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Abstract

A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances.
Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This
report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C.
albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble 3-1,3 glucan,
in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we
identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of
these results, we designed additional experiments showing that two glucoamylases, Gcal and Gca2, have positive roles in
matrix production and may function through hydrolysis of insoluble B-1,3 glucan chains. We also show that a group of
alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6,
negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn
govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of
a process central to infection.
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Introduction

A biofilm is a community of surface-associated microorganisms
embedded in a matrix of extracellular polymeric substances.
Biofilms are common microbial growth forms in nature and are a
leading cause of human infection [1]. These infections are seeded
from biofilms present on implanted medical devices, such as
intravascular catheters [2]. Biofilm formation mechanisms are thus
relevant to our understanding of both microbial ecology and
infectious disease.

Biofilm matrix is broadly defined as an extracellular polymeric
material that is maintained within a biofilm [3-6]. It derives
from directed synthesis and secretion of matrix components as
well as lysis of a fraction of biofilm cells [5]. In natural settings,
matrix constituents may also come from the local environment,
such as an infected host [5]. Biofilm matrix often consists
predominantly of extracellular polysaccharides. For example,
bacterial biofilm matrices can include cellulose, polysaccharide
intercellular adhesin, and the polysaccharide polymers VPS,
PEL, and PSL [6]. Other matrix components include proteins,
fatty acids, and nucleic acids [6,7]. In general, the matrix
provides support and protection of the microbial community
embedded within it.

Our focus is the biofilm matrix of C. albicans, the major fungal
pathogen of humans. The C. albicans matrix is composed primarily
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of carbohydrate and includes protein, hexosamine, phosphorus,
and uronic acid [8]. The primary carbohydrate is probably B-1,3
glucan: glucose is the major matrix sugar and biofilms are
disrupted by in situ treatment with lyticase [8], an enzyme that
specifically hydrolyzes B-1,3 glucan. Moreover, Nett et al. have
shown that elevated PB-1,3 glucan levels are characteristic of
biofilm cells as compared to planktonic free-living C. albicans cells
[9]. The increased B-1,3 glucan content of in vitro-grown biofilms
is found in both cell walls and as a secreted form [9]. Finally,
soluble B-1,3 glucan is produced by C. albicans biofilms grown in an
in vivo catheter infection model, where it can be used in diagnosis
of catheter-based infection [10].

Matrix production is closely tied to biofilm formation, yet little is
known about its regulation or production mechanisms. We
describe here a C. albicans transcription factor, Zapl/Csrl
(0rf19.3794), that governs matrix production. This transcription
factor is closely related to the Saccharomyces cerevisiae zinc-response
regulator Zapl, and we show that expression of three zinc
transporter genes depends upon C. albicans Zapl/Csrl. This
observation supports a recent report [11] indicating that the S.
cerevistae and C. albicans Zapl both regulate zinc-responsive gene
expression. However, we also show that Zap1/Csrl controls genes
that influence overall matrix levels. Our results provide a
foundation for a mechanistic understanding of matrix production
and its regulation.
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Author Summary

A biofilm is a surface-associated population of microbes
that is embedded in a cement of extracellular compounds.
This cement is known as matrix. The two main functions of
matrix are to protect cells from their surrounding
environment, preventing drugs and other stresses from
penetrating the biofilm, and to maintain the architectural
stability of the biofilm, acting as a glue to hold the cells
together. The presence of matrix is a contributing factor to
the high degree of resistance to antimicrobial drugs
observed in biofilms. Because biofilms have a major
impact on human health, and because matrix is such a
pivotal component of biofilms, it is important to under-
stand how the production of matrix is regulated. We have
begun to address this question in the major human fungal
pathogen Candida albicans. We found that the zinc-
responsive regulatory protein Zap1 controls the expression
of several genes important for matrix formation in C
albicans. These target genes encode glucoamylases and
alcohol dehydrogenases, enzymes that probably govern
the synthesis of distinct matrix constituents. The findings
here offer insight into the metabolic processes that
contribute to biofilm formation and indicate that Zap1
functions broadly as a negative regulator of biofilm
maturation.

Results

Role of Zap1 in Biofilm Formation In Vitro

We have described screens of C. albicans transcription factor
gene insertion mutants for defects in biofilm formation [12]. In the
course of these screens, we found an insertion mutant that
produced a biofilm with a slimy or glistening appearance. The
insertion lay in the coding region for JAPI/CSRI (orfl19.3794).
This phenotype was observed for several additional zapl/zapl
insertion mutants as well as a newly created zapl/A/zaplA deletion
mutant. This unusual phenotype was complemented by introduc-
tion of a wild-type ZAPI construct into the zapIA/zaplA mutant,
but not by the vector lacking the ZAP! insert. Therefore, loss of
ZAPI function causes an unusual glistening appearance of in vitro-
grown C. albicans biofilms.

We examined overall biofilm growth and ultrastructure to
explore the nature of this altered biofilm appearance. We detected
no difference in biofilm biomass of zapIA/zapIA mutant and the
zapl A/ zap 1 A+pZAPI complemented strain or the reference wild-
type strain (Figure 1A). Overall biofilm thickness was similar for
the zapIA/zapIA mutant and the zapIA/zapl A+plAPI comple-
mented strain as well (Figure 2C, 2F), as visualized by confocal
scanning laser microscopy (CSLM). However, depth views
revealed that the mutant hyphae often terminated in yeast-form
cells (Figure 2A, 2B). Some of these cells appeared spherical and
resembled  chlamydospores. Complementation with  JAP!
(Figure 2D, 2E) restored an appearance similar to wild-type
biofilms in this system [12]. Therefore, Zapl is required for
normal hyphal morphogenesis in biofilms.

A glistening appearance can be associated with accumulation of
extracellular polymers, as in the case of Staphylococcus biofilms [13].
To see whether matrix might hyperaccumulate in the zaplA/
zapIA strain, we measured biofilm-associated soluble B-1,3 glucan.
The zapIA/zapIA strain produced 1.5- to 2-fold greater soluble B-
1,3 glucan in biofilms than the complemented and reference
strains (Figure 1B). Planktonic cultures of the strains showed a
similar trend but the differences were not statistically significant
(Figure 1C). Therefore, in in vitro-grown biofilms, Zapl is a
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negative regulator of extracellular soluble B-1,3 glucan, a major
component of extracellular matrix.

