and its function is restricted to the control

of the soma [21–23].

We have used the sex-specific mRNAs as a phenotype to

identify the interactions of sex-regulatory genes by assuming that

genes affecting fem and Am-dsx splice patterns are operating

upstream in the cascade. The Am-dsx gene, which is an ortholog of

the dsx gene of Drosophila, is another component of the sex

determination whose mRNA is sex-specifically processed [29,31].

Our analysis indicates that interactions occur at least at three levels

of the cascade—csd controls splicing of fem pre-mRNA, and fem

regulates the processing of Am-dsx pre-mRNAs (Figure 7A). The

observation of the male variant of fem and Am-dsx mRNAs in the

repression experiments implies that the female pathway is actively

regulated and Csd protein directs splicing in fem, and Fem protein

directs splicing in Am-dsx female mRNAs. The male pathway is the

default regulatory state that does not require any sex-specifying

control. This suggests that the male splice pattern of fem and Am-

dsx results from the splice machinery that is present in both males

and females. Our analysis does not preclude other levels of

interactions. It is conceivable that the Fem protein is directly

involved in the splicing process of Am-dsx transcripts given the

apparent structural and functional relationship of these genes to

the Drosophila tra and dsx genes [19,22,29,31]. To show a direct

interaction between these levels of regulation requires detailed

protein binding and splicing studies, however. Besides the

succession of interactions, we find evidence for a positive

regulatory feedback loop at the level of the fem gene (Figure 7A).

We have demonstrated that provisioning of female fem mRNAs in

males induces a partial shift in the processing of endogenous fem

pre-mRNAs into the female mode. We conclude from this

observation that the expression of fem establishes a positive

feedback loop in which Fem protein induces—directly or

indirectly—its own synthesis by splicing fem pre-mRNAs into the

productive female mode. In males, fem activity would be absent

and the pre-mRNA would be spliced into the non-reproductive

male mode. We propose that the positive feedback loop would (1)

generate stably determined states implemented by the commit-

ment given by the primary signal csd and (2) maintain the

determined state throughout development. That a positive

feedback would generate stable determined states throughout

development is demonstrated here by the finding of mosaic

structures in fem-repressed females that have male or female

characters, but not an intermediate phenotype. The mosaic

intersexual phenotype is consistent with previous reports on a cell-

autonomous sexual differentiation mechanism in the honeybee

[42], but our data also provide evidence for the fem positive

feedback loop as being the mechanism of stable determined cells.

We also explored how the female state is established and reset to

the default male state in early embryogenesis. This is important, as

male development is only induced in the absence of fem activity

and as constant activity of the positive feedback loop would lock

eggs into the female determined state. Our developmental profile

of fem mRNA expression indicates that transcription of fem starts

expression to sizable amounts of mRNA of the male type when

blastoderm is formed (,12 h after egg deposition). This finding

implies that the sex determined state is set to the default male

regulatory mode by the onset of fem transcription in early

embryogenesis. The female pathway is induced in late blastoderm

stage (,25–35 h after egg deposition) when the female mRNAs in

females are produced.

We also provide evidence that csd is required only to initiate sex-

specific differentiation early in development. When we transiently

repressed fem activity, we found male fem mRNAs under conditions

of resumed mRNA production in late female larvae, suggesting

that csd is no longer able to induce the production of female fem

mRNAs. We conclude from this finding that csd can implement the

female pathway only during a critical period of development.

Primary signals from other organisms are also needed for only a

critical developmental window when the pathway is established

[22,43–45]. In Drosophila [22] and possibly in the mouse [46] the

sex determined state that is established by the primary signal is

maintained later on in development by a different mechanism. In

Drosophila, once the Sxl gene is activated in females by the primary

signal (the X:A ratio), the Sxl protein splices its own transcript into

the productive female mode [34,35]. This feedback splicing loop

locks development into the female pathway as shown by mosaic

intersexual analysis [36]. Our data also suggest that there are

separate mechanisms for initiating and maintaining the sex

Figure 6. The processing of endogenous fem transcripts in
response to the injection of Fem encoding mRNA in haploid
males. (A) Fragments corresponding to the female fem mRNAs of
individual 72-h-old embryos were amplified by RT-PCR and resolved by
agarose gel electrophoresis. The identity of the female fragments was
confirmed by nucleotide sequence analysis. The last lane shows the
reactions in which the (pl) femcsd-UTR mRNA encoding plasmid (pfemcsd-UTR)
was used as a template. The absence of a fragment in this high copy DNA
control strongly suggests that our primer oligonucleotides will not amplify
fragments corresponding to the injected Fem encoding mRNAs (femcsd-UTR

