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Abstract

Regulation of messenger RNA (mRNA) stability plays critical roles in controlling gene expression, ensuring transcript fidelity,
and allowing cells to respond to environmental cues. Unregulated enhancement of mRNA turnover could therefore dampen
cellular responses to such signals. Indeed, several herpesviruses instigate widespread destruction of cellular mRNAs to block
host gene expression and evade immune detection. Kaposi’s sarcoma-associated herpesvirus (KSHV) promotes this
phenotype via the activity of its viral SOX protein, although the mechanism of SOX-induced mRNA turnover has remained
unknown, given its apparent lack of intrinsic ribonuclease activity. Here, we report that KSHV SOX stimulates cellular
transcriptome turnover via a unique mechanism involving aberrant polyadenylation. Transcripts in SOX-expressing cells
exhibit extended poly(A) polymerase II-generated poly(A) tails and polyadenylation-linked mRNA turnover. SOX-induced
polyadenylation changes correlate with its RNA turnover function, and inhibition of poly(A) tail formation blocks SOX
activity. Both nuclear and cytoplasmic poly(A) binding proteins are critical cellular cofactors for SOX function, the latter of
which undergoes striking nuclear relocalization by SOX. SOX-induced mRNA turnover therefore represents both a novel
mechanism of host shutoff as well as a new model system to probe the regulation of poly(A) tail-stimulated mRNA turnover
in mammalian cells.
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Introduction

Kaposi’s sarcoma-associated herpesvirus (KSHV) is the most

recently discovered human herpesvirus and the etiologic agent of

several neoplasms, the most prominent of which is Kaposi’s

sarcoma (KS) [1]. Originally described as a rare tumor found

predominantly in elderly Mediterranean or African men, with the

onset of the AIDS pandemic, KS became the most common

neoplasm associated with untreated human immunodeficiency

virus (HIV) infection. KSHV is a large double-stranded DNA virus

that undergoes both latency and lytic replication. Although the

majority of infected cells in vitro and in vivo harbor the virus in a

latent state, the lytic cycle is required both for viral replication and

KS development [2,3]. One striking feature of lytic KSHV

infection is that it destroys the host transcriptome by promoting

global messenger RNA (mRNA) degradation via unknown

mechanisms [4,5]. The magnitude of cellular transcript loss is

significant; nearly 75% of all messages are massively down-

regulated, with another 20% undergoing a more modest decrease

[6,7]. This phenotype, termed host shutoff, is mediated by the viral

factor SOX (shutoff and exonuclease) which has homologs across

the entire herpesvirus family [5]. In other herpesviruses, this

protein has DNA exonuclease (DNase) and recombinase activities

that contribute to processing and packaging the newly replicated

viral genomes in the nucleus, but has no role in mRNA turnover

[8–10]. By contrast, in KSHV and its closest viral relatives within

the lymphotrophic c-herpesviral subfamily—including the human

cancer-associated Epstein-Barr virus—SOX retains these con-

served functions but has evolutionarily acquired a novel and

distinct role in global mRNA decay [11,12]. The host shutoff and

DNA processing functions of SOX are genetically separable, as

single-function point mutants can dissociate the two activities [4].

Despite its ability to induce widespread mRNA destruction,

KSHV SOX has neither homology to known ribonucleases nor

predicted RNA recognition motifs, and thus far no intrinsic

ribonuclease (RNase) activity has been detected with the purified

protein. SOX is therefore presumed to function by modulating

one or more cellular RNA turnover pathways.

Control of message stability obviously represents a powerful

means of regulating gene expression both on an individual and a

global scale. Nearly all eukaryotic mRNAs are protected from

exonucleolytic attack by a 59 cap structure and a 39 poly(A) tail.

Cleavage and polyadenylation are cotranscriptional events, and

their successful completion is required to signal formation of an

export competent message. Poly(A) site recognition is mediated by

specific sequence elements bound by the cleavage factors CPSF,

CtsF, and CFIm [13–15]. Poly(A) polymerase (PAP) is recruited to

the complex during the cleavage reaction and initiates polymer-

ization of the adenosine tract in a biphasic manner; initial slow

distributive adenosine addition proceeds until a sufficiently long

tail has been formed to allow binding of nuclear poly(A) binding
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protein (PABPN), then rapid polymerization of the remaining

200–250 nucleotides (nt) ensues, whereupon PAP reverts to a

distributive mode and dissociates from the transcript [16]. Upon

nuclear export, PABPN is replaced by the cytoplasmic poly(A)

binding protein (PABPC), which enhances mRNA stability and

translation efficiency, in part through its interactions with the

eIF4G translation initiation factor [17,18].

In eukaryotes, polyadenylation generally serves to stabilize

mRNAs, whereas in bacteria and some organelles, it facilitates

RNA turnover [19]. However, it is now becoming clear that

polyadenylation can be a facilitator of eukaryotic mRNA degrada-

tion as well. In particular, yeast possess a nuclear polyadenylation

complex (TRAMP) that marks aberrantly processed RNAs for

quality control-mediated turnover via the addition of short poly(A)

tails [20–22]. Additionally, many yeast mutants defective in RNA

processing or export accumulate hyperadenylated transcripts,

suggesting a link between the polyadenylation process and RNA

surveillance and turnover [23–25]. Analogous pathways may

function in higher eukaryotes, as polyadenylated precursors to

RNA turnover have also been detected in mammalian cells [26–28].

Here, we reveal that KSHV SOX-induced host shutoff is

intimately linked to mRNA polyadenylation. SOX promotes

aberrant polyadenylation of cellular transcripts in a manner

dependent on its RNA turnover activity. Transcript degradation

requires both nuclear and cytoplasmic poly(A) binding proteins,

the latter of which undergoes striking nuclear relocalization in a

host shutoff-dependent manner. In the absence of cellular 39 end

processing and polyadenylation, SOX can no longer target

mRNAs for destruction, although addition of a templated poly(A)

tail reinstates SOX-induced turnover. These findings suggest SOX

is directing a novel polyadenylation-dependent mechanism of host

shutoff, and demonstrate a link between polyadenylation and

mRNA destruction in higher eukaryotes.

Results

KSHV SOX Promotes Hyperadenylation of Cellular mRNAs
The KSHV SOX protein is found both in the nucleus and in

the cytoplasm of cells, whereas its herpesviral homologs lacking

mRNA turnover activity are restricted to the nucleus [4]. We

considered that this distinct localization pattern could play a role

in its mRNA degradation function, and therefore evaluated

whether blocking CRM1-dependent nuclear protein export using

the drug leptomycin B (LMB) could restrict SOX to the nucleus

and alter its function. Although LMB treatment significantly

increased the population of SOX in the nucleus (Figure S1), it did

not completely eliminate the cytoplasmic fraction and did not

abrogate the mRNA turnover activity of SOX (Figure 1A–1C).

However, upon LMB treatment, a slower-migrating population of

the reporter green fluorescent protein (GFP) mRNA appeared

specifically in the presence of SOX, indicative of some form of

SOX-induced RNA modification (Figure 1A). To gain insight into

the specificity of this SOX activity, we tested a panel of SOX

mutants lacking only the conserved DNase activity associated with

viral genome processing or lacking only the mRNA turnover

activity responsible for host shutoff [4,5]. The production of these

slower-migrating species correlated very strongly with the host

shutoff function of SOX; they were not observed in cells

expressing SOX mutants defective for mRNA degradation

(T24I, P176S, L20/23A), but they were produced in cells

expressing a SOX mutant (Q129H) lacking only the conserved

DNase activity (Figure 1B). Furthermore, expression of the SOX

homolog from herpes simplex virus (HSV AE) that exhibits DNase

activity [8,29], but has no role in host shutoff [5], also has no effect

on the reporter mRNA mobility (Figure 1B). Thus, we conclude

that this RNA modification correlates with the RNA turnover

activity of SOX responsible for host shutoff.

