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Regulatory and developmental systems produce phenotypes that are robust to environmental and genetic variation. A
gene product that normally contributes to this robustness is termed a phenotypic capacitor. When a phenotypic
capacitor fails, for example when challenged by a harsh environment or mutation, the system becomes less robust and
thus produces greater phenotypic variation. A functional phenotypic capacitor provides a mechanism by which hidden
polymorphism can accumulate, whereas its failure provides a mechanism by which evolutionary change might be
promoted. The primary example to date of a phenotypic capacitor is Hsp90, a molecular chaperone that targets a large
set of signal transduction proteins. In both Drosophila and Arabidopsis, compromised Hsp90 function results in
pleiotropic phenotypic effects dependent on the underlying genotype. For some traits, Hsp90 also appears to buffer
stochastic variation, yet the relationship between environmental and genetic buffering remains an important
unresolved question. We previously used simulations of knockout mutations in transcriptional networks to predict that
many gene products would act as phenotypic capacitors. To test this prediction, we use high-throughput morphological
phenotyping of individual yeast cells from single-gene deletion strains to identify gene products that buffer
environmental variation in Saccharomyces cerevisiae. We find more than 300 gene products that, when absent, increase
morphological variation. Overrepresented among these capacitors are gene products that control chromosome
organization and DNA integrity, RNA elongation, protein modification, cell cycle, and response to stimuli such as stress.
Capacitors have a high number of synthetic-lethal interactions but knockouts of these genes do not tend to cause
severe decreases in growth rate. Each capacitor can be classified based on whether or not it is encoded by a gene with a
paralog in the genome. Capacitors with a duplicate are highly connected in the protein–protein interaction network
and show considerable divergence in expression from their paralogs. In contrast, capacitors encoded by singleton
genes are part of highly interconnected protein clusters whose other members also tend to affect phenotypic variability
or fitness. These results suggest that buffering and release of variation is a widespread phenomenon that is caused by
incomplete functional redundancy at multiple levels in the genetic architecture.
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Introduction

The relationship between genotype and phenotype is a
central concern of many fields, from developmental biology
to human genetics to evolutionary biology. Although in most
cases this relationship is poorly understood, some general
properties do seem to be shared across diverse systems. Chief
among these is robustness to genetic and environmental
variation [1]. That is, most species maintain abundant genetic
variation and experience a wide range of environmental
conditions, yet phenotypic variation is relatively low [2].
Because of its ubiquity, phenotypic robustness, also termed
canalization or buffering, is worthy of study in its own right
[3]. It also presents an apparent contradiction: if biological
systems are so robust, how do they diverge and adapt through
evolutionary time?

The contradiction might be resolved if the robustness itself
were to be modulated by particular mutations or environ-
mental conditions. The robust system would accumulate
conditionally neutral, or ‘‘cryptic,’’ genetic variation. A
genetic or environmental perturbation that impaired the
system’s robustness would then reveal the cryptic variation in
the form of greater phenotypic diversity. The modulation of
robustness would not only allow evolutionary divergence, but
it might also accelerate it relative to the slow, step-wise
fixation of fitness-increasing alleles that is normally consid-
ered within the Neodarwinian paradigm [3–5]. It is therefore

essential to investigate mechanisms that contribute to the
robustness of biological systems, and to understand how such
mechanisms determine the phenotypic effects of different
sources of variation.
A model for the buffering and release of variation is

provided by the molecular chaperone Hsp90, which targets a
large set of signal transduction proteins. In both Drosophila
and Arabidopsis, compromised Hsp90 function results in
diverse morphological changes that exhibit strong depend-
ence on the genetic background [6,7]. This implies that Hsp90
normally contributes to phenotypic robustness to genetic
variation. Because Hsp90 function allows stores of genetic

Academic Editor: Andre Levchenko, Johns Hopkins University, United States of
America

Received March 12, 2008; Accepted September 16, 2008; Published November 4,
2008

Copyright: � 2008 Levy and Siegal This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: GCR, gross chromosomal rearrangement; GO, Gene Ontology; FDN,
first-degree neighbor; FDR, false discovery rate; Ka, nonsynonymous substitution
rate; Ks, synonymous substitution rate; PAM, partitioning around medoids; PPI,
protein–protein interaction; SGA, synthetic genetic array; SLI, synthetic lethal
interaction; YKO, yeast single-gene knockout

* To whom correspondence should be addressed. E-mail: sasha.levy@nyu.edu (SFL);
mark.siegal@nyu.edu (MLS)

PLoS Biology | www.plosbiology.org November 2008 | Volume 6 | Issue 11 | e2642588

PLoS BIOLOGY



variation to build up, and Hsp90 impairment releases this
variation to have phenotypic effects, it is termed a ‘‘pheno-
typic capacitor’’ [7].

Controversy surrounds the evolutionary relevance of
Hsp90-mediated capacitance and any similar mechanisms
that might exist. One issue is whether any fraction of the
phenotypic variation revealed by an impaired capacitor is
adaptive, or instead whether the variants consist entirely of
hopeful, but ultimately unfit, monsters [8,9]. The major
morphological defects seen originally in flies [7] support the
latter conclusion, yet selection for one such defect did not
cause correlated fitness costs, suggesting that the pleiotropic
effects of Hsp90 impairment are modular and not uncondi-
tionally deleterious [10]. The variation seen in Arabidopsis also
supports the potential adaptive value of capacitance, in that
this variation is considerably less monstrous than that seen in
flies [6]. A more systematic analysis of the phenotypic and
fitness effects of capacitor impairment is needed to resolve
this issue.

A second debate concerns the ultimate evolutionary reason
that capacitance exists. One view is that the ability to
modulate evolvability is itself an adaptive trait, and that
natural selection has therefore favored capacitor function
[11]. This view generally meets with great skepticism, as do
similar views on the evolutionary benefits of mechanisms that
alter mutation or recombination rates [9]. Nonetheless, a
population-genetic model has shown that an allele that
modifies the rate of revelation of cryptic genetic variation
can invade a population under a realistic range of parameter
values [12,13]. Although adaptive evolution of capacitance
therefore remains a formal possibility, many favor an
alternative view that considers capacitance a side effect of
other selected properties. One possibility is that natural
selection favors mechanisms that buffer against environ-
mental variation, with environmental variation taken to
mean both large macro-environmental differences and
stochastic fluctuations in the external micro-environment
or internal cellular environment. The buffering of genetic

variation then results from a hypothesized mechanistic
congruence between the impacts of allelic variation and
environmental variation on regulatory networks [14]. Anoth-
er possibility is that regulatory networks inherently attenuate
variation because they contain thresholds and other non-
linearities that allow them to respond properly to internal or
external cues [8,15]. Indeed, our own simulations of evolving
regulatory networks predicted that many gene products
should act as phenotypic capacitors, contributing to pheno-
typic robustness when present and producing greater
phenotypic diversity when absent [16].
The above considerations motivate the development of an

experimental system in which many phenotypes can be
precisely measured in many individuals, multiple gene
products can be screened for capacitor function, and sources
of variation can be precisely controlled and partitioned. Here
we present such a system, using single-cell morphological
phenotypes in the yeast S. cerevisiae. We focus here on the
robustness of these phenotypes to environmental variation
caused by stochastic fluctuations in a constant macro-
environment. While the study of robustness to environmental
variation is critical to understanding the development and
physiology of organisms, it also lays the foundation for future
work that will rigorously test the congruence between
mechanisms of environmental and genetic buffering and
that will investigate the impact of capacitors on evolutionary
trajectories.
To identify gene products that contribute to robustness to

environmental variation, we take advantage of data from
high-dimensional quantitative morphological phenotyping of
4,718 haploid yeast single-gene knockout (YKO) strains [17].
Phenotyping was performed by growing cells in rich media to
logarithmic growth phase and triply staining them for the cell
surface, actin cytoskeleton, and nuclear DNA. Digital micro-
graphs of ;200 cells per strain were processed using
automated image analysis [17], yielding means and variances
for 220 diverse quantitative phenotypes for each YKO (Figure
1A). The phenotypes include measures of the size and shape
of mother and bud cells and their nuclei, the number and size
of actin patches, the position of nuclei or actin patches in
reference to other cell landmarks, and relationships between
the mother and bud, such as the bud angle (for a complete
list, see [17]).
Using these data we identify more than 300 gene products

required for robustness to environmental variation. We find
that these capacitors are involved in a number of critical
cellular processes and that they are highly connected, in
terms of both physical and genetic interaction networks.
Despite this centrality, capacitor deletions result on average
in decreases in growth rate that could allow these mutants to
persist for many generations in the presence of wild-type
cells, suggesting that capacitor impairment need not produce
unfit monsters. Capacitors encoded by a member of a
duplicate gene pair differ in their functional and network
properties from those encoded by singletons, suggesting that
these two classes of capacitors are likely to buffer environ-
mental variation by different mechanisms.

