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Induced Reverse Transport of Dopamine
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The behavioral effects of psychomotor stimulants such as amphetamine (AMPH) arise from their ability to elicit
increases in extracellular dopamine (DA). These AMPH-induced increases are achieved by DA transporter (DAT)-
mediated transmitter efflux. Recently, we have shown that AMPH self-administration is reduced in rats that have been
depleted of insulin with the diabetogenic agent streptozotocin (STZ). In vitro studies suggest that hypoinsulinemia
may regulate the actions of AMPH by inhibiting the insulin downstream effectors phosphotidylinositol 3-kinase (PI3K)
and protein kinase B (PKB, or Akt), which we have previously shown are able to fine-tune DAT cell-surface expression.
Here, we demonstrate that striatal Akt function, as well as DAT cell-surface expression, are significantly reduced by
STZ. In addition, our data show that the release of DA, determined by high-speed chronoamperometry (HSCA) in the
striatum, in response to AMPH, is severely impaired in these insulin-deficient rats. Importantly, selective inhibition of
PI3K with LY294002 within the striatum results in a profound reduction in the subsequent potential for AMPH to evoke
DA efflux. Consistent with our biochemical and in vivo electrochemical data, findings from functional magnetic
resonance imaging experiments reveal that the ability of AMPH to elicit positive blood oxygen level-dependent signal
changes in the striatum is significantly blunted in STZ-treated rats. Finally, local infusion of insulin into the striatum of
STZ-treated animals significantly recovers the ability of AMPH to stimulate DA release as measured by high-speed
chronoamperometry. The present studies establish that PI3K signaling regulates the neurochemical actions of AMPH-
like psychomotor stimulants. These data suggest that insulin signaling pathways may represent a novel mechanism for
regulating DA transmission, one which may be targeted for the treatment of AMPH abuse and potentially other
dopaminergic disorders.
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Introduction which in turn activates protein kinase B (PKB), also known

as Akt [23,24]. Akt is a central player in insulin and growth

Virtually all major classes of abused drugs share an ability
to enhance dopamine (DA) transmission throughout mid-
brain reward centers [1,2]. Once DA is released into the
synapse, the DA transporter (DAT) is the primary mechanism
for clearing the transmitter from the extracellular space,
particularly within the striatum [3-5]. DAT is a target of
multiple psychomotor stimulants including cocaine, meth-
amphetamine and amphetamine (AMPH) [6]. Dysregulation
of DAT function has been implicated in a wide variety of
neuropsychiatric pathologies, including attention-deficit hy-
peractivity disorder, depression and bipolar disorder [1,7].

DA clearance is dynamically modulated by several signaling
pathways [8-10]. Importantly, recent studies suggest a unique
role for insulin and insulin-like growth factors (e.g., IGF1 and
IGF2) in this modulation [11-14]. Insulin receptors (IRs) and
receptors for IGF1-2 are found on DAT-expressing midbrain
DA neurons [15-18]. Insulin and IGF1-2 receptors function
as receptor tyrosine kinases (RTKs), which have been shown
to regulate the activity of a variety of neurotransmitter
transporters [19-22]. Additionally, RTKs are known to
stimulate phosphotidylinositol 3-kinase (PI3K) signaling,
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factor signaling and a regulator of several cellular functions
including cell growth and apoptosis [25]. Recently, the PI3K/
Akt signaling pathway has been shown to regulate DA
clearance [11] and has been implicated in cocaine sensitiza-
tion [26], alcohol tolerance [27] and opioid dependence [28].
The mechanism underlying the regulation of DA clearance by
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Author Summary

Abuse of psychostimulants such as amphetamine remains a serious
public health concern. Amphetamines mediate their behavioral
effects by stimulating dopaminergic signaling throughout reward
circuits of the brain. This property of amphetamine relies on its
actions at the dopamine transporter (DAT), a presynaptic plasma
membrane protein that is responsible for the reuptake of
extracellular dopamine. Recently, we and others have revealed the
novel ability of insulin signaling pathways in the brain to regulate
DAT function as well as the cellular and behavioral actions of
amphetamine. Here we used a model of Type | diabetes in rats to
uncover how insulin signaling regulates DAT-mediated amphet-
amine effects. We show that by depleting insulin, or through
selective inhibition of insulin signaling, we can severely attenuate
amphetamine-induced dopamine release and impair DAT function.
Our findings demonstrate in vivo the novel ability of insulin
signaling to dynamically influence the neuronal effects of amphet-
amine-like psychostimulants. Therefore, the insulin signaling path-
way, through its unique regulation of brain dopamine, may be
targeted for the treatment of amphetamine abuse.

PI3K seems to rely on DAT trafficking, as Garcia et al. [13]
and Wei et al. [29] recently demonstrated that Akt activity is
critical for sustaining human DAT (hDAT) membrane
expression and function.

In vivo evidence supporting insulin and PI3K signaling
pathways in the control of DA clearance comes from
Patterson et al. [30], who demonstrated that in rats,
hypoinsulinemia induced by food deprivation decreases the
maximum velocity [Vin.x] for DA uptake (with no significant
change in the affinity constant [K,,] for DA), as determined by
rotating disk voltammetry on striatal suspensions. Consis-
tently, the uptake of DA, as determined ex vivo by using
striatal synaptosomes and in vivo by high-speed chronoam-
perometry (HSCA), is severely reduced in rats previously
depleted of insulin with the diabetogenic agent streptozoto-
cin (STZ) [14].