Role of Zap1 in Biofilm Formation In Vivo

In order to determine whether Zapl may play a role in biofilm
formation in vivo, we turned to a rat model for catheter-associated
infection [14]. We observed that the zap/A/zaplA mutant, the
zapIA/zapI A+pZAPI complemented strain, and the wild-type
reference strain all produced substantial biofilms in vivo (Figure 3B,
3D, 3F), as visualized with scanning electron microscopy (SEM).
However, the zaplA/zapIA mutant biofilm had a striking
abundance of extracellular material (Figure 3A) compared to the
control strains (Figure 3C, 3E). Quantitative measurements of
serum removed from the catheters indicated that the zapIA/zaplA
mutant produced over 3-fold more soluble B-1,3 glucan than the
wild-type strain (Figure 1D). Introduction of ZAPI into the mutant
reduced soluble B-1,3 glucan production substantially (Figure 1D),
as expected from the common phenomenon of partial comple-
mentation. These results indicate that Zap! is a negative regulator
of extracellular matrix production in an in vivo biofilm model.

Identification of Zap1-Regulated Genes

In order to understand the connections between Zapl and
matrix production, we performed expression microarrays com-
paring the zaplA/zaplA mutant and complemented strain, both
grown as biofilms. We found 232 genes that were significantly
upregulated in the mutant, and 272 genes that were significantly
downregulated genes in the mutant (Table 1; Dataset S4,
worksheet 2). Several top target genes identified by the expression
arrays were verified by northern or quantitative real-time PCR
analysis (Dataset S5). The data indicate that C. albicans Zap]l, like
its S. cerevisiae ortholog, is a regulator of zinc homeostasis as the
zinc transporter genes KRT1, ZRT2, and RT3 are downregulated
in the zapIA/zapIA mutant. Indeed, we found that the zaplA/
zapIA mutant is defective in growth on low-zinc medium (Dataset
S5). That defect arises from reduced expression of zinc
transporters, because increased expression of zinc transporter
genes {RTI or ZRT2 improved growth of the zapIA/zaplA
mutant on low-zinc medium (Dataset S5). These growth assays
confirm findings reported recently by Kim et al. [11]. Several
other gene classes are downregulated in the zap/A/zapl A mutant,
including those related to adhesion, aldehyde metabolism, and
hyphal development. The connection of adhesion and hyphal
formation to biofilm formation is well established; the connection
with aldehyde metabolism genes is discussed below. The classes of
genes upregulated in the mutant include those related to alcohol
dehydrogenase activity, carbohydrate transport, cell wall structure,
ergosterol biosynthesis, and glucoamylase activity. The connection
of several of these gene classes to biofilm formation is explored
below. Finally, we note that the zapIA/zapIA strain has altered
expression of several transcriptional regulatory genes, and these
gene products may mediate indirect control of some genes by
Zapl.

To identify target genes that are directly regulated by Zapl, we
used genome-wide chromatin immunoprecipitation (ChIP) anal-
ysis of biofilm cells (Figure 4; Dataset S6). We found that Zapl
binds directly to the promoters of JRTI1, {RT2, and JRT3
(Figure 4A—4C; Dataset S6), thus arguing that Zap! regulates zinc
homeostasis through activation of zinc transporter gene expres-
sion. The ZRT1 5’ region is shared with the divergent PRAI gene,
whose S. cerevisiae ortholog ZPSI is a Zapl target, so this shared
regulatory region may permit Zapl activation of both JRT1 and
PRAI (Figure 4B). We also found Zapl associated with its own
(ZAPI) promoter region, as expected if C. albicans Zap1 activates its
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Figure 1. Analysis of biofilm and matrix production. The mutant strain CIN1201 (zap1A/zap1A), complemented strain CJN1193 (zap1A/
zap1A+pZAP1), and reference wild-type strain DAY 185 (ZAP1/ZAP1) were assayed for (A) in vitro-grown biofilm biomass, (B) in vitro-grown biofilm
soluble B-1,3 glucan production, and (C) in vitro planktonic culture soluble $-1,3 glucan production. In addition, (D) soluble B-1,3 glucan production

1xgrr

was assayed in a rat catheter biofilm infection model. The symbol
from the zap1A/zap1A strain.
doi:10.1371/journal.pbio.1000133.g001

own expression (Figure 4F). We note that Zapl autoregulation is
well established in S. cerevisiae [15]. Finally, we found Zapl bound
to the promoters of GSHI and IFDG6 (Figure 4D, 4E), whose
contribution to biofilm matrix is described below. Although S.
cerevisiae Zap! can function as a repressor [16], we did not detect C.
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indicates that glucan measurements were significantly different (p<<0.0005)

albicans Zapl bound to promoter regions of genes identified by
microarrays to be repressed including ADH5, GCAI, or GCAZ2.
(ChipView plots of every significant binding event may be found in
Dataset S6, sheet 3.) These genes may be indirectly regulated by
Zapl. It is also formally possible that Zapl associates with other
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Figure 2. CSLM analysis of in vitro biofilm structure. In vitro-grown biofilms of the mutant strain CJN1201 (zap1A/zap1A, [A-C]) and
complemented strain CJIN1193 (zap1A/zap1A+pZAP1, [D-F]) were visualized by CSLM. (A,D) Depth views show the x-y plane. (B, E) Magnified depth

views with pseudocolor scale. (C, F) Side views show the y-z plane.
doi:10.1371/journal.pbio.1000133.g002
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Figure 3. Scanning electron microscopy of in vivo biofilms. The mutant strain CJN1201 (zap1A/zap1A, [A,B]), complemented strain CJN1193
(zap1A/zap1A+pZAP1, [C,D]), and reference wild-type strain DAY 185 (ZAP1/ZAP1, [E,F]) were inoculated into rat intravenous catheters, and resulting
biofilms were visualized after 24 h of growth. Images show catheter luminal surfaces at (A,C,E) 1,000 x and (B,D,F) 50 x magnification.

doi:10.1371/journal.pbio.1000133.g003

proteins that mask the epitope in order to function as a repressor;
according to this model we would fail to detect genes where Zapl
was bound as a repressor. Overall, our data clearly show that Zapl
directly activates many target genes that function in diverse
biological processes.