Results

We used reported means and variances from quantitative
morphological phenotyping of 4,718 haploid YKO strains [17]
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Author Summary

Most species maintain abundant genetic variation and experience a
wide range of environmental conditions, yet phenotypic differences
between individuals are usually small. This phenomenon, known as
phenotypic robustness, presents an apparent contradiction: if
biological systems are so resistant to variation, how do they diverge
and adapt through evolutionary time? Here, we address this
question by investigating the molecular mechanisms that underlie
phenotypic robustness and how these mechanisms can be broken
to produce phenotypic heterogeneity. We identify genes that
contribute to phenotypic robustness in yeast by analyzing the
variance of morphological phenotypes in a comprehensive collec-
tion of single-gene knockout strains. We find that ;5% of yeast
genes break phenotypic robustness when knocked out. The
products of these genes tend to be involved in critical cellular
processes, including maintaining DNA stability, processing RNA,
modifying proteins, and responding to stressful environments.
These genes tend to interact genetically with a large number of
other genes, and their products tend to interact physically with a
large number of other gene products. Our results suggest that loss
of phenotypic robustness might be a common phenomenon during
evolution that occurs when cellular networks are disrupted.



to identify phenotypic capacitors. Our working definition of
a capacitor is a gene product that causes high variance in
multiple nonredundant phenotypes when deleted. To iden-
tify gene products that meet this criterion, three obstacles

must be overcome: (1) a measure of variance that is not
dependent on the mean must be generated so as not to
confound changes in variance with changes in mean
phenotype [18]; (2) biologically or physically redundant

Figure 1. Genome-Wide Screen for Phenotypic Capacitors in S. cerevisiae

(A) Schematic of some quantitative phenotypes in a budded cell: (a) long axis length of the mother nucleus, (b) long axis length in the mother cell, (c)
maximal distance between actin patches, (d) bud angle. A full list of phenotypes and their descriptions is reported in Ohya et al. [17].
(B) Scatter plots of means and standard deviations for 4,718 YKO strains for two phenotypes clearly indicate that variance depends on mean in a
nontrivial, phenotype-specific manner. Black circles represent individual YKOs and red circles represent the lowess curve fit.
(C) Histograms of actual (red) and 100 randomized (grey) phenotypic potential scores. Shown are the ranges of the three phenotypic capacitor classes
(C1, C2, C3).
doi:10.1371/journal.pbio.0060264.g001
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phenotypes must be eliminated (dimensional reduction); and
(3) a robust score for the overall variance in multiple
phenotypes must be generated.

We addressed the first obstacle by plotting, for each
phenotype, the standard deviation versus the mean of each
YKO, fitting a lowess (locally weighted) regression to each
plot, and calculating the residual distance of each point from
the regression (Figures 1B and S1). These residuals of
standard deviation, which represent a measure of variance
controlled for the mean, were standardized to weight each
phenotype equally.

For dimensional reduction, we used partitioning around
medoids (PAM), a robust variant of k-means clustering. By
analyzing the average silhouette width, a measure of
separation of clusters, we estimated that the 220 original
phenotypes can be reduced to 70 representative phenotypes
(‘‘medoids’’) (Figure S2).

To generate a single measure of the overall phenotypic
variance when a gene is deleted, we averaged the top 35 (of
70) residuals of standard deviation for each YKO (Table S1).
This score, which we term phenotypic potential, was
extremely robust to even large changes in the clustering
and averaging procedure and did not appear to be biased by
potential edge effects in the lowess procedure (Figures S3–
S6).

To identify genes with significantly higher phenotypic
potential scores than expected by chance, we compared the
distribution of scores of all YKOs to distributions generated
when values within each phenotype are first permuted. Based
on this permutation analysis, the 502 genes with the highest
phenotypic potential were identified as putative phenotypic
capacitors with an estimated false discovery rate (FDR) of 0.34
(Figure 1C). This FDR maximizes the estimated number of
true positives (Figure S7 and see Materials and Methods). We
thus estimate that 333 genes out of the total 502 identified are
true positives, with a higher phenotypic potential than would
be predicted by chance. For downstream analysis, the top 502
genes were separated into three classes. The top 60 high-
confidence genes (FDR ¼ 0), the next 206 mid-confidence
genes (FDR cutoff ¼ 0.10), and the next 266 low-confidence
genes (FDR cutoff ¼ 0.34) are termed ‘‘C1,’’ C2,’’ and ‘‘C3,’’
respectively.

Validation of Phenotypic Capacitors
We validated our identification of capacitors by repeating

the phenotyping of 50 C1 strains and 50 control strains in our
lab. Haploid mutants in the YKO library used for the original
phenotyping were passaged for an unknown number of
generations. Because some knockouts might increase muta-
tion rates and thereby cause phenotypic variability that is not
associated with loss of environmental buffering, we used
instead a haploid-convertible heterozygous diploid YKO
library [19] and kept the number of generations between
sporulation and fixation to a maximum of ;50. C1 strains
exhibited more phenotypic variability than control strains
(Figures 2 and S8). Phenotypes also appeared to be highly
heterogeneous among C1 strains, suggesting that knockouts
are not all disrupting a small number of high-level processes
that result in a limited set of phenotypes. With the phenotype
means and standard deviations from only the 100 haploid-
converted strains, we repeated the calculation of phenotypic
potential as described above, using the 70 already identified

phenotypic medoids (Figure 2, lower right). Our expectation
was that this repeated analysis would have reduced power
because the proportionally large number of C1 strains that
exhibit high variance would bias the lowess regression to
decrease the magnitude of residuals. Even with this limi-
tation, we found the phenotypic potential scores to be clearly
higher in the C1 strains (p , 9.8 3 10�10, Wilcoxon-Mann-
Whitney test). For a less conservative measure of phenotypic
potential, we sampled data from capacitor and control strains
in rough proportion to their numbers in the original analysis
(five to 42), calculated scores on 1,000 repeated samplings,
and averaged across all the 1,000 samples to calculate final
phenotypic potentials (Figure S9). While this analysis still
results in a conservative bias because of a reduction of
residuals at the edges of the lowess regression due to fewer
data points, capacitors exhibit ;2-fold higher phenotypic
potentials than controls (p , 2.7 3 10�10, Wilcoxon-Mann-
Whitney test). A notable exception is RAD27, which has a
lower phenotypic potential than all but three of the control
strains in the more conservative first analysis and all but nine
in the less conservative sampling analysis. RAD27 deletion
causes a strong spontaneous mutator phenotype [20], which
suggests that the high phenotypic variability observed in the
original YKO might have been due to mutation accumulation.
We also sampled ten capacitors in the C2 or C3 classes and
these too exhibited significantly higher phenotypic potential
scores than control strains (p , 0.002, Wilcoxon-Mann-
Whitney test).
As additional validation, we looked for evidence in the

literature of capacitors causing increased cell-to-cell varia-
bility. Indeed, knockouts of the capacitors CCR4, CLN3, and
SWI6 have each been shown to result in increased variability
in diploid cell size in liquid media [21]. Knockout of CCR4
also causes irregular colony morphology on solid medium, a
finding consistent with increased cell-to-cell variation [22].
Two other members of the CCR4-NOT core complex, NOT5
and POP2, are identified as capacitors in our screen
suggesting that disruption of this transcriptional regulatory
complex is likely to result in cellular heterogeneity. Addi-
tionally, two of three knockouts that increase intrinsic
expression noise of the PHO5 promoter are the capacitors
ARP8 and SNF6 [23]. Lastly, knockout of the capacitor FUS3
has been shown to increase cell-to-cell variation in response
to a pheromone signal [24].

Phenotypic Capacitors Are Enriched in Several Gene
Ontology Categories
We next investigated the entire set of 502 capacitors for

enrichment in Gene Ontology (GO; http://www.geneontology.
org/) process terms (Table S2). Phenotypic capacitors are
highly enriched in numerous processes, most of which can be
broadly categorized into DNA maintenance and organization,
cell cycle and cell organization, response to stimuli such as
stress, RNA elongation, or protein modification. This diverse
set of enriched terms is likely to represent processes that can
result in broad cellular changes when disrupted.
Specifically, capacitors contain 123 of 565 ORFs annotated

with ‘‘chromosome organization and biogenesis’’ and 80 of
275 ORFs annotated with its daughter term, ‘‘telomere
organization and biogenesis’’ (p , 2.9 3 10�27 and p , 2.1 3

10�25, respectively, hypergeometric distribution with Bonfer-
roni correction). These include all genes annotated with
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recombinase activity, the entire telomerase holoenzyme
complex, the entire RecQ helicase-Topo III complex, all but
one gene from the homologous recombination module, all
genes involved in postreplication repair, the entire CTF18m
complex involved in sister chromatid cohesion and DNA-
replication check-point signaling, the entire MMS22m mod-
ule thought to be involved in double strand break repair, and
both genes of the HEX3m module [25]. Notably, however,
other modules that are likely to cause DNA instability are
absent, including the nucleotide excision repair module, the
DNA damage checkpoint module RAD9m, the MUS81m
module involved in cleaving branched DNA, and the TOF1m
module involved in promoting sister chromatid cohesion to
repair DNA damage [25].