One obvious mRNA modification that could significantly alter

message size is polyadenylation. To determine whether the altered

mRNA mobility was due to extended poly(A) tails (hyperadenyla-

tion), we investigated whether deadenylation of the messages by

oligo(dT) hybridization followed by RNaseH digestion would

eliminate their size differences. Indeed, northern blotting revealed

that poly(A) tail removal caused the high MW mRNA from SOX-

expressing cells to shift down in size, such that it precisely co-

migrated with the ‘normal’ mRNA (Figure 1C).

Although LMB treatment may somehow stabilize the hyperade-

nylated mRNA species thereby facilitating their detection by

northern blotting, it was important to confirm both that this

modification also occurs in untreated cells and on endogenous

cellular transcripts. To this end, total endogenous poly(A) RNA

accumulation was measured by in situ hybridization of HEK 293T

cells with a fluorescently labeled oligo(dT) probe (Figure 1D).

Significantly, all wild-type (WT) SOX-expressing cells contained

elevated levels of endogenous nuclear poly(A) RNA, as visualized by

enhanced oligo(dT) staining. Accumulation of the poly(A) RNA

specifically in the nucleus can be seen most clearly in the higher

magnification images (Figure 1D, far right). Biochemical fraction-

ation studies also show that the hyperadenylated mRNA is absent

from the cytoplasmic fraction of cells (Figure S3). SOX single-

function mutants lacking host shutoff activity, such as P176S and the

HSV SOX homolog (AE) that possesses only DNase activity, fail to

increase cellular poly(A) RNA levels (Figure 1D and unpublished

data). These observations indicate that hyperadenylation is wide-

spread on endogenous messages in SOX-expressing cells. Thus,

although polyadenylation has traditionally been viewed as a

stabilizer of eukaryotic transcripts, our data indicate that it is

associated with mRNA destruction in the presence of SOX.

Poly(A) Polymerase II Mediates Hyperadenylation in SOX-
Expressing Cells

Three poly(A) polymerase proteins with molecular masses of 90,

100, and 106 kDa have been identified in HeLa cell nuclear

Author Summary

During viral infection, many essential cellular functions are
targets for viral manipulation, yet aside from RNA interfer-
ence, surprisingly few examples of viruses disrupting RNA
turnover have been documented. Kaposi’s sarcoma-associ-
ated herpesvirus (KSHV) is an oncogenic virus that induces
widespread cellular messenger RNA destabilization during
lytic infection. The viral protein SOX is a critical effector of
this phenotype, yet it lacks ribonuclease activity, so
presumably it targets cellular factors governing RNA
stability. Here, we show that SOX stimulates host mRNA
destruction via a unique mechanism involving polyadenyl-
ation. During SOX expression, newly formed messages have
longer than normal poly(A) tails, leading to their retention in
the nucleus. Coincident with this hyperadenylation, poly(A)
binding protein (PABPC) is relocalized from the cytoplasm to
the nucleus. PABPC has prominent roles in translation,
messenger RNA stabilization, and quality control in the
cytoplasm; we find its nuclear relocalization by SOX
correlates with enhanced mRNA turnover in the cytoplasm.
Thus, KSHV appears to have evolved distinct polyadenyla-
tion-linked mechanisms to target both new messages in the
nucleus and preexisting cytoplasmic messages for destruc-
tion, thereby effectively inhibiting cellular gene expression.

Aberrant Herpesvirus-Induced Hyperadenylation

PLoS Biology | www.plosbiology.org 2 May 2009 | Volume 7 | Issue 5 | e1000107



Figure 1. SOX induces mRNA hyperadenylation in a manner dependent on its RNA turnover activity. (A and B) HEK 293T cells were
transfected with a plasmid expressing GFP alone or together with a plasmid expressing SOX and either left untreated (A) or treated with 5 ng/ml LMB
for 6 h (A and B). Twenty-four hours post-transfection, total RNA was harvested, resolved on an agarose-formaldehyde gel, and northern blotted with
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extracts [30]. The 106-kDa isoform is likely a phosphorylated

version of the 100-kDa isoform, and collectively, they are referred

to as PAPII, whereas the 90-kDa protein, termed PAP-c, is the

product of a distinct locus [31]. A testes-specific PAP has also been

identified [32,33], but was not examined here due to its tissue-

restricted expression. The contribution of PAPII and PAPc
towards SOX-induced hyperadenylation was assessed using small

interfering RNA (siRNA)-based knockdown of each protein and

measuring the resulting effects on endogenous poly(A) RNA

accumulation by oligo(dT) in situ hybridization (Figure 2). Western

blotting confirmed efficient knockdown of PAPII and PAPc upon

transfection of two independent siRNA oligo pairs (Figure 2A). We

consistently observed that SOX-induced hyperadenylation was

diminished in the absence of PAPII, whereas no decrease in the

oligo(dT) signal in SOX-expressing cells was detected upon PAPc
knockdown (Figure 2B). Thus, hyperadenylation in SOX-express-

ing cells is mediated by the canonical PAP responsible for the

majority of mRNA poly(A) tail synthesis. If hyperadenylation by

PAPII participates in mRNA turnover by SOX, we would predict

that inhibition of PAPII might stabilize mRNAs in SOX-

expressing cells. We therefore monitored GFP mRNA turnover

by SOX upon siRNA-mediated knockdown of PAPII or PAPc
(Figure 2C). Indeed, PAPII knockdown increased GFP mRNA

levels in the presence of SOX, as well as increased the mobility of

the GFP mRNA in the presence of SOX (Figure 2D, compare lane

4 to lanes 2 and 6; quantification shown in Figure S2). By contrast,

GFP mRNA was still efficiently degraded and hyperadenylated

upon knockdown of PAPc. These data therefore suggest that

PAPII-induced hyperadenylation plays an important role in SOX-

induced host shutoff.

SOX Promotes Nuclear Relocalization of Cytoplasmic
Poly(A) Binding Protein

While PAPII mediates poly(A) tail formation, its activity is

greatly stimulated by the nuclear poly(A) binding protein PABPN,

which has also been proposed to help mediate poly(A) tail-length

control [16]. Once synthesized, poly(A) tails are immediately

coated with PABPN, which remains bound to the mRNAs until

their transport into the cytoplasm, whereupon PABPN is replaced

by cytoplasmic PABP (PABPC). PABPC effectively circularizes

mRNAs by virtue of its interaction with eIF4G, an event that both

protects the mRNA ends from exonucleolytic attack and enhances

message translation via the closed loop model [17,18]. Although

both bind poly(A) tails, PABPN and PABPC have distinct

functions and subcellular localizations and in fact do not share

significant sequence homology.

Given the strong associations between the PABPs and poly(A)

tail formation, length control, and mRNA stability, we hypothe-

sized that one or both of these proteins could be involved in the

poly(A)-dependent mRNA turnover by SOX. We began by

monitoring the localization of these proteins in cells with or

without SOX. Remarkably, immunofluorescence experiments

revealed that whereas PABPN localization was unchanged by

SOX (unpublished data), there was a striking redistribution of

endogenous PABPC from the cytoplasm to the nucleus (Figure 3A).

This phenotype was confirmed using two independent PABPC

antibodies (Figure 3A and 3C). Interestingly, we have not observed

an interaction between SOX and PABPC in co-immunoprecip-

itation experiments from cells transfected with SOX or lytically

infected with KSHV (unpublished data), suggesting that PABPC

relocalization is not due to direct binding and recruitment by

SOX.