Function of Zap1 Target Genes in Biofilm Matrix Production

We further investigated several Zapl target genes that may
function in biofilm matrix production (Table 1). Genes that are
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downregulated in the zaplA/zaplA mutant could, in principle, be
inhibitors of matrix production; genes that are upregulated in the
zapl A/ zap1 A mutant could be activators of matrix production. We
reasoned that overexpression of matrix inhibitors in the zaplA/
zapl A mutant may cause reduced levels of soluble B-1,3 glucan.
To test this idea, we introduced highly expressed TDH3 promoter
sequences to replace promoter regions of the following target
genes: SRT2, ZRTI1, PRAI, GSHI, and IFD6. We confirmed their
overexpression through qPCR assays in the zaplA/zapIA
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Figure 4. ChIP mapping of genomic Zap1 binding sites. Zap1 myc-tagged strain CJN1688 versus untagged wild-type strain DAY185
immunoprecipitation binding data were performed under biofilm conditions. The x-axis represents ORF chromosomal locations (See Dataset S6,
sheet 1 for exact location values). The y-axis is the Agilent normalized enrichment value (log2) for binding of Zap1 (See Dataset S6, sheet 1 for exact
enrichment values). Zap1-myc strain (blue line) and untagged wild-type (red line) ChIP-chip array binding data were mapped and plotted onto the
chromosomes containing ZRT1 and PRAT located on Chromosome 4 (A), ZRT2 located on Chromosome 2 (B), ZRT3 located on Chromosome 2 (C),
CSHT located on Chromosome 1 (D), IFD6 located on Chromosome 1 (E), and itself ZAP1 located on Chromosome 4 (F) using ChipView v0.954. The
promoters of these genes show significant peak enrichment (determined using Agilent Chip Analytics software v1.2) for the binding of Zap1. The
blue track under the peak indicates that the Agilent segment p-value (—log10) for the binding of Zap1 is significant (See Dataset S6, sheet 1 for actual
segment p-values). Genes plotted above the bold line read in the sense direction; genes plotted below the bold line read in the antisense direction.
Identical binding sites with similar peak enrichment values were observed for the independently isolated Zap1 myc-tagged strain CJN1694 versus
untagged wild-type strain DAY185 (unpublished data).

doi:10.1371/journal.pbio.1000133.g004

transformants (Dataset S5). We observed that both TDH3-CSH1 ADH), and used qPCR to confirm overexpression (Dataset S5).
and TDH3-IFD6 caused a significant decrease in soluble B-1,3 We observed that TDH3-GCAl, TDH5-GCA2, and TDHS5-ADH)5,

glucan levels produced by in vitro biofilms (Figure 5A), whereas but not the other constructs, significantly increased soluble B-1,3
the other constructs produced no significant differences. To survey glucan levels produced by in vitro biofilms (Figure 5A). These
candidate activators of matrix production, we overexpressed results support the idea that specific Zapl target genes can
selected genes in a wild-type ({API/ZAPI) background. Once modulate biofilm matrix levels in vitro.

again, we used the TDH3 promoter to replace promoter regions of To test target gene function in vivo, we turned to the rat

target genes YWPI, 01/19.3499, HXT5, GCAI, GCA2, HGT2, and catheter infection model. We measured biofilm-associated
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Figure 5. Effect of altered Zap1 target gene expression. Soluble f-1,3 glucan levels were determined after biofilm growth (A) in vitro or (B) in
the rat catheter model. Determinations were carried out with zap1A/zap1A strains carrying either no promoter fusion or TDH3 promoter fusions to
genes ZRT2, ZRT1, PRA1, CSH1, or IFD6, as indicated in the figure. Determinations were also carried out with ZAP1/ZAP1 strains carrying either no
promoter fusion, or TDH3 promoter fusions to genes YWP1, orf19.3499, HXT5, GCA1, GCA2, HGT2, or ADH5, as indicated in the figure. A single asterisk
indicates that glucan measurements were significantly different (p<<0.05) from the zap1A/zap1A strain carrying no promoter fusion; a double asterisk
indicates that glucan measurements were significantly different (p<<0.05) from the ZAP1/ZAP1 strain carrying no promoter fusion; both assessments
are based upon Student’s t-tests. In (B), the pound symbol (#) indicates that the respective strain was not assayed in the in vivo biofilm model.

doi:10.1371/journal.pbio.1000133.9g005

soluble B-1,3 glucan levels after biofilm formation by the strains
that had displayed altered glucan levels in vitro. The general
effects on soluble B-1,3 glucan of each TDH3-target gene during
biofilm culture in vivo paralleled those measured in vitro
(Figure 5B), though the magnitudes of the effects were typically
greater in vivo. These findings indicate that Cshl and Ifd6 are
inhibitors of matrix production, and that Gcal, Gca2, and
Adhb are activators of matrix production.

@ PLoS Biology | www.plosbiology.org

Discussion

Matrix is a defining characteristic of biofilms [3-6], and has
been found to contribute, in many organisms, to such critical
biofilm attributes as adherence and antimicrobial drug resistance.
The matrix of C. albicans biofilms has been characterized
biochemically [8,17], but its biogenesis and regulation have
remained elusive. We report here that C. albicans Zapl governs
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biogenesis of a major matrix component, soluble B-1,3 glucan.
Our characterization of the Zapl regulon, together with recent
studies by Kim and colleagues [11], confirms the functional
conservation of Zapl as a regulator of zinc metabolism. We show
that, in C. albicans, the Zapl regulon extends to govern both
positive and negative matrix biogenesis functions, and identifica-
tion of key Zapl-regulated genes gives insight into the metabolic
processes that contribute to biofilm formation. Based on the
relationship between Zapl and matrix, as well as other Zapl
target genes, it is likely that Zapl functions broadly as a negative
regulator of biofilm maturation.

Zap1-Responsive Genes

C. albicans Zap]1, like its S. cerevisiae ortholog, has a critical role in
zinc metabolism. Genes activated by C. albicans Zapl include
putative plasma membrane zinc transporter genes JRT7 and
ZRT2 as well as the putative vacuolar zinc transporter gene JR73.

Matrix Mediators in Candida albicans Biofilms

Both homology and functional analysis indicates that these genes
are connected to zinc acquisition ([11] and this report). Thus the
connection of Zap]l to zinc metabolism is clear.