mRNA). (B) Amplified fragments corresponding to the male fem mRNAs on
the same set of samples as described in (A).
doi:10.1371/journal.pbio.1000222.g006
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determined state in honeybees. While honeybees and Drosophila

utilize the same strategy in the control of the sex determined state,

they employ different molecules.

The fem/tra Gene Encodes Key Functions of Sex
Determination that Are Ancestral among
Holometabolous Insects

We have previously suggested, based on functional and some

structural similarities, that the fem gene and the dipteran tra genes

of D. melanogaster (tra) and of the medfly Ceratitis (Cc-tra) have a

common evolutionary origin [19] irrespective of the great amino

acid sequence differences between their proteins. The knowledge

of tra functions in Drosophila [22] and Ceratitis [37,38] and of fem

studied here allows us to infer ancestral and derived functions

within the fem/tra gene family (Figure 7A–7C). Tra and Cc-tra gene

produce sex-specific transcripts and the encoding female Tra

protein directs the splicing of dsx pre-mRNA into the female mode,

implying that this pathway is conserved over the last 130 million

years among this group of dipteran insects. The phylogenetic

position of the honeybee is at the base of holometabolous insects

[47] (including the Diptera [flies], Lepidoptera [moths, butterflies],

and Coleoptera [beetles]) (Figure 7D), representing over 270

million years of evolution.

Most importantly, the sex-determining genes fem, tra, and Cc-tra

are activated by processing the pre-mRNA into the productive

female mode. In all the three species the female tra/fem mRNAs

encode the active gene product, which directs the splicing into

female dsx mRNAs. The male part of this hierarchy is also

conserved: in the absence of the sex-specific signal the male

mRNAs of the tra/fem and the dsx gene is produced, which is the

default regulatory state. We conclude that despite great variety of

sex determination mechanisms in insects [48–50] the processing of

sex-specific information by the tra/fem gene in these insects is

conserved. This implies that the sex determination pathways of

holometabolous insects converge at the level of the tra gene family.

