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The pro-survival protein Bcl-x, is critical for the resistance of tumour cells to DNA damage. We have previously
demonstrated, using a mouse cancer model, that oncogenic tyrosine kinase inhibition of DNA damage-induced Bcl-x,
deamidation tightly correlates with T cell transformation in vivo, although the pathway to Bcl-x, deamidation remains
unknown and its functional consequences unclear. We show here that rBcl-x, deamidation generates an iso-Asp>2/iso-
Asp®® species that is unable to sequester pro-apoptotic BH3-only proteins such as Bim and Puma. DNA damage in
thymocytes results in increased expression of the NHE-1 Na/H antiport, an event both necessary and sufficient for
subsequent intracellular alkalinisation, Bcl-x;, deamidation, and apoptosis. In murine thymocytes and tumour cells
expressing an oncogenic tyrosine kinase, this DNA damage-induced cascade is blocked. Enforced intracellular
alkalinisation mimics the effects of DNA damage in murine tumour cells and human B-lineage chronic lymphocytic
leukaemia cells, thereby causing Bcl-x, deamidation and increased apoptosis. Our results define a signalling pathway
leading from DNA damage to up-regulation of the NHE-1 antiport, to intracellular alkalanisation to Bcl-x, deamidation,
to apoptosis, representing the first example, to our knowledge, of how deamidation of internal asparagine residues
can be regulated in a protein in vivo. Our findings also suggest novel approaches to cancer therapy.
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Introduction

The deamidation of internal asparaginyl and glutaminyl
protein residues has attracted increasing attention over the
past decade as a modification leading to significant changes
in protein function [1,2]. The protein deamidation rates of
more than 18,000 proteins have been computed, containing
230,000 individual asaparaginyl residues, generating Asn half-
lives of less than 1 d to 50 y or more [3,4]. Protein
deamidation has broad biological implications, ranging from
changes in the specificity of antigen presentation [5], to
modifications in eye lens proteins [6], to the activation of
RhoA by cytotoxic necrotizing factor [7], to aging [1], to name
but a few examples.

The deamidation of Gln proceeds both enzymatically and
nonenzymatically in physiological systems, whereas only the
nonenzymatic deamidation of internal Asn residues has been
reported, involving conversion to Iso-Asp:Asp in a ratio of
about 3:1, with the precise ratio depending on the environ-
ment of the Asn residue [1,8]. Deamidation of both Gln and
Asn residues in vitro can be greatly accelerated by exposure
to either acid or alkaline pH, with minima in the range pH 4-
6. Until recently, it was assumed that Asn protein deamida-
tion rates in vivo were set up by a “fixed clock” that was
defined only by the primary, secondary, and tertiary
structures of proteins that specified the half-life of the
particular Asn residue in question. However, this view has
been radically changed by the recent observation that DNA
damage induces the relatively rapid deamidation of the pro-
survival protein Bcl-x;, in an osteosarcoma cell line system [9],
indicating that the deamidation “clock”, far from being fixed,
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is a dynamic process that can be regulated in vivo by
biologically critical events. Bcl-x;, deamidation in response to
DNA damage occurs at two internal Asn residues (Asn’? and
Asn®®), causing a characteristic retardation on SDS-polyacry-
lamide gel eletrophoresis (PAGE) gels [9-12]. Initial work
from the Weintraub laboratory suggested that when Asn®?
and Asn® are both mutated to Asp, then Bcl-x, loses its
ability to bind to the BH3-only pro-apoptotic protein Bim,
thereby providing a putative linkage between DNA damage
and apoptosis [9]. However, a secondary mutation was later
identified, which, when corrected, enabled the N5H2D/N66D
Bcl-xy, to bind Bim, casting doubt on this interpretation [13].

