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Tissue development is regulated by signaling networks that control developmental rate and determine ultimate tissue
mass. Here we present a novel computational algorithm used to identify regulatory feedback and feedforward
interactions between progenitors in developing erythroid tissue. The algorithm makes use of dynamic measurements
of red cell progenitors between embryonic days 12 and 15 in the mouse. It selects for intercellular interactions that
reproduce the erythroid developmental process and endow it with robustness to external perturbations. This analysis
predicts that negative autoregulatory interactions arise between early erythroblasts of similar maturation stage. By
studying embryos mutant for the death receptor FAS, or for its ligand, FASL, and by measuring the rate of FAS-
mediated apoptosis in vivo, we show that FAS and FASL are pivotal negative regulators of fetal erythropoiesis, in the
manner predicted by the computational model. We suggest that apoptosis in erythroid development mediates robust
homeostasis regulating the number of red blood cells reaching maturity.
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Introduction

During development, progenitors undergo orderly differ-
entiation through a series of maturation steps. The resulting
number of fully differentiated progeny is precisely regulated
to match physiologic and developmental needs, and is
relatively resistant to environmental or gene-dose fluctua-
tions [1,2]. This precise quantitative regulation of tissue
development has been attributed to signaling interactions
between cells within the tissue microenvironment [3,4]. Some
of these interactions may be autoregulatory, taking place
between progenitors of the same lineage. Although elucidat-
ing such regulatory intercellular networks is crucial to our
understanding of development, little effort has been dedi-
cated to the development of computational algorithms that
would allow their reconstruction in a structured fashion.
Here we propose such an algorithm and apply it to the
intercellular network regulating progenitors of the non-
nucleated red cell lineage (definitive, or adult-type, eryth-
ropoiesis), which first develops in the mouse fetal liver
between embryonic day 12 (E12) and E15 [5]. The rapid
production of red cells at this stage is dependent on the
hormone erythropoietin (EPO) [6–8] and is essential for
embryo survival, as shown by the death, between E13 and E15,
of a number of mouse mutants defective for the formation of
this lineage [6,9–13]. In addition to EPO, multiple soluble
factors as well as direct intercellular interactions within the
erythroid microenvironment have been implicated as poten-
tial erythroid regulators [14–18]. However, it is not clear how
this plethora of candidate regulators is integrated into a
coherent intercellular signaling network. Here we aimed to
develop an algorithm that would identify the principal
regulatory intercellular interactions that affect erythroid
progenitors and that ultimately determine erythropoietic
tissue mass and developmental rate. The underlying assump-
tion of this analysis is that cells obey certain input–output

relationship functions converting external signals into the
probability of transition into the next developmental state.
An efficient identification of the main components of a

regulatory developmental network requires quantitative
measurements in developing tissue, in conjunction with
mathematical modeling. The quantitative study of erythro-
poiesis was made possible recently by the development of a
flow-cytometric assay that defines differentiation-stage-spe-
cific erythroblast subsets in erythropoietic tissue in vivo [19].
This assay allowed us to measure the dynamic changes in the
frequency of these cells as they appear and differentiate in
fetal liver. We then sought to develop a mathematical
algorithm that would identify the principal intercellular
interactions between erythroblasts during this developmental
process.
A variety of mathematical tools have been employed

recently to reconstruct regulatory intracellular networks
from experimental datasets. These include statistical corre-
lation techniques, such as Bayesian inference, used to model
gene expression (e.g., in [20,21]) and signal transduction
networks [22–24], or differential-equation-based models, used
to reconstruct biochemical, gene expression, and signaling
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networks [25–29]. Most of these mathematical approaches
aim to identify a model that best represents a biological
network, often by first defining a space of all possible models,
and then ranking these models based on their ability to fit the
experimental data. Alternatively, though less frequently,
algorithms seek to rank individual links within a network,
without making definitive statements about the underlying
network itself. Unfortunately, many of the currently used
network reconstruction algorithms place important limita-
tions on the state or structure of the network under analysis.
For example, models based on ordinary differential equations
(ODEs) frequently assume that the network is in steady state.
Traditional Bayesian approaches impose limitations on net-
work structure since they only allow networks devoid of cycles
or feedback links. Although dynamic Bayesian approaches
can overcome this limitation by using sufficiently frequent
sampling of the network states, it may nevertheless be
difficult to apply such approaches to developmental net-
works, which are dynamic, are far from equilibrium, and
might not allow frequent sampling.

In this study, we developed a novel algorithm that focuses
on identifying the principal intercellular interactions be-
tween erythroblasts, without necessarily determining the
complete regulatory developmental network. Rather than
ranking models representing the whole network, we ranked
the network links: individual feedforward or feedback
interactions between erythroblasts arising in developmental
time course. To operate under relative scarcity of the initial
experimental data and to increase the confidence in the
ultimate results, interactions were ranked based on several
criteria, including their ability to endow the network with
robustness to small perturbations of the strength of the
network links. We selected robustness as one of the ranking
criteria since many biological processes are found to be

relatively resistant to small exogenous perturbations [4,30–
33].
Our proposed algorithm contains several steps. The first

consists of the acquisition of biological data describing the
developmental process, in terms of time-dependent changes
in developmental markers. In the second step the devel-
opmental process is defined in terms of a series of discrete
states. In the third step, a generalized model is constructed,
describing how regulatory interactions between cells in
different states may be responsible for the time-dependent
changes that are observed experimentally. In the fourth step,
different model networks, or topologies, are generated, based
on the generalized model developed in the previous step. In
the fifth step, the goodness of fit and robustness properties
associated with each model network are characterized, as well
as the values of model parameters and the ability of each
parameter to influence the model fit. In the sixth step, likely
feedback and feedforward interactions are identified, based
on whether they occur in the model networks that are more
robust to parameter variation and that show better fit to the
experimental data. In the seventh step, we identify candidate
molecules that may regulate the biological process and
mediate the interactions predicted by the algorithm. In the
final step we examine quantitatively the role of these
candidate molecules during the developmental process in
wild-type mice and in relevant mutant mice, in order to
ascertain that their function indeed matches that predicted
by the algorithm.
Application of this algorithm to fetal erythropoiesis

identified a negative autoregulatory interaction, between
erythroblasts of similar maturation stage, as highly significant
in the homeostatic regulation of erythroid development. We
show that this interaction is exerted through the death
receptor FAS and its ligand, FASL.

Results

Definition of Developmental States in Fetal Liver, Based
on Expression of CD71 and Ter119
Fetal liver between E12 and E15 is primarily an erythro-

poietic tissue, although it also contains a small minority of
non-erythroid cells. We divided all fetal liver cells, both
erythroid and non-erythroid, into four developmental states,
and then measured the relative frequencies of cells in each
state as a function of time in the following manner. We used a
recently developed flow-cytometric assay that makes use of
the cell-surface markers CD71 (also known as TFRC) and
Ter119 (also known as LY76) to identify differentiation-stage-
specific erythroblasts in erythropoietic tissue [19]. Ter119 is
an erythroblast-specific epitope, first expressed at the
proerythroblast stage and throughout subsequent maturation
[34,35]. The transferrin receptor, CD71, is expressed at high
levels in proerythroblasts and is gradually down-regulated
with differentiation [36]. Two-dimensional flow-cytometry
histogramsof fetal liver at the onset of erythropoiesis (Figure 1)
show that cells accumulate in distinct regions of the CD71/
Ter119 expression ‘‘space.’’ Based on this and on morpho-
logical and other criteria, we divided fetal liver cells into four
states, with progression from state 1 to 4 representing a
developmental sequence (Figure 1; Protocol S1, section 1.1;
[19,37]). State 1 cells express moderate levels of CD71 and are
negative for Ter119 (CD71medTer119neg). State 1 contains the
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Author Summary