Interestingly, the conserved Zapl circuit encompasses many
additional genes, as indicated by comparison of Zapl-responsive
genes in our dataset with their S. cerevisiae orthologs and best hits
[18]. Conserved Zapl-responsive genes extend beyond zinc
transporter genes (Figure 6; Dataset S4, worksheet 3) to include
such Zapl-activated genes as PRAI, DPP1, HSP30, LAP3, STE23,
CSHI, and IFD6. Conserved Zapl-repressed genes include ADH5
and 07/719.3552, among many more (Figure 6). The extent of
conservation may be underestimated because of the different
growth conditions employed for the two organisms, and the fact
that the S. cerevisiae Zapl regulon varies with conditions of zinc
limitation [19]. Some of these gene products are known or
predicted to be zinc metalloenzymes, such as Ste23, and their
increased expression in zap! mutants may reflect a homeostatic
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Figure 6. Comparison of C. albicans and S. cerevisiae Zap1 regulons. Expression of Zap1-responsive genes in C. albicans (complemented strain
versus zap1A/zap1A mutant, x-axis) was compared with their S. cerevisiae orthologs and best hits (wild-type strain versus zap1 mutant, y-axis).
Definitions of orthologous genes and best hits were provided by the Candida Genome Database (see Dataset S4; worksheet 3; (http://www.
candidagenome.org/download/homology/orthologs/Calb_Scer_by_inparanoid/Assem21orthologs/CA_SC_orthologs.txt and http://www.candida-
genome.org/download/homology/best_hits/Calb_Scer_best_hits_Assem?21.txt). Expression data for S. cerevisiae were for growth in 61 nM zinc from
Lyons et al. [18]. This graph presents the 40 most downregulated genes (purple triangles) and 40 most upregulated genes (blue triangles) in the zap 1A/
zal1A mutant compared to S. cerevisiae orthologs, and the 40 most downregulated genes (purple squares) and 40 most upregulated genes (blue squares)
in the zap 1A/zal1A mutant compared to S. cerevisiae best hits. In addition, all C. albicans ERG genes are graphed against their orthologs or best hits (green
squares). Finally, the five genes shown to be functionally relevant for biofilm matrix are graphed against their orthologs or best hits (red circles).

doi:10.1371/journal.pbio.1000133.g006
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response to reduced enzyme activity. However, the relationship of
many of conserved Zapl-dependent genes to zinc acquisition or
metabolism is not well understood. We note in particular that the
secreted metalloprotease homolog Pral, the ortholog of S. cerevisiae
Zpsl, is also closely related to the Aspergillus fumigatus antigen
ASPF2 (44% identity over 294 amino acid residues), which is
induced under low zinc conditions [20]. Thus the Zapl regulon
may be broadly conserved among fungi. Genes with conserved
Zapl responsive regulation in fungi with distinct environmental
niches might be considered priorities for further study in
relationship to zinc metabolism. Conversely, species-specific
responses may provide insight into unique features of each zinc-
limited niche.

MEME analysis of direct Zap] target genes has identified two
potential Zapl binding motifs, ACCTTGGTGGTTA and
TAGTGGTTAT (motifs 1 and 2, respectively, in Dataset S6,
worksheet 2), which are similar to each other. RSAT analysis
points to enriched 8-mers TAATGGTG and ATGGTGGT in
these 5’ regions, which closely resemble the MEME sites. All are
similar to the known . cerevistae Zapl binding motf, AC-
CTTNAAGGT [21,22], particularly because the greatest speci-
ficity is for the motif ends ACC and GGT [23].

C. albicans biofilm growth is associated with overall upregulation
of ergosterol biosynthesis [24] as well as increased resistance to
antifungals that target ergosterol [7,25]. It is striking that almost all
ergosterol biosynthetic genes are regulated oppositely by Zapl in
C. albicans and S. cerevisiae (Figure 6 [green squares|; Dataset S4,
worksheet 3). ERG genes are largely downregulated in the S.
cerevisiae zaplA mutant; in other words, ScZapl is formally a
positive regulator of ScEZRG genes. This relationship has functional
consequences, because a S. cerevisiae zaplA/ZAPI heterozygous
diploid is hypersensitive to ergosterol biosynthetic inhibitors [26].
In contrast, FRG genes are largely upregulated in the C. albicans
zaplA/zapl A mutant, thus CaZapl is formally a negative
regulator of CaERG genes. Zapl may govern their expression
indirectly, because they lack clear ZREs and were not bound by
Zap! in our ChIP analysis. This difference in £ZRG gene regulation
may reflect the distinct niches sampled for microarray analysis: S.
cerevisiae cells were grown aerobically [18]; our C. albicans cells were
grown in biofilms, which are substantially anaerobic [27]. It is well
established that £RG gene expression responds to oxygen levels
[28], a reflection of the heme requirement for ergosterol synthesis.
The apparently opposite roles of Zapl in ZRG gene regulation in
the two organisms may arise from the difference in growth
conditions. In any event, for C. albicans biofilms, perhaps a decline
in Zapl activity during biofilm growth may be the cause of
increased ergosterol biosynthetic gene expression in biofilms.

Biofilm Matrix Synthesis

In principle, Zapl might have influenced matrix production
indirectly, as a consequence of poor growth or zinc limitation.
However, overexpression of JRT1 or JRTZ improves zinc-limited
growth of the zapIA/zapIA mutant but has no effect on matrix
production. These findings indicate that it is altered Zapl target
gene expression, rather than other effects of zinc limitation, that
stimulates matrix production in the zaplA/zaplA mutant. Our
target gene overexpression studies point to two classes of matrix
biogenesis functions: Cshl and Ifd6 inhibit matrix production;
Geal, Gea2, and Adh5 promote matrix production.

The role of Gecal and Gca2 in matrix production is probably
direct. They are predicted extracellular glucoamylases; the
extracellular localization of Gcal has been confirmed by
biochemical isolation [29]. Glucoamylases convert long-chain
polysaccharides into smaller-chain polysaccharides. Therefore,
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we propose that Geal and Gcea2 promote matrix production by
hydrolytic release of soluble B-1,3 glucan fragments, perhaps
from biofilm cell walls, from exported glucan polymers that are
not attached to cell walls, or from debris of lysed cells.

The roles of Cshl, Ifd6, and Adh5 may be more complex. All
three are predicted alcohol dehydrogenases. One simple
possibility is that they affect matrix production through their
impact on carbon metabolism. For example, Adh5 may promote
entry of ethanol into the TCA cycle for energy or via the
glyoxylate shunt to provide hexose for B-1,3 glucan synthesis.
Ethanol i1s known to accumulate in mature biofilms [30] and
thus may serve as a potential source of carbon. However, this
explanation does not readily account for the fact that Adhb
stimulates matrix production, whereas Cshl and Ifd6 inhibit
matrix production. A second model is based upon the roles of
alcohol dehydrogenases in the Ehrlich pathway [31]. This
pathway permits nitrogen assimilation from amino acids,
yielding o-keto acids that must be reduced to acyl and aryl
alcohols for secretion. Such alcohols have profound roles in
quorum sensing and cell signaling. One aryl alcohol, tyrosol,
accumulates during biofilm maturation and functions to
stimulate hyphal growth [32,33]. The acyl alcohol farnesol also
accumulates during biofilm maturation [34] and inhibits hyphal
growth and biofilm formation [35-37]. Additional complex
alcohols that inhibit hyphal growth also accumulate in C. albicans
biofilms during maturation [34]. With these studies as backdrop,
a simple model 1s that Cshl, Ifd6, and Adh) catalyze the final
reductive step in the biogenesis of biofilm-associated acyl and
aryl alcohols, and these alcohols act as signals to govern matrix
synthesis. The apparently opposite effects of these gene products
on matrix production may be related to substrate specificity:
Cshl and Ifd6 may act preferentially to yield a matrix inhibitory
signal; Adh5 may act preferentially to yield a matrix stimulatory
signal.