Using a different model system, we have previously
implicated the oncogene-mediated inhibition of DNA dam-
age-induced Bcl-x; deamidation in the transformation of
murine thymocytes [14,15]. Our transgenic mouse model of T
cell lymphoma was generated by crossing mice lacking

Academic Editor: Douglas Green, St. Jude Children’s Research Hospital, United
States of America

Received June 6, 2006; Accepted October 25, 2006; Published December 19, 2006

Copyright: © 2007 Zhao et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: B-CLL, B-lineage chronic lymphoblastic leukemia; CHX, cyclo-
heximide; DMA, 5-(N,N’-dimethyl)-amiloride; DN, double negative; Etop, etoposide;
FACS, fluorescence activated cell sorter; IR, irradiation; OTK, oncogenic tyrosine
kinase; PBMC, peripheral blood mononuclear cells; pH; intracellular pH; pHe,
extracellular pH; PI, propidium iodide

* To whom correspondence should be addressed. E-mail: denis.alexander@bbsrc.
ac.uk

January 2007 | Volume 5 | Issue 1 | el



Author Summary

Cell survival and cell death (apoptosis) are controlled by a finely
tuned ensemble of pro-survival and pro-apoptotic proteins. When
the two types of protein are balanced, cells survive. But if the pro-
survival proteins dominate, there is a danger that cells with
damaged DNA will stay alive, leading to malignancy. One of the
key pro-survival proteins, Bcl-x,, acts by blocking the actions of pro-
apoptotic proteins. We show here that DNA damage results in an
important modification of Bcl-x,. Specifically, when the amide
groups are removed from two critical asparagine (amino acid)
residues, Bcl-x, can no longer block pro-apoptotic proteins, leading
to cell death. Surprisingly, Bcl-x, deamidation is catalysed not by an
enzyme, but by increased pH inside the cell due to the up-regulation
of an NHE-1 transporter that moves positive ions across the cell
membrane. Indeed, artificially increasing pH causes Bcl-x, deamida-
tion and apoptosis in the absence of initial DNA damage. Exploring
this novel pathway may ultimately suggest approaches to cancer
therapy, especially when malignant cells are resistant to chemo-
therapy or radiotherapy.

expression of the CD45 tyrosine phosphatase with a line
expressing a nononcogenic level of the mutant 1ck 508
tyrosine kinase [16]. All the CD457Ick"™? progeny develop
aggressive T cell lymphomas at the early CD4 CD8™ stage of
thymic development, typically at 5-12 wk of age. The absence
of CD45-mediated dephosphorylation results in hyperphos-
phorylation of positive regulatory p56ICk pTyr-394, causing
hyperactivation of the kinase and triggering oncogenesis [15].
The model enables the investigation of the earliest oncogenic
events in primary pretumourigenic thymocytes. Inhibition of
DNA repair in CD45 1ck™%” mice leads to DNA damage,
genomic instability, and chromosomal aberrations detectable
in primary CD4 CD8  thymocytes before transformation.
Despite a normal pb3 response, DNA damage-induced
apoptosis is suppressed in pretumourigenic thymocytes,
correlating with the inhibition of Bcl-x;, deamidation, the
preservation of Bcl-x, binding to Bim, and the inhibition of
cytochrome ¢ release and the apoptotic caspase execution
cascade. Therefore, we proposed that Bcl-x;, deamidation is a
critical switch in oncogenic kinase-induced T cell trans-
formation, and we suggested that Bcl-x;, deamidation to an
Iso—Asp52/Iso—Asp66 version, rather than the mutant N52D/
N66D version investigated by the Weintraub laboratory,
might be the key step in disabling the antiapoptotic functions
of the protein [14,15].