The factors that control the rate of tissue growth during develop-
ment are largely unknown. During embryogenesis, the formation of
anucleated red blood cells (erythropoiesis) begins in the liver, with a
dramatic expansion in erythropoietic tissue mass, occurring ten
times faster than overall embryonic growth. We hypothesized that a
network of cell–cell interactions within the erythroid microenviron-
ment regulates this growth burst. To identify these regulatory
interactions, we made use of the empirical finding that devel-
opmental processes are relatively robust to environmental pertur-
bations. We determined how the frequency of erythroid progenitors
in each of four sequential differentiation states varies during early
development in vivo. We then modeled this behavior, and
computationally selected those interactions that endow the network
with resistance to external perturbations. This analysis predicted that
erythroblasts in ‘‘state 2’’ of differentiation negatively regulate each
other. We found that this autoregulatory interaction is mediated by
the death receptor FAS and its ligand, FASL, which are co-expressed
in state 2 cells. FAS-mediated cell death occurs only when the
frequency of state 2 cells is high enough to permit their sufficient
proximity. In this manner, FAS-mediated apoptosis dampens the
initially rapid expansion of state 2 cells, and buffers unexpected
fluctuations in their number, contributing to the system’s robust-
ness. We propose that a similar approach could be used to identify
intercellular interactions in other rapidly growing tissues.



earliest erythroid precursors. It also contains all the non-
erythroid cells in fetal liver, which constitute 10% or less of
all state 1 cells [19,37]. State 2 cells are CD71highTer119low,
state 3 cells are CD71highTer119high, and state 4 cells are
CD71med/lowTer119high. All cells in states 2, 3, and 4 are in the
erythroid lineage [19,37].

Analysis of fetal liver progenitors on successive days of
development (E12–E15.5) reveals a ‘‘developmental wave,’’
with a large number of progenitors appearing first in states 1
and 2, and progressing into states 3 and 4 with developmental
age (Figure 1A). We used this initial dataset indicating relative
(fractional) numbers of cells in different states over devel-
opmental time in our further analysis.

Generalized Model Development
We next constructed a generalized model that describes

how regulatory intercellular interactions may be responsible
for generating the experimentally observed erythropoietic

developmental wave in Figure 1. A system of ODEs was used
to describe how the proportion of cells in each state i (where i
denotes any of states 1 to 4) changes with time (equation 1).
At each developmental time point, the flow-cytometric data
show how fetal liver cells are distributed amongst the four
states, but does not provide absolute cell numbers. Therefore,
the state variables, xi, represent the proportion of all cells in
each state, rather than absolute cell numbers, and their sum
at any particular time always adds up to one. Conversion into
absolute cell numbers is possible by multiplying xi by the
number of cells in fetal liver at each developmental stage
(Protocol S2, section 2.1).
We assumed that, within the time scale considered here, the

ODE system is driven by its initial conditions, with no
additional influx of cells to state 1 nor efflux from state 4. We
also assumed that no ‘‘de-differentiation’’ occurs and that
cells transition unidirectionally from state 1 to 2, 2 to 3, and 3

Figure 1. Erythropoietic Developmental Wave in Fetal Liver

(A) CD71/Ter119 flow-cytometric histograms of fetal liver cells derived from embryos between E12 and E14.5. Developmental states 1 to 4 are noted.
(B) Cytospin preparations of E14.5 fetal liver cells sorted from each of states 1 to 4 show increasingly differentiated erythroid progenitors. Cells were
stained for hemoglobin expression (brown) with diaminobenzidine and counterstained with Giemsa. Scale bar ¼ 20 lm.
Developmental states 1 to 4 are defined as described in the text and in Protocol S1, section 1.1.
doi:10.1371/journal.pbio.0050252.g001
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to 4. Therefore, each transition rate hi,iþ1 from state i to state
iþ1 is non-negative. Equation 1 describes how each state
variable xi changes with time, as a result of influx from the
preceding state and/or efflux into the subsequent state:

dx1
dt
¼ �h1;2ð�x; �pÞ

dx2
dt
¼ h1;2ð�x; �pÞ � h2;3ð�x; �pÞ

dx3
dt
¼ h2;3ð�x; �pÞ � h3;4ð�x; �pÞ
dx4
dt
¼ h3;4ð�x; �pÞ

ð1Þ

The transition functions hi,iþ1 govern the rates of transition
of cells from the ‘‘source’’ state, xi, to the immediately
subsequent state, xiþ1. These functions consist of two terms,
each describing a distinct type of signaling interaction
(equation 2). The first is a time-dependent progression of
the differentiation process in each cell, facilitated by the
hormone EPO. It causes transition of cells between states that
is independent of intercellular interactions between progen-
itors, and is therefore described as a first-order state
dependency. Three non-negative parameters, p12, p23, and
p34, represent the rates of transition per cell due to this
process from states 1 to 2, 2 to 3, and 3 to 4, respectively. The
transition function hi,iþ1 is also influenced by a second type of
interaction, due to feedback or feedforward regulation of
cells in the source state, xi , by cells in any other state, xj . The
effect of such an interaction on the transition function may
be either positive or negative, and is proportional to the
product of the fractions of cells in the two interacting states,
xixj. In the special case where j ¼ i, the interaction is
autoregulatory and is proportional to xi

2. Twelve parameters,
pk (k 2 4–15), represent the rate constants for each of these
potential interactions, which are classified as feedforward
(ff[j][iþ1], if j � i) or feedback (fb[j][i], if j . i) (detailed in
Protocol S1; note that pij in Protocol S1 is denoted as pi for all
i). Note that, since we rely on the fractional rather than total
numbers of cells in specific states (because of the nature of
data obtained in flow cytometry), the sum of fractional cell
numbers is always unity. The transition function hi,iþ1
incorporates all these potential interactions:

hi;iþ1ð�x; �pÞ ¼ pijxi þ pij
X

k

pkxixj ð2Þ

Note on the Mathematical Model
The model contained in equations 1 and 2 is an abstract

approximation of what are in reality much more complex
processes. Specifically, the transition functions hi�1,i and hi,iþ1
combine processes of cell differentiation, proliferation, and
death, all of which regulate the fractional number of cells in
state i. Our use of a more abstract representation was driven
primarily by the desire to make the algorithm applicable to
cases where direct and independent measurements of cell
number, cell division, and apoptotic rate might be hard to
obtain, which will likely be true for most developmental
processes. Introduction of a more detailed description of cell
division and cell death would require estimation of a higher
number of free parameters and thus, potentially, a greater
number of initial measurements, which, in turn, may require
artificial perturbations of the developmental network. How-
ever, we can foresee that much more detailed models will be
used in the future as our ability to measure in vivo states of

developmental networks increases. Nevertheless, since any
model is likely to be less detailed than the underlying system,
the utility of the model is primarily in its predictive power.
We show below that the description contained in equations 1
and 2 is sufficient to make predictions as to the nature of a
pivotal regulatory interaction and the developmental stage at
which it occurs, both validated experimentally. One can thus
claim that the use of the particular form of this mathematical
model was justified a posteriori.