The idea that Zapl governs quorum-sensing molecule synthesis
explains the unexpected cell morphology observed in zaplA/
zapl A mutant biofilms. Specifically, we observed an excess of
yeast-form cells along with some unusually round cells that
resemble chlamydospores. Consistent with the apparent accumu-
lation of yeast-form cells, we note that the zap/A/zapIA mutant
shows upregulation of yeast-specific gene YWPI and downregu-
lation of hyphally induced genes HWPI, RBT1, HYRI, and IHDI
(Figure 6). Growth of yeast-form cells and chlamydospores is
promoted by the quorum-sensing molecule farnesol [35,38,39].
However, there has been thus far no clear connection between
quorum-sensing molecules and biofilm matrix. Although this
connection is speculative at present, we note that it makes testable
predictions; in particular, that accumulation of specific acyl and
aryl alcohols will be modulated by Zapl and by these alcohol
dehydrogenases. Similarly, it predicts that other defects in
biogenesis of Ehrlich pathway precursors will modulate matrix
production.

The unexpected connection of C. albicans Zapl to matrix
production raises the question of whether the relevant target genes
are part of the conserved Zap1 regulon. We find that three of the
genes are (Figure 6): C. albicans CSHI1 and IFD6 share the S.
cerevisiae best hit YPLO88W; C. albicans ADH5 has the S. cerevisiae
best hit ADH5. All of these genes are under Zapl control in the
respective organisms. On the other hand, GCAI and GCAZ2 share
the S. cerevisiae best hit ROTZ2, which is not significantly responsive
to S. cerevisiae Zapl under conditions examined [18]. These
findings indicate that a focus limited either to conserved or novel
Zapl-responsive genes would have revealed some functional
targets and overlooked others.
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Figure 7. Integration of Zap1 function into biofilm formation.
Zap1 functions as a negative regulator of biofilm matrix accumulation.
It does so through activation of expression of CSH1 and IFD6, which
inhibit matrix accumulation, and through repression of expression of
GCAI1, GCA2, and ADH5, which promote matrix accumulation. Zap1
binds to the CSH1 and IFD6 promoter regions and thus is likely to
activate their expression directly. Zap1 is a negative regulator of two
gene classes—ERG genes and HXT genes—that that are upregulated
during biofilm development [24]. We suggest that Zap1 functions as a
negative regulator of several aspects of biofilm maturation.
doi:10.1371/journal.pbio.1000133.g007

Integration of Zap1 Activity into C. albicans Biofilm
Formation

The zaplA/zapl A mutant produces a biofilm with exaggerated
features of mature biofilms. We have focused here on the
abundance of matrix, but there are other such features as well.
For example, the mutant biofilm hyphal layer includes an
apparent excess of yeast-form cells, which may be induced in
mature biofilms by accumulation of quorum-sensing molecules
[4,32,34] to facilitate biofilm dispersal. The upregulation of ERG
genes and hexose transporter genes in the mutant are other
features in common with mature biofilms [24]. A simple working
hypothesis is that Zap!l functions as a negative regulator of biofilm
maturation (Figure 7). We suggest that a decline in Zapl activity
during biofilm development may occur during the natural process
of biofilm maturation to bring about these characteristic biological
features.

Material and Methods
Media

C. albicans strains were grown at 30°C: in either YPD (2% Bacto
peptone, 2% dextrose, 1% yeast extract) for Ura+ strains or in
YPD+uri (2% Bacto peptone, 2% dextrose, 1% yeast extract, and
80 pg/ml uridine) for Ura— strains. Transformants were selected
for on synthetic medium (2% dextrose, 6.7% Difco yeast nitrogen
base with ammonium sulfate and auxotrophic supplements) or on
YPD+clonNAT400 (2% Bacto peptone, 2% dextrose, 1% yeast
extract, and 400 pug/ml nourseothricin [clonNAT, WERNER
BioAgents]) for nourseothricin-resistant isolates. Growth on low-
zinc medium was assayed with synthetic medium lacking added
zinc (2% dextrose, 1.7% yeast nitrogen base without ammonium
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sulfate and without zinc sulfate, 0.2% ammonium sulfate, 2.5 pM
EDTA, and auxotrophic supplements). To obtain nourseothricin-
sensitive isolates having flipped out the SA77 marker, nourseo-
thricin-resistant transformants were grown for 8-12 h in YPD
liquid medium, plated at a low cell density of 200 cells/plate on
YPD+clonNat25 (2% Bacto peptone, 2% dextrose, 1% yeast
extract, and 25 Hg/ml nourseothricin [clonNAT, WERNER
BioAgents]), and allowed to grow for 24 h at 30°C as previously
described [40] with the defined modifications. Biofilms for
visualization were grown using Spider medium [41]. Supernatants
collected for B-1,3 glucan measurements were grown in suspension
or as biofilms in RPMI-MOPS medium for 12 h at 37°C, as
described previously [10].

Plasmid and Strain Construction

All C. albicans strains used in this study are listed in Dataset S1.
Reference strain DAY185 has been described [42]. Newly
constructed C. albicans strains were derived from BWP17 [43].
Primer sequences are listed in Dataset S2. All genotypes were
verified by colony PCR using corresponding detection primers
(Dataset S2). Construction of CJN1091 (zapl/zapl) was made by
PCR product-directed gene deletion [43] with 120-mer oligonu-
cleotides CSRInull-5DR and CSRInull-3DR via consecutive
rounds of transformation into BWP17. For gene complementation,
PCR was used to generate a fragment for ZAPI from 1,000 bp
upstream of the start codon to 500 bp downstream of the stop
codon. This fragment was inserted into pGEMT-Easy (Promega),
digested with NgoMIV and AlwNI, and subsequently inserted by
in vivo recombination in S. cerevisiae into Notl- and EcoRI-digested
HIST vector pDDB78 [44], yielding plasmid pCJN517. The
complemented strain CJN1193 was made by transforming
CJN1091 with Nrul-digested pCJN517, directing integration to
the HIST locus. The zapl/zapl mutant strain was made His+ by
transforming GJN1091 with Nrul-digested pPDDB78 to yield strain
CJN1201.