Capacitors also include 28 transcriptional regulators;
numerous gene products involved in global mRNA produc-
tion, including all members of the carboxy-terminal domain
protein kinase complex; most members of the THO complex,
which is thought to couple transcriptional elongation with
mRNA metabolism and export; numerous nuclear pore-
associated proteins, including both members of the mRNA
export SAC3/THP1 complex; at least seven gene products
involved in mRNA splicing; approximately half of the gene
products annotated to the cytoplasmic mRNA processing (P)
body; genes involved in protein transport and degradation,
including three members of the Golgi-localized alpha-1,6-
mannosyltransferase complex and eight gene products
involved in vacuolar acidification; and genes involved in the
control of actin (nine genes) and microtubule (12 genes)
organization and in bud emergence or selection.

Phenotypic Capacitors Are Likely to Be Network Hubs
Protein–protein interaction (PPI) and synthetic lethal

interaction (SLI) networks have a small number of highly
connected nodes (hubs) and many more poorly connected
nodes [26,27]. In PPI networks, deletion of a hub is more
likely to be lethal than deletion of other nodes [26]. This

finding suggests that genetic properties are, at least in part,
traceable to global network architecture. Our numerical
simulations of transcriptional networks implied that robust-
ness is likely to be an emergent property of complex
networks, and that in some cases network architecture
constrains functional and evolutionary properties [15,16,28].
Others have predicted that SLIs are crucial to understanding
buffering [29] or that phenotypic capacitors are likely to be
hubs [30,31]. Thus, we asked here if a gene’s phenotypic
potential is traceable to network position.
First, we used networks derived both from curated

literature citations [32] and from the nearly complete set of
affinity-capture mass spectrometry interactions [33,34] to
determine if the average PPI degree (number of interactions)
of capacitors is different than that of other genes. We found
that capacitors have more physical interactions than other
nonessential gene products but fewer than essential gene
products (Figure 3A). Because capacitors are enriched in
select GO categories, one potential explanation for the high
degree of capacitors is that they fall into GO categories whose
members tend to be highly connected. However, in most
cases, capacitors have significantly more interactions than
GO-matched nonessential genes (Figure S10). Exceptions to
this rule appear to occur mostly in GO categories where
essential and nonessential genes do not differ in PPI degree.
A plot of phenotypic potential versus binned PPI degree

shows that gene products with a higher connectivity have on
average a higher phenotypic potential (Figure 3B); this
relationship is almost entirely explainable by an increased
proportion of capacitors in the highly connected bins (Figure
S11). Interestingly, the proportion of capacitors precipitously
drops at PPI degrees above 30, with similar proportions in the
highest (.80 PPI) and lowest (,3 PPI) bins. The vast majority
of genes in this highest bin have a duplicate in the genome,
including 28 ribosomal proteins, three histones, and, of
particular note, the homologues of Hsp90: HSP82 and
HSC82. While surprising, the finding that Hsp90 homologues

Figure 2. Phenotypic Capacitor YKOs Have Highly Variable and Distinct Phenotypes

Representative micrographs from examples of putative phenotypic capacitor (HPR1, KEM1, SWI6, BEM2, CLA4, DIA2, RAD52) and control (YDR279W and
YCR100C) strains are shown. Cells are stained with FITC-concanavalin A (green), rhodamine phalloidin (red), and DAPI (blue). Lower right: Histograms of
the phenotypic potentials of control (black) and phenotypic capacitor (red) YKOs of haploid-converted heterozygous diploid strains.
doi:10.1371/journal.pbio.0060264.g002
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do not act as capacitors in S. cerevisiae according to our
definition is consistent with a previous study that found that
Hsp90 activity, not impairment, allowed new mutations to
have immediate phenotypic consequence [35]. However, we
do find a homologue of the chaperone Hsp70, SSE1, to be a
capacitor in yeast, consistent with studies on other Hsp70
family members [36].

Next, we used all SLIs from curated literature citations [32]
and, again, find that capacitors have a higher degree than
other nonessential genes (Figure 3C, solid bars). Because
genome-scale SLI assays have only been completed for a
subset of genes (;267 used as bait in synthetic genetic array
[SGA] experiments), one potential explanation for the high
SLI degree of capacitors is that they were more likely to be
used as bait. To control for this possibility, we generated a
subnetwork derived only from SGA experiments and divide
genes in this network into those that had been used as bait
and those that had not. For each class, we found that
capacitors have higher SLI degree than other nonessential
genes (Figure 3C, striped bars). The higher SLI degree of
capacitors is maintained even when the number of physical
interactions of a gene is controlled for (Figure S12) or when
capacitors are compared to other nonessential genes within
GO categories (Figure S13). A plot of phenotypic potential
versus binned SLI degree (Figure 3D) shows that genes with a
higher connectivity have on average a higher phenotypic
potential; this relationship is almost entirely explainable by
an increased proportion of capacitors in the highly con-
nected bins (Figure S11).

Effects of Phenotypic Capacitor Knockouts on Growth
Rate

We have shown that capacitors are likely to be PPI and/or
SLI hubs, that they might be less likely to be completely
functionally redundant, and that they are involved in a
number of central processes in the cell. At this point, one

might ask if disruption of capacitor function has too drastic
of an effect on fitness to play a role in adaptation. To
investigate this possibility, we asked if capacitors are less
dispensable than other nonessential genes by comparing the
growth rates of haploid [37] or diploid [38] mutants. Whereas
capacitors appear to have no effect on growth rate in the
heterozygous diploid, they are less dispensable in haploid and
homozygous diploid knockouts, with a larger rate decrease
seen in the haploid (Figure 3E). This effect is maintained even
when we controlled for the PPI degree (Figure S12) or when
capacitors were compared to other nonessential genes within
GO categories (Figure S14). Gene knockouts that result in
drastically reduced growth rates (less than 70% of wild-type)
on average have higher phenotypic potentials (Figure 3F); this
relationship is entirely explainable by an increased propor-
tion of capacitors that cause low growth rates (Figure S11).
However, in most cases, capacitors cause decreases in growth
rate that are not as severe, with 79% and 95% of capacitor
YKOs having a growth rate exceeding 0.80 of wild-type in the
haploid and homozygous diploid, respectively. Indeed, 124
capacitor YKOs have an increased growth rate over the wild
type.

Duplicate and Singleton Capacitors Have Different Modes
of Functional Redundancy
The finding that many of the most highly connected PPI

hubs are duplicates but not capacitors (Figure 3B) suggests a
relationship between functional redundancy and buffering.
We investigated this further by asking how capacitor genes
distribute among the 1,425 unambiguous duplicates and 2,375
unambiguous singletons that have been identified in the yeast
genome [39–41]. We found that capacitor genes are more
likely to be singletons than other nonessential genes (Table 1,
p , 0.026, G-test). Capacitor singletons and capacitor
duplicates tend to be enriched in different GO process
categories. Capacitor singletons are enriched in the catego-
ries of DNA maintenance and organization, response to
stimuli, and RNA transcription and localization (Table S3).
Capacitor duplicates, while more heterogeneous overall, tend
to be most enriched in the categories of protein metabolism
and endocytosis. We next investigated if capacitor singletons
differ from capacitor duplicates in any network or dispens-
ability properties. Both duplicate and singleton capacitor
genes tend to have a high number of SLIs and to cause
decreases in growth rate when knocked out in the haploid or
homozygous diploid (Figure S15). However, only capacitor
duplicates tend to be PPI hubs (Figure 4A).