Although PABPC is a nuclear–cytoplasmic shuttling protein

[34] its steady-state localization is almost exclusively cytoplasmic

and possible roles for PABPC in nuclear events such as mRNA 39

end formation and quality control have not been elucidated. To

link PABPC nuclear import mechanistically to SOX-induced

mRNA turnover, we examined a panel of SOX mutants for their

ability to redistribute PABPC. Single-function SOX mutants such

as P176S and the HSV SOX homolog AE lacking the mRNA

turnover and hyperadenylation functions failed to alter PABPC

localization (Figure 3B and 3C). However, the Q129H SOX

mutant that lacks the conserved DNase activity but retains the

ability to promote host shutoff and hyperadenylation induced

PABPC nuclear recruitment to the same extent as WT SOX

(Figure 3B). Thus, nuclear accumulation of PABPC requires the

host shutoff activity of SOX.

Removal of PABPC from the cytoplasm would be predicted to

destabilize mRNAs in that locale. To test this hypothesis, we

performed fractionation experiments to monitor the half-life of

GFP mRNA specifically in the cytoplasm of cells with and without

SOX. Indeed, we observed that cytoplasmic mRNAs were more

rapidly turned over in SOX-expressing cells compared with cells

lacking SOX (7.5 h versus .30 h) (Figure 3D; gels shown in

Figure S3). The shortened half-life of cytoplasmic GFP mRNA

was comparable to that of total GFP mRNA extracted from

unfractionated cells expressing SOX (6.5 h) (Figure 3D).

SOX expression initiates 12 h into the KSHV lytic cycle, but

cellular mRNA destruction becomes most prominent at 18–24 h

and is maintained throughout the lytic cycle [5]. To monitor

PABPC localization during infection, telomerase-immortalized

microvascular endothelial (TIME) cells were either mock infected,

latently infected with KSHV, or lytically infected with KSHV for a

time course of 8–24 h. PABPC staining was predominantly

cytoplasmic in mock-infected cells, as well as during latent

infection and at 8 h post lytic infection when SOX is not

expressed and host shutoff does not occur (Figure 4). However,

beginning at the onset of host shutoff at 12 h post lytic infection,

PABPC concentration in the nucleus began to increase, and by

24 h, the majority of infected cells showed prominent nuclear

PABPC staining. These results confirm that PABPC relocalization

into the nucleus is similarly induced during KSHV infection and is

temporally coincident with SOX-induced host shutoff.

Roles for Cytoplasmic and Nuclear Poly(A) Binding
Proteins in SOX Function

The host shutoff-dependent nuclear redistribution of PABPC

suggested that this factor could play a prominent role in mRNA

turnover in SOX-expressing cells. Additionally, the fact that

PABPN is functionally linked to poly(A) tail formation and length

a 32P-labeled GFP probe. The line through the gel indicates where an intervening lane was cropped out of the image (B). (C) HEK 293T cells were
transfected with the indicated plasmids and treated with LMB as described above. Total RNA was prepared from the cells and digested with RNaseH
in the presence or absence of oligo(dT), then resolved by agarose-formaldehyde electrophoresis, and then northern blotted with a 32P-labeled GFP
probe. In (A–C) 18S rRNA serves as a loading control. (D) HEK 293T cells were transfected with the indicated plasmid and, 24 h later, subjected to
oligo(dT) in situ hybridization (upper panels) followed by staining with SOX antibodies (for vector, SOX, P176S samples) or HA antibodies (for HA-HSV
AE sample) (center). The lower panels show overlap of the oligo(dT) and antibody staining. The right column shows a magnified version of two cells
(one expressing SOX and one lacking SOX) from an inset derived from the SOX-transfected sample.
doi:10.1371/journal.pbio.1000107.g001
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Figure 2. SOX-induced cellular poly(A) RNA accumulation occurs via PAPII. (A and B) HEK 293T cells were either mock transfected or
transfected twice with PAPII or PAPc duplex siRNA oligos (si #1, si #2, or a mixture of #1+#2) or one of two nonspecific control siRNA oligos (scr si
#1 or scr si #2). Twenty-four hours after the final siRNA transfection, the cells were transfected with a DNA plasmid expressing SOX; each sample was
split in half and, 24 h later, either harvested for protein and immunoblotted with PAPII and PAPc antibodies to gauge the efficiency of siRNA-
mediated knockdown (A), or processed for oligo(dT) in situ hybridization and a-SOX immunofluorescence to monitor the efficiency of SOX-induced
poly(A) RNA accumulation (B). Arrows denote the location of PAPII and PAPc protein on the western blots in (A). Nonspecific cross-reactive bands
serve as loading controls. (C and D) HEK 293T cells were transfected with the indicated siRNA as described above, followed by subsequent
transfection with either a plasmid expressing GFP alone or together with a SOX expression plasmid. Cells were treated with 5 ng/ml LMB for 6 h prior
to harvesting either protein for western blotting with PAPII, PAPc, and SOX antibodies (C), or RNA for northern blotting with GFP and 18S probes (D).
doi:10.1371/journal.pbio.1000107.g002
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control prompted us to examine possible roles for this protein in

SOX-induced hyperadenylation and mRNA turnover as well. To

this end, we monitored SOX activity by northern blotting and

quantitative real-time PCR (qPCR) upon siRNA-mediated

knockdown of either PABPC or PABPN. Indeed, northern

blotting showed there was a significant decrease in the ability of

SOX to promote GFP mRNA degradation upon knockdown of

either PABPN or PABPC (Figure 5A and 5B). In contrast, SOX-

expressing cells transfected with a control nonspecific siRNA

showed robust turnover of the GFP reporter mRNA. These effects

are highly specific; we have performed siRNA-mediated knock-

downs of approximately 10 other cellular proteins involved in

mRNA stability with no resulting decrease in SOX function (Figure

S4, unpublished data). Additionally, the siRNA treatment did not

affect the levels of SOX protein expression or the mRNA levels of the

GFP reporter in the absence of SOX (Figure 5A and 5B). These

results were confirmed by qPCR analysis of GFP mRNA levels from

these samples, which showed a strong inhibition of SOX host shutoff

activity upon PABPN or PABPC knockdown (Figure 5C). Of note,

we have consistently observed that knockdown of PABPN, but not

PABPC, blocks hyperadenylation detected by northern blotting

(compare lanes 3 and 4 in Figure 5B). In addition, we monitored

hyperadenylation of endogenous messages in SOX-expressing cells

upon PABPC knockdown using oligo(dT) in situ hybridization

(Figure S5). In agreement with our northern blots, siRNA-mediated

depletion of PABPC also failed to inhibit SOX-induced hyperade-

nylation in these experiments. Although similar experiments were

also performed upon PABPN siRNA treatment, these were more

difficult to interpret because a fraction of the vector-transfected

control cells exhibited enhanced nuclear dT staining (possibly due to

mRNA export defects). However, it appeared as though a reduced

number of SOX-expressing cells lacking PABPN exhibited hyper-

adenylation (Figure S5). Collectively, these data suggest that

hyperadenylation may be necessary, but not sufficient, for SOX-

mediated RNA turnover, and that the contributions of PABPC to

SOX function may be downstream of those of PABPN. That

PABPC is required for the mRNA turnover activity of SOX suggests

its host shutoff-dependent nuclear import is not simply a byproduct

of hyperadenylation, but rather plays an integral role in directing

turnover of cellular transcripts in the presence of SOX. Indeed,

siRNA-induced knockdown of PAPII (which inhibits hyperadenyla-

tion; see Figure 2) produces no defect in SOX-induced PABPC

relocalization (Figure S6), indicating that hyperadenylation is not a

prerequisite for nuclear import of PABPC.