Generation of Model Topologies
We generated different model networks, or topologies,

based on the general model described above. Erythroblast
differentiation due to EPO action, represented by the first-
order state dependency term and the parameter pij (i 2 1, 2, 3;
j 2 2, 3, 4), is always present in the transition functions
(equation 2). However, we limited the number of feedback
and feedforward interactions that exist simultaneously in the
transition functions of any one model to three or less. This
assumption was based on the desire to limit the combinato-
rial explosion in the number of possible state dependencies,
and on the more general argument that multiple and dense
interactions between elements of any network can lead to
instabilities [38]. In a similar fashion, a recent network
reconstruction analysis considerably limited the number of
possible links in potential networks, obtaining nevertheless
excellent results [29]. The feedforward and/or feedback
interactions that exist simultaneously in any particular model
determine its topology or connectivity (Figure 2). Thus, all
potential model topologies containing three or fewer such
interactions were considered, giving a total of 298 models
(Figure 2; Protocol S1).

Model Fitting and Selection of Likely Feedback and
Feedforward Interactions
Each model topology was described as an ODE system

corresponding to a unique set of feedback and feedforward
interactions (Figure 2A). The numerical values for each of the
pi and pk parameters in a given model were obtained by fitting
of the model to the experimental data (Figure 2B; Protocol
S1, section 2.3). The constraints on the model-fitting process
were that the difference between all experimental and
simulated data would be minimized, and that the values of
all state transitions, state variables, and first-order transition
parameters, pi, would be non-negative. We opted to allow the
sign (whether positive or negative) of the nonlinear transition
parameters, pk, to be determined by data regression.
Rather than describe a specific erythroid intercellular

interaction network, our aim was to identify individual,
significant feedback or feedforward interactions that are
critical to the network’s regulation, regardless of the net-
work’s final, complete form. With this aim in mind, we
developed a comprehensive analysis of the 298 model
topologies. In particular, rather than rank specific model
topologies, we ranked the 12 feedback and feedforward
interactions that constitute the models. Each of the 12
feedback/feedforward interactions participates in 67 of the
298 models we tested, either by itself, or in combination with
one or two other interactions. We devised four criteria, or
metrics, that test the performance of each interaction within
the context of each of the 67 model topologies in which it
participates.
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We assumed that an individual interaction, if important,
would contribute substantially to the dynamic output of the
network, as well as to network robustness. This assumption
was based on observations suggesting that single feedback or
feedforward interactions may significantly influence the

dynamic output of biological networks, such as oscillations
or switch-like behavior [39–43]. The four criteria we used to
identify potentially significant interactions were: fitness,
robustness, consistency, and control. The fitness property
requires that an interaction be present more frequently in

Figure 2. Generation and Analysis of the 298 Distinct Model Topologies Used in the Computational Analysis

(A) The relative numbers of cells in four states over the time course of the erythropoietic wave shown in Figure 1 were evaluated (Protocol S1, section
1.1) and plotted versus time. The fractions of cells in state 1 (blue triangles), 2 (green rhombs), 3 (red stars), and 4 (magenta squares) are shown.
(B) The model topologies were generated by allowing up to three independent feedback and feedforward interactions between different states, so that
the fractions of cells in some of the states might affect the transition probabilities between pairs of successive states. Each model topology was then
fitted to the data shown in (A). Two examples of the possible 298 topologies and the corresponding best fits are shown.
(C) For each model topology, the parameters determined during the fitting process were then varied within a 5% range, resulting in 200 predictions for
the corresponding model topology, each with its associated SSR. The distributions of SSR values for two such model topologies are shown. The mean
SSR value, fM, is computed, as well as its variance in the distribution, vM. These values are recorded for all the model topologies and then used to
calculate the Fj and Rj metrics for each of the possible feedback and feedforward interactions, shown in Figure 4.
doi:10.1371/journal.pbio.0050252.g002
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the subset of models displaying higher fit to experimental
data. The robustness property requires that it also be
overrepresented in models whose fit to the data is robust to
parameter variations. The consistency property requires that
the parameter pk describing a significant interaction have a
consistent sign, either positive or negative, and that its
magnitude be distributed within a relatively narrow range,
across all the models in which it is present. Finally, the
control property suggests that variations in the parameter pk
describing a significant interaction should strongly influence
the fit of the model to the data. An interaction where this is
not the case would not be expected to be of much
consequence to determining the network output and thus
the experimental dataset.

To examine these properties for each potential feedfor-
ward and feedback interaction, we carried out multivariate
analysis on each of the 298 models (Protocol S1, section 2.4).
We first measured the goodness of fit of each model
prediction to the experimental data, expressed as the sum
of squared residuals (SSR; Figure 2B), using the optimal
numerical values for each of the model parameters. We then
varied all of the parameters in a given model simultaneously,
assigning each parameter a random value within a 5% range
of the optimal fitted value. The goodness of fit of the resulting
new model prediction was again measured, yielding a new
SSR value. This analysis was repeated 200 times for each
model topology, yielding 200 predictions, each with its
associated SSR value. Therefore, in all, we analyzed 298 3

200¼59,600 unique parameter sets. We plotted the set of SSR
values for each model in the form of a histogram (Figure 2C).
We postulated that the variance of the histogram, vM, is
inversely related to the robustness of a model to parameter
variations. The mean value of the SSR histogram, fM, is
inversely related to the goodness of fit of the model
predictions to the experimental data.

We used the results of this multivariate analysis to evaluate
the role of each of the potential feedforward and feedback
interactions in the network. We first asked whether certain
interactions occur more frequently in models with better
fitness and/or higher robustness. We examined this by
calculating, for each interaction j, a goodness of fit metric,
defined as Fj ¼

P
M 1=fM , where the summation is over all

the models M (where M ¼ 67) in which this particular
interaction j is present (Figure 3A). Similarly, we calculated
for each interaction a robustness metric, defined as
Rj ¼

P
M 1=vM (Figure 3B). We next evaluated the consis-

tency of each interaction by assessing the distribution of
values of each parameter across the models in which the
interaction it describes is present (Figure 3C). Finally, we
assessed the extent to which each interaction controls a
model’s output, using the above multivariate analysis. For
each interaction in each model, we calculated a correlation
coefficient that relates the values assigned to the parameter
in question in each of the 200 simulations to the resulting
SSR values. The results of this analysis were compiled in a
correlation matrix (Figure 3D).

Interactions Emerging as Significant in the Erythroid
Developmental Network

Of the twelve potential feedback and feedforward inter-
actions we considered during the implementation of the
algorithm, only two, ff23 and ff34, satisfied all the required

criteria. Both assume a relatively narrow range of positive
values and score high on the fitness, robustness, and control
criteria (Figure 3A–3D). Of these, ff23 was estimated to be at
least twice as strong as ff34. The discrimination provided by
the fitness metric was relatively poor, since there was less than
a 10% difference between the ten top-ranked interactions
(Figure 3A). If we disregard the fitness criterion, an additional
interaction, fb43, emerges as potentially significant, ranking
high in terms of robustness and control, and assuming
consistently strongly negative values (Figure 3B–3D).
We tested these conclusions by repeating the above analysis

on altered datasets (Protocol S1, section 4). In particular,
since the precise age of individual embryos can be deter-
mined only approximately, we tested the sensitivity of our
analysis and conclusions using datasets in which the estimates
of the time points in the original dataset were varied by 60.4
d, or specific time points were interchanged. We also tested
the effect of alteration of the details of the algorithm used
(Protocol S1, section 5). In particular, we performed alter-
native analyses that relied more heavily on data in states 2
and 3, since cells in states 1 and 4 are present at lower
numbers and only at the start and end of the developmental
wave, respectively (Figure 1). We also explored if the
predicted likelihood of specific interactions would be altered
if larger (50%) perturbations in the parameter values were
used in the robustness analysis. Throughout these different
analyses, the interactions ff23, ff34, and fb43 emerged
repeatedly as the most likely in the erythroid developmental
network, with ff23 ranked high most consistently.
Both ff23 and ff34 represent a special case of feedforward

interactions, where the source state regulates itself (ff[j][iþ1],
where i ¼ j). The parameters describing ff23 and ff34 have
consistently positive values (Figure 3C). In each case, there-
fore, the effect of these interactions is to increase transition
from the source state (Protocol S1). The interaction ff23 will
increase in proportion to the square of the relative number
of cells in state 2. It will cause increased transition of cells
from state 2, with a resulting decrease in the number of cells
in state 2 relative to the number of cells in state 3. Therefore,
ff23 will tend to limit the relative number of cells in state 2,
and may be described as a negative autoregulatory inter-
action. The biological mechanisms giving rise to increased
transition from state 2 may be either increased differ-
entiation into state 3 or increased apoptosis of state 2 cells.
The modeling procedure does not allow us to distinguish
these two possibilities. Similar arguments apply to ff34, which
is a negative autoregulatory interaction proportional to the
square of the relative number of cells in state 3, tending to
limit the relative number of cells in state 3.
The fb43 interaction has a negative parameter value, and

its effect is therefore to decrease the transition from state 3 to
state 4, in proportion to the product of the relative number
of cells in states 3 and 4 (Protocol S1). The fb43 interaction
may be expected to offset, or moderate, the effect of ff34.