Table 1. Number of Singletons or Duplicates in Different Gene
Classes

Gene Class Singleton Duplicate

Essential 577 148

Phenotypic capacitor 211 118

Other nonessential 1,587 1,159

doi:10.1371/journal.pbio.0060264.t001

Figure 3. Network and Dispensability Characteristics of Phenotypic Capacitors

(A) The average number of physical interactions of high (C1, dark blue), mid (C2, blue), and low (C3, light blue) confidence phenotypic capacitors versus
all nonessential (light grey) or essential (dark grey) genes using all physical interactions in the literature-curated network of the BioGRID (solid bars) or
only affinity-capture mass spectrometry interactions (diagonal stripes).
(B) The average phenotypic potential of all nonessential genes (blue squares) or nonessential genes that have not been classified as a phenotypic
capacitor (black triangles) binned by their number of affinity-capture mass spectrometry PPIs.
(C) The average number of SLIs using all interactions annotated in the literature curated BioGRID network (solid bars), interactions derived only from
SGA experiments considering only genes used as bait (diagonal stripes), and interactions derived only from SGA experiments considering only genes
not used as bait (horizontal stripes).
(D) The average phenotypic potential of all nonessential (blue squares) or nonessential noncapacitor (black triangles) genes binned by their number of
literature-citation SLIs.
(E) The average growth rates for haploid KO (solid bars), heterozygous diploid KO (diagonal stripes), and homozygous diploid KO (horizontal stripes)
strains. Values are relative to wild type.
(F) The average phenotypic potential of all nonessential (blue squares) or nonessential noncapacitor (black triangles) genes binned by their haploid
growth rates. Error bars represent the standard error of the mean. All p-values are a comparison to nonessential genes, Wilcoxon-Mann-Whitney test:
*, p , 0.05; **, p , 0.001; ***, p , 1 3 10�5; ****, p , 1 3 10�10.
doi:10.1371/journal.pbio.0060264.g003
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Figure 4. Characteristics of Capacitor Duplicates

(A) The average number of affinity-capture mass spectrometry interactions of all nonessential genes (grey), all nonessential singletons (light green),
capacitor singletons (light blue), all nonessential duplicates (dark green), and capacitor duplicates (dark blue).
(B) Ks (left) and the expression similarity (right) between duplicate pairs that contain at least one essential gene (dark grey), at least one capacitor (solid
dark blue), only nonessential noncapacitor genes (solid light grey), at least one gene product with over 19 PPIs annotated in the literature-curated
BioGRID network and at least one capacitor (dark blue stripes), and at least one gene product with over 19 PPIs and no capacitors or essential genes
(light grey stripes).
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The above finding presents an apparent contradiction:
high PPI degree is strongly associated with capacitor identity
in duplicates (Figure 4A) yet many highly connected
duplicates are not capacitors (Figure 3B). The resolution of
this contradiction appears to be that capacitor duplicate
pairs are older and have less functional redundancy than
other hub duplicate pairs. Using the synonymous substitution
rate (Ks) between members of a duplicate pair as a rough
estimate of age of the duplication event [39,42], we found that
duplicate pairs that contain at least one capacitor are on
average less ancient than duplicate pairs that contain at least
one essential gene and appear to be more ancient than
duplicate pairs that contain only nonessential noncapacitor
genes (Figure 4B). Because substitution rates correlate
negatively with expression level of a gene [43,44], one
explanation for the differences in Ks is that duplicates that
contain at least one capacitor have a different distribution of
expression levels than other duplicate pairs. However, we
found the pattern persists even when we control for mRNA
expression level (Figure S16). The average age difference
between capacitor duplicate pairs and nonessential duplicate
pairs appears to be due to recent duplicates (Ks , 1), of which
there are fewer capacitor duplicate pairs than nonessential
noncapacitor duplicate pairs (p , 0.002, G-test, Figure S17).
The same relation holds when comparing only hub duplicate
pairs, which we defined as duplicate pairs where at least one
paralog has a PPI degree � 20. To calculate this difference, we
separated hub duplicate pairs into those that contain at least
one capacitor and those that do not. The average PPI degree
of gene products in these two categories is approximately the
same (p ¼ 0.53, Wilcoxon-Mann-Whitney test). Comparing
these two categories, we found that hub capacitor duplicates
appear to be older on average due to an absence of recent
duplication events. The greater average age of capacitor
duplicate pairs raises the possibility that they are predom-
inantly ohnologs, tracing their origin to the whole genome
duplication in yeast ;100 million years ago [45]. However, we
did not find ohnologs to be overrepresented among capacitor
duplicates relative to noncapacitor duplicates (p ¼ 0.47, G-
test). The greater synonymous-site divergence of capacitor
duplicate pairs does not appear to be matched by greater
divergence, as measured by the nonsynonymous substitution
rate (Ka). For this comparison, we restricted our analysis to
ohnologs to control for differences in duplication time that
might introduce errors in Ka/Ks. Capacitor ohnologs have Ka
values that are not significantly different from nonessential
ohnologs, whereas essential ohnologs show marginally greater
divergence (Figure S18).

A more striking difference between capacitor duplicate
pairs and other duplicate pairs was evident in the correla-
tions in expression between paralogs across many exper-
imental conditions [39]. Duplicate pairs that contain at least
one capacitor have a lower expression similarity on average
than duplicate pairs that contain an essential gene or
noncapacitor nonessential duplicate pairs (Figure 4B). Hub

duplicate pairs that contain at least one capacitor also have a
lower expression similarity than other nonessential hub
duplicate pairs. These findings suggest that capacitor dupli-
cate pairs are less functionally redundant than other
duplicate pairs. To further dissect this difference in corre-
lated expression, we examined the 64 capacitor-containing
duplicate pairs in which both members of the pair have only
one paralog in the genome. From these pairs, we excluded
two pairs where both copies encode capacitors (the ribosomal
proteins RPL8A and RPL8B and the mannotransferases
HOC1 and OCH1) and two pairs where a capacitor gene is
paired with an essential gene (the cyclins CDH1 and CDC20
and the UDP-glucose phosphorylases YHL012W and UGP1),
yielding 60 capacitor genes paired with a nonessential
noncapacitor gene. Comparing only these 60 capacitors to
their paralogs, we found that the capacitor is likely to have a
higher mRNA and protein abundance than its noncapacitor
duplicate (Figure 4C).
Perhaps because of these expression profile differences, the

capacitor gene has on average approximately three times as
many SLIs as its paralog (Figure 4C). The higher expression of
the capacitor in the pair suggests that perhaps the non-
capacitor paralog also has an effect on robustness but a
smaller one that did not surpass our threshold for capacitor
identification. However, the noncapacitor paralogs do not
have elevated phenotypic potentials when compared to all
nonessential genes (Figure 4D, p ¼ 0.38, Wilcoxon-Mann-
Whitney test). Indeed, analysis of noise in protein abundance
[46] suggests that the noncapacitor paralogs might be the
targets rather than the sources of buffering: nonessential
duplicates have on average greater variability in protein
abundance than nonessential singletons (p , 2.2 3 10�3,
Wilcoxon-Mann-Whitney test; Figure S15). A partially redun-
dant duplicate (the capacitor gene) might buffer this
variability, whereas its deletion might expose this variability
at the level of the phenotype.
If one assumes that incomplete functional redundancy is

also causing high phenotypic variability in the case of deleted
singleton capacitors, understanding the mechanism of this
process poses a greater challenge because there are no
obvious candidate genes that overlap with singleton function.
One hypothesis is that redundancy is achieved not at the level
of the single gene as is the case for duplicates, but rather at
the level of the protein module. Indeed, many singleton
capacitors are part of functionally overlapping modules in
the DNA integrity network [25]. To test the hypothesis that
this is a more general property of singleton capacitors, we
examined further their network characteristics. The cluster-
ing coefficient is a measure of local network interconnectiv-
ity. Singleton capacitors have on average higher clustering
coefficients in the PPI network than all nonessential single-
tons, suggesting that they are interacting with more tightly
knit groups of proteins that might represent functional
modules (Figure 5A). Despite their high local connectivity,
capacitor singletons occupy less central positions in the

(C) The mRNA abundance (left), protein abundance (middle), and SLI degree (right) of capacitors with only one paralog in the genome (blue) and their
paralogs (green).
(D) The phenotypic potential of capacitors with only one paralog in the genome (blue), their paralogs (green), and all nonessential genes (grey). Error
bars represent the standard error of the mean. Unless otherwise marked, p-values are a comparison to duplicate capacitors, Wilcoxon-Mann-Whitney
test: *, p , 0.05; **, p , 0.001; ***, p , 1 3 10�5; ****, p , 1 3 10�10.
doi:10.1371/journal.pbio.0060264.g004
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overall PPI network than do other nonessential singletons, as
measured by betweenness centrality (Figure 5A). This is in
stark contrast to capacitor duplicates, which tend to be more
central when compared to other nonessential duplicates
(Figure S15).

The clustering of singleton capacitors into modules

suggests that their other immediate PPI partners, or first-
degree neighbors (FDN), might have special network and
dispensability characteristics. Because neighbor parameters
are not likely to be independent of PPI degree, we first
generated FDN scores for each gene product that describe
the properties of a gene product’s neighbors while control-

Figure 5. Network characteristics of capacitor singletons

(A) The clustering coefficient (left) and betweenness centrality (right) of all nonessential singletons (light green) and capacitor singletons (light blue).
(B) Properties of the immediate PPI neighbors of a gene controlled for the degree of that gene (FDN score, see methods) for all nonessential singletons
(light green) and capacitor singletons (light blue). From left to right: the phenotypic potential, the number of essential genes, the fraction of SLIs in the
literature-curated BioGRID network, the haploid growth rate when deleted, the diploid growth rate when both copies are deleted. Error bars represent
the standard error of the mean. Wilcoxon-Mann-Whitney test: *, p , 0.05; **, p , 0.01.
doi:10.1371/journal.pbio.0060264.g005
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ling for the PPI degree of that gene product (see Materials
and Methods). Using these measures, we found that the FDNs
of singleton capacitors are more likely to be capacitors,
essential genes, or genes with a high SLI degree when
compared to all nonessential singletons (Figures 5B and
S19). We also found that FDNs of singleton capacitors are
more likely to cause decreases in growth rate in haploid or
homozygous diploid knockouts. Taken together, these results
suggest that singleton capacitors are acting in highly
interconnected modules whose other members are likely to
disrupt robustness or be deleterious when knocked out.