Role for the Poly(A) Tail in Facilitating mRNA Degradation
by SOX

Our data indicate that polyadenylation plays a key role in the

host shutoff function of SOX. We therefore sought to more

directly evaluate the contribution of a poly(A) tail towards SOX-

induced mRNA turnover by preventing polyadenylation of the

GFP reporter message. This was accomplished by replacing the

portion of the GFP 39 UTR containing the AAUAAA polyadenyl-

ation signal sequence with a self-cleaving hammerhead ribozyme

element (GFP-HR; Figure 6A). The 39 end cleavage of this mRNA is

mediated by the ribozyme rather than cellular machinery, and it is

not polyadenylated at steady state and should not associate with the

PABPs. Notably, although SOX promoted turnover of the

polyadenylated GFP message, it failed to degrade the GFP-HR

RNA (Figure 6C). To determine whether absence of polyadenylation

was the primary cause for the inability of SOX to promote GFP-HR

mRNA turnover, we next generated GFP constructs lacking the

polyadenylation signal sequence but containing a templated stretch

of either 60 adenosine residues (GFP-A60-HR) or, as a control, 60

uridine residues (GFP-U60-HR) immediately upstream of the

ribozyme cleavage site (Figure 6A). The minimum poly(A)

interaction site size for PABPN is 10 nt [35] and for PABPC is

12 nt [36], although when coated along a poly(A) tail, each PABPC

protein covers approximately 25 nt [38]. Thus, the 60-nt templated

poly(A) tail is of sufficient length to bind multiple copies of PABPC

and/or PABPN. As would be predicted, the GFP-HR mRNA fails to

be translated, whereas addition of the A60 tail partially rescues this

defect, and very weak protein expression is observed with a U60 tail

(Figure 6B). Significantly, the presence of a templated poly(A) tail,

but not a poly(U) tail, was sufficient to reinstate SOX-induced

degradation of the GFP reporter (Figure 6D), indicating that a

poly(A) tail specifically participates in targeting mRNAs for turnover

by SOX. We observed similar results with the SOX homolog from a

related c-herpesvirus, MHV68 (Figure S7).

To examine the requirement for PABPC and PABPN in SOX-

induced turnover of the GFP-A60-HR mRNA, we performed

siRNA-mediated knockdowns of these factors and monitored the

resulting ability of SOX to degrade the GFP message (Figure 6E and

6F). The cells were also treated with LMB to determine whether

SOX-induced hyperadenylation occurs on this ribozyme-terminated

mRNA. Cells transfected with a scramble siRNA showed SOX-

induced turnover of the GFP-A60-HR transcript, but no hyper-

adenylation (Figure 6E), as anticipated given our observation that

hyperadenylation requires the machinery involved in cellular 39 end

formation, which does not participate in processing of the HR

constructs. Knockdown of PABPN, which is required for poly(A) tail

formation and hyperadenylation, did not prevent SOX-mediated

turnover of GFP-A60-HR. However, knockdown of PABPC

effectively prevented SOX-mediated turnover of this mRNA. Thus,

PABPN is necessary for SOX-induced hyperadenylation and

destruction of mRNAs processed by the cellular 39 end machinery

but is not required if a poly(A) tail is already in place, whereas

PABPC is a critical cofactor for SOX-induced destruction of already

polyadenylated mRNAs. Reproducibility of all northern blotting

results shown in Figure 6 was demonstrated by quantification of

multiple replicates (n$3; Figure S8).

Finally, histone mRNAs are the only known cellular mRNAs

lacking poly(A) tails, as they instead terminate in a 39 stem loop

Figure 3. The host shutoff activity of SOX induces nuclear accumulation of PABPC and turnover of cytoplasmic mRNAs. (A) HEK 293T
cells were transfected with empty vector or with a plasmid expressing SOX and, 24 h later, subjected to double-label immunofluorescence analysis
with monoclonal 10E10 PABPC antibodies (left) and SOX polyclonal antisera (center). The overlap of PABPC and SOX staining can be viewed in the
right column. (B) HEK 293T cells were transfected with the indicated single-function SOX mutant and subjected to immunofluorescence as described
above using 10E10 PABPC antibodies and SOX antisera. (C) HEK 293T cells were transfected with HA-tagged WT SOX or the HSV AE SOX homolog and
subjected to immunofluorescence as described above using polyclonal PABPC antisera and monoclonal HA antibodies. (D) HEK 293T cells were
transfected with a plasmid expressing GFP alone or together with a SOX expression plasmid and, 24 h later, treated with 5 ng/ml LMB for 12 h. The
cells were then incubated in media lacking LMB but containing 1 mg/ml actinomycin D to block transcription, and the cytoplasmic fraction was
isolated at the indicated times. RNA was then northern blotted with GFP and 18S probes, and the half-life (t1/2) of the cytoplasmic GFP mRNA with
and without SOX was calculated. Error bars show the standard error between samples. The graph represents a compilation of three independent
experiments.
doi:10.1371/journal.pbio.1000107.g003
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Figure 4. PABPC accumulates in the nucleus during lytic KSHV infection in a manner temporally coincident with host shutoff. TIME
cells were either mock infected, latently infected with KSHV, or infected with KSHV and lytically reactivated using an adenoviral expression vector
containing the viral lytic transactivator RTA (Ad-RTA) for 8, 12, or 24 h. Mock-infected cells were similarly treated with Ad-RTA. PABPC and SOX
proteins were detected by immunofluorescence analysis with polyclonal PABPC antibodies and affinity purified SOX polyclonal antibodies.
doi:10.1371/journal.pbio.1000107.g004
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(SL) structure that recruits a number of the same processing and

degradation factors as poly(A) mRNAs [38,39]. We examined

whether a GFP construct containing the histone SL and the

downstream element required for termination would be sensitive to

SOX-mediated turnover (Figures 6C and S7). Interestingly, histone

SL-terminating mRNA was degraded by SOX, suggesting that this

unique message may recruit one or more factors in a poly(A)-

independent manner that facilitate SOX targeting. This is in

contrast to other non-polyadenylated RNAs (e.g., ribosomal RNAs),

which are not subject to SOX-mediated degradation [5]. An

important future direction will be to define the specific elements or

factors that render RNAs like the histone mRNA susceptible to

SOX-mediated RNA turnover, as they are anticipated to identify

areas of convergence between polyadenylation-dependent and -

independent pathways of mRNA degradation.

Discussion

A Novel Mechanism of Virus-Induced Host Shutoff
The ability to regulate cellular gene expression is a key aspect of

the lifecycles of a diverse array of viruses. Global inhibition of

cellular protein synthesis serves not only to ensure maximal viral

gene expression by diverting the cellular resources towards the

virus, but also assists in evasion of host immune responses

detrimental to viral replicative success. Although the outcome of

host shutoff may be similar for some pathogens, the mechanisms

they use to achieve this endpoint are quite distinct. For example,

poliovirus prevents cap-dependent translation by cleavage of

eIF4G and PABP [40,41], vesicular stomatitis virus blocks nuclear

mRNA export via disruption of Rae1 function [42], and herpes

simplex virus (HSV) both inhibits splicing and encodes a

ribonuclease that degrades cytoplasmic mRNA [43–46]. Although

KSHV infection elicits global mRNA turnover via the activity of

SOX, the mechanisms driving this phenotype remained enigmatic.