FAS Mediates Apoptosis of State 2 Cells
To begin to evaluate the biological plausibility of the

predictions made by the computational algorithm, we first
considered tissue architecture within fetal liver. Erythroblasts
in tissue are found within anatomical units known as
erythroblastic islands, where they form concentric rings
around a central macrophage. We found that, at E15.5, 50%
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Figure 3. The Possible Feedforward and Feedback Interactions between Developmental States Are Analyzed by Applying Fitness, Robustness,

Consistency, and Control Criteria

(A) All possible feedforward and feedback interactions are rank-ordered according to whether they are mostly present in the models of higher fit to the
data in Figure 2A. Specifically, the fitness metric Fj is calculated for each interaction j by summing the inverse values of vM, determined as described in
Figure 2C, over all models M where the interaction j is present. The models are then ranked according to the values of Fj.
(B) All possible feedforward and feedback interactions are rank-ordered according to whether they are mostly present in the models of higher
robustness. Specifically, the robustness to parameter variation metric Rj is calculated for each interaction j by summing the inverse values of fM ,
determined as described in Figure 2C, over all models M where the interaction j is present. The models are then ranked according to the values of Rj.
(C) The consistency of parameter values corresponding to particular feedforward and feedback interactions is evaluated by plotting the parameter
values for each model M in which the corresponding interaction is present. Each box has lines at the lower quartile (blue), median (red), and upper
quartile (blue) values. The whiskers show the extent of the rest of the data. Outliers (red plus signs beyond the ends of the whiskers) indicate data with
values more than 1.5 times the interquartile range away from the top or bottom of the box.
(D) A correlation matrix relating the control exercised by each feedback or feedforward interaction in each model in which it is present. Each row in the
matrix corresponds to a single parameter, describing a single type of interaction. Each column represents one specific model topology. Models are
arranged from left to right in descending order of their best fit to the experimental dataset. The color bar indicates the value of the control metric,
defined as the correlation coefficient between the parameter values and their associated SSR values, obtained during the multivariate analysis
illustrated in Figure 2C. Note that for ff23, ff34, and fb43 interactions, there is clustering of high negative correlation values for high-ranked models,
suggesting the importance of these interactions in influencing the fitness of the high-ranked models.
doi:10.1371/journal.pbio.0050252.g003
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and 30% of all state 2 and 3 cells, respectively, are adjacent to
cells of the same state (Protocol S2, section 2.2B). This
architecture is therefore consistent with autoregulatory
interactions between cells of the same state, such as ff23 or
ff34.

Next, we considered candidate molecules that might
mediate the ff23 or ff34 interactions. As indicated above, a
likely underlying process described by these interactions is
apoptosis arising from cell–cell interactions within the same
developmental state. FAS is a cell-surface receptor of the
tumor necrosis factor (TNF) receptor family. It triggers
apoptosis when activated by its ligand, FASL, expressed on
the surface of adjacent cells [44]. Although the role of FAS has
been best described in immune cells, FAS is also expressed by
many other cell types, including cultured erythroid cells
[14,45]. Very recently, we found that a fraction of adult
spleen, but not bone marrow, erythroblasts also express FAS
and FASL [46]. However, the expression and potential
function of FAS/FASL in fetal liver in vivo during the onset
of erythropoiesis had not been determined. Indeed, although
FAS and FASL are expressed by several embryonic tissues, to
date no clear developmental role has emerged for these
molecules [47].

We examined the possibility that FAS-mediated apoptosis,
triggered by FASL on neighboring cells, may form the basis
for the negative autoregulatory interactions predicted by our
modeling. We measured FAS and FASL expression as well as
an early marker of apoptosis, ANXA5 (Annexin V) binding, in
fetal livers freshly isolated from embryos between E11.5 and
E15.5. Figure 4 summarizes 23 independent experiments,
examining 29 litters containing a total of 189 embryos. The
relative number of cells within each state changes rapidly
over this period (Figure 4A), consistent with the original
dataset (Figure 2A). Associated with this change are rapid
changes in ANXA5 binding and FAS expression, particularly
in state 2, where the fraction of ANXA5þ cells (Av2

þ; Figure
4B; Protocol S2, section 2.3; glossary of symbols in Table 1)
and the fraction of FASþ cells (U2; Figure 4C and 4D) vary in a

pattern that resembles an oscillation. There is a trough in
both Av2

þ and U2 at E12.5, coinciding with a peak in the
relative number of cells in state 2 (x2; Figure 4A). Measure-
ment of both FAS expression and ANXA5 binding in the
same embryos showed Av2

þ and U2 to be positively correlated
(Figure 4E). Unlike in state 2, the fraction of ANXA5þ or FASþ

cells in states 1, 3, or 4 did not vary significantly with
development (Figure 4B–4D), and there was no correlation
between ANXA5 binding and FAS expression in these states
(Figure 4E). These results suggest that FAS mediates apoptosis
within state 2, but not other states. We also noted that,
throughout development, FASL expression within states 2
and 3 closely correlated with FAS expression (Figure 4F).
We assessed the role of FAS further, by measuring ANXA5

binding in embryos that carry an inactivating mutation in
either FAS (lpr) or FASL (gld). Measurements were made at
E14.5, when x2 and Av2

þ are relatively unaffected by small
variations in the true age of embryos. We found a 2.5-fold
decrease in Av2

þ in gld embryos (from 17% to 7%, p , 0.001;
Figure 5A and 5B). There was little or no change in ANXA5
binding in states 1 and 3. We also found a 1.58-fold increase
in the relative number of state 2 cells, x2, in gld and lpr
embryos at E14.5 (p , 0.0001) and a 1.29-fold increase at
E13.5 (p , 0.0001), compared with matched wild-type
embryos of the same age (Figure 5C). There was little change
in the proportions of cells in other states. These data confirm
that FAS-mediated apoptosis occurs principally in state 2,
where it accounts for a substantial portion of ANXA5
binding.
Since ANXA5 binding in state 2 is largely due to FAS-

mediated apoptosis, the trough in Av2
þ at E12.5 is likely to be

due to the trough in U2 at this time (Figure 4A and 4B). We
sought to distinguish two potential mechanisms that might
account for the trough in U2. FAS

þ cells may be lost as a result
of FAS-mediated apoptosis. Alternatively, a signaling event
may suppress FAS expression in state 2 cells. In the latter
case, the decrease in the number of FASþ cells might be
expected to be associated with a decline in the mean level of
FAS expression per cell. However, we found that FAS
expression per cell within the FASþ population remained
constant in spite of large variations in the size of this
population (Figure 5D). Therefore, the trough in state 2 FASþ

cells at E12.5 is likely to be due to their loss through
apoptosis, consistent with results obtained above that suggest
the presence of FAS-mediated apoptosis in state 2.