AMPH-like stimulants are actively transported by catechol-
amine carriers such as DAT [6]. As substrates, AMPHs not
only competitively inhibit DA reuptake and thereby increase
synaptic DA, but also promote reversal of transport, resulting
in efflux of DA via the DAT [6]. This efflux results in an
increase in extracellular DA and is believed to be of major
importance for the psychomotor stimulant properties of
AMPHSs [6]. Because insulin and PI3K signaling have been
shown to fine-tune DAT cell surface expression [13,29], it is
possible that inhibition of PI3K signaling in vivo, by reducing
DAT cell surface expression, inhibits AMPH-induced DA
efflux and, hence, its behavioral effects. The ablation of
pancreatic B cells by STZ in rats is a model of insulin
depletion, and as such, we hypothesized that PI3K signaling in
the brain, as well as DAT cell surface expression and possibly
DAT-mediated behavioral effects of AMPH, would be
reduced following STZ pretreatment. In support of our
hypothesis are studies showing that, insulin-depleted, diabetic
rodents have significantly reduced basal locomotor activity
[14,31,32] and are resistant to the motor stimulant properties
of AMPH and other related psychomotor stimulants
[31,33,34]. Likewise, the reinforcing potential of AMPH, as
determined by the daily maintenance of intravenous AMPH
self-administration, is significantly blunted in the STZ model
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of hypoinsulinemia [12]. Therefore, in light of these data, it is
possible that the regulation of AMPH-induced DA efflux—
promoted by insulin and PI3K signaling—is mediated by
changes in DAT cell surface expression.

Here we show that pharmacological manipulation of the
PI3K signaling pathway caused by hypoinsulinemic condi-
tions or selective pharmacological inhibition/activation of
PI3K dramatically regulates the ability of AMPH to evoke
DAT-mediated DA release in the striatum, as determined by
HSCA. Consistently, in hypoinsulinemic rats we observed a
blunting of AMPH-evoked striatal activation measured by
functional magnetic resonance imaging (fMRI). We couple
these findings with biochemical data showing that PI3K/Akt
signaling is reduced under hypoinsulinemic conditions, as is
the cell surface distribution of the DAT within striatum.
Collectively, these data support the novel concept that insulin
signaling—possibly through PI3K and/or Akt—plays a critical
role in DA homeostasis by regulating DA clearance and the
increases in extracellular DA induced by AMPH-like psycho-
motor stimulants.

Results

STZ Markedly Reduces AMPH-Induced DA Release in
Striatum

PI3K signaling, which is stimulated by activation of IRs and
other RTKs [23], plays a critical role in the maintenance of
DA clearance and DAT cell surface expression [11,13,21,35].
Therefore, it is conceivable that PI3K signaling and ultimately
Akt, by fine-tuning DAT expression at the plasma membrane
[13,29], regulate the ability of AMPH to cause DAT-mediated
DA efflux.

To test this hypothesis, we first altered PI3K signaling in
vivo by depleting circulating plasma levels of insulin, a potent
hormonal activator of the PISK/Akt pathway [23,24], using the
antibiotic STZ [36]. We administered a single dose of STZ (65
mglkg) by tail vein injection at least 7 d prior to experiments.
This regimen led to a significant increase in blood glucose
levels: 532 = 39 mg/dl (STZ-treated rats) versus 108 * 21 mg/
dl (untreated controls) (p < 0.001, Students ¢-test; n = 11-12
rats). Radioimmunoassay data from our laboratory suggest
that STZ reduces striatal levels of insulin by at least 50% (M.
Shiota, Vanderbilt Diabetes Center, unpublished data).

Importantly, in striatum—a region that contains abundant
DATSs [37-39] and IRs [15,17,18] and that participates in the
reward pathway [1,2]—STZ treatment inhibited Akt activity.
To assess Akt activity in these studies, we measured its ability
to phosphorylate in vitro GSK3a [29]. As seen in Figure 1,
STZ treatment reduces basal Akt activity, reflected by a
decreased phosphorylation of GSK3a with respect to un-
treated controls. In three independent experiments, STZ
treatment in rats led to a 44 * 16% decrease in Akt activity
measured from striatal synaptosomes (Figure 1B), suggesting
that the STZ treatment significantly downregulates basal
PI3K signaling in striatum.

To verity whether inhibition of PI3K signaling induced by
STZ treatment correlates with changes in AMPH-induced DA
efflux, we used HSCA to measure the release and clearance
kinetics of striatal DA in vivo [14,40]. One week after STZ
treatment (blood glucose: 495 * 31 mgl/dl [STZ-treated rats]
versus 115 = 5 mg/dl [saline-treated controls], p < 0.001,
Students #-test; n = 6), HSCA recordings were carried out. In
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Figure 1. STZ Decreases Akt Activity in Rat Striatum

(A) Representative immunoblots for phosphorylated GSK3a (pGSK3a), a
downstream target of Akt, in either untreated subjects (control) or in
those that received STZ 1 wk before sacrificing the animals.