Here, we demonstrate that SOX engages in a novel mechanism

of host shutoff involving aberrant mRNA polyadenylation

(Figure 7). To our knowledge, this is the first example of enhanced

RNA turnover coupled to hyperadenylation by PAPII in

metazoans. We further show that degradation of these cellular

transcripts requires nuclear and cytoplasmic PABPs, the latter of

which undergoes striking nuclear relocalization during KSHV

infection. Manipulation of this cellular RNA 39 processing event

Figure 5. PABPC and PABPN are essential cellular cofactors for SOX-induced mRNA turnover. HEK 293T cells were transfected twice with
PABPC or PABPN duplex siRNA oligos or a nonspecific control siRNA oligo (scr si). Twenty-four hours after the final siRNA transfection, the cells were
transfected with a DNA plasmid expressing the GFP reporter alone or together with SOX; each sample was split in half and, 24 h later, either
harvested for protein and immunoblotted with PABPC, PABPN, and SOX antibodies to gauge the efficiency and specificity of siRNA-mediated
knockdown (A), or harvested for RNA and either northern blotted with GFP and 18S probes (B) or subjected to qPCR analysis (C) to monitor SOX
activity. Each qPCR reaction was run in triplicate, and GFP mRNA levels were normalized to 18S RNA, because cellular housekeeping genes are subject
to host shutoff by SOX. Error bars show standard error between sample replicates. Nonspecific cross-reactive bands serve as loading controls for the
western blots in (A). Lines through gels indicate where intervening lanes were cropped out of the image.
doi:10.1371/journal.pbio.1000107.g005
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and PABPC nuclear recruitment require the host shutoff activity of

SOX, and are therefore intimately linked to KSHV-induced

transcriptome turnover. Although we do not yet know the identity

of the ribonuclease ultimately responsible for mRNA destruction

in the presence of SOX, we propose that SOX-induced alterations

in mRNA processing events may render these nascent RNAs

targets of cellular quality control machinery.

Links between Polyadenylation and mRNA Turnover
Several lines of evidence suggest that polyadenylation plays an

integral role in SOX-mediated mRNA turnover. First, SOX

mutants selectively defective for mRNA turnover, but retaining the

conserved DNase activity, fail to promote hyperadenylation.

Second, siRNA-mediated knockdown of PABPN, which stimulates

poly(A) polymerase activity and has important roles in poly(A) tail

Figure 6. Direct contribution of a poly(A) tail towards mRNA destruction by SOX. (A) Diagram of reporter constructs either containing the
WT polyadenylation signal sequence (GFP) or lacking the polyadenylation signal and terminating in either a hammerhead ribozyme element (GFP-HR)
with or without a preceding templated 60-nt poly(A) or poly(U) tail (GFP-A60-HR and GFP-U60-HR, respectively), or the histone 39 SL (GFP-hisSL). (B) A total
of 200 ng of each GFP plasmid was transfected into HEK 293T cells, which were harvested 24 h later and subjected to western blotting with GFP
antibodies to show relative protein expression from each construct. (C and D) HEK 293T cells were transfected with the indicated GFP construct alone or
together with a SOX expression construct at a 1:2 ratio (50 ng of GFP, 100 ng of SOX). Total RNA was harvested from each sample 24 h post-transfection
and northern blotted with GFP and 18S probes. (E and F) HEK 293T cells were transfected twice sequentially with the indicated duplex siRNA oligos.
Twenty-four hours after the final siRNA transfection, the cells were transfected with the GFP-A60-HR plasmid alone or together with a SOX expression
plasmid at a 1:2 ratio, and incubated in media containing 5 ng/ml LMB for 6 h prior to harvesting. Twenty-four hours later, the cells were harvested either
for RNA and northern blotted with GFP and 18S probes (E), or for protein and western blotted with PABPC, PABPN, and actin (loading control) antibodies
to monitor the efficiency of siRNA-induced knockdown (F). Quantification (normalized to 18S levels) is shown below each northern blot. The level of each
GFP mRNA in the absence of SOX was set to 1.0, and the corresponding level of that particular mRNA in the presence of SOX was then calculated.
doi:10.1371/journal.pbio.1000107.g006
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formation and length control [16], reduces SOX-induced

hyperadenylation and mRNA turnover. Finally, ribozyme-termi-

nating transcripts that bypass cellular 39 end cleavage and

polyadenylation cannot be targeted by SOX for destruction,

whereas turnover is reinstated upon addition of a templated

poly(A) but not poly(U) tail. Collectively, these data suggest that

the poly(A) tail serves as a signal for degradation in SOX-

expressing cells and/or participates in the recruitment of decay

factors, perhaps via the PABPs (Figure 7).

Polyadenylation-triggered mRNA decay is well established in

prokaryotes such as Escherichia coli [47]. Both mature and

fragmented bacterial mRNAs can be polyadenylated, but rather

than stabilizing the messages (as generally occurs in eukaryotes),

here polyadenylation facilitates RNA degradation [19]. In this

regard, prokaryotic poly(A) tails are thought to serve as

unstructured ‘‘landing pads’’ for exoribonucleases, thereby

assisting their progression through structured regions of the

RNA. In contrast, the eukaryotic nuclear mRNA polyadenylation

reaction that is coupled to 39 end cleavage and processing

generally helps protect messages from exonucleolytic attack, and

mutation of poly(A) polymerase results in rapid depletion of

mRNAs [48,49]. However, it is likely that polyadenylation can

also serve as an important signaling mechanism for the cell to

monitor the fidelity of RNA processing in eukaryotes. Compelling

evidence linking polyadenylation directly to destruction of

eukaryotic RNAs emerged in yeast with the discovery of the

TRAMP nuclear polyadenylation complex that tags aberrant

messages with short poly(A) tails to stimulate turnover [20–22].

Indeed, accumulation of polyadenylated forms of RNAs that do

not normally have poly(A) tails, such as small nucleolar RNA

(snoRNA) [50,51], ribosomal RNA (rRNA) precursors [52–54],

and intergenic transcriptional events [22,55] can be detected in

yeast lacking the exosome component Rrp6; these are presumably

TRAMP-labeled degradation intermediates stabilized in the

absence of surveillance-mediated decay. Although a number of

homologs of the TRAMP polymerase Trf4 exist in humans, none

have yet been shown to function in an analogous manner.

However, short poly(A) tails reminiscent of TRAMP products have

been detected on cotranscriptionally cleaved b-globin pre-mRNAs

in mammalian cells [28], as well as on human mitochondrial

transcripts and rRNAs [26,27].

Proper 39 end formation and polyadenylation are required for

mRNA export into the cytoplasm, and defects in these processes

trigger nuclear retention and RNA destruction by quality control

pathways [56]. Interestingly, yeast nuclear export and 39 end

processing mutants can lead to hyperadenylated transcripts that

accumulate at the site of transcription [23–25]. We therefore

predict that hyperadenylated messages produced in SOX-

expressing cells would be regarded as aberrantly processed and

retained in the nucleus for eventual destruction. Of note, we have

not observed significant defects in SOX activity upon depletion of

the human exosome components (Figure S4), suggesting that this

quality control complex does not play a major role in SOX-

mediated host shutoff. This is perhaps not unexpected, as exosome

depletion would be anticipated to only affect turnover of the

nascent hyperadenylated nuclear transcripts, rather than the bulk

of transcripts in the cytoplasm that become destabilized coincident

with PABPC import. This idea is further supported by our

observation that inhibiting hyperadenylation by depleting PAPII

results in partial reduction rather than complete inhibition of

SOX-induced mRNA turnover. It should be noted, however, that

the nuclear exosome is apparently more refractory to siRNA-

mediated turnover than the cytoplasmic exosome [57]. It is

therefore possible that in our knockdown experiments, enough

exosomal proteins remain in the nuclear fraction to promote

turnover of the hyperadenylated messages. An alternative

possibility is that other enzymes are involved in polyadenylation-

triggered nuclear mRNA turnover during KSHV infection.