Capacitors and Chromosome Stability
Approximately one-fourth of identified capacitors are

annotated to be involved in maintaining chromosome
stability. While this class of genes still meets all of the criteria
for singleton capacitors discussed above, one alternative
mechanism to explain the increased phenotypic variability
in these YKOs is that they are causing mutations or
chromosomal aberrations [47]. Because YKOs that cause
drastic increases in the spontaneous mutation rate are
relatively well defined and rare (see Protocol S1), we
concerned ourselves with YKOs that may be causing chromo-
somal aberrations, most easily measured by rates of gross
chromosomal rearrangements (GCRs) [48]. We found that a
high rate of GCRs is neither necessary nor sufficient for high
phenotypic potential. For example, focusing on the eight
genes in the homologous recombination module [25], we
found YKOs that cause both high phenotypic potentials and
high GCR rates (RAD50, RAD52, RAD57, XRS2), high
phenotypic potentials but relatively low GCR rates (RAD51,
RAD54), and low phenotypic potentials but high GCR rates
(MRE11) [48]. Additionally, we estimated that measured GCR
rates are likely to be too low to explain the phenotypic
heterogeneity observed in the haploid-converted strains (see
Protocol S1). Thus it is unlikely that GCR events alone explain
high phenotypic variance. Another source of genetic variation
in these lines could be caused by increased insertion rates of
transposable elements such as Ty1 [49,50]. However, we again
found that increased Ty1 insertion rates are neither necessary
nor sufficient for high phenotypic potential (see Protocol S1).
It is also possible that these same disrupted processes are
changing the mutational spectrum at microsatellites [51,52].
Although not related to environmental buffering, this last
possible mechanism is of great evolutionary interest, given
recent findings in yeast [53] and dogs [54] of phenotypic
variation driven by tandem-repeat length changes. Another
possibility is that DNA stability knockouts are causing changes
at the telomere [55,56] or elsewhere that heterogeneously
activate cell cycle checkpoints [51,57]. Thus, the mechanism by
which this subset of capacitors produces phenotypic varia-
bility warrants further study. If, however, mutational mech-
anisms can be excluded, our findings might provide new
insight into human malignancies. Many cancers are associated
with mutations in genes involved in DNA stability, including
orthologs of the capacitors RAD50 [58], RAD54 [59,60], and
YAF9 [61], or with genes with a large number of interactions,
such as the transcription factor p53 [62]. Our results suggest
that the first advantage mutations in these genes might
provide to developing malignancies is phenotypic hetero-
geneity by way of network-associated loss of robustness.

Discussion

We show that: (1) there are in excess of 300 phenotypic
capacitors of environmental variation in S. cerevisiae; (2)
capacitors are highly enriched in GO processes that are likely
to result in broad cellular changes when disrupted; (3)
capacitors tend to be SLI hubs; (4) most capacitor knockouts
result in decreases in growth rate that are not severe; (5)
capacitor duplicates tend to be PPI hubs that have undergone
a relatively ancient duplication event and diverged in
expression from their paralogs; and (6) capacitor singletons
tend to be part of highly interconnected protein clusters
whose members are likely to disrupt robustness or be
deleterious when knocked out. Taken together, these findings
strongly suggest that loss of phenotypic robustness is a
widespread phenomenon that is a consequence of disrupted
physical or genetic-interaction networks.
The mechanism of this disruption appears to be different

in cases of duplicate and singleton capacitors, although in
both cases incomplete functional redundancy might be
causing phenotypic variability when the capacitor is absent
(Figure 6). For duplicate capacitors, this partial functional
redundancy appears to operate at the level of the paralogous
gene pair. Indeed, two properties of duplicate capacitors,
high PPI degree and high expression divergence, are found in
common with paralogous pairs that are likely to have some
redundancy [39]. For singleton capacitors, functional redun-
dancy appears to operate at a higher level of protein modules
with partially overlapping function. One common trait
shared by both classes of capacitor is a high number of SLIs.
The particularly striking finding that nearly 60% of genes
with over 100 SLIs are capacitors (Figures 3D and S11)
suggests that genetic interactions might be highly predictive
of capacitor identity in other organisms [29,30]. A second
hallmark of capacitors in other organisms might be the
existence of a paralogous gene that has diverged in its
regulation, as identified by expression studies or perhaps
comparative genomics of cis-regulatory regions. With the
increasing availability of automated quantitative phenotyping
[63], these predictions might soon be possible to test.
While previous studies have suggested that phenotypic

capacitor function must be responsive to changes in the
environment to influence evolutionary trajectories [6,7], the
finding that many capacitors cause decreases in growth rate
that are not severe offers another plausible mechanism in
yeast: A loss-of-function mutation in a capacitor could be
maintained indefinitely in a heterozygous diploid with little
or no impact on fitness. Sporulation would be promoted
under harsh environmental conditions [64] resulting in
haploids with phenotypic variability that is dependent on
the (previously cryptic) underlying genotype. Because capaci-
tor loss-of-function usually causes decreases in haploid
growth rate that are not severe, these cells could persist for
many generations without being out-competed by wild-type
counterparts. Some genotypes might provide a selective
advantage, which, upon successive rounds of sporulation
and mating, could become fixed in the population even in the
absence of the capacitor loss-of-function mutation [6,7,16,65].
Alternatively, phenotypic heterogeneity in the absence of
genotypic variation might produce epigenetic ‘‘persistent’’
phenotypes with increased fitness in some environments,
analogous to those described in models of stochastic
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phenotype switching [66]. The estimate that approximately
30% of wild S. cerevisiae strains persist for some time as
haploids (i.e., are heterothallic) [67,68] suggests that these are
plausible mechanisms.

Several challenges remain, however, to understanding
mechanistically how phenotypic robustness impacts evolu-
tionary trajectories. One major challenge is characterizing
the relationship between environmental and genetic buffer-
ing. Phenotypic capacitors identified here buffer environ-
mental variation. Some have predicted that the same
mechanisms that buffer environmental sources of variation
will also act to buffer genotypic variation [14]. Evidence in
support of this hypothesis is mixed and mostly stems from
studies of the molecular chaperone Hsp90, a known capacitor
of genetic variation in flies and plants [6,7]. Using fluctuating
asymmetry in isogenic Drosophila lines as a measure of
robustness to environmental perturbation, Hsp90 was found

to buffer environmental variation in some traits [69] but not
others [70]. In Arabidopsis, Hsp90 appeared to buffer environ-
mental variation for every trait tested [71]. Results described
here provide an experimental system with which to formally
test the congruence between the mechanisms of genetic and
environmental buffering. Because variability of many quanti-
tative phenotypes can be determined in a high-throughput
manner and because we have identified many capacitors of
environmental variation, experiments that precisely control
and partition different sources of variation can be performed
to test if these same gene products contribute to genetic
robustness.
Another major challenge is determining if the phenotypic

heterogeneity that results from disrupted capacitor function
in yeast could be advantageous under natural or artificial
selection. One indication that this is likely comes from the
finding that disrupted capacitor function might provide an

Figure 6. Singleton and duplicate capacitors occupy different locations in the PPI network

The differences between singleton and duplicate capacitors are illustrated by the protein-interaction subnetwork surrounding complexes involved in
transcriptional activation. Shown is a subnetwork of the affinity-capture mass spectrometry interaction network that was created using all proteins
annotated to be in the Mediator complex and their first-degree interaction neighbors. The subnetwork was displayed using Cytoscape (http://www.
cytoscape.org/), with nodes placed by spring embedded layout. Nineteen nodes with only one interaction have been removed for clarity. Colors
represent nonessential proteins (light grey), essential proteins (dark grey), singleton capacitors (light blue), duplicate capacitors (dark blue), and
capacitors that cannot be categorized as singletons or duplicates (purple). Singleton capacitors are likely to be found in highly interconnected
complexes such as the Mediator transcriptional coactivation complex, RNA polymerase II, the SAGA and TFIID complexes, and chromatin remodeling
complexes. Other members of these complexes tend to be essential genes or capacitors. Duplicate capacitors are highly connected and tend to interact
with multiple complexes. Interactions of the duplicate capacitor TAF14 are highlighted in purple.
doi:10.1371/journal.pbio.0060264.g006
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advantage in environments that require invasive growth in
yeast. A genetic screen found that mutations in 35 genes can
promote haploid invasive growth in the

P
1278 genetic

background, 27 of which were considered in our study and 12
of which are phenotypic capacitors [72]. Additionally, we
found at least one capacitor YKO that promotes robust
haploid invasive growth in the S288C background (SWI6,
unpublished data). Stronger evidence comes from a study of
stress-sensitive deletion mutants grown in varying concen-
trations of heavy metals or pro-oxidants [73]. Six deletions,
four of which we identify as capacitors (CTR1, CUP5, VMA6,
VMA7), resulted in a fitness disadvantage at moderate toxin
concentrations but a clear heterogeneity-dependent fitness
advantage over the wild-type at high toxin concentrations.
Also of note, genome-wide examination of genes under
positive selection in S. cerevisiae [74] finds nine capacitors out
of 72 genes. Because of the relatively short generation time of
yeast, it is now possible to formally test if disrupted capacitor
function can provide a fitness advantage in some environ-
ments.