Neither in the osteosarcoma cell line work [9] nor in our
own work based on primary thymocytes [15] has there been
any indication as to how DNA damage might induce Bcl-xg,
deamidation. Neither have there been previous reports in the
literature showing how protein Asn deamidation in general
might be regulated in vivo; we address here this question. We
confirm that Bcl-x;, deamidation does indeed destroy its
ability to sequester pro-apoptotic proteins such as Bim and
Puma, thereby establishing a clear molecular link between
DNA damage, Bcl-x;, deamidation, and apoptosis. Surpris-
ingly, DNA damage-triggered deamidation in primary wild-
type cells is mediated not enzymatically, but by intracellular
alkalinisation caused by increased expression of the NHE-1
Nat/H+ exchanger (antiport), events blocked by expression of
the oncogenic tyrosine kinase (OTK). In the case of either
murine or human cancer cells, enforced alkalinisation
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triggers Bcl-x;, deamidation, crippling its ability to provide
protection from the pro-apoptotic consequences of DNA
damage, thereby indicating possible novel approaches to
cancer therapy.

Results

DNA Damage-Induced Bcl-x, Deamidation Does Not
Depend on Mitochondrial Apoptosis

An important consideration is whether DNA damage-
induced Bcl-x;, deamidation in murine thymocytes is a cause
or consequence of thymic apoptosis. Figure 1 shows that
whereas the addition of the caspase inhibitor Z-VAD-fmk, as
expected, inhibited DNA damage-induced apoptosis in
murine thymocytes (Figure 1A), no inhibition of DNA
damage-induced Bcl-x;, deamidation was observed in cell
aliquots taken from the same thymic cultures (Figure 1B). It
is known that in the absence of Bax and Bak, BH3-only
proteins are unable to induce apoptosis [17]. We therefore
used short hairpin RNA (shRNA) to deplete Bax and Bak
from CD4 CD8 (double-negative, DN) thymocytes, con-
firmed that depletion was sufficient to block caspase 9
cleavage (Figure S1A), and showed that DNA damage-
induced Bcl-x;, deamidation proceeded normally in the
absence of Bax and Bak (Figure 1C). We also showed that
Bcl-x;, deamidation was clearly detectable within 3-6 h after
the instigation of DNA damage, and proceeded in parallel
with increased apoptosis (Figure S1B and S1C). These results
show that Bcl-x;, deamidation is not caused by mitochondrial
apoptosis and are consistent with a role for deamidation
upstream of the apoptotic executor pathway. Further data
presented below establish a more direct causal relationship
between Bcl-x;, deamidation and apoptosis in DNA damaged
thymocytes.

Bcl-x, Deamidation In Situ Involves Conversion of Asn®%/
Asn®® to Iso-Asp>?/Iso-Asp®®, Preventing Sequestration of
Bim and Puma

We previously noted that whereas the ability of Bcl-x;, to
bind Bim was ablated in control thymocytes exposed to DNA
damage, it was strikingly retained in pretumourigenic
CD45 " 1ck"™? thymocytes, tightly correlating with the resist-
ance to Bcl-x;, deamidation noted in these cells [15]. However,
work from the Weintraub laboratory suggests that deamidated
Bcl-xy, still binds Bim [13], thereby casting doubt on the model
that Bcl-x;, deamidation triggers apoptosis. Because the
sequestration of BH3-only proteins by Bcl-x;, is thought to
explain its anti-apoptotic function [18], resolution of this
question is clearly important for establishing a molecular link
between DNA damage and apoptosis. We therefore carried
out a series of cellular and biochemical experiments to
address this key point.

Figure 2A shows that Bcl-x;, measured in whole cell lysates
from pretumourigenic CD45 " 1ck™% murine thymocytes is
resistant to deamidation following 7y irradiation, consistent
with our previous findings [15]. Immunoprecipitation of the
pro-apoptotic protein Bim, followed by immunoblotting for
Bcl-x;, revealed that Bim sequestered only the N52/N66 Bcl-
x;, and failed to bind the slower migrating deamidated
protein (Figure 2A, upper panel), although the amount of
Bim in each immunoprecipitate was comparable (Figure 2A,
lower panel). Because the BH3-only protein Puma, not Bim,
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Figure 1. DNA Damage-Induced Bcl-x, Deamidation Is Mitochondrial Apoptosis-Independent

(A) Wild-type thymocytes were pre-incubated with or without Z-VAD-fmk (200 uM), and were then cultured with or without etoposide for 24 h,
harvested, and apoptosis was measured by measuring the sub-G1 peak by flow cytometry. The histograms (right panel) represent mean values = SD (n
=3).