Given our evidence linking polyadenylation to host shutoff, the

degradation of a reporter bearing the histone mRNA termination

signals by SOX was unexpected. We envision at least two possible

scenarios explaining degradation of this non-polyadenylated

Figure 7. Proposed model for SOX-induced hyperadenylation and host shutoff activity. SOX stimulates mRNA hyperadenylation in a
manner dependent on the activity of both PAPII and PABPN. This aberrant 39 processing event may trigger destruction of these mRNAs by quality
control ribonucleases (shown as a pacman), possibly recruited to the mRNAs by PABPN and the nuclear relocalized PABPC. Within the cytoplasm,
removal of PABPC could also be envisioned to negatively affect the stability of mRNAs by rendering their 39 termini unprotected from ribonuclease
digestion and decreasing translation efficiency.
doi:10.1371/journal.pbio.1000107.g007
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transcript. First, despite lacking the canonical mRNA cleavage and

termination signals or a poly(A) tail, the histone mRNA 39 end is

nonetheless able to recruit a significant number of the same factors

involved in nuclear RNA processing as well as cytoplasmic RNA

turnover as polyadenylated mRNAs [39,58,59]. The histone

mRNA 39 end SL structure may therefore be able to bind

proteins normally associated with a poly(A) tail that are necessary

for SOX targeting. PABPC, for example, has been shown to

associate with a non-poly(A) element within the MKK-2 mRNA 39

UTR to control its stability [60], although to our knowledge, there

is currently no evidence that it binds histone mRNA. Secondly, it

is formally possible that in contrast to uninfected cells, upon SOX

expression, this mRNA becomes polyadenylated and thus subject

to destruction. An important future goal will be to determine

whether either of these possibilities is correct.

Implications for the Relocalization of Poly(A) Binding
Protein

Whereas PABPC is known to shuttle between the nucleus and

cytoplasm, its steady-state localization is cytoplasmic, and possible

roles for it in the nucleus remain largely unknown. Recent

observations, however, suggest that PABPC is likely to have

functions in the nucleus, because it interacts with polyadenylated

nuclear pre-mRNAs as well as with PAP, suggesting that its

association with the pre-mRNAs occurs during tail formation in

the nucleus [61]. However, our observation that siRNA-mediated

knockdown of PABPC prevents mRNA turnover, but not

hyperadenylation by SOX, indicates that PABPC functions

downstream of PABPN, perhaps in the recruitment of RNA

decay factors. The fact that PABPC but not PABPN depletion

blocks SOX-mediated degradation of the ribozyme-terminating

GFP with a 60-nt templated poly(A) tail further bolsters this

conclusion.

It should be noted that four cytoplasmic PABPs have been

identified in human cells [62]. In addition to PABPC1, HEK 293T

cells also likely express PABPC4 (iPAPB) [63] and PABPC5 (X-

linked PABP) [64], whereas PABPC3 is reported to be testes

specific [65]. Our knockdowns selectively targeted PABPC1,

thought to be the predominant PABPC in these cells, and removal

of this protein clearly has detrimental effects on SOX activity.

However, there is extensive sequence homology between the

PABPCs [62], and the PABPC1 antibody is predicted to cross-

react with at least PABPC4 as well; it is therefore possible that

SOX induces nuclear relocalization of multiple lineages of PABPC

during host shutoff. We hypothesize that the presence of these

additional PABPCs is what prevents general mRNA destabiliza-

tion upon siRNA-mediated depletion of PABPC1 in the absence of

SOX. In this regard, an additional consideration is that while

PABPC1 depletion did not abrogate the hyperadenylation

phenotype, it remains to be determined whether other PABPC

proteins are similarly dispensable for this function.

Surveillance-mediated destruction of aberrantly processed pre-

mRNAs could explain how cellular messages are depleted from the

nucleus during lytic KSHV infection, but what about the

abundance of cytoplasmic cellular transcripts? Given that the

average half-lives of mammalian mRNAs are relatively long [66]

and we have shown that SOX-expressing cells exhibit enhanced

turnover of cytoplasmic messages, we predict that SOX activity

must stimulate both nuclear and cytoplasmic mRNA decay either

by distinct or overlapping mechanisms. In this regard, it is

significant that PABPC has established roles in preserving

cytoplasmic mRNA integrity by promoting mRNA circularization

via interactions with eIF4G to enhance stability and translation via

the closed loop model [16]. Thus, removal of PABPC from the

cytoplasm could render these messages less translatable, unpro-

tected at their 39 termini, and more susceptible to nucleolytic

attack, in agreement with our observation that the cytoplasmic

GFP mRNA half-life is reduced in SOX-expressing cells. Indeed,

multiple RNA viruses with unique translational strategies have

evolved means to disrupt PABPC activity presumably to facilitate

selective translation of viral messages and promote host transla-

tional shutoff; enteroviruses, caliciviruses, and HIV encode

proteases that cleave PABPC [67–69], and the rotavirus NSP3

protein competes with PABPC for eIF4G binding and promotes

PABPC relocalization [70–72]. Thus, multiple diverse groups of

viruses have all evolved strategies to target this cellular factor,

presumably to divert resources away from cellular gene expression.

We hypothesize that SOX host shutoff activity consists of a

nucleus-specific component requiring PABPC and PABPN-

stimulated aberrant mRNA hyperadenylation and turnover, and

a cytoplasmic component involving inhibition of mRNA transla-

tion followed by destabilization coincident with PABPC depletion.

KSHV may have additional roles for PABPC during infection, as a

recent report showed a limited amount of the K10/K10.1 viral

protein associates with PABPC in the nucleus during the lytic

cycle, although the functional significance of this observation

remains unknown [73].

Models for Viral mRNA Escape from Turnover
Finally, one particularly intriguing issue is how viral messages

manage to evade host shutoff. KSHV mRNAs closely resemble

cellular transcripts, in that they are 59 capped and polyadenylated,

some are spliced, and they are transcribed, processed, and

translated using cellular machinery; yet these messages must

escape the mRNA destruction fate suffered by cellular transcripts.

Our findings suggest that successful viral gene expression during

host shutoff requires navigating at least two obstacles: first, evading

aberrant 39 end mRNA processing and destruction in the nucleus

and, second, keeping the messages stable and efficiently translated

in the cytoplasm in the face of significantly reduced PABPC levels.

One clever mechanism of evading nuclear degradation has been

delineated for the highly abundant KSHV noncoding PAN RNA;

this polyadenylated nuclear transcript contains a 79-nt RNA

element (termed the ENE) near its 39 end which acts post-

transcriptionally to stabilize and enhance the nuclear levels of

PAN or other reporter RNAs [74]. Modeling experiments predict

the ENE folds into a secondary structure reminiscent of box H/

ACA snoRNAs, and indeed, this element can form intermolecular

interactions with the PAN poly(A) tail in a manner that blocks

deadenylation, thereby stabilizing the RNA [75]. An important

future challenge will be to delineate the mechanisms by which the

bulk of the remaining viral mRNAs achieve these tasks, as such

information may provide clues as to how cellular quality control

checkpoints could be bypassed during viral infection or other

human disease.