Although our study has focused on the effects of deletions
of nonessential genes, it might be more relevant to common
evolutionary trajectories to ask if subtler allelic changes, such
as those that result in altered transcription or protein
sequence, could cause loss of robustness. Our prediction is
that the allelic changes that affect phenotypic heterogeneity
are most likely to alter network architecture or dynamics.
One possibility is that such mutations would occur in
essential genes because, like capacitor genes, they tend to
encode highly connected network hubs. Encouraging results
come from a recent study that used the progeny from a cross
between a yeast lab strain and a wild isolate to map the
variances of 35 quantitative phenotypes to 14 quantitative
trait loci, one of which is a single nucleotide polymorphism in
the essential G-protein alpha subunit GPA1 [75]. The recent
availability of a yeast library with decreased expression of
essential genes through mRNA perturbation [76] now makes
this possible to test on a genome-wide scale.

Materials and Methods

Yeast strains. Haploid convertible diploid BY4743 YKO magic
marker deletion strains (MATa/a ura3D0/ ura3D0 leu2D0/leu2D0 his3D1/
his3D1 lys2D0/LYSþ met15D0/MET15þ can1D::LEU2þ-MFA1pr-HIS3/
CAN1þ xxx::kanMX/XXXþ) were purchased from Open Biosystems.

General statistics and programming. All data analysis was
performed using the open-source R statistical computing package
(http://www.r-project.org/). Lowess regression was performed using
the ‘‘lowess’’ function with a smoother span of 0.2 (944 YKOs) and
three iterations for the genome-wide analysis (Figure 1C), and with a
smoother span of 0.4 (40 YKOs) and five iterations for the repeated
analysis (Figure 2). PAM and silhouette plots were performed using
the ‘‘pam’’ and ‘‘silhouette’’ functions from the cluster library.

Dimensional reduction and calculation of phenotypic potential. A
major problem we faced in dealing with a dataset of 220 phenotypes
is removing those phenotypes that might be biologically or physically
redundant. Principal components analysis, a common means by
which to reduce the dimensionality in a matrix (remove redundant
phenotypes), transforms the data to a new coordinate system such
that the greatest variance of any projection of the data lies on the first
coordinate or principal component, the second greatest variance on
the second coordinate, etc. This transformation, however, does not
preserve the directionality or syntax of the initial dataset because the
coordinates are drawn to maximize the overall variance ignoring
whether these values are positive or negative. In other words, loadings
of the initial data into a principal component may be negative. Thus,
a high value in a principal component may represent a high or low
variance in the underlying phenotypes. Because we are interested in

identifying genes that only result in high variance, principal
components analysis was not appropriate, and so we used a strategy
based on clustering instead.

PAM [77] was selected for dimensional reduction because it has
several advantages to k-means clustering with respect to our question:
(1) resultant medoid cluster centers are real phenotypes from our
residuals of standard deviation matrix (rather than difficult-to-
interpret linear combinations of residuals of many phenotypes as in
k-means); (2) using medoids as cluster centers rather than average
cluster centers makes the procedure more robust to outliers; and (3)
an ‘‘average silhouette’’ strategy [78] utilized here allows for
estimation of the appropriate number of distinct clusters.

To estimate the number of nonredundant clusters, the average
silhouette strategy [78] was used: we performed PAM over a range of
20 to 100 clusters and generated silhouette plots for each. We then
plotted the average silhouette width versus the number of clusters
chosen (Figure S2). Although the average silhouette width peaks
around 80 clusters, significant gaps (silhouette widths close to 0) are
more likely to appear in silhouette plots when greater than 70
clusters were chosen, suggesting that noninformative clusters are
added beyond 70. Thus, we estimated 70 nonredundant clusters.
However, using a range of 50 to 80 clusters for PAM to identify
phenotypic capacitors results in an extremely similar set of genes
(Figure S3).

Using the reduced matrix of 4,718 YKOs by 70 phenotype medoids,
we next calculated a single measure of the overall phenotypic
variance resulting from a gene’s deletion, which we term the
phenotypic potential. We generate this score for each YKO by
averaging the top 35 (of 70) residuals of standard deviation. The
rationale for using 35 of 70 medoids is as follows: (1) A gene deletion
that results in a high variance in only one or a few phenotypes does
not meet the pleiotropy requirement of our definition of a
phenotypic capacitor. Thus, we sought YKOs that have both a large
number of high variance phenotypic medoids and high magnitudes in
those medoids (i.e., as many medoids should be averaged as possible
to capture the overall phenotypic potential). (2) Only 24 YKOs result
in high variance (.1 SD) in greater than 35 phenotype medoids, all of
which were subsequently identified as phenotypic capacitors. Thus,
phenotypic potential scores that rely on greater than 35 medoids are
likely to increase noise in the scoring procedure. Although we chose
to score 35 phenotype medoids to identify phenotypic capacitors,
alternative procedures result in an extremely similar set of genes over
a broad range of number of medoids scored (Figure S4).

Estimation of the number of phenotypic capacitors using the FDR.
First, we generated 100 randomized phenotypic medoid by YKO
matrices by permuting elements within each phenotype column of
the original matrix. These 100 matrices are then used to calculate
phenotypic potentials. We then generated a reference distribution by
averaging the top ranking phenotypic potential for each of the 100
trials, the second top ranking phenotypic potential, etc. This
reference distribution was used to estimate the expected false
positive rate under the null hypothesis. At a given expected false
positive rate, the number of true positives was estimated by
subtracting the number of false positives (i.e., expected false positive
rate34,718) from the number of genes in the actual distribution that
have a higher phenotypic potential than the reference distribution
(all positives). The maximum number of true positives occurs at an
expected false positive rate of 0.036 with 333 true positives estimated
for 502 positives (a FDR of 34%).

Cell staining and visualization. YKO magic marker deletion
haploid convertible diploid strains (Open Biosystems) were grown
on YPD agar for ;48 h, spread on GNA (5% D-glucose, 3% Difco
nutrient broth, 1% Difco yeast extract, 2% bacto agar) plates and
grown for 24 h. A single medium-sized colony was added to 5 ml of
sporulation medium (10% potassium acetate, 0.005% zinc acetate þ
UraþHisþLeu) and incubated at 30 8C for 5–7 d. One to 10 ll of the
sporulated cells were spread onto magic media plates (SC-Leu-His-
Arg þ canavanine þ G418) and grown until medium sized colonies
appeared (;20 generations and for no more than 72 h when
possible). Single colonies were frozen at this point for later
processing. Cell stocks were streaked out on YEPD agar and grown
at 30 8C for a maximum of ;48 h when possible (;20 additional
generations). Cells were subsequently grown overnight in 3 ml YEPD
at 30 8C with shaking. Because many of the haploid YKO strains were
expected to include heterogeneous morphologies, direct cell counts
using a hemocytometer were relied upon rather than optical density
readings. Cells were counted, then 1 3 108 cells were added to 20 ml
YEPD and grown for 3–3.5 hrs at 30 8C (early logarithmic phase).

Fixation and straining was performed as described in the
CalMorph manual with modifications (http://scmd.gi.k.u-tokyo.ac.jp/
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datamine/calmorph/). Briefly, cells were fixed in 3.7% formaldehyde,
100 mM potassium phosphate, and triply stained for cell-surface
manno-protein, actin cytoskeleton, and nuclear DNA using fluores-
cein isothiocyanate-Con A (Sigma), rhodamine-phalloidin (Molecular
Probes), and 49, 6-diamidino-2-phenylindole (Sigma), respectively.
Cells were mounted in vectashield (Vector Laboratories), and
visualized by epifluorescent microscopy on a Nikon Eclipse 90i
automated microscope using a 1003 objective and a Roper 1K CCD
camera. For each YKO, a minimum of 40 micrographs was captured
to yield a minimum of 200 (and usually in excess of 300) phenotyped
cells that are not classified as ‘‘complex.’’ Captured micrographs were
analyzed for quantitative morphological traits using the CalMorph
software package. For all YKOs processed, ;50 generations is
estimated to have passed from sporulation to fixation and phenotyp-
ing: ;40 generations on agar plates and ;10 generations in liquid
media. Control strains are defined as those knockouts with a
phenotypic potential that ranked below 1,000 in the original analysis
of the haploid knockout library.