(B) Quantitation of pGSK3o immunoreactivity conducted in striatal
synaptosomes 7 d after STZ (65 mg/kg, intravenous [i.v.]). The densities
of the pGSK3a bands were normalized to their respective total protein
concentrations (determined by protein assay; 100 pg) and then
expressed as a percentage of control. *p < 0.05, paired Students t-test
(n=3).

doi:10.1371/journal.pbio.0050274.g001

saline-treated rats, ejection of AMPH (400 pM/125 nl) caused
a robust release of DA that was rapidly cleared from the
extracellular space (Figure 2A). In contrast, AMPH elicited
significantly less DA release in STZ-treated rats, and the
released DA was cleared more slowly in these animals (Figure
2A). The slope of the rising portion of the DA signal indicates
the rate of DAT-mediated DA efflux, which is primarily
dependent on the affinity and turnover rate of DA and is
independent of DA content [14,40]. Analysis of the rising
phase of the trace revealed that DA efflux rates in STZ-
treated rats were severely attenuated compared with those of
saline-treated control rats (Figure 2B). STZ-treated rats also
had a significantly lower amount of released DA (Figure 2C).
Furthermore, STZ-treated animals also displayed significant
deficits in DAT-mediated DA clearance, indicated by the
reduced slope of the descending phase of the DA signal
compared to saline-treated rats (Figure 2D). These data
suggest that under hypoinsulinemic conditions, in which
PI3K signaling is diminished, the ability of AMPH to cause
DA efflux is impaired, possibly by decreasing DAT function.

Pharmacological Inhibition of PI3K Signaling in Striatum
Attenuates AMPH-Evoked DA Release

It is possible that factors other than PI3K signaling (e.g.,
altered blood glucose levels) might contribute to the blunted
AMPH-induced DA release caused by STZ treatment. To
address this concern, we selectively inhibited PI3K activity
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within the striatum of naive rats using LY294002 and then
recorded AMPH-induced DA efflux in this region using
HSCA. Figure 3 shows the effect of LY294002 pretreatment
on AMPH-induced DA release. LY294002 (1 mM/125 nl) or
vehicle (artificial cerebrospinal fluid [aCSF] in DMSO) were
infused into the striatum by way of a calibrated micropipette
positioned adjacent to the recording electrode. AMPH (400
pM/125 nl) was infused 0, 45 and 90 min later. The inhibition
of PI3K led to a significant reduction in the ability of AMPH
infusions to induce DA efflux 45 and 90 min after treatment
(Figure 3).

The precise concentration of LY294002 or AMPH that
reaches the recording site is unknown, because it depends on
diffusion through the extracellular matrix [41]. However, it
has been estimated that there is at least a 10-fold dilution in
drug concentration when ejected from a micropipette at a
distance of 300 um from the recording electrode [42], which is
the separation distance that was used in the current studies.
Additional studies from our laboratory suggest that a 10- to
200-fold dilution in drug concentration occurs by the time it
diffuses to the recording electrode [43]. Thus, a barrel
concentration of 400 pM AMPH or 1 mM LY294002 when
pressure-ejected into brain would yield concentrations at the
recording electrode of approximately 2-40 pM or 5-100 pM,
respectively. Previous studies have shown that these concen-
trations of AMPH are consistent with those reported in brain
after systemic administration of a behaviorally effective dose
of AMPH and its derivatives [44,45]. Furthermore, the
concentrations of L.LY294002 are similar to those that are
able to regulate cocaine sensitization [26].

Hypoinsulinemia Reduces DAT Cell Surface Expression in
Striatum

DAT is dynamically regulated at the plasma membrane by a
number of intracellular signals [9,10,46,47], and recent data
have also shown that transporter levels can be regulated by
DA [48], pseudosubstrate stimulants such as AMPH [48,49],
and inhibitors of DAT function such as cocaine [50]. To
evaluate whether the reduction in AMPH-induced DA efflux
caused by hypoinsulinemic conditions is promoted by a
decrease in DAT cell surface expression, we evaluated DAT
levels at the plasma membrane in striatal synaptosomes from
rats made hypoinsulinemic with STZ [13]. As shown in Figure
4, chronic depletion of insulin results in a significant (>40%)
decrease in the level of biotinylated, membrane-associated
DAT within synaptosomes, indicating that DAT cell surface
expression was significantly reduced in hypoinsulinemic rats.
These findings, together with our electrochemical data
(Figures 2 and 3), support the hypothesis that the reduction
in AMPH-induced DA efflux caused by STZ treatment is a
consequence of a reduction in DAT levels on the plasma
membrane and are consistent with the previously reported
blunted behavioral properties of AMPH under hypoinsuline-
mic conditions [12,33,34,51].

Hypoinsulinemia Attenuates AMPH-Induced Blood
Oxygenation Level-Dependent Responses in Striatum
To further explore noninvasively the effect of STZ,
hypoinsulinemia and downregulation of the PI3K signaling
on AMPH-induced DA efflux, we used blood oxygenation
level-dependent (BOLD) fMRI, which is sensitive to fluctua-
tions in blood/hemoglobin oxygenation that closely reflects
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Figure 2. Depletion of Insulin Severely Blunts the Ability of AMPH to Release DA

(A) Shown in the figure are integrated DA oxidation traces from a representative control rat and a STZ-treated rat, obtained using HSCA in the striatum.
AMPH (400 pM/125 nl) was microinjected into the striatum (arrow), and extracellular DA levels were measured.