Materials and Methods

Plasmids
GFP-HR was created by replacing the AAUAAA signal

sequence of pd2EGFP-N1 (Clontech) with a hammerhead

ribozyme (CCTGTCACCGGATGTGTTTTCCGGTCTGAT-

GAGTCCGTGAGGACGAAACAGG) by deleting the NotI/

AflII-flanked poly-A signal and cloning in annealed hammerhead

ribozyme oligos with NotI and AflII overhangs. GFP-A60-HR and

GFP-U60-HR were generated by ligation of an A60 oligo into the

Not1 site of GFP-HR in the forward or reverse orientation,

respectively. GFP-hisSL was created by replacing the AAUAAA
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signal sequence of pd2EGFP-N1 (Clontech) with a histone stem

and downstream element (HDE) sequence (ATGTAAGTCTA-

GAGGATGGGGAGCAAAAGGCTCTTTTCAGAGCCACCC-

ACTGAATCAGATAAAGAGTTGTGTCACGGTAGCCA) by

deleting the NotI/AflII flanked poly-A signal and cloning in

annealed histone stem and downstream element oligos with NotI/

AflII overhangs. The cloning of pCDEF3-SOX, pCDEF3-HA-

HSV AE [5], and the pCDEF3-SOX single-function mutants

(Q129H, T241, and P176S) [4] were described previously. Mutant

L20/23A was generated by overlapping PCR and then cloned into

the EcoR1/Not1 sites of pCDEF3.

Cells and Infections
HEK 293T cells (American Type Culture Collection) were

maintained in DMEM supplemented with 10% FBS. Telomerase-

immortalized microvascular endothelial (TIME) cells [76] were

maintained using EBM-2 medium bullet kits (Clonetics). TIME

cells were infected with KSHV and lytically reactivated with an

adenoviral vector expressing the lytic switch protein RTA as

described previously [77].

siRNA Knockdown
siRNA duplex oligos (Bioneer; Dharmacon) were generated

against the following target sequences: PAPII (accession number

NM_032632) siRNA #1: CTGCGTACTTACACAGAAA, PA-

PII siRNA #2: GATTAGGAGTGCATACAAA; PAPc (Gen-

Bank accession number NM_022894) siRNA #1: CAACA-

GAATTCTACGTATA, PAPc siRNA #2:

GGAGAAACAGAAAGGAATA; PABPC1 (GenBank accession

number NM_002568) siRNA #1: GAAAGGAGCTCAATG-

GAAA; PABPC1 siRNA #2: GGACAAATCCATTGATAAT;

and PABPN (GenBank accession number NM_004643) siRNA

#1: GTAGAGAAGCAGATGAATA; PABPN siRNA #2:

CTATTTAGAGGAAGGCAAA. Nonspecific control siRNA

duplexes #1 and #2 were purchased from Ambion. HEK 293T

cells were transfected with siRNA oligos at a final concentration of

200 nM using Lipofectamine 2000 (Invitrogen), both at 48 h and

24 h prior to DNA transfections, and harvested 24 h after the

DNA transfections for total RNA and protein or processed for in

situ hybridization.

In Situ Hybridization, Immunofluorescence Assays
Cells were harvested 24 h post DNA transfection for both

oligo(dT) in situ hybridization and immunofluorescence analyses.

In situ samples were processed as described (http://www.

singerlab.org/protocols) using 2 ng/mL of AlexaFluor 546-

labeled oligo-dT(15) (Molecular Probes). After oligo hybridiza-

tion, samples were incubated with either a-SOX J5803 or a-HA

(Abcam) primary antibodies at a 1:500 dilution in 26SSC, 0.1%

triton X-100 for 3 h at 37uC, then subsequently with Alexa fluor

488-labeled goat a-rabbit secondary antibodies (Molecular

Probes) and mounted with DAPI-containing Vectashield mount-

ing medium (Vector Labs). IFA not performed in conjunction

with in situ hybridization was done as described previously [77]

using either SOX J5803 polyclonal antibodies (1:500 dilution),

10E10 monoclonal PABPC antibodies (generously provided by

Dr. G. Dreyfuss) (1:1,000 dilution), rabbit polyclonal PABPC

#39473 antibodies (generously provided by Dr. R. Andino)

(1:100 dilution), rabbit polyclonal PABPN antibodies (generously

provided by Dr. E. Wahle) (1:250 dilution), monoclonal HA

12CA5 antibodies (Abcam) (1:500 dilution), and Alexa Fluor

488- or 546-labeled goat a-rabbit or a-mouse secondary

antibodies (1:1,500 dilution) (Molecular Probes).

Cell Extracts, Immunoblots, Northern Blots
Lysates were prepared in RIPA buffer (50 mM Tris-HCl

[pH 8.0], 150 mM Nacl, 1% [v/v] Nonidet P-40, 0.5% [w/v]

sodium deoxycholate, 0.1% [w/v] sodium dodecyl sulfate [SDS])

containing protease inhibitors (Roche). Equivalent amounts of

each sample were subjected to immunoblotting with the

following antibodies: PAPII (1:1,000 dilution) (generously

provided by Dr. J. Manley), PAPc (1:1,000 dilution) (generously

provided by Dr. A. Virtanen), HA (Abcam) (1:5,000 dilution),

PABPC #39473 (1:2,500), or SOX J5803 (1:5,000 dilution) (see

below), and either HRP-conjugated goat-a-rabbit or goat-a-

mouse secondary antibodies (Southern Biotechnology Assoc.).

Rabbit polyclonal antisera were raised against a maltose binding

protein (MBP)-tagged full-length SOX by standard methods

[78].

Where indicated, the transfected HEK 293T cells were

treated with 5 ng/ml leptomycin B (LMB) (Sigma) for 6–12 h

prior to RNA isolation. Total cellular RNA was isolated

using RNA-BEE (Tel-Test), resolved on 1.2% agarose-formal-

dehyde gels, and probed with a 32P-labeled GFP DNA probe

generated using the RediPrime II random prime labeling kit

(Amersham). Membranes were subsequently incubated with an

18S probe as a loading control. For half-life analysis, cells were

treated with LMB for 12 h, then washed with PBS and

transferred to medium containing 1 mg/ml Actinomycin D

(ActD) minus LMB for the indicated times. For fractionation

studies, NE-PER Nuclear and Cytoplasmic Extraction Reagents

Kit (Pierce) or Paris Kit (Ambion) was used according to the

manufacturer’s instructions. The level of GFP mRNA was

divided by the corresponding level of 18S rRNA to correct for

errors in sample loading. The log of normalized data was then

plotted versus the time of treatment of ActD. The reported data

are the means of a minimum of three independent experiments.

Northern blots were analyzed using a Typhoon 8600 phosphor-

imager (Molecular Dynamics).

RNaseH digestions were performed by combining 10 mg of

RNA with 500 pmol of oligo(dT) primer in a 25 ml reaction,

incubating at 65uC for 8 min, then adding 1 U of RNaseH (New

England Biolabs), RNaseH buffer to 16, and 40 U of RNasin

(Promega). Reactions were incubated at 37uC for 30 min, then

terminated by adding 1 ml of 0.5 M EDTA (pH 8.0) and ethanol

precipitating the RNA prior to gel electrophoresis.

Quantitative Real-Time PCR (qPCR)
cDNAs were synthesized from 1 mg of total RNA using AMV

reverse transcriptase (Promega), diluted 1:5, and used directly for

qPCR analysis. GFP cDNA was amplified using the 59 primer

59CAACAGCCACAACGTCTATATCATG and 39 primer

59ATGTTGTGGCGGATCTTGAAG, along with a Taqman

probe 59FAM-CAAGCAGAAGAACGGCATCAAGGTGA-

BHQ1. Taqman Ribosomal RNA Control Reagent (Applied

Biosystems) with VIC-labeled probe and forward and reverse

primers for human 18S rRNA was used as a loading control.