GO enrichment. The full GO term hierarchy was downloaded from
the GO website on May 11, 2007 (http://www.geneontology.org/). To
determine GO process term enrichment, the hierarchy was first
trimmed by removing GO terms that did not annotate three or more
yeast ORFs. Additionally, the highly annotated process GO terms
‘‘physiological process,’’ ‘‘cellular process,’’ ‘‘biological process,’’ and
‘‘cellular physiological process’’ were removed because they are too
general to be meaningful. Trimmed hierarchies resulted in 775
process terms. Significance of GO term enrichment of the 502
putative phenotypic capacitors was calculated using the hyper-
geometric distribution and Bonferroni corrected using the trimmed
hierarchy.

Network parameters. The May 1, 2007 release of interaction data
(BIOGRID-ORGANISM-Saccharomyces_cerevisiae-2.0.27.tab.txt)
was downloaded from the BioGRID (http://www.thebiogrid.org/) [32].

For analysis of physical interactions, two networks were con-
structed from the BioGRID: (1) every physical interaction from the
hand-curated literature citation interaction database was included
(including affinity capture-mass spectrometry, affinity capture-west-
ern, affinity capture-RNA, cofractionation, colocalization, copurifi-
cation, fluorescence resonance energy transfer (FRET), two-hybrid,
biochemical activity, cocrystal structure, far western, protein–
peptide, protein–RNA, reconstituted complex; 5,192 nodes, 70,900
edges); or (2) only interactions from the higher confidence affinity
capture-mass spectrometry (3,686 nodes, 47,774 edges). Because
nearly every gene has been used as bait for the affinity capture-mass
spectrometry network [33,34] and because of the higher consistency
and lower rate of false positives compared to other methods, this
network might represent the most unbiased view of the PPI network.
Thus, this smaller network was used to calculate network properties
of genes such as betweenness and clustering coefficient, to control for
PPIs when estimating other gene properties such as synthetic lethality
and dispensibility, and to estimate the properties of immediate
neighbors in the physical interaction network.

All interactions in the BioGRID annotated with ‘‘Synthetic
Lethality’’ were used to generate the SLI network (2330 nodes,
18,550 edges). Because the SLI network is incomplete, we hand
curated synthetic-lethal entries to create a subset of this network that
only includes interactions derived from SGAs where both genes are
completely functionally compromised and where the experiment
contains ten or more total interactions (1,326 nodes, 11,934 edges).
The subset of genes involved in SLIs discovered in SGA experiments
was further separated into those genes that have been used as ‘‘bait’’
and those that have not, ‘‘prey.’’ Double knockouts for the 267 bait
genes and all other nonessential genes have been performed and thus
the complete SLIs for bait genes have likely been discovered;
however, double knockouts for the 1,060 prey genes have only been
performed with the 267 genes used as bait and thus represent an
incomplete, although likely representative, interaction set. Genes
without any interactions were excluded from the interaction
networks. Betweenness [79] was calculated using the ‘‘betweenness’’
function from the ‘‘sna’’ library in R. The clustering coefficient for
each gene was calculated, as described [80].

Essential genes are those genes that were determined to be essential
in the systematic deletion project [81] except for the following genes
which were deemed nonessential based on subsequent synthetic-
lethal analysis: YJL174W, YJR057W, YLR103C, YOR326W, YPL153C,
YBR234C, YDL102W, YDL029W, YDL017W, YDL003W, YDR052C
[19,82]. Unless otherwise noted, nonessential genes refers to the
4,718 genes that were knocked-out and phenotyped in the high-
dimensional quantitative morphological phenotyping experiment
including any identified phenotypic capacitors [17].

Significance calculation of PPI degree comparison between
capacitors and essential genes. All putative phenotypic capacitors
(those with the top 502 phenotypic potential scores) were compared
to all essential genes by Wilcoxon-Mann-Whitney test using PPI
degrees derived from both the literature citation and mass
spectrometry networks (p , 2.2 3 10�16 and p , 5.2 3 10�13,
respectively). A similar comparison was made using only capacitors in
the C1 and C2 classes (p , 2.0 3 10�6 for the literature citation
network, and p , 7.8 3 10�7 for the mass spectrometry network).

Genome-wide datasets. Genome-wide datasets were acquired from
the following sources: PPIs and SLIs [32], haploid growth rates [37],
heterozygous and homozygous diploid growth rates [38], duplicate
and singleton identity [39], ohnolog identity [45], Ks of duplicate
pairs [39], mRNA length [43], mRNA abundance [83], protein
abundance [84], noise in protein expression in permissive (YEPD)
and restrictive (SD) media [46], Ka/Ks [43,85]. The expression
similarity between duplicate pairs was acquired from Kafri et al.
[39] and was determined using correlations of expression over several
reported expression array experiments (Ran Kafri, personal commu-
nication). The Ka for duplicates resulting from the whole genome
duplication (ohnologs) was calculated as follows: alignments of the S.
cerevisiae ohnologs and an ortholog from Kluyveromyces waltii, a related
species whose divergence precedes the whole genome duplication
event, have been previously performed [86]. Ka was calculated from
these alignments in PAML [87] using the Yang and Nielsen method
[88] with all settings set to default except for ‘‘icode,’’ which was set to
2 to reflect the yeast genome.

Analysis of covariance to control for the effect of expression level
on Ks and Ka. Because Ks and Ka are correlated with the expression
level [43], we performed analyses of covariance (ANCOVAs) to
estimate evolution rate differences. ANCOVAs were performed as
described with modifications [43]. In one case we used Ks instead of
dN, and we used the average mRNA expression level of the two
paralogs as the continuous variable. Only duplicate pairs for which
the expression level of each paralog has been measured were used for
the analysis (Figures S16 and S18).

FDN score. Parameters (such as phenotypic potential, dispens-
ability, physical, or synthetic-lethal degree) for the immediate PPI
neighbors of a given gene were calculated as follows: first, each gene is
given a neighbor score in the parameter by averaging the scores of all
of its neighbors. For example, a gene with three neighbors with
haploid growth rate scores of 0.5, 0.9, and 1.0 will get a neighbor
haploid growth rate score of 0.8. Second, the effect of PPI degree on
the neighbor parameter score is removed by plotting the neighbor
parameter score for each gene versus its PPI degree, fitting a lowess
regression to this plot, and taking residuals of the curve fit as a
measure of the neighbor parameter controlled for the number of
PPIs. Thus, the gene described above with three neighbors and a
neighbor haploid growth rate score of 0.8 will only have a low
neighbor growth rate (and a negative residual) if it is low relative to
other genes with a similar number of PPIs.

Supporting Information

Figure S1. Variance Depends on Mean in a Phenotype-Specific
Manner

Scatter plots of means and standard deviations for 4,718 YKO strains
for nine representative phenotypes. Black circles represent individual
YKOs and red circles represent the lowess curve fit. Phenotype
descriptions and their respective units can be found in the CalMorph
manual (http://scmd.gi.k.u-tokyo.ac.jp/datamine/calmorph/).

Found at doi:10.1371/journal.pbio.0060264.sg001 (11.37 MB PDF).

Figure S2. The Average Silhouette Width Versus the Number of
Clusters Chosen for PAM

Found at doi:10.1371/journal.pbio.0060264.sg002 (438 KB PDF).

Figure S3. Phenotypic Capacitor Identification Is Robust to Changes
in the Number of Clusters

Heatmap of the percent match between the identities of genes with
the top 502 phenotypic potentials using a different number of
clusters for PAM while holding the number of clusters scored
constant at 35.

Found at doi:10.1371/journal.pbio.0060264.sg003 (268 KB PDF).

Figure S4. Phenotypic Capacitor Identification Is Robust to Changes
in the Number of Clusters Scored

Heatmap of the percent match between the identities of the top 502
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phenotypic potentials using 70 clusters for PAM while changing the
number of clusters scored (i.e., the number of top ranked residuals of
standard deviation averaged per YKO). Low percent match is only
seen when comparing to procedures with a low number of clusters
scored. This suggests that genes that cause a high variance in only a few
phenotypes are different from those that cause high variance globally.

Found at doi:10.1371/journal.pbio.0060264.sg004 (618 KB PDF).

Figure S5. Phenotypic Capacitors Are Not Biased toward the Mean
Extremes Where the Lowess Curve Fit Might Be Less Accurate

Scatter plots of means and standard deviations for 4,718 YKO strains
for nine representative phenotypes are shown. YKOs with the top 100
phenotypic potentials are plotted in blue and the lowess curve fit is
plotted in red. All other YKOs are plotted in grey. Phenotype
descriptions and their respective units can be found in the CalMorph
manual (http://scmd.gi.k.u-tokyo.ac.jp/datamine/calmorph/).