(B-D) Summary data for HSCA, *p < 0.05, Students t-test for independent samples (n = 6). The slope of the rising portion of the DA signal—
indicating the rate of AMPH-induced DA release—was decreased in STZ-treated rats compared to control (B), as was the amount of released DA (C).
The slope of the descending phase of the DA signal, corresponding to the rate of clearance of AMPH-evoked DA, was also diminished in

hypoinsulinemic rats (D).
doi:10.1371/journal.pbio.0050274.g002

changes in neuronal activity [52,53]. In recent years, fMRI has
proven useful in the study of the neural and pharmacological

properties of psychostimulants within small laboratory
animals [54-60]. Notably, when examined in rodents, BOLD
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Figure 3. Inhibition of PI3K Decreases AMPH-Induced Striatal DA Release

DA concentration was determined by digital integration of in vitro—
calibrated oxidative currents using HSCA recordings in the striatum. The
PI3K inhibitor LY294002 or vehicle (aCSF in DMSO) was microinjected
into the striatum 300 um away from the carbon fiber electrode. AMPH
(400 uM/125 nl) was then ejected 0, 45 or 90 min later. Data represent
peak AMPH-induced DA release expressed as a percentage of vehicle.
Main effect treatment p < 0.005, two-way ANOVA; *p < 0.05, Bonferroni
post hoc (n = 3-4).

doi:10.1371/journal.pbio.0050274.g003
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responses to AMPH are linearly correlated with AMPH-
induced changes in extracellular DA levels within the
striatum [54,55]. In the present study, the BOLD responsive-
ness of the DAT- and IR-rich striatum to AMPH stimulation
in normal and hypoinsulinemic rats was measured at 9.4 T
using T2*-weighted multi-slice gradient echo imaging. Figure
5 shows that STZ-pretreated rats displayed a marked
reduction in striatal activation in response to an acute
exposure to AMPH (3 mg/kg, intraperitoneal [i.p.]). Figure 5A
depicts representative BOLD activation maps from untreated
control versus STZ-treated animals, each co-registered to
high-resolution anatomic templates acquired in the same
animals. Compared to untreated control rats given acute
saline, those receiving AMPH exhibited significant BOLD
activation in the dorsolateral striatum. However, this re-
sponse was absent in rats rendered hypoinsulinemic by STZ
treatment.

To quantify the effects of hypoinsulinemia on the striatal
BOLD signal we performed region-of-interest (ROI) analysis
of dorsolateral portions of this structure, which is predom-
inantly innervated by the substantia nigra compacta and
where t-maps indicated strong AMPH-evoked BOLD activa-
tion that was sensitive to insulin depletion. Figure 5B-5D
summarizes the results of this analysis across groups of
subjects (n = 5-6 per treatment group). When compared to
treatment with saline, AMPH-treated animals exhibited a
strong BOLD signal increase above baseline in the dorso-
lateral striatum. In contrast, there was no significant AMPH-
induced BOLD signal change from baseline in STZ-pre-
treated, insulin-depleted rats (Figure 5B). In Figure 5C, post-
injection traces from animals within each of the four
treatment conditions described in Figure 5A and 5B were
integrated and compared using one-way analysis of variance
(ANOVA): Fss, = 3.30, p < 0.05. Multiple comparisons
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Figure 4. Cell Surface DAT Expression within Striatum Is Reduced in STZ-
Treated Rats

(A) Representative immunoblots for biotinylated (surface) and total DAT,
in either untreated subjects (control) or in those that received
streptozotocin (STZ). (B) Quantitation of DAT immunoreactivity from
immunoblotting as in panel A conducted in striatal synaptosomes 7 d
after STZ (65 mg/kg, i.v.). Biotinylated proteins (30 pg), representing 10%
of the total lysate (300 pg protein) were separated by SDS-PAGE and
underwent immunoblotting with a DAT-specific antibody; samples
containing total lysates were run on adjacent lanes. Each biotinylated
DAT band density was normalized to that of its corresponding total DAT
band. Surface-to-total DAT ratios were then expressed as a percentage of
control. *p < 0.05, Students t-test for independent samples (n = 3).
doi:10.1371/journal.pbio.0050274.9g004

between group pairs were conducted post hoc using the
Newman-Keuls test: p < 0.05 compared to “Baseline, *Saline
and “Untreated Control. ROI analysis of the ventral striatum
(nucleus accumbens, NAc), which is innervated by the ventral
tegmental area (VTA), revealed that the BOLD response to
AMPH challenge did not significantly differ between STZ-
treated and control animals (unpublished data). Likewise,
prelimbic and cingulate cortices, also innervated by the VTA
and where the norepinephrine transporter is the predom-
inant carrier supporting DA inactivation [61], failed to show
significant differential AMPH-induced BOLD responses after
STZ (unpublished data).

Intrastriatal Insulin Infusion Restores AMPH Action and
DAT Function in STZ-Treated Animals

To further elucidate the links between the PI3K signaling
pathway, DAT function and AMPH action, we activated the
PI3K pathway pharmacologically within the striatum of STZ-
treated, hypoinsulinemic animals by locally infusing insulin
just before the delivery of a brief AMPH pulse in this region.

i(E). PLos Biology | www.plosbiology.org
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One week after depleting insulin with STZ treatment, local
(striatal) application of exogenous insulin (10uM/100 nl) 2
min before AMPH infusion (400 pM/125 nl) almost fully
restored to control levels the rate and the amount of AMPH-
evoked DA release (Figure 6A and 6B), as well as the rate of
DAT-mediated clearance (Figure 6C). These data further
support our hypothesis that PI3K signaling is crucial for
AMPH to stimulate DA efflux.