(B) Aliquots of the cells from (A) incubated in the presence or absence of Z-VAD-fmk (200 uM) were analysed for the expression of Bcl-x_ and tubulin (as
loading control) by immunoblotting. The upper and lower bands of Bcl-x, were quantified and expressed as a percentage of total Bcl-x.. The
percentages shown below each lane are means = SD (n = 3).

(C) Plasmids of shRNA Bax (GFP) and shRNA Bak (DsRed) were cotransfected into purified DN thymocytes using an Amaxa nucleofactor kit. 48 h later,
GFP* DsRed" cells were purified by flow cytometry and treated with etoposide (Etop, 25 uM) for 30 h or exposed to irradiation (IR, 5 Gy) followed by 30
h in culture. DN thymocytes transfected with negative control plasmids were treated in parallel. Cells were then processed for immunoblotting with Bcl-
x_ antibody. The immunoblot was reprobed for Bax and Bak to check the efficiency of gene knockdown. Tubulin was also reprobed as a loading control.
doi:10.1371/journal.pbio.0050001.g001

plays a major role in DNA-damage triggered apoptosis in our cellular studies (Figure 1B). It has already been
[19,20], we also showed that both Puma and Bim are found demonstrated that these migratory shifts are not caused by
in Bcl-xp, immunoprecipitates from etoposide treated phosphorylation [9,12]. In fact, deamidation of a single Asn
CD45 " Lck™” thymocytes, whereas sequestration is ablated increases protein mass by 1 Da, at the same time increasing its
in wild-type cells, correlating with Bel-x; deamidation (Figure  pet negative charge, confirming that the shifts are due to

2B). A comparable result was obtained when Puma immuno- jeamidation. Importantly, when the three species of rBcl-x;,
precipitates were blotted for Bcl-x;, (Figure S2A). Therefore,
deamidated Bcl-x;, appears unable to sequester BH3-only
proteins.

To confirm the results using intact thymocytes, we carried
out in vitro biochemical experiments. Recombinant purified

His-tagged Bcl-x;, was exposed to alkaline conditions to cause

were tested for their ability to bind to Bim in wild-type
thymic lysates, only peak A bound Bim effectively, whereas
binding to peak B rBcl-x;, was reduced by 88% * 2% and
completely ablated using peak C rBcl-x;, (Figure 2D, upper
panel). Figure 2E shows that the Asp°*/Asp®® version of Bcl-xy,,
or the Ala®?*/Ala®® version that cannot be deamidated, does

partial deamidation and separated by anion-exchange chro- ] ; ) ) ) )
still bind both Bim and Puma, consistent with the correction

Mass spectrometric analysis revealed an increase of 1 Da for published by the Weintraub lab?ratory [13]. We therefore
peak B relative to peak A, and a further increase of 1 Da for ~ determined whether rBel-x,, Asn” and Asn" convert mainly
peak C relative to peak B (Figure 2C). On SDS-PAGE gels, to Asp or to iso-Asp upon alkali treatment. Consistent with
peak A Bcl-x;, migrated slightly faster than the more acidic ~ previous results [8], Figure 2F and Figure S3 show that the
peaks B and C (Figure 2D), reproducing the characteristic ratios of iso-Asp:Asp conversion for Asn® and Asn®® are 10:1
profile of N52/N66 Bcl-x;, and its deamidated versions found and b5:1, respectively. Kinetic analysis revealed that deamida-

matography into three peaks (Figure 2C, peaks A, B and C).
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Figure 2. Deamidation Disrupts the Sequestration of BH3-Only Proteins by Bcl-x_

(A) Bim binds to the native (Asn-Asn) but not deamidated forms of Bcl-x,. Wild-type (C57BL/6) thymocytes (1.5 X 107) were exposed to 5 Gy irradiation
(IR) and then maintained in culture for the times shown, after which cells were lysed and either separated as whole cell lysates (WCL) or as Bim
immunoprecipitates, followed by immunoblotting for either Bcl-x, or for Bim. Bim migrates as “extra-long” (EL) or “long” (L) forms.