FAS-Mediated Apoptosis in State 2 Is Autoregulatory,
Since Its Rate Is Proportional to x2

2

Apoptosis of FASþ cells in state 2 could, in principle, be
triggered by any FASLþ cells within fetal liver, whether
erythroid cells in any of states 1 to 4, or non-erythroid cells
that form up to 10% of state 1. To identify the source of
FASLþ cells responsible for triggering FAS-mediated apop-
tosis in state 2, we examined the rate of this process. If FAS-
mediated apoptosis is due to an ff23-type, autoregulatory
interaction, where both FASþ and FASLþ cells are within state
2, its rate should be proportional to x2

2 (see equation 2 above,
and table in Protocol S1 detailing the rate dependency for
each feedback/feedforward interaction). Specifically, the
interaction between state 2 FASþ and FASLþ cells should, by
mass action, be proportional to the product of their
respective numbers, or ([FASþ]3 x2)3 ([FASLþ]3 x2)¼ [FASþ]

Table 1. Glossary of Symbols Used in the Text

Symbol Definition

x2 The number of cells in state 2, relative to all fetal liver cells.

Av2
þ The fraction of cells binding ANXA5 within state 2.

U The fraction of cells that are FASþ in a given population

(such as a state or a cohort of cells). It can also be regarded

as the probability that a cell in a given population is FASþ.

U2 The fraction of state 2 cells that are FASþ. Please note that

U2 is the arithmetic mean of U for all state 2 cells (cells

early in state 2 have high U, whereas cells late in state 2

have lower U).

U1 The fraction of state 1 cells that are FASþ.

U3 The fraction of state 3 cells that are FASþ.

Ū1,3 The arithmetic mean of U1 and U3 ([U1 þ U3]/2) in a

given embryo.

ta For a given cohort of cells entering and traversing state 2,

ta is the period of time early in state 2 when the rate with

which U decreases is constant (prior to depletion of FASþ cells).

tst2 The length of time cells spend in state 2, presumed

constant for all cells throughout embryonic development.

doi:10.1371/journal.pbio.0050252.t001
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3 [FASLþ] 3 x2
2, where [FASþ] and [FASLþ] are the

proportions of state 2 cells expressing FAS and FASL,
respectively.

Our data show that, between E11.5 and E15.5, x2 varies over
a 5-fold range (Figure 4A). Remarkably, we found that
throughout this period, U2 is inversely proportional to x2
(Figure 6A). Further, Av2

þ is also an inverse function of x2
throughout most of development (Figure 6B), except at E11.5
(Figure 6C), where Av2

þ is higher, for a given x2, than later in

development. This effect at E11.5 may be due to a slower
clearance of apoptotic cells in very early fetal livers.
The analysis below shows that the inverse relationship

between U2 and x2 is a consequence of a FAS-mediated cell
loss whose rate is proportional to x2

2, strongly supporting an
autoregulatory interaction between state 2 cells as the cause
of their apoptosis.
To assess the rate of FASþ cell loss, we considered how the

proportion of FASþ cells, U, decreases within a given cohort
of cells that have entered state 2 together and are advancing

Figure 4. Fraction of Cells Expressing FAS or FASL or Binding ANXA5 during E11–E15.5

(A and B) ANXA5 binding in each of the four fetal liver states (B) and the corresponding frequency of each state in the same fetal livers (A) during E11–
E15.5. Each data point is the mean 6 standard error of the mean for embryos in one litter. x1, x2, and x3 are the fraction of cells in states 1, 2, and 3,
respectively. Avþ2 is the fraction of cells in state 2 that bind ANXA5. Individual embryo data for the same dataset are presented in Protocol S2, section
2.3.
(C and D) The fraction of cells expressing FAS in each state during E11–E15.5. Each data point in (C) is mean 6 standard deviation for a litter of embryos.
Individual embryos in the same dataset are shown in (D); each symbol denotes an independent experiment of one or more litters from the same
embryonic age. Further analysis of embryos in this dataset, with the same symbols, is shown in Figure 6A and 6F. U1, U2, and U3 are the fraction of cells
expressing FAS in states 1, 2, and 3, respectively. All curves are second-order polynomials. In order to avoid overlapping data points in (D), the data for
some litters were slightly displaced along the horizontal axis (e.g., E13.5 was plotted as E13.45).
(E) Fraction of cells that are ANXA5þ and FASþ in states 1 to 3, measured in the same fetal livers (E12.5–E15.5) or in the same litters (E11.5, due to the
small number of cells in fetal liver at this age). Each point represents a single embryo (E12.5–E15.5) or a single experiment (E11.5, mean of four litters).
Each symbol denotes an independent experiment of one or more litters. Curve is a second-order polynomial.
(F) Fraction of cells that are FASLþ and FASþ in states 1 to 3, measured in the same fetal livers (E12.5–E15.5). Each color denotes an independent
experiment of one or more litters.
doi:10.1371/journal.pbio.0050252.g004
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through the state. (Erythroblasts are presumed to enter state
2 from state 1 continuously. We define a ‘‘cohort’’ as all
erythroblasts that enter state 2 together at a given point in
time.) The first such cohort of differentiating erythroblasts
enters state 2 at ’E11.5. The wide range of x2 values found in
E11.5 embryos (Figure 6A and 6D) reflects the different
extents to which this first cohort of cells has progressed

within state 2 in different embryos; in embryos with higher x2,
the first cohort of cells has advanced further in state 2 than in
embryos where x2 is low (Protocol S2, section 2.4D). There-
fore, the inverse relationship that we observe between x2 and
U2 in E11.5 embryos (Figure 6A and 6D) suggests that FASþ

cells are lost rapidly as this first cohort of erythroblasts
advances through the state (Figure 6D and 6H). The longer

Figure 5. FAS Mediates Apoptosis in State 2

(A) Fraction of cells that are ANXA5þ in E14.5 gld embryos (circles) compared with strain- and age-matched wild-type embryos (triangles) in each of
states 1, 2, and 3. Each data point represents the mean 6 standard error of the mean for a litter of embryos; four litters containing 18 gld embryos were
compared with three litters containing a total of 23 wild-type embryos; differences for state 2 were significant at the p , 0.0001 level using a two-tailed
Student’s t-test (non-equal variance).
(B) State 2 ANXA5 binding data shown in (A), plotted together with the ANXA5 binding data for the entire E11–E15.5 period from Figure 4B.
(C) Distribution of cells in the four fetal liver states shows an increase in state 2 cells in E14.5 and E13.5 lpr (magenta) and gld (orange) embryos,
compared with strain- and age-matched wild-type embryos (blue). Each data point is the mean 6 standard error of the mean of 5–12 embryos from the
same litter. There is a 1.58-fold increase in x2 in gld and lpr embryos at E14.5 (p , 0.0001) and a 1.29-fold increase at E13.5 (p , 0.0001).
(D) Median FAS expression per cell in the FASþ cell population in states 1 and 2. Each point represents data from an individual embryo. Two experiments
are shown; in each, two litters of different embryonic ages were examined simultaneously. No normalization was performed on the fluorescence data.
doi:10.1371/journal.pbio.0050252.g005
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Figure 6. The Rate of FAS-Mediated Apoptosis in State 2 Is Proportional to x2
2