Discussion

In recent years, the PI3K/Akt signaling pathway has been
heavily implicated in the development, progression and
maintenance of drug dependence [26-28]. Regulation of
DAT plasma membrane expression (and subsequently of
extracellular DA) by PI3K signaling is emerging as an
important mechanism linking neurotransmitter transporter
function to psychomotor stimulant abuse [11,13]. Profound
adaptations within the neuronal dopaminergic system occur
in experimentally induced diabetic mice [51]. Compared to
controls, STZ-treated hypoinsulinemic rats display a marked
reduction in striatal DA clearance [14,30] and are resistant to
the behavioral effects of AMPH [12,33,34,51]. In experimen-
tally induced diabetic rats (i.e., alloxan-treated), AMPH
administered acutely is less effective at producing anorexia
and stereotyped behavior and at increasing locomotor
activity; subsequent administration of insulin reverses this
attenuated sensitivity to AMPH [33]. Importantly, Galici et al.
[12] showed that there is a selective decrease in AMPH self-
administration in diabetic rats, consistent with data showing
that dopamine uptake is decreased in hypoinsulinemic rats
[14,30]. Considering that the striatum is highly enriched in
insulin [17,62] and IRs [15,17,18], as well as in DAT [37-39],
these studies strongly support a role for the neuronal PI3K
pathway in regulating DAT activity and extracellular DA
levels, as well as in the actions of AMPH.

The link between the PI3K pathway and the actions of
AMPH is further fortified by recent studies from our
laboratory as well as others, showing that prolonged exposure
to AMPH ex vivo and in vivo inhibits PI3K signaling, as
measured by Akt activity in striatum [29,63]. Akt is a protein
kinase that is immediately downstream of PI3K, and Akt
activity has been shown to be essential for insulin modulation
of transporter function in striatal synaptosomes and human
DAT-expressing cells [11,13]. Indeed, insulin signaling in-
creases DA uptake capacity and cell surface expression
[11,13]. In contrast, in vitro inhibition of either PI3K or Akt
causes a decrease in DA uptake capacity and a redistribution
of DAT away from the plasma membrane [11,13].

Here we demonstrate in vivo that hypoinsulinemia and
pharmacological inhibition of PI3K signaling reduces the
ability of AMPH to evoke DA efflux in the striatum. The
reduction in DA efflux determined by HSCA in the current
studies may result either from a decreased DAT plasma
membrane expression, as suggested by in vitro [11,13] and ex
vivo [14,30] studies, from a diminished DA content [64], or
from both. Our data suggest that it is unlikely that the
reduced DA efflux is a consequence of changes in tissue DA
content. This is because the analysis of the rising phase of the
HSCA traces revealed that the rate of AMPH-induced DA
efflux in STZ-treated rats was severely attenuated compared
with that of saline-treated control rats (Figure 2B). In fact, the
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Figure 5. AMPH-Induced Striatal BOLD fMRI Responses Are Attenuated in STZ-Treated Rats

(A) t-thresholded statistical maps (p < *0.05 to p < *0.0001; uncorrected comparisons of 15-min baseline period versus 15-min post-injection period)
were constructed from subjects that best represent the BOLD signal activation within the DAT- and IR-enriched dorsal striatum. BOLD signal changes in
response to saline (left panels) versus acute AMPH (right panels) within untreated control rats (top panels) versus STZ-treated rats (bottom panels).
Compared to drug-naive animals given saline, AMPH [3 mg/kg, i.p.] elicited considerable BOLD activation in the dorsal striatum. This response was
absent in drug-naive, STZ-pretreated hypoinsulinemic rats (arrow).

(B) ROI analyses of striatal BOLD fMRI data for all subjects individually for each of the four treatment conditions in Panel A (n = 5-6).

(O) Integration of fMRI time series data reveals significant group differences in BOLD activation within the dorsal striatal ROls. One-way ANOVA (F; 56 =
2.83, p < 0.05); Newman-Keuls (p < 0.05 compared to Baseline*, Saline+ and Control#).

(D) Three-dimensional stereotaxic orientation of the striatal ROIs (1.88 X 1.88 X 1 mm) analyzed in (B and C). Shown at the bottom of each slice—
representing axial, sagittal and coronal orientations—are the corresponding stereotaxic coordinates for the ROIs [68].
doi:10.1371/journal.pbio.0050274.g005

slope of the rising portion of the DA signal represents the
rate of DAT-mediated DA efflux, which is primarily depend-
ent on the affinity and turnover rate of DA and is
independent of DA content [14,40]. In addition, DA clearance
as measured by HSCA that is independent of DA content but
dependent on DAT number at the plasma membrane is
reduced in STZ-treated animals [14]. STZ treatment does not
significantly influence total DAT number or DA affinity
[12,14]. Thus, the current findings suggest that a reduction in
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insulin signaling leads to a decrease in DAT function, a
notion supported by the previous study from Owens et al. [14]
showing that AMPH-naive, STZ-treated rats exhibit signifi-
cantly less DA uptake in striatum as determined in vivo with
HSCA and ex vivo in synaptosomes. Collectively these data
support the hypothesis that hypoinsulinemia, by down-
regulation of PI3K signaling (see Figure 3), significantly
reduces AMPH-induced DA efflux because of reduced DAT
plasma membrane expression.
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Figure 6. Local Infusion of Insulin Restores AMPH-Evoked DA Release in
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Summary data for HSCA (n =5-7). When measured in the dorsal striatum

and compared to saline-treated control subjects, STZ-induced depletion

of insulin (STZ) resulted in a significant reduction in the rate of DA efflux

in response to local injection of AMPH (400 uM/125 nl; (A) as well as a
decrease in the maximum amount of released DA (B) and the rate of DA
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clearance (C) with respect to control. These findings provide a replication
of those shown in Figure 2 in a separate cohort of rats. In contrast, when
exogenous insulin (10 uM/100 nl) is locally applied in STZ animals 2 min
prior to AMPH (STZHns), all three of these electrochemical parameters
are normalized to levels approximating control. One-way ANOVA (F; 4=
2.46; p < 0.05); Mann-Whitney (p < 0.05 compared to Control* and
STZ+HIns#).