The fem and the Cc-tra gene of Ceratitis are required for germ-cell

differentiation, whereas in Drosophila the function of tra is restricted

to the soma, suggesting that the control of the germ sexual identity

is ancestral. Our comparison further indicates that the mainte-

nance of the sexual fate at the level of the tra gene family is

ancestral. Our mosaic analysis suggests that fem has an additional

function in maintaining sex throughout development. We find

direct molecular evidence for this in the form of a feedback

splicing loop in which Fem proteins mediate splicing of fem pre-

mRNA into the productive female mode. In Drosophila the female

state is maintained via the positive feedback splicing loop of the Sxl

gene, which operates as the next upstream regulator of the tra gene

Figure 7. The regulative hierarchy of honeybee sex determination in relation to other insect model species. (A) Model for the
honeybee sex determination pathway that controls both soma and germ cells. The heterozygous or homo-/hemizygous state of the csd gene
determines whether Csd protein is active. Active Csd proteins, derived from different csd alleles in females, are splicing factors that direct the
processing into female fem mRNAs. Female fem mRNAs (femF) are producing active Fem proteins that are required to mediate the splicing of Am-dsx
pre-mRNA into the female mRNAs. The Fem protein has an additional positive feedback activity that directs the processing of femF mRNAs. Inactive
CSD proteins, when derived from homo- or hemizygous csd alleles, result in a splicing of the fem and dsx transcripts, which is the default male state
(femM, Am-dsxM). (B) Model for the sex determination pathway in Ceratitis capitata [37,38]. The presence or absence of an unidentified factor M
determines sex. In the absence of M the maternal provided Cc-tra gene product establishes an autoregulative loop in which Cc-Tra protein mediates
the production of female Cc-tra mRNA. The Cc-Tra protein directs the splicing of Cc-dsx pre-mRNA into the female mode. The presence of M impairs
the positive autoregulative loop of the Cc-tra gene products producing a default splicing pattern of Cc-tra transcripts, the male pre-mRNA. The male
Cc-dsx mRNA is produced by default. (C) Simplified view of the somatic sex determination hierarchy in D. melanogaster [22]. The X:A ratio determines
whether Sxl is activated. Sxl protein in females is a splicing factor that directs the splicing of tra pre-mRNA into the female mode, resulting in the
production of active Tra protein in females. Tra protein mediates the processing of female dsx mRNAs. In the absence of Sxl protein all these
regulatory decisions do not occur and the male dsxM is produced by default. The male and female dsx transcripts encode sex-specific transcription
factors that have several target genes and are involved in various aspects of sexual differentiation. (D) The evolutionary relationship of the species
used in the comparison with their approximate time scale of divergence.
doi:10.1371/journal.pbio.1000222.g007
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(Figure 7C). The repression analysis of Cc-tra and putative binding

sites of Tra/Tra-2 proteins are indicators of a positive feedback

splicing loop operating in Ceratitis at the level of the Cc-tra gene

[37,38]. This comparison indicates that the maintenance of sexual

fate via a splicing loop of the tra/fem gene is most likely ancestral

and that a self-splicing loop has been co-opted in Drosophila by the

Sxl gene [51]. We infer that the maintenance of sexual fate in the

sex determination pathway is a critical strategy in the development

of a holometabolous insect. Taken together, the phylogenetic

comparison suggests that the common ancestor of the fem/tra gene

was employed in implementing and maintaining all visible aspects

of sexual differentiation, while the upstream sex determination

mechanism can vary. We conclude that the fem/tra gene is the

ancestral key regulator of sex determination of holometabolous

insects.

Materials and Methods

Bee Sources
Diploid female eggs were derived from the progenies of eight

queens inseminated with semen from a single drone having a

different sex allele than that of the queen. Diploid male eggs that

are homozygous for csd were obtained from two queens that were

derived from brother–sister crosses (inbred crosses), thus produc-

ing 50% female and 50% diploid male offspring. Haploid male

eggs were collected from colonies that were headed by a virgin

queen. These non-mated queens were laying unfertilized male

eggs induced by repeated CO2 treatments.

Characterization of Genes
Potential exons of the assembled SDL genomic sequence [19]

were predicted by different methods that are included in the Gene

Machine annotation software (http://genemachine.nhgri.nih.gov/)

using the human or Drosophila model organism option and by

different BLAST search strategies at NCBI (http://blast.ncbi.nlm.

nih.gov/Blast.cgi). The first strand cDNA from mRNA was

generated by reverse transcription with oligo dT primer (or random

hexamers), and 59 and 39 ends of genes were identified by RACE

experiments according to the protocol of the supplier (Ambion,

Fermentas). Sequences of transcripts were obtained from high-

fidelity PCR amplifications of embryonic cDNA and at least three

independent clones. Potential homologies to genes and proteins in

the database were identified by BLAST analysis using the low

complexity filter option. Potential domains of proteins were

identified by comparing deduced amino acid sequence with the

PROSITE (http://www.expasy.org/prosite/) and the PFAM

(http://pfam.sanger.ac.uk/) database.