(A) The fraction of FASþ cells in state 2 (U2) is inversely proportional to the fraction of all fetal liver cells that are in state 2 (x2). Each point represents an
individual embryo from the same set of embryos shown in Figure 4D. The curve describes the equation y ¼ 162x�1.009 (R2¼ 0.63).
(B and C) The fraction of ANXA5þ cells in state 2 (Avþ2) is inversely proportional to x2 between E12.5 and E15.5 (B), but not in earlier E11.5 embryos (C).
Each point represents an individual embryo from the same set of embryos and with the same symbols as in Protocol S2, section 2.3. The curve describes
the equation y ¼ 0.03x�0.6 (R2 ¼ 0.4).
(D) Four E11.5 embryos from the same litter, showing the distribution of cells in states 1 (x1) and 2 (x2) in the top panels, and a fraction of state 2 cells
that are FASþ (U2) in the lower panels. Staining control for FAS shown in the leftmost panels. See additional data on these in Protocol S2, section 2.4.
(E) Potential time course of U, the fraction of cells that are FASþ, in a cohort of erythroblasts traversing state 2. tst2 is the length of state 2. U1 and U3 are
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this first cohort of erythroblasts has spent in state 2, the lower
the proportion of FASþ cells (U) within the cohort. In the
ensuing E12.5–E15.5 period, it is likely that a similar process
continues for each cohort of cells entering and traversing
state 2. For each such cohort, U is highest at the time cells
enter state 2, and decreases as the cells traverse state 2. Since
there is little FAS-mediated apoptosis in states 1 and 3, we
used the measured fractions of FASþ cells in state 1 (U1) and
state 3 (U3) as estimates of U when cells enter (t¼0) and exit (t
¼ tst2) state 2, respectively (Figure 6E).

Figure 6E illustrates how U might decrease as a function of
time within a cohort of cells traversing state 2. (This may also
be regarded as equivalent to the distribution of U for all state
2 cells at a given embryonic age, with the x-axis denoting the
length of time, t, that a particular cell has spent in state 2, and
the y-axis denoting the probability, U, that such a cell is FASþ).
To assess the rate with which U decreases, we compared U2,
the arithmetic mean of U for all cells in state 2, with U1 and
U3. If U decreases at a constant rate throughout the time cells
spend in state 2 (dashed red line, Figure 6E), U2 should equal
the average of U1 and U3 (�U1;3, where�U1;3¼ [U1þU3]/2). If,
however, an initial rapid loss leads to depletion of FASþ cells
before state 2 is complete (solid red line, Figure 6E), �U1;3

would be higher than U2. We found that the ratio of �U1;3 to U2

alters with embryonic age in a manner similar to x2 (Figure
6F; Protocol S2, section 2.5A and 2.5B). In embryos younger
than E14.5, the ratio �U1;3/U2 is larger than one, suggesting
that, for a given erythroblast cohort traversing state 2, an
initial rapid decline in U slows down as FASþ cells are
depleted (Figure 6F and 6H).

We assumed that prior to FASþ cell depletion, U decreases
at an approximately constant rate, for a period of length ta.
The area under the curve described by U (shaded red, Figure
6G, panel i) approximates the area of a triangle of base ta
(shaded blue, Figure 6G, panel ii); this area is given by �U1;3ta
(Figure 6G, panel ii). Since U2 is the mean value for U
throughout state 2, it is equivalent to the height of a rectangle
(black dashed lines, Figure 6G, panel ii) whose area is equal to
that of the blue triangle, and whose base is the entire length
of state 2, tst2. The equivalence in the areas of the blue
triangle and black rectangle in Figure 6G, panel ii, gives the
result that ta, the length of the period when FASþ cell loss is
constant, is directly proportional to U2:

�U1;3ta ¼ U2tst2

or

ta ¼ kU2 ð3Þ

where k ¼ tst2/�U1;3 (U1, U3, and tst2 are relatively constant).
Equation 3 also shows the ratio �U1;3/U2 to be equivalent to tst2/
ta. From this and from Figure 6F, at E12.5, ta is one-half to
one-third of tst2, increasing with embryonic age (see Figure
6H).
The direct proportionality between ta and U2 (equation 3)

makes it possible to deduce that ta is also inversely propor-
tional to x2 (equation 5 below), since we found experimentally
(Figure 6A) that U2 is inversely proportional to x2:

U2 ¼ jð1=x2Þ ð4Þ

where j is the proportionality constant in Figure 6A.
Combining equations 3 and 4:

ta ¼ k9ð1=x2Þ ð5Þ

where k9¼ jtst2/�U1;3.

The rate of decline in U during the period ta is represented
by the slope of the blue triangle’s hypotenuse in Figure 6G,
panel ii, and 6H, or (U1�U3)/ta. The rate of loss of FASþ cells,
dC/dt, is given by the rate of decline in U, multiplied by x2
(since U represents the fraction of cells that are FASþ during
state 2):

dC=dt ¼ ðU1 � U3Þx2=ta ð6Þ

Since ta is inversely proportional to x2 (equation 5), it is
possible to re-write equation 6, expressing dC/dt as a function
of x2 , and giving the result that the rate of loss of FASþ cells
from state 2 is proportional to x2

2:

dC=dt ¼ Kx 2
2 ð7Þ

where K ¼ (U1 � U3) �U1;3/jtst2.
Of note, the proportionality constant, relating the rate of

FASþ cell loss to x2
2, contains the term U1

2 (equation 7). This
term represents the product of the available fractions of FASþ

and FASLþ cells when cells enter state 2, since FAS and FASL
expression are linearly related (Figure 4F). Thus, the rate of
loss of FASþ cells in state 2 is found experimentally to be
proportional to [FASþ] 3 [FASLþ] 3 x2

2, as predicted for an
autoregulatory ff23.
The inverse relationship we also found between Av2

þ and x2
can be explained if, as is likely, ANXA5þ cells are cleared fast
compared with the length of state 2. If so, as cells traverse
state 2, the proportion of ANXA5þ cells will closely reflect U,
and their mean, Av2

þ
, will relate to x2 in the same way as U2.

The inverse relationship between Av2
þ and x2 therefore

provides an independent assay confirming that the rate of
loss of FASþ cells is inversely related to x2

2.

used as estimates for U when cells enter and exit state 2, respectively. The dashed red line represents a constant rate of decline in U throughout state 2.
The solid red curve represents an alternative time course, with an initial rapid decline in U that slows down due to depletion of FASþ cells.
(F) Comparison of U2 with Ū1,3, the arithmetic mean of U1 and U3, during E12.5 and E15.5. Data calculated for each embryo from values shown in Figure
4D. If the rate of decline in U in state 2 were constant, the ratio Ū1,3/U2 would be expected to be equal to one. Since Ū1,3/U2 is greater than one for
embryos younger than E14.5, the rate of decline in U in these embryos resembles the solid red curve in (E).
(G) Approximate method for relating U2 to Ū1,3 when the rate of decline in U is nonlinear. U2 equals the area under the red U curve (shaded red, panel i)
divided by tst2, and may be represented as the height of a rectangle (black dashed lines, panel ii) of height U2 and base tst2. The shaded red area is
approximately equal to the area of a triangle (shaded blue, panel ii) of base ta, where ta is the length of time within state 2 when the rate of decline in U
is relatively constant. The area of the blue triangle, given by Ū1,3ta, is therefore approximately equal to the area of the black dashed rectangle: U2 tst2¼
Ū1,3ta.
(H) Graphical representation of U2 and how it relates to the rate of decline in U. At E11.5, U declines rapidly as the first cohort of erythroblasts
progresses through state 2, as suggested by data in (A) and (D). At E12.5–E13.5, U declines sufficiently rapidly so that it plateaus prior to completion of
state 2, as suggested by (F). By E14.5, the rate of decline has slowed down and remains constant throughout state 2. Throughout, U2 is directly
proportional to ta (from [G]), and both are inversely related to x2 (from [A], and see text).
doi:10.1371/journal.pbio.0050252.g006
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The FAS-Mediated Autoregulatory Interaction Increases
the Robustness of Erythropoiesis

The ff23 interaction was selected based on criteria that
included robustness of the erythropoietic network to
perturbations in parameter values. It therefore follows that
the absence of ff23 should result in increased sensitivity to
such perturbations. The lpr and gld mice we examined under
laboratory conditions are housed in a stable, controlled
environment, and are genetically identical, inbred mouse
strains. They are therefore subjected to relatively few external
perturbations. Nevertheless, we found that there is higher
variability between individual lpr or gld embryos at a given
embryonic age than in otherwise genetically identical wild-
type embryos of the same age (Table 2).