doi:10.1371/journal.pbio.0050274.g006

In support of the current in vivo electrochemical and ex
vivo biochemical findings, STZ treatment was also found to
inhibit the ability of AMPH to induce a BOLD response in the
dorsal striatum. The current study did not reveal significant
differences in insulin-dependent, AMPH-induced BOLD
signal fluctuations in the NAc (unpublished data). Possibly,
this was due to the limited radio frequency penetration of the
surface coil used in this study into more ventral brain areas
such as the NAc. Importantly, others have reported decreases
in AMPH-induced DA release in NAc dialysates collected in
freely moving rats [65]. Because hyperglycemia has been
shown to not significantly influence BOLD signals [66], our
data suggest that blunting of the AMPH-induced BOLD
response in the DAT-dense striatum of insulin-depleted rats
(Figure 5) is not due to STZ-mediated metabolic abnormal-
ities. Importantly, in the striatum, the AMPH-induced BOLD
response has been shown to correlate with striatal extrac-
ellular DA levels [54,55] and, consequently, with DAT-
mediated reverse transport of DA. These data further support
our hypothesis that STZ treatment, by decreasing PI3K
signaling in striatum, downregulates AMPH-induced DA
efflux measured by HSCA (Figures 2, 3 and 6) and fMRI
(Figure 5). Our results are consistent with in vitro studies
demonstrating that the blockade of insulin signaling de-
creases the number of active DATs on the plasma membrane
[13] as we currently demonstrate in DAT cell surface
biotinylation studies from striatal preparations (Figure 4).
These data support the hypothesis that the attenuated rate of
AMPH-induced striatal DA efflux in hypoinsulinemic rats
results from a DAT trafficking phenomenon [14]. Conceiv-
ably, in STZ-treated animals, insulin stimulation of PI3K
signaling should restore DA clearance and AMPH-induced
DA efflux. Figure 6 shows that local application of insulin in
STZ-treated rats almost completely restores AMPH-stimu-
lated DA efflux.

We demonstrate here that PI3K signaling regulates the
pharmacological actions of drugs (e.g., AMPH) that act on
dopaminergic systems. Importantly, our data show that
hypoinsulinemia reduces basal PI3K signaling and impairs
the ability of AMPH to increase extracellular DA levels.
Therefore, PI3K signaling may provide a new cellular target
for the development of novel treatments of AMPH abuse and
regulation of dopaminergic tone.

Materials and Methods

STZ treatments. All procedures were approved by the Vanderbilt
University Medical Center and the University of Texas Health Science
Center at San Antonio Institutional Animal Care and Use Commit-
tees and were conducted according to the National Institutes of
Health Guide for the Care and Use of Laboratory Animals. For all
experiments, male Sprague-Dawley (Harlan, Indianapolis, Indiana,
United States) rats (275-350 g) served as experimental subjects. STZ is
an antibiotic that destroys the insulin-secreting B cells of the
pancreas [36] and has previously been used to induce chronic
hypoinsulinemia in rats by our laboratories [12,14]. STZ (Sigma-
Aldrich; http://lwww.sigmaaldrich.com) was freshly dissolved in ice-
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cold 100 mM citrate saline (pH 4.5) for all studies. Rats received STZ
(50 mglkg, i.p. for HSCA studies; 65 mg/kg into the tail vein for fMRI
studies) and were returned to their home cages for at least 7 d. Blood
glucose was measured with a glucometer (Advantage Accu-Chek,
Roche Diagnostics; http://www.roche.com) before STZ and just before
an experiment. Animals were considered hypoinsulinemic when their
glucose levels exceeded 300 mg/dl.

Synaptosome preparation. Preparation of synaptosomes was
performed as described previously [11,12,14]. Rats were killed by
decapitation, their brains were removed and their striata were
rapidly dissected on a plastic dish placed on ice. Tissue was
homogenized in ice-cold Krebs-Ringer buffer (125 mM NaCl, 1.2
mM KCI, 1.2 mM MgSOy, 1.2 mM CaCly, 22 mM NaHCOs, 1 mM
NaHyPO,, 10 mM glucose, pH 7.4) containing 0.32 M sucrose using a
glass-Teflon homogenizer. Homogenates were centrifuged at 1,000g
for 10 min at 4 °C, and the resulting supernatants were centrifuged at
16,000g for 25 min at 4 °C. P2 pellets were then placed on ice and
resuspended immediately prior to experiments.

Assay of Akt activity. Akt activity assays were performed as
described previously [29]. Striatal synaptosomes were lysed for 45 min
at 4°C in a buffer containing 20mM Tris (pH 7.5), 150 mM NaCl, 1 mM
EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium pyrophos-
phate, 1 mM B-glycerolphosphate, 1 mM NazVOy, 1 pg/ml leupeptin
and 1 mM PMSF. Lysed proteins (~400 pg; BioRad DC Protein Assay
Kit; http:/lwww.biorad.com) underwent immunoprecipitation with an
Akt-specific monoclonal antibody as part of a commercially available
Akt activity assay kit (BioVision; http:/lwww.biovision.com). Activity of
the immunoprecipitated Akt was determined in vitro with the
addition of recombinant GSK3a as the kinase substrate; the resulting
phosphorylated GSK3a (pGSK3a) was determined by immunoblot-
ting (see below) using phosphospecific antibodies to GSK3a (Ser 21,
diluted 1:1000), provided in the Akt activity assay kit.