Functional Analysis
RNAi knockdowns were induced in early embryogenesis at the

syncytial stage (0–4 h after egg deposition) in haploid and diploid males

and females [16,52]. dsRNAs were generated from cloned cDNAs of

genes GB11211, GB13727, and GB30480. The mock dsRNA was

generated from a DNA marker sequence [16]. The fem and csd siRNAs

were synthesized (MWG BioTech) (Dataset S1, A). siRNAs were

injected at a concentration of 50–100 pg per embryo. Sequences for

the mock siRNAs (Dataset S1, B) were obtained by scrambling the

nucleotide composition of fem and csd siRNA sequences. siRNAs were

injected at a concentration of 50–100 pg per embryo. Individuals that

were derived from inbred crosses were sexed according to the genotype

at the csd locus [16]. Hatched larvae were reared in the incubator at

35uC and saturated humidity with food supply that consists of a

mixture of glucose (3.6%), fructose (3.6%), and yeast extract (1%)

dissolved in 52% royal jelly (weight per volume). Food supply was

removed at the stage of 5th instar larvae to allow pupation. Gonad

tissue used for microscopic sections was fixed with 3% glutaraldehyde

in 0.1 m sodium cacodylate buffer (SCB) pH 7.2 for 3 h at room

temperature, washed with SCB, postfixed with 1% osmium tetroxide

in SCB, dehydrated in a graded ethanol series, and embedded in epoxy

resin [53]. Semithin sections (1 mm) were made with an ultramicro-

tome S (Leica, Bensheim, Germany) and stained with 1% toluidine

blue. To quantify the mRNA levels with a BioRad Chromo4 cycler,

total RNA was extracted from single 36-h-old embryos and transcribed

in cDNA using random hexamer oligonucleotides. Aliquots of single

stranded cDNA were amplified (Dataset S1, C), and real-time

fluorimetric intensity of SYBR green was monitored. Each sample

was run twice in triple replicates. DCts values were obtained by

comparing cycle thresholds (Cts) to those of the reference gene,

elongation factor 1-alpha (DCts = Ctscontrol 2 Ctstarget). t test statistics were

carried out using the SPSS 15.0 software. Amplified fragments by fem

RT-PCR (Dataset S1, D) in the repression experiments were composed

of exons 3-6-7-8 (size ,350 bp) and exons 3-4-5-6-7-8 (size ,1.6 kb)

corresponding to the female and male transcripts, respectively.

Amplified fragments in the Am-dsx RT-PCR experiments (Dataset

S1, E) were composed of exons 3-4-5-6-7 (size ,1.4 kb) and exons 3-4-

6-7 (size ,500 bp) corresponding to the female and male transcripts,

respectively. Amplified fragments (Dataset S1, F) in the fem

developmental profile analysis were composed of exons 3-6-7-8 (size

,350 bp) and exon 3 (size ,400 bp) representing the female and male

transcripts, respectively. The cDNAs in the profile analysis were

quantified in a NanoDrop ND-1000 spectral photometer. Differences

in the amount of cDNAs were adjusted prior to PCR amplifications.

mRNAs (femcsd-UTR mRNA) encoding Fem proteins were generated by

inserting 59 and 39 UTRs at the corresponding 59 and 39 end of the fem

ORF of clone fem S2-38 [18]. We first inserted the 59 csd UTR

together with a translational start codon and a Myc tag encoding

sequence between the ApaI und NcoI restriction sites of the pGEMT

vector (Promega). The csd 39 UTR was inserted by utilizing SpeI und

PstI restriction sites. The fem ORF was ligated into NcoI and SpeI

resulting in the plasmid pfemcsd-UTR. The mRNA (femcsd-UTR mRNA)

was generated using the RiboMax T7 RNA polymerase kit (Promega)

in which the 59cap structure (Ambion) was added during RNA

synthesis in order to produce 59 capped transcripts. We polyadenylated

the 39 termini of the in vitro transcribed RNA by adding ATP and

Yeast polyadenylation polymerase (USB), which we terminated by

following standard phenol/chloroform extraction protocol. We

injected 0.08 pg of femcsd-UTR mRNA into 0–3-h-old male embryos.

Amplified fragments (Dataset S1, G) of endogenous fem were composed

of exons 2-3-6 (size ,560 bp) and exons 3 (size ,400 bp)

corresponding to the female and male transcripts, respectively.

Supporting Information

Dataset S1 siRNA and oligonucleotide primer sequences.

Found at: doi:10.1371/journal.pbio.1000222.s001 (0.03 MB

DOC)
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