Specifically, we examined the dataset of lpr and gld embryos
presented in Figure 5 (embryos were on C57BL6 background
in Figure 5C, and on BalbC background in Figure 5A). We
compared the variance in the number of cells in state 2 (x2),
where the ff23 interaction is exerted, for all embryos at a
given embryonic age and on a given genetic background.
Strikingly, the variance between lpr or gld embryos was
consistently higher than in wild-type controls, reaching
statistical significance (using an F-test) in three of the five
comparisons (Table I). Therefore, the inherent noisiness of
the developmental process was sufficient to perturb the
number of cells in state 2, and this noisiness was mitigated by
the regulatory ff23 interaction mediated by FAS/FASL. It is
plausible to suggest that state 2 cells in lpr and gld embryos
might deviate even more significantly from their pro-
grammed developmental trajectory in response to severe
perturbations under nonlaboratory conditions.

These findings provide an additional and more direct a
posteriori justification for using robustness as one of the
criteria for identification of new interactions in develop-
mental networks.

Discussion

The work we present here aims to tackle a key challenge. In
many biological systems, multiple candidate regulators have
been identified by bioinformatics and other methods. Given
the complexity of biological networks, how can their

principal regulatory features be identified? We were partic-
ularly interested in identifying interactions that endow a
network with robustness to external and internal perturba-
tions (represented by alterations of parameter values in the
corresponding dynamical model), a property that is encoun-
tered frequently in developmental networks. We approached
this problem by hypothesizing that, although a large number
of interactions might be present in any given system, only a
small subset is responsible for its robust regulatory behavior.
This hypothesis guided us in developing a novel computa-
tional algorithm that identified a key negative autoregulatory
interaction that controls the rapid growth phase of eryth-
ropoietic tissue in the developing embryo. We show that cells
at an early erythroid differentiation stage, here termed state
2, undergo FAS-mediated apoptosis as a result of an
intercellular interaction between FASþ and FASLþ cells in
the same state. Further, we find that apoptosis proceeds at a
rate that is proportional to the square of the number of cells
in state 2, a property that would buffer fluctuations in
erythropoietic tissue growth and ensure it progresses close to
its preprogrammed developmental trajectory.
The combined biological and computational approach we

applied here could be used to identify homeostatic inter-
actions regulating other tissues with rapid growth or turn-
over, such as skin, intestinal epithelium, or tumor metastasis.

Novel Features of the Computational Algorithm
An intrinsic and unique aspect of our developmental

network reconstruction approach is that it explicitly selects
for interactions that endow the developmental system with
certain key regulatory properties. First, we explicitly assume
that the underlying developmental process is robust to
perturbations that might arise as a result of disease or
fluctuations in gene dose, temperature, or nutrients. Robust-
ness of developmental processes, though widely assumed and
confirmed in multiple studies [48], including several combin-
ing modeling and experiment [1,49–52], has not been
explicitly used for developmental network reconstruction.
Here we tested the performance of each interaction in the
context of many potential network topologies; we then
developed a metric that ranks the extent to which each
interaction endows the networks in which it participates with

Table 2. Increased Variance in the Number of State 2 Cells in Embryos Mutant for FAS or FASL

Embryo

Age

Genotype Genetic

Background

Total Number

of Embryos

Number

of Litters

Variance of

State 2 Cellsa
p-Value

(F-Test)

E13.5 gld C57BL6 12 1 2.24 0.00156423

WT C57BL6 13 2 0.34

E14.5 gld BalbC 17 4 5.66 0.02001696

WT BalbC 23 3 1.93

E13.5 lpr C57BL6 5 1 0.78 0.2222854

WT C57BL6 13 2 0.34

E14 lpr C57BL6 9 1 7.6 0.00011628

WT C57BL6 8 1 0.28

E14.5 lpr C57BL6 9 1 2.19 0.46179361

WT C57BL6 9 1 1.28

aThe variance was calculated for the entire embryo population of a given embryonic age and genetic background; the number of embryos and litters in the population is shown.
WT, wild-type.
doi:10.1371/journal.pbio.0050252.t002
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resistance to external perturbations of network parameters
(the ‘‘robustness’’ criterion; Figure 3B). Second, by using a
differential equations description of the system, rather than a
probabilistic approach, we were able to evaluate the rates of
different processes. This allowed us to develop a metric that
selects for interactions whose strengths are relatively un-
affected by the precise topology of the rest of the network
(the ‘‘consistency’’ criterion; Figure 3C). This has clear
biological relevance: given genetic variability within a
population, the precise network topology may differ in
different individuals. However, interaction(s) ranked high
by the consistency metric might be relatively unaffected by
this type of variation and be present with comparable
strength in the network of all individuals. Two other metrics
(‘‘fitness’’ and ‘‘control’’; Figure 3A and 3D) selected for
interactions that scored high on regulating how well the
networks in which they participate fit the experimental
dataset, and on the extent to which they control and maintain
this fitness in the face of perturbations.

Requiring that putative interactions satisfy all of the above
criteria can strongly constrain the number of these inter-
actions. Indeed, we have found that only two interactions
were consistently ranked high, with only one of them
retaining the high ranking during additional perturbations
of the original experimental dataset or the details of the
computational analysis. The benefit of this highly selective
ranking is that a relatively high confidence can be placed in
the interactions chosen. On the other hand, by relaxing some
of the criteria, one can expand the list, progressively testing
for lower ranking interactions. In this process, different
weights could be placed on different criteria. For example, by
relaxing the fitness criterion, one can predict the potential
importance of the fb43 interaction. The particular set of
interactions identified is likely to be strongly dependent on
the nature of the developmental process and, to a smaller
degree, the particular dataset used for network reconstruc-
tion.

An important feature of the algorithm is that it deals with
the relative number of cells in each of the developmental
states, without explicitly breaking the rate of change in cell
number down into its components, namely, the rates of cell
death, cell division, and cell differentiation. Consequently,
when the pivotal ff23 interaction was identified, the
algorithm did not have the power to specifically predict
which of these three processes is responsible for the
interaction. The molecular candidates for mediating the
ff23 interaction had to be identified subsequently, through
reasonable assumptions about the system’s biology. The level
of abstraction at which we chose to develop the models
underlying the algorithm was a result of the type of biological
measurements that can be made reliably and reproducibly in
erythropoietic and other developmental networks. There is
no simple way to measure the rates of cell death, cell division,
or cell differentiation in tissue in vivo at the present time. By
contrast, the flow-cytometric datasets that we used could
reliably and rapidly document the rate of change of the
relative number of cells in each state during development. In
the future, technological advances and increased knowledge
of the erythropoietic system may allow the reconstruction of
a more detailed mechanistic model. It is noteworthy,
however, that in spite of these limitations, the algorithm we
present had the power to provide a strong and precise

prediction that successfully guided our subsequent biological
investigation. We therefore suggest that dynamic measure-
ments of cell frequency, which are relatively easy to obtain,
may serve as the basis of predictive computational modeling
in many other tissues.