Biotinylation of cell surface DAT. Biotinylation studies were
performed as described previously [13,48,49] with modification.
Striatal synaptosomes were washed twice with warm Krebs-Ringer
bicarbonate (KRB) buffer (containing 145 mM NaCl, 2.7 mM KCI, 1.2
mM KHoPOy, 1.2 mM CaCls, 1.0 mM MgCl,, 10 mM glucose, 0.255
mM ascorbic acid, and 24.9 mM NaHCO3) and then incubated in the
same buffer for 1 h at 37 °C. The reaction was stopped in ice and the
samples were washed with phosphate-buffered saline ( PBS) contain-
ing 0.1 mM CaCly and 1 mM MgCl, (PBS-Ca-Mg) and incubated with
EzLink Sulfo-NHS-SS-Biotin (2.0 mg/ml in PBS-Ca-Mg; Pierce
Chemical; http:/lwww.piercenet.com) on ice for 30 min. The reaction
was quenched by washing twice with 4 °C PBS-Ca-Mg containing 100
mM glycine (PBS-Ca-Mg-glycine) followed by an incubation with PBS-
Ca-Mg-glycine for 15 min on ice. Synaptosomes were then washed
twice with cold PBS-Ca-Mg before lysis with 1 ml of radioimmuno-
precipitation assay (RIPAE) buffer (10 mM Tris pH 7.4, 150 mM NaCl,
1 mM EDTA, 0.1% SDS, 1% sodium deoxycholate and 1% Triton X-
100) containing protease inhibitors (0.5 mM phenylmethylsulfonyl
fluoride, 5 ug/ml leupeptin and 5 pug/ml pepstatin) for 1 h 30 min on
ice with agitation. Lysates were then centrifuged at 14,000g for 30 min
at 4 °C. After isolation of supernatants, biotinylated proteins were
separated by incubation with 90 pl ImmunoPure immobilized
streptavidin beads (Pierce) for 1 h at room temperature with
agitation. Beads were washed three times with RIPAE buffer;
biotinylated proteins were then eluted in 50 pl of 2X SDS-PAGE
sample loading buffer at room temperature. Total cell lysates (~300
ug protein) and the biotinylated (cell surface) fraction (~10% of
total; 30 pg protein) underwent immunodetection for DAT as
described below.

Immunoblot detection of DAT. Determination of biotinylated DAT
immunoreactivity was conducted with some modification according
to previously described methods [13,29]. Briefly, synaptosomal lysates
were separated by SDS-PAGE, and resolved proteins were transferred
to polyvinylidene difluoride (PVDF) membranes (BioRad), which were
incubated for 1-2 h in blocking buffer (5% dry milk and 0.1% Tween
20 in Tris-buffered saline). To quantify biotinylated (surface) DAT,
immunoblots were incubated with mouse monoclonal primary
antibodies to the N terminus of the rat DAT (antibody 16, 1:1000,
[67]), generously provided by Roxanne Vaughan (University of North
Dakota School of Medicine and Health Sciences, Grand Forks, North
Dakota, United States). All proteins were detected using HRP-
conjugated goat anti-mouse secondary antibodies (1:5000; Santa Cruz
Biotechnology; http:/lwww.scbt.com). After chemiluminescent visual-
ization (ECL-Plus; Amersham; http://www.amersham.com) on Hyper-
film ECL film (Amersham), protein band densities were quantified
(Scion Image; http:/lwww.scioncorp.com) and normalized to the
appropriate total protein amount. Immunoblotting experiments
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were performed in triplicate, analyzed (GraphPad v4.0; http:/lwww.
graphpad.com) and reported as mean * standard error of the mean.

HSCA. HSCA was conducted using the FAST-12 system (Quanteon;
http:/lwww.quanteon.cc) as previously described with some modifica-
tion [14]. Recording electrode/micropipette assemblies were con-
structed using a single carbon-fiber (30 pum diameter; Specialty
Materials; http://www.specmaterials.com), which was sealed inside
fused silica tubing (Schott, North America; http://www.schott.com).
The exposed tip of the carbon fiber (150 pm in length) was coated
with 5% Nafion (Aldrich Chemical Co.; htpp:/flwww.sigmaaldrich.com;
3-4 coats baked at 200 °C for 5 min per coat) to provide a 1000-fold
selectivity of DA over its metabolite dihydroxyphenylacetic acid
(DOPAC). Under these conditions, microelectrodes displayed linear
amperometric responses to 0.5-10 uM DA during in vitro calibration
in 100 mM phosphate-buffered saline (pH 7.4).