Standard curves were prepared for each primer/probe set using

10-fold serial dilutions of either the 97-nt GFP fragment or the 55-

nt 18S fragment derived from a pGem-T-easy vector (Promega).

The qPCR reaction was performed using Taqman Gene

Expression Mix (Applied Biosystems) in the presence of 100 nM

GFP primers, 200 nM GFP probe, 50 nM 18S rRNA primers,

200 nM 18S rRNA probe, and 9 mM MgCl2. The level of GFP

mRNA was calculated using a mathematical model of relative

expression in qPCR [79] to quantify the relative level of GFP

mRNA in comparison to the 18S rRNA.
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Supporting Information

Figure S1 Leptomycin B treatment significantly increases the

amount of SOX protein in the nucleus. HEK 293T cells were

transfected with a plasmid expressing SOX and, 24 h post-transfection,

either left untreated or treated with 5 ng/ml of leptomycin B (LMB) for

6 h. SOX expression and localization was then monitored by

immunofluorescence analysis using SOX polyclonal antibodies.

Found at: doi:10.1371/journal.pbio.1000107.s001 (0.46 MB TIF)

Figure S2 Quantification of poly(A) RNA accumulation via

PAPII in SOX-expressing cells. HEK 293T cells were either mock

transfected or transfected twice with PAPII or PAPc duplex siRNA

oligos or nonspecific control siRNA oligos (scramble si). Twenty-four

hours after the final siRNA transfection, the cells were transfected

with a DNA plasmid expressing the GFP reporter alone or together

with SOX and, 24 h later, harvested for RNA and northern blotted

with GFP and 18S probes. GFP mRNA levels were normalized to

18S rRNA. The level of each GFP mRNA in the absence of SOX

was set to 1.0, and the corresponding level of that particular mRNA

in the presence of SOX was then calculated upon PAPII or PAPc
knockdown. The data are the mean6the standard error between

experimental replicates (n = 3).

Found at: doi:10.1371/journal.pbio.1000107.s002 (0.17 MB TIF)

Figure S3 Gels showing half-life measurements of GFP mRNA

in the cytoplasm of HEK 293T cells either in the absence or

presence of SOX. HEK 293T cells were transfected with GFP

alone (100 ng) or together with a SOX expression plasmid

(200 ng). Twenty-four hours post-transfection, cells were treated

with 1 mg/ml actinomycin D for the indicated time to halt

transcription. Cytoplasmic RNA was then extracted and northern

blotted with GFP and 18S probes.

Found at: doi:10.1371/journal.pbio.1000107.s003 (8.45 MB TIF)

Figure S4 The exosome does not play an essential role in SOX-

induced mRNA destruction. HEK 293T cells were transfected

with hRrp41 or PM/Scl-100 (hRrp6) duplex siRNA oligos or a

combination of hRrp41+PM/Scl-100 oligos, or a nonspecific

control siRNA oligo (scr si). Twenty-four hours after the siRNA

transfection, the cells were transfected with the indicated DNA

plasmid(s) expressing GFP6SOX; each sample was split in half

and, 72 h later, either harvested for protein and immunoblotted

with polyclonal hRrp41 or PM/Scl-100 antibodies to measure the

efficiency of siRNA-mediated knockdown (A), or harvested for

total RNA and subjected to quantitative real-time PCR using GFP

specific primers (B). As reported previously, Rrp41 knockdown

leads to destabilization of other exosome components including

PM/Scl-100 [57]. The asterisk in (A) marks the location of the

PM/Scl-100 protein. Lines through gels indicate where an

intervening lane was cropped out of the image.

Found at: doi:10.1371/journal.pbio.1000107.s004 (0.97 MB TIF)

Figure S5 Oligo(dT) in situ hybridization in SOX-expressing

cells following PABPC or PABPN knockdown. HEK 293T cells were

transfected twice sequentially with either scramble control duplex

siRNA oligos, or PABPC or PABPN duplex siRNA oligos. Twenty-

four hours after the last siRNA transfection, the cells were split 1:2

and transfected with empty vector or a SOX expression plasmid.

Twenty-four hours later, half the samples were harvested for protein

and western blotted for PABPC and PABPN to gauge the level of

knockdown, as well as PAPII (as a loading control) and SOX (A).

The other half of the samples were subjected to oligo(dT) in situ

hybridization (left) and IFA with SOX antibodies (center) to monitor

the ability of SOX to promote hyperadenylation of endogenous

mRNAs in the absence of PABPC or PABPN (B). The right panels

represent a merge of the oligo dT and SOX images.

Found at: doi:10.1371/journal.pbio.1000107.s005 (4.19 MB TIF)

Figure S6 SOX-induced nuclear import of PABPC is not an

indirect result of hyperadenylation. HEK 293T cells were

transfected twice sequentially with either scramble control duplex

siRNA oligos or PAPII siRNA oligos (to block hyperadenylation).

Twenty-four hours after the last siRNA transfection, the cells were

split 1:2 and transfected with empty vector or a SOX expression

plasmid. Twenty-four hours later, half the samples were harvested

for protein and western blotted for PAPII to gauge the level of

knockdown, as well as PABPC (as a loading control) and SOX (A).

The other half of the samples were subjected to immunofluores-

cence analysis with PABPC (left) and SOX (center) antibodies to

monitor the ability of SOX to promote import of endogenous

PABPC in the absence of hyperadenylation (B). The right panels

represent a merge of the PABPC and SOX images.

Found at: doi:10.1371/journal.pbio.1000107.s006 (4.63 MB TIF)

Figure S7 Degradation of GFP-HR and GFP-hisSL mRNAs by

KSHV and MHV68 SOX. (A and B) HEK 293T cells were

transfected with each of the indicated GFP plasmids alone or together

with KSHV SOX (A) or the MHV68 SOX homolog (mSOX [B]) at

a 1:2 ratio. Total RNA was harvested from each sample 24 h post-

transfection and northern blotted with GFP and 18S probes. (C)

HEK 293T cells were transfected with the indicated plasmid (WT

GFP or GFP terminating with the histone SL and termination

sequences (GFP-hisSL); 24 h later, protein was harvested and western

blotted with GFP antibodies to compare the level of protein

expression from the GFP-hisSL construct relative to WT GFP.

Found at: doi:10.1371/journal.pbio.1000107.s007 (0.48 MB TIF)

Figure S8 Quantification of SOX-induced mRNA turnover

shown in Figure 6. (A and B) Quantification of SOX-induced

turnover of GFP mRNA in the presence or absence of a poly(A) tail.

HEK 293T cells were transfected with the indicated wild-type or

ribozyme-terminating GFP construct in the presence or absence of

SOX. Total RNA was harvested 24 h post-transfection and northern

blotted with GFP and 18S probes. The level of each GFP or GFP-HR

mRNA in the absence of SOX was set to 1.0 after normalization to

18S rRNA, and the corresponding level of that particular mRNA in

the presence of SOX was then calculated. The data are the

means6the standard error between experimental replicates (n = 4 for

[A], n = 3 for [B]). (C) Quantification of the contribution of PABPC

and PABPN towards GFP-A60-HR mRNA destruction by SOX.

HEK 293T cells were transfected twice sequentially with PABPC or

PABPN duplex siRNA oligos or nonspecific control siRNA oligos

(scramble si). Twenty-four hours after the final siRNA transfection,

the cells were transfected with the GFP-A60-HR plasmid alone or

together with a SOX expression plasmid. Twenty-four hours later,

the cells were harvested and subjected to northern blot analysis.

Quantification was performed as described above (n = 3).

Found at: doi:10.1371/journal.pbio.1000107.s008 (0.25 MB TIF)
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