Found at doi:10.1371/journal.pbio.0060264.sg005 (11.41 MB PDF).

Figure S6. Identification of Phenotypic Capacitors Is Robust to
General Changes in Procedure

As an alternate procedure to identify phenotypic capacitors that does
not rely on lowess regression or PAM, we calculated phenotypic
potentials using the coefficient of variation (CV) matrix, controlling
for confounding effects of differences in mean phenotype by
eliminating CVs corresponding to mean outliers (described fully in
the Protocol S1). Top ranking genes are similar to those using
procedures described in the main text. Plotted is the percent of genes
identified as phenotypic capacitors (the top 502 scoring genes using
procedures described in the main text) for the top 100, 200, 300, 400,
and 500 scoring genes using the alternative procedure.

Found at doi:10.1371/journal.pbio.0060264.sg006 (169 KB PDF).

Figure S7. The Estimated Number of True Positive Identifications of
a Phenotypic Capacitor Are Plotted Versus the Expected False
Positive Rate under the Null Hypothesis

Described fully in the Materials and Methods.

Found at doi:10.1371/journal.pbio.0060264.sg007 (565 KB PDF).

Figure S8. Phenotypic Capacitor YKOs Have Highly Variable and
Distinct Phenotypes

Representative micrographs of control (A and B) and phenotypic
capacitor (C and D) strains are shown. Cells are stained with FITC-
concanavalin A (green), rhodamine phalloidin (red), and DAPI (blue).

Found at doi:10.1371/journal.pbio.0060264.sg008 (3.63 MB PDF).

Figure S9. Histograms of the Phenotypic Potentials of Control
(Black) and Phenotypic Capacitor (Red) YKOs of Haploid-Converted
Heterozygous Diploid Strains Using Sampling Analysis

Found at doi:10.1371/journal.pbio.0060264.sg009 (119 KB PDF).

Figure S10. Phenotypic Capacitors Have More PPIs than GO
Matched Genes

The average number of physical interactions of phenotypic capaci-
tors in the C1 or C2 classes (blue) versus all nonessential (light grey)
or essential (dark grey) genes annotated within a given GO process
category using all physical interactions in the literature-curated
network of the BioGRID (solid bars) or only affinity-capture mass
spectrometry interactions (diagonal stripes). All p-values are a
comparison to nonessential genes, Wilcoxon-Mann-Whitney test: *,
p , 0.05; **, p , 0.001; ***, p , 1 3 10�5; ****, p , 1 3 10�10.

Found at doi:10.1371/journal.pbio.0060264.sg010 (409 KB PDF).

Figure S11. The Percent of Phenotypic Capacitors in the Set of All
Nonessential Genes as a Function of Binned Affinity-Capture Mass
Spectroscopy PPI Degree (A), SLI Degree (B), or Haploid Growth Rate
(C)

Found at doi:10.1371/journal.pbio.0060264.sg011 (469 KB PDF).

Figure S12. Barplots of Synthetic-Lethal Degree and Growth Rate,
Controlled for the Number PPIs

The lowess regression residual values for each parameter were
calculated and compared (see Protocol S1). Genes that fall into the C1
(dark blue), C2 (blue), or C3 (light blue) classes represent high, mid,
and low confidence phenotypic capacitors, respectively. The abbre-
viations LC, AMS, and SGA refer to networks derived from all
literature-citation interactions, affinity-capture mass spectrometry
interactions, and SGA interactions, respectively. All p-values are a

comparison to nonessential genes, Wilcoxon-Mann-Whitney test: *, p
, 0.05; **, p , 0.001; ***, p , 1 3 10�5; ****, p , 1 3 10�10.

Found at doi:10.1371/journal.pbio.0060264.sg012 (263 KB PDF).

Figure S13. Phenotypic Capacitors Have More Synthetic-Lethal
Interactions Than GO Matched Genes

The average number of SLIs of phenotypic capacitors in the C1 or C2
classes (blue) versus all nonessential (light grey) genes annotated
within a given GO process category using all interactions annotated
in the literature curated BioGRID network (solid bars), interactions
only derived from SGA experiments considering only genes used as
bait (diagonal stripes), and interactions only derived from SGA
experiments considering only genes not used as bait (horizontal
stripes). All p-values are a comparison to nonessential genes,
Wilcoxon-Mann-Whitney test: *, p , 0.05; **, p , 0.001; ***, p , 1
3 10�5; ****, p , 1 3 10�10.

Found at doi:10.1371/journal.pbio.0060264.sg013 (564 KB PDF).

Figure S14. Phenotypic Capacitors Are Less Dispensable Than GO
Matched Genes

The average growth rates of haploid KO (solid bars), heterozygous
diploid KO (diagonal stripes), and homozygous diploid KO (horizon-
tal stripes) strains of phenotypic capacitors in the C1 or C2 classes
(blue) versus all nonessential (light grey) genes annotated within a
given GO process category. All p-values are a comparison to
nonessential genes, Wilcoxon-Mann-Whitney test: *, p , 0.05; **, p
, 0.001; ***, p , 1 3 10�5; ****, p , 1 310�10.

Found at doi:10.1371/journal.pbio.0060264.sg014 (466 KB PDF).

Figure S15. Barplots of All Nonessential Genes (Grey), All
Nonessential Singletons (Light Green), Capacitor Singletons (Light
Blue), All Nonessential Duplicates (Dark Green), Capacitor Duplicates
(Dark Blue), and All Essential Genes (Dark Grey) for Several Genome-
Wide Datasets

The abbreviations LC, AMS, and SGA refer to networks derived from
all literature-citation interactions, affinity-capture mass spectrometry
interactions, and SGA interactions, respectively. All other parameters
are described in the Materials and Methods. Wilcoxon-Mann-Whitney
test: *, p , 0.05; **, p , 0.001; ***, p , 1 3 10�5; ****, p , 1 3 10�10.

Found at doi:10.1371/journal.pbio.0060264.sg015 (623 KB PDF).

Figure S16. Binary Analysis of the Effect of Duplicate Identity on the
Ks between Paralogs

(A) Duplicate pairs that contain at least one capacitor (blue) are more
ancient than nonessential noncapacitor duplicate pairs (light grey, p
, 0.01, ANCOVA).
(B) Duplicate pairs that contain at least one essential gene (dark grey)
are more ancient than nonessential noncapacitor duplicate pairs
(light grey, p , 9.05 3 10�9, ANCOVA).
(C) Essential duplicate pairs (dark grey) are more ancient than
capacitor duplicate pairs (blue, p , 1.03 3 10�8, ANCOVA).

Found at doi:10.1371/journal.pbio.0060264.sg016 (728 KB PDF).

Figure S17. Histograms of the Ks between Paralogs of Duplicate Pairs
That Contain at Least One Capacitor (Blue) or only Nonessential,
Noncapacitor Genes (Grey)

Found at doi:10.1371/journal.pbio.0060264.sg017 (134 KB PDF).

Figure S18. Binary Analysis of the Effect of Duplicate Identity on the
Ka between Ohnologs

(A) Ohnologs that contain at least one capacitor (blue) are plotted
against nonessential noncapacitor ohnologs (light grey, p ¼ 0.99,
ANCOVA).
(B) Ohnologs that contain at least one essential gene (dark grey) are
plotted against nonessential noncapacitor ohnologs (light grey, p ,
0.02, ANCOVA).
(C) Essential ohnologs (dark grey) are plotted against capacitor
ohnologs (blue, p , 0.07, ANCOVA).

Found at doi:10.1371/journal.pbio.0060264.sg018 (620 KB PDF).

Figure S19. Barplots of the First-Degree PPI Neighbors of a Gene
Controlled for the Degree of That Gene for Several Genome-Wide
Datasets (FDN Score, see Materials and Methods)

Colors are nonessential genes (grey), all nonessential singletons (light
green), capacitor singletons (light blue), all nonessential duplicates
(dark green), capacitor duplicates (dark blue), and all essential genes
(dark grey). The abbreviations LC and AMS refer to networks derived
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from all literature citation interactions and affinity-capture mass
spectrometry interactions, respectively. All other parameters are
described in the methods. Wilcoxon-Mann-Whitney test: *, p ,0.05.

Found at doi:10.1371/journal.pbio.0060264.sg019 (827 KB PDF).

Protocol S1. Supplementary Methods

Found at doi:10.1371/journal.pbio.0060264.sd001 (28 KB PDF).

Table S1. S. cerevisiae Genes Ranked by Phenotypic Potential

Found at doi:10.1371/journal.pbio.0060264.st001 (893 KB TXT).

Table S2. GO Process Terms with Significant Enrichment of
Phenotypic Capacitors

Found at doi:10.1371/journal.pbio.0060264.st002 (47 KB TXT).

Table S3. GO Process Terms with Significant Enrichment of
Singleton or Duplicate Phenotypic Capacitors

Found at doi:10.1371/journal.pbio.0060264.st003 (18 KB TXT).
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