Animals were anesthetized with injections of urethane (850 mg/kg,
i.p.) and a-chloralose (85 mg/kg, i.p.), fitted with an endotracheal tube
to facilitate breathing, and placed into a stereotaxic frame (David
Kopf Instruments; http://www.kopfinstruments.com). To locally deliv-
er test compounds (see below) close to the recording site, a glass
single or multi-barrel micropipette (FHC; http:/lwww.fh-co.com) was
positioned adjacent to the microelectrode using sticky wax (Moyco;
http:/lwww.moycotech.com). The center-to-center distance between
the microelectrode and the micropipette ejector was 300 pm. For
experiments in Figure 2, the micropipette was filled with AMPH (400
uM; Sigma) or its vehicle (PBS). The study in Figure 3 used a
multibarrel configuration in which barrels contained AMPH (400 pM)
or vehicle (aCSF) and additional barrels contained 1.Y294002 (1 mM;
Sigma) or its vehicle (aCSF in DMSO). For experiments in Figure 6,
one barrel contained AMPH (400 pM) and an adjacent barrel
contained insulin (10 pM; Sigma); a third barrel contained aCSF,
the vehicle for both AMPH and insulin. The electrode/micropipette
assembly was lowered into the striatum at the following coordinates
(in mm from bregma [68]): A/P, +1.5; M/L,, =2.2; DIV, —38.5 to —5.5. The
application of drug solutions was accomplished using a Picospritzer 11
(General Valve Corporation; http://www.parker.com) in an ejection
volume of 100-150 nl (5-25 psi for 0.25-3 s). After ejection of test
agents, there is an estimated 10-200-fold dilution caused by diffusion
through the extracellular matrix to reach a concentration of 2-40 pM
(AMPH), 5-100 pM (LY294002) or 0.05-1 pM (insulin) at the
recording electrode [43]. To record the efflux and clearance of DA
at the active electrode, oxidation potentials—consisting of 100-ms
pulses of 550 mV, each separated by a 1-s interval during which the
resting potential was maintained at 0 mV—were applied with respect
to an Ag/AgCl reference electrode implanted into the contralateral
superficial cortex. Oxidation and reduction currents were digitally
integrated during the last 80 ms of each 100-ms voltage pulse. For
each recording session, DA was identified by its reduction/oxidation
current ratio: 0.55-0.80.

At the conclusion of each experiment, an electrolytic lesion was
made to mark the placement of the recording electrode tip. Rats were
then decapitated while still anesthetized, and their brains were
removed, frozen on dry ice, and stored at —80°C until sectioned (20
um) for histological verification of electrode location within the
striatum. HSCA data were analyzed with GraphPad Prism using three
signal parameters (see Figure 2A for exemplary trace): (i) the DA
efflux rate (in nMIs), which is the change in DA oxidation current
evoked by AMPH application as a function of time; (ii) the maximal
signal amplitude of the released DA (in pM); and (iii) the DA
clearance rate (in nM/s), defined as the slope of the linear portion of
the current decay curve, ie, from 20-60% of maximal signal
amplitude.

fMRI. Under isoflurane anesthesia, rats were implanted with
femoral artery and i.p. catheters, tracheotomized and artificially
ventilated with a 30:70% O9:NoO mixture. Rats were paralyzed with a
bolus infusion of pancuronium bromide (2 mg/kg; Sigma) dissolved in
isotonic saline (1 ml/kg, i.p.), and the concentration of isoflurane was
reduced to 0.88%. Ventilation parameters were adjusted (respiratory
rate = 48-52 breaths/min; inspiration volume 14-18 cm HsO) to
maintain stable blood gases, which were sampled from the arterial
catheter immediately before and after the completion of MRI scans.
Mean arterial gas values obtained from all 23 rats used in fMRI
studies were: pH = 7.36 = 0.06, pCO, = 37.7 = 6.8 mm Hg, pOy =
140.5 = 20.6 mm Hg. A respiration pillow sensor (SA Instruments;
http:/lwww.i4sa.com) was positioned underneath the animal’s abdo-
men. Core body temperature and heart rate were monitored during
imaging studies using a rectal probe and subdermal electrocardio-
graph (ECG) electrodes implanted into the forepaws. Temperature,
ECG and respiratory data were collected and analyzed using an MR-
compatible monitoring system (SAM-PC, SA Instruments).
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To minimize motion artifacts, rats were positioned within a
custom-built plexiglass stereotaxic platform and fixed in place with
Teflon ear bars and an adjustable incisor bar. Attached to the
platform was a socket holding a 20-mm dual transmit-receive radio
frequency surface coil (Varian Instruments; http://www.varianinc.
com) lowered to 1 mm above the scalp. The platform was then placed
inside a 9.4 T, 21-cm bore Varian Inova superconducting magnet
equipped with actively shielded gradients of 40 G/cm and peak rise
times of 135 us. The MRI system was controlled by a Varian console
interfaced with a Sun Microsystems computer running VnmzJ 6.1D
software (Varian). Nine contiguous coronal slices, serving as within-
subject high-resolution anatomic templates, were acquired using
conventional gradient echo multi-slice (GEMS) imaging. Seventy-two
functional image volumes, spatially aligned with the anatomic
templates, were then continuously acquired for 30 min using the
following GEMS parameters: TR/TE =220/12 ms; flip angle =20°; NEX
= 2; slice thickness = 1 mm; in-plane voxel resolution = 0.47 X 0.47
mm; matrix = 64 X 64; FOV = 30 X 30 mm; acquisition time = 25.6 s
per excitation. After a 15-min baseline period, AMPH dissolved in
isotonic saline was administered as a bolus i.p. infusion (3 mg/ml/kg;
20-30 s); image acquisition continued uninterrupted for 15 min after
the infusion.

Analysis of fMRI data was conducted in MATLAB (v7.0.4; The
MathWorks; http:/lwww.mathworks.com) as described previously, with
some modification [69]. Data were first analyzed to generate statistical
parametric activation maps based on the Student’s #-test. ¢ values
were computed for each image voxel by comparing the baseline
signal to the post-injection signal. For each subject, colorized ¢ values
from each image voxel were registered to a high-resolution anatomic
template obtained in the same subject. ROI analyses were conducted
over the dorsolateral striatum, the ventral striatum (NAc) and
prelimbic/cingulate cortices based on 1-mm-thick coronal slices
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