The Role of FAS-Mediated Apoptosis in Erythropoietic
Tissue Growth
Between E11.5 and E15.5, fetal liver mass increases over

100-fold, a rate ten times faster than overall embryonic
growth in the same period (Protocol S2, section 2.1). Small
deviations from the optimal amplitude and duration of this
burst in fetal liver growth could be catastrophic. The
autoregulatory interaction we identified between FASþ and
FASLþ cells within state 2 leads to apoptosis of state 2 FASþ

cells at a rate that is proportional to the square of the relative
number of cells within that state (x2

2). Therefore, FASþ cells
within state 2 constitute a reserve progenitor pool that can be
rapidly tapped whenever x2 is inappropriately low. Con-
versely, an inappropriately fast growth in the number of state
2 cells, or x2, would be damped rapidly by a sharp increase in
apoptosis.
It was previously thought that, unlike adults, embryos do

not possess an erythropoietic reserve, because of their higher
vulnerability to mutations that lower erythropoietic rate [53–
55]. This vulnerability can still be accounted for by the much
smaller erythropoietic reserve in the embryo compared with
the adult. Indeed, the principal function of the adult
erythropoietic reserve is to increase erythropoietic rate in
response to tissue hypoxia. By contrast, our study suggests
that the role of fetal reserve is to stabilize the relative number
of erythroid progenitors in state 2 and hence erythropoietic
rate, so that it adheres to the developmentally programmed
rate. We recently found that adult erythroblasts also express
FAS and FASL, raising the possibility that an ff23-type
interaction may help maintain adult baseline erythropoietic
rate. Interestingly, FAS expression in adult erythroblasts is
down-regulated during erythropoietic stress [46].
The erythroblastic island architecture (Protocol S2, section

2.2) maintains close apposition of erythroblasts and is likely
to be critical in facilitating the FAS-mediated apoptosis
between state 2 cells. Simple mixing of cells from different
states in vitro, in the absence of the island structure, does not
reproduce the dependence we observed in vivo of FAS-
mediated apoptosis on x2 (Protocol S2, section 2.6).

A Novel Role for FAS-Mediated Apoptosis in Fetal
Development
To date, apoptosis had been implicated in the development

of a unique set of tissues, where tissue function depends on
selection—from amongst all available progenitors—of cells
with specific characteristics, such as optimal cell connectivity
in neural tissue, specific antigen receptors in lymphocytes, or
the sculpturing of tissue architecture [56–58]. Here we show
that apoptosis may also participate in development solely as a
homeostatic regulator. Surviving erythroblasts presumably
only differ from those that undergo apoptosis in that they
lack FAS. How the expression of FAS (and FASL) is diversified
within the progenitor populations merits additional inves-
tigation.
FAS and FASL have clear homeostatic functions in immune

cells in the adult [59]. Their pattern of expression had
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suggested non-immune, developmental functions [47] in the
central nervous system [60–62] and fetal lung [63,64], but no
deficits in these organs in lpr and gld mice were found. The
role we identify here for FAS/FASL in fetal erythropoietic
development raises the possibility of homeostatic develop-
mental functions for these molecules in other tissues.

Materials and Methods

Implementation of the algorithm. The details of the algorithm
development and implementation are given in Protocol S1.

Mice. C57BL6j and BalbCj lpr (B6.MRL-Tnfrsf6lpr/J) and gld
(B6Smn.C3-Tnfsf6gld/J) mice were purchased from the Jackson
Laboratory (http://www.jax.org/). Timed pregnancies were set up and
embryos analyzed on indicated days. Fetal liver cells were processed
on ice or at 4 8C throughout the procedures outlined.

Determination of embryonic age. Wild-type embryos were each
allotted an embryonic age equal to that calculated from the timing of
gestation adjusted 60.5 d. The addition or subtraction of 0.5 d was
done based on morphological appearance of the embryo and on the
relative developmental status of the erythropoietic system, judged
from the CD71/Ter119 histograms. In the case of comparisons
between lpr, gld, and wild-type embryos, embryonic age was
determined by the timing of gestation, and adjusted 60.5 d based
on variations in embryo morphology as well as embryo weight. The
comparisons between proportions of cells in each state in lpr, gld, and
wild-type embryos were carried out on E13.5 and E14.5, a time when
the relative proportions of cells in states 1 and 2 in wild-type embryos
vary little with embryonic age (Figure 2).

Antibody staining and flow cytometry. Freshly isolated fetal livers
were mechanically dissociated and strained through a 70-lm strainer
in the presence of phosphate-buffered saline and 5% fetal calf serum.
Cells were immunostained at 4 8C in phosphate-buffered saline and
5% fetal calf serum in the presence of rabbit IgG (200 lg/ml, Jackson
ImmunoResearch Laboratories, http://www.jacksonimmuno.com/) to
block Fc receptors. Cells were incubated with 1 lg/ml PE-conjugated
anti-Ter119 (BD Biosciences, http://www.bdbiosciences.com/) and 1
lg/ml biotin-conjugated anti-CD71 (BD Biosciences) antibodies for 20
min, followed by 10 min of incubation with allophycocyanin-
conjugated streptavidin (Molecular Probes,http://probes.invitrogen.
com). Cells were also stained with either 7AAD (Viaprobe, BD
Biosciences) or DAPI (Roche, http://www.roche.com/) in order to
exclude dead cells from analysis. In multi-parameter analysis that
included staining for FAS or FASL, cells were treated similarly but
stained simultaneously for 1 h with PE-conjugated anti-Ter119, FITC-
conjugated anti-CD71 (BD Biosciences), 5 lg/ml biotin-conjugated
anti-FAS (JO2 clone, BD Biosciences), or 5 lg/ml biotin-conjugated
anti-FASL (MFL3 clone, BD Biosciences). This was followed by
incubation with allophycocyanin-conjugated streptavidin and DAPI

or 7AAD, as above. The same antibody specificities were also used
with different fluorochrome combinations, yielding very similar
results. Cells were analyzed for four-color fluorescence using either a
FACSCalibur (BD Biosciences) or an LSRII (BD Biosciences) flow
cytometer. Data were analyzed using FlowJo software (TreeStar,
http://www.treestar.com/). ANXA5 staining was carried out according
to manufacturer’s instructions (BD Biosciences).

Cell sorting. Cell sorting of fetal liver cells was carried out on a
DakoCytomation MoFlo (Dako, http://www.dako.com/).

In vitro mixing experiments. Cells from freshly isolated fetal livers
were kept at 4 8C and stained for TFRC and LY76. Cells from each of
the states 1 to 4 were sorted. Cells from the indicated states were
mixed at the indicated proportions, and plated in 96-well format in
IMDM, in the presence of 4 ll/500 ml of 2-mercaptoethanol, 20%
fetal calf serum, and 0.05 U/ml EPO (Amgen, http://www.amgen.com/).
Cells were incubated at 37 8C for 0, 2.5, or 5 h. Cells were then placed
at 4 8C and apoptosis measured using ANXA5 binding and CASP3
activation. The latter was measured using the CaspGlow kit
(BioVision, http://www.biovision.com/) according to manufacturer’s
instructions. Analysis was carried out using the LSRII flow cytometer
(BD Biosciences).

Supporting Information

Protocol S1. Supplementary Computational Methods and Results

Found at doi:10.1371/journal.pbio.0050252.sd001 (3.4 MB PDF).

Protocol S2. Autoregulatory FAS–FASL Interaction in Erythroid
Development

Found at doi:10.1371/journal.pbio.0050252.sd002 (3.0 MB PDF).
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