The NATI-TDH3 promoter plasmid pCJN542 [45] was used
for gene overexpression. The TDH3-IFD4 overexpression strain
CJN1680 was constructed by transforming CJN1201, the zapl/
zapl mutant, using PCR products from template plasmid
pCJN542 and primers IFD4-F-OE-Ag-NAT-Ag-p-CJN and
IFD4-R-OE-Ag-NAT-Ag-TDH3p-CJN. These primers amplify
the entire Ashbya gossypii TEFI promoter, the C. albicans NATI open
reading frame, the 4. gossypi TEFI terminator, and the C. albicans
TDH3 promoter with 100 bp of hanging homology to 500 bp
upstream into the promoter of [FF/D4 for the forward primer and
100 bp of hanging homology from exactly the start codon of /FD4.
The homology in these primers allows for homologous recombi-
nation of the entire cassette directly upstream of the natural locus
of IFD4 so that its expression is driven by the TDH35 promoter
instead of its natural promoter. By the same method, primers
IFD6-F-OE-Ag-NAT-Ag-p-CJN and IFD6-R-OE-Ag-NAT-Ag-
TDH3p-CJN were used for overexpression of IFD6 to produce
strain CJN1631; ZRT2-F-OE-Ag-NAT-Ag-TEF1p and ZRT2-R-
OE-Ag-NAT-Ag-TDH3p-CJN for overexpression of JRT2 to
produce strain CJN1655; ZRT1-F-OE-Ag-NAT-Ag-TEF1p-CJN
and ZRTI1-R-OE-Ag-NAT-Ag-TDH3p-CJN for overexpression
of ZRTI to produce strain CJN1651; and PRA1-F-OE-Ag-NAT-
Ag-p-CJN and PRAI-R-OE-Ag-NAT-Ag-TDH3p-CJN for over-
expression of PRAI to produce strain CJN1623. The 7TDHS3-
19.4899 overexpression strain CJN1638 was constructed by
transforming DAY185, the wild-type reference strain, using PCR
products from template plasmid pCJN542 and primers 4899-F-
OE-Ag-NAT-Ag-p-CJN and 4899-R-OE-Ag-NAT-Ag-TDH3p-
CJN. By the same method, primers 999-F-OE-Ag-NAT-Ag-p-CJN
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and 999-R-OE-Ag-NAT-Ag-TDH3p-CJN were used for over-
expression of ORFI19.999 to produce strain GJN1675; ADH5-F-
OE-Ag-NAT-Ag-p-CJN and ADH5-R-OE-Ag-NAT-Ag-
TDH3p-CJN for overexpression of ADH) to produce strain
CJN1642; YWPI-F-OE-Ag-NAT-Ag-p-CJN and YWP1-R-OE-
Ag-NAT-Ag-TDH3p-CJN for overexpression of YWPI to
produce strain CJN1659; 3499-F-OE-Ag-NAT-Ag-p-CJN and
3499-R-OE-Ag-NAT-Ag-TDH3p-CJN for overexpression of
ORF19.5499 to produce strain CJN1633; 4384-F-OFE-Ag-
NAT-Ag-p-CJN  and 4384-R-OE-Ag-NAT-Ag-TDH3p-CJN
for overexpression of HXT)5 to produce strain CJN1663; and
HGT2-F-OE-Ag-NAT-Ag-p-CJN and HGT2-R-OE-Ag-NAT-
Ag-TDH3p-CJN for overexpression of HGT2 to produce strain
CJN1667. Transformation into C. albicans strains and selection
on YPD+clonNAT400 plates has been described [46]. Integra-
tion of the constructs was verified by colony PCR with a gene-
specific forward detection primer (for example primer IFD4-
OE-F-det-CJN for the IFD4 gene), annealing to a sequence
within the promoter of each gene and the reverse primer Nat-
OE-R-det2-CJN annealing to a sequence found in the NAT
gene.

The C-terminal myc-tagging plasmid pADH34 (Dataset S3),
containing a 13myc epitope tag immediately preceding the
SATI-lipper cassette (34-bp FLP recombination target sequence
[FRT], followed by the C. albicans MAL2 promoter, followed by a
C. albicans-adapted FLP gene, followed by a C. albicans ACTI
terminator sequence, followed by the C. albicans-adapted SAT1
marker gene, followed by another 34-bp FRT sequence), was
constructed as follows. PCR was done using template pFA6a-
13myc-kanMX6 [47] and primers AHO276 and AHO277 to
generate a 568-bp product containing a 13myc epitope tag and
linker sequences with flanking Xhol sites. This fragment was
ligated into the unique Xhol site of the SAT/7-flipper cassette
plasmid, pSFS2A [40], yielding plasmid pADH34. The C-
terminal tagged nourseothricin-resistant Zapl-myc strains,
CJN1684 and CJN1685, were constructed by transforming
DAY185, the reference strain, using PCR products from
template plasmid pADH34 and primers 3794MycFnostop-GJN
and 3794MycRUTR-CJN. These primers amplify the entire
13myc epitope tag and complete SAT7 flipper cassette with
65 bp of hanging homology to the JAP! ORF minus its stop
codon for the forward primer and 65 bp of hanging homology
to the API UTR precisely downstream of the stop codon for
the reverse primer. The homology in these primers allows
recombination of the entire 13myc epitope tag and complete
SATI flipper cassette directly downstream of the JAPI OREF,
lacking its natural stop codon, so that the AP/ ORF contains a
C-terminal 13myc epitope tag translational fusion. Correct
integration of the C-terminal 13myc epitope tag and SAT/
flipper was verified by colony PCR using detection primers
3794detFUpMyctag-CJN and AHO300 to check the upstream
integration and 3794detRDownMyctag-CJN and AHO301 to
check the downstream integration. The C-terminal tagged
nourseothricin-sensitive ~ Zapl-myc strains, CJN1688 and
CJN1694, were constructed by flipping out the SATI cassette
from strains CJN1684 and CJN1685, respectively, as described
previously [40]. The following primer pairs were used in colony
PCR to confirm the clean “flipping out” of the SAT7-flipper
cassette:  3794detFUpMyctag-CJN  and AHO300, and
3794detRDownMyctag-CJN and AHO302. The 13myc epitope
tag and the region of homology to the 3" end of API used for
integration of the SAT7-flipper cassette was confirmed by
sequencing the colony PCR product generated using primers
3794detFUpMyctag-CJN and AHO283.
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In Vitro Biofilm Growth, Microscopy, and Biomass
Determination

In vitro biofilm growth assays were carried out in Spider
medium and visualized by GSLM as described previously [12].
Biomass measurements were determined for four independent
silicone samples as described previously [46].

In Vivo Biofilm Model

A rat central-venous-catheter infection model, as described
previously [14], was selected for our in vivo biofilm studies. We
removed catheters from the rats at 24 h after C. albicans infection
to determine biofilm development on the internal surface of the
intravascular devices. The distal 2 cm of the catheter was cut from
the entire catheter length, and biofilms were imaged by SEM at
50x and 1,000 x magnification, as described previously [9].

Secreted B-1,3 Glucan Measurements from Biofilm and
Planktonic Growth In Vitro

Cultures were grown on silicone disks or in suspension in RPMI
medium, as described above. Culture supernatants from C. albicans
in vitro biofilm and planktonic cells were collected at 12 h for
glucan measurements. Viable cell burdens were determined using
plate counts to ensure the cultures contained similar number of
cells. Supernatants were centrifuged at 3,000g for 10 min, and
were stored at —20°C until glucan analysis. Glucan concentrations
were determined using the commercially available Glucatell (1,3)-
B-D-Glucan Detection Reagent kit (Associates of Cape Cod)
according to manufacturer’s directions. Four in vitro glucan assay
replicates were performed for each sample. Statistical significance
(p-values) was determined with a Student’s #test.

Secreted B-1,3 Glucan Measurements from Biofilm
Growth In Vivo

After 12 h of growth in the in vivo biofilm model, serum was
collected from the venous catheter. Serum samples were frozen at
—20°C until glucan analysis. f-1,3 glucan was measured in the
serum using the Fungitell (1,3)-B-D-Glucan Detection Reagent kit
(Associates of Cape Cod) according to manufacturer’s directions.
Three in vivo glucan assay replicates were performed for each rat
catheter. Statistical significance (p-values) was determined with a
Student’s #-test. Viable cell burdens were measured by harvesting
kidneys at the end of the experiment as an estimation of total-body
organ burden.

RNA Extraction from Biofilms

Biofilms for expression microarray analysis were grown in
Spider medium at 37°C without silicone squares. Instead, the
bottom of a six-well polystyrene plate was used as a substrate for
biofilm growth in order to maximize the efficiency of harvesting
cells for RNA extraction. We find that one six-well plate
containing biofilms for one strain yields sufficient RNA for
expression microarray analysis. Similar to the silicone square
method [12], the bottom of the six-well plates were pretreated
overnight in 4 ml bovine serum (Gibco), and placed at 37°C with
200-rpm agitation in a thermostatic Elmi shaker. Concurrently,
standard overnight cultures of the strains of interest were
inoculated in YPD medium at 30°C with shaking. The following
day, the six-well plates were washed with PBS, 4 ml Spider
medium was added to each well, and the overnight culture was
added to each well in order to obtain a starting ODyg in the 4 ml
Spider well volume of 0.5. Cell adherence was done for 90 min by
placing the six-well plates at 37°C with 200-rpm agitation in the
Elmi shaker. After the cell adherence step, the six-well plates were

June 2009 | Volume 7 | Issue 6 | 1000133



washed with PBS, and 4 ml of fresh Spider medium was added to
the wells. Biofilms were grown for 48 h at 37°C with 200-rpm
agitation in the Elmi shaker. Biofilms were harvested by scraping
the bottoms of the six-well plates with a cell scraper, and
combining the biofilm slurry of the same strain from each well of
one six-well plate in a 50-ml conical tube. Biofilm cells were then
centrifuged at 3,000g for 5 min, and RNA was extracted using the
RiboPure-Yeast RNA kit (Ambion, number AM1926) according
to the manufacturer’s instruction. We find that this kit yields the
cleanest, most stable, and highest quality and quantity of RNA
compared with the hot phenol method for extraction of RNA from
a C. albicans biofilm.

Northern and Quantitative PCR Expression Analysis

Northern analysis was performed as described previously [12] to
verify the expression levels of {API, ZRT2, and JRTI using the
primers ZAP1-FNor and ZAP1-RNor for API, ZRT2-FNor and
ZRT2-RNor for ZRT2, and ZRT1-FNor and ZRT1-RNor for
ZRTI. For quantitative real-time reverse transcription-PCR
(qPCR) analysis, 10 pg of total RNA was DNase-treated at 37°C
for 1 h using the DNA-free kit (Ambion), cDNA was synthesized
using the AffinityScript multiple temperature cDNA synthesis kit
(Stratagene), and qPCR was done using the iQ SYBR Green
Supermix (Bio-Rad) as previously described [45] using the primers
ZRT2-FqQRTPCR and ZRT2-RqRTPCR for ZRT2, ZRT1-
FqRTPCR and ZRT1-RqRTPCR for JRT1, PRA1-FqRTPCR
and PRAI-RqRTPCR for PRAI, IFD4-FqQRTPCR and IFD4-
RgRTPCR for IFD4, IFD6-FqRTPCR and IFD6-RqRTPCR for
IFDG6, ZAP1-FqQRTPCR and ZAP1-RqRTPCR for {API, YWP1-
FgqRTPCR and YWPI-RqRTPCR for YWPI, 3499-FqQRTPCR
and 3499-RqRTPCR for ORF19.3499, HXT5-FqRTPCR and
HXT5-RqRTPCR  for HXT5, 4899-FqRTPCR and 4899-
RgRTPCR for ORF19.4899, 999-FqRTPCR and 999-RqRTPCR
for ORF19.999, HGT2-FqQRTPCR and HGT2-RqRTPCR for
HGT2, and ADH5-FqQRTPCR and ADH5-RqRTPCR for
ADH5. The iCycler 1Q detection system (Bio-Rad) was used
with the following program: initial denaturation at 95°C for
5 min, followed by 40 cycles of 95°C for 45 s, 58°C for 30 s,
and 72°C for 30 s. Amplification specificity was determined by
melting curve analysis. Bio-Rad 1Q5 software was used to
calculate normalized gene expression values using the AACt
method, using 7DH3 as a reference gene. For ease of
interpretation, the reference strain expression level values were
set to 1.0 for each gene set, and the normalized expression of
each gene relative to TDH3 expression is shown. Results are the
means of three determinations.

Expression Array Design and Analysis

Transcription expression profiling using long-oligonucleotide
microarrays was performed as previously described [48]. Briefly,
10 pg of total biofilm RNA was DNase-treated at 37°C for 1 h
using the DNA-free kit (Ambion), and cDNA was synthesized
using the AffinityScript multiple temperature cDNA synthesis kit
(Stratagene). We performed four individual hybridization exper-
iments from four pairs of independently produced RNA samples of
CJN1201, the zap!l/zapl mutant strain versus GJN1193, the zapl/
zapI+plAPI  strain. LOWESS  normalization and statistical
analysis of the data were conducted in GeneSpring GX version
7.3 (Agilent Technologies). Data are reported in Dataset S4. A
volcano-plot algorithm was used to identify genes that exhibited
statistical significance (p<<0.05) with a change in transcript
abundance of at least 1.5-fold. The results of this analysis with
adjusted p<<0.05 are listed in Dataset S4 (worksheet 2).
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Full Genome ChIP Tiling Array (ChIP-chip)

The ChIP—chip tiling arrays were designed by tiling 181,900
probes of 60-bp length across 14.3 Mb included in the C. albicans
Assembly 20 genome (http://www.candidagenome.org/), as
previously described [49]. The Zapl myc-tagged strains
CJN1688 and CJN1694 and the untagged reference strain
DAY185 were grown under the same biofilm-inducing conditions
as the strains grown for expression microarray analysis, described
above. We found that one six-well plate per strain yielded
sufficient starting material to complete a single ChIP—chip
experiment. Biofilms were harvested by scraping the bottoms of
the six-well plates with a cell scraper, and combining the biofilm
slurry of the same strain from each well of one six-well plate in a
50-ml conical tube. Formaldehyde was added to the biofilm slurry
to a final concentration of 1%, and the treated biofilm cultures
were mixed on a platform shaker for 15 min at room temperature.
Glycine was then added to a final concentration of 125 mM, and
the treated cultures were mixed for another 5 min at room
temperature on the platform shaker. The following cell lysis and
ChIP—chip methods were adapted from previously described
protocols [49,50]. Cells were collected by centrifugation at 4°C for
10 min at 3,000g, washed twice in 10 ml ice cold TBS (20 mM
TrisHCI [pH 7.6], 150 mM NaCl), and the pellets frozen in liquid
nitrogen prior to cell lysis. Cell lysis and shearing of DNA were
done by resuspending the pellets in 700 pl lysis buffer (50 mM
HEPES/KOH [pH 7.5], 140 mM NaCl, 1 mM EDTA, 1%
Triton X-100, 0.1% Na-Deoxycholate) supplemented with
complete protease inhibitor cocktail tablets (Roche). The cell
suspension was vortexed at 4°C for 4 h in the presence of 0.5-mm
acid-washed glass beads, and the lysate was collected. Chromatin
was sheared by sonication in a Bioruptor water bath sonicator
(settings: 1 x15 min, 30 s on, 1 min off) at 4°C, the sheared lysate
was centrifuged at 12,000g for 10 min at 4°C, and the supernatant
was collected. 50 pl of extract was added to 200 pl TE/1% SDS,
and stored at —20°C as the ChIP input material. For chromatin
IPs, 300 pl of the crude lysate was added to 200 pl lysis buffer, and
10 ul of mouse monoclonal antthuman c-myc antibody (Bio-
source, number AHO0062) was added to the mixture. Extract plus
antibody was incubated overnight at 4°C, with agitation. The
following day, 50 pl of a 50% suspension of protein G-Sepharose
Fast-Flow beads (Sigma) in lysis buffer was added and incubated
2 h at 4°C, with agitation. The beads were pelleted for 1 min at
1,000g, the supernatant removed, and the beads washed 5 min at
room temperature with ice-cold buffers as follows: twice in lysis
buffer, twice in high salt lysis buffer (50 mM HEPES-KOH
[pH 7.5], 500 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1%
sodium deoxycholate), twice in wash buffer (10 mM Tris-HCI
[pH 8.0], 250 mM LiCl, 0.5% NP-40, 0.5% sodium deoxycho-
late, ] mM EDTA), and once in TE (10 mM Tris, | mM EDTA
[pH 8.0]). After the last wash, 110 pl of elution buffer (50 mM
Tris/HCI [pH 8.0], 10 mM EDTA, 1% SDS) was added to each
sample, and the beads were incubated at 65°C for 10 min with
periodic agitation. The beads were spun for 30 s at 10,000g at
room temperature, and 100 pl of the supernatant was stored. A
second elution was carried out with 150 pl elution buffer 2 (TE,
0.67% SDS), and eluates from the two elution steps were pooled
(250 pl final volume). Both the ChIP and input samples were
incubated overnight at 65°C, and cooled at room temperature.
For cleaning the IPed DNA, 250 ul proteinase K solution (TE,
20 pg/ml glycogen, 400 pg/ml Proteinase K) was added to each
sample, and samples were incubated at 37°C for 2 h. 55 ul 4 M
LiCl was added to each, and the samples were extracted once with
450 w1 phenol/chloroform/isoamyl alcohol solution (25:24:1).
1 ml ice cold 100% ethanol was added and the DNA was
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precipitated overnight at —20°C. The DNA was pelleted by
centrifugation at 12,000g for 30 min at 4°C, washed once with ice
cold 70% ethanol, and the pellets air dried. IP samples were
resuspended in 25 pl TE, and input samples were resuspended in
100 ul TE+100 pg/ml RNaseA and incubated 1 h at 37°C. ChIP-
enriched DNA was amplified, fluorescently labeled, hybridized,
and washed as described in detail in Dataset S7. Labeled DNA for
each channel was combined and hybridized to arrays in Agilent
hybridization chambers for 40 h at 65°C, according to the
manufacturer’s instructions (Agilent Technologies). Arrays were
scanned using Genepix 4000A Axon Instrument scanner. Analysis
and identification of the binding events in the ChIP—chip data
were determined as previously described [49] using Agilent Chip
Analytics software v1.2 (Agilent Technologies). These binding
events were displayed and analyzed using ChipView v0.954
(http://johnsonlab.ucsf.edu/). 250 bp centered on the midpoint of
the peaks in the promoter regions bound by Zapl were submitted
to MEME v3.5.7 (http://meme.nbcr.net) for motif analysis [51]
using the following parameters: minw =7, maxw =25, nmo-
tifs = 10, maxsize = 50,000, mod = zoops. We also analyzed bound
regulatory regions with the RSAT server, http://rsat.scmbb.ulb.
ac.be/rsat/, using 1,500 bp of 5’ region sequence and a search for
8 bp motifs [52].

Supporting Information

Dataset S1 C. albicans strains used in this study. This
file gives the genotypes and sources for all C. albians strains.
Found at: doi:10.1371/journal.pbio.1000133.5s001 (0.06 MB
DOC)

Dataset S2 Oligonucleotide sequences. This file gives the
specific nucleotide sequence for each oligonucleotide.
Found at: doi:10.1371/journal.pbio.1000133.s002 (0.04 MB XLS)

Dataset S3 pADH34 sequence. This file gives the nucleotide
sequence of vector pADH34, which was used for epitope tagging.
Found at: doi:10.1371/journal.pbio.1000133.5003 (0.01 MB TDS)

Dataset S4 Microarray data. This file gives complete
microarray results for the comparison of the zap/A/zaplA mutant
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