(B) Bcl-x, was immunoprecipitated from lysates derived from purified DN thymocytes treated with/without etoposide (ut/E), followed by
immunoblotting for Bim or Puma. The asterisk indicates the light chain of the Bcl-x, antibody used for immunoprecipitation.

(C) Anion exchange chromatography of purified rBcl-x,.. Sample A was untreated; samples B and C were exposed to pH 8.8 at 37 °C for 2 h and 20 h,
respectively. The Figure illustrates superimposed elution profiles for each sample. Peaks A, B, and C had molecular masses of 25, 015.6; 25, 016.4, and 25,
017.2, respectively.

(D) Bim binds to native but not to deamidated rBcl-x,. The three different forms of Bcl-x, (A, B, and C) purified by anion-exchange column
chromatography shown in (C) were incubated in wild-type thymic lysates (1.5 X 107 cell equivalents) at 4 °C for 2 h and then precipitated using nickel
beads. The precipitated products were immunoblotted for Bim and Bcl-x,. Quantification of the Bim-L/Bcl-x, ratios £ SD from three independent
experiments is shown in the histogram, with the lane A ratio normalised to 1 (¥).

(E) Primary thymocytes were retrovirally transduced with empty vector or Bcl-x. constructs (wild-type, N52A-N66A, or N52D-N66D). Bcl-x, was
immunoprecipitated from lysates derived from 1.5 X 10° sorted GFP-positive cells per lane, followed by immunoblotting for Bim or Puma. Note that in
the vector lane, at this exposure endogenous Bcl-x, is not visible because of the small number of cells used. The asterisk indicates the light chain of the
Bcl-x, antibody used for immunoprecipitation.

(F) Peptides SDVEENRTEAPEGTESEMETPSAINGNPSW (peptide 1) and HLADSPAVNGATGHSSSL (peptide 2), and the corresponding deamidated forms,
containing the putative deamidation sites N52 and N66, respectively, were generated by digestion of rBcl-x, with chymotrypsin. The chromatographic
conditions used for the separation of the peptides in the LC-MS analyses were optimised so as to resolve the Asn, Asp, and iso-Asp forms of peptides 1
and 2. The Asp and iso-Asp forms of the two peptides were identified by spiking an aliquot of a digestion mixture with Asp- or iso-Asp-containing
synthetic peptides prior to LC-MS (Figure S3). The chromatograms show LC-MS analyses at time point 72 h of the rBcl-xl base treatment. For both
peptides, the major deamidation product is the iso-Asp form; the iso-Asp:Asp ratios are approximately 10:1 for N52 and 5:1 for N66. The unknown peak
3 in peptide 2 could be an isomer of peak 2 or peak 4.

doi:10.1371/journal.pbio.0050001.9g002

tion of Asn®® to iso-Asp is much faster than for Asn®? than conversion to Asp [1,8], presumably explaining the loss
(unpublished data). of BH3-only protein binding.

Taken together, our results show that conversion of Bcl-xp, L .
Asn®? and Asn®® to iso-Asp, but not Asp, prevents sequestra- DNA Damage-Induced Bcl-x, Deamidation and Apoptosis

tion of BHS3-only proteins. Peak B represents rBcl-xp, Is Mediated by Intracellular Alkalinisation

deamidated at either Asn®® or Asn66, whereas peak C is Until now, the in vivo mechanism for the deamidation of
deamidated at both sites (Figure 2C and 2D). Deamidation to internal protein Asn residues has not been described for any
iso-Asp causes greater perturbations of protein structure protein. Because protein Asn deamidation is accelerated by
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increased pH in vitro, we investigated intracellular pH
change (pH;) as a possible regulatory mechanism in thymo-
cytes. Figure 3A shows that after DNA damage, the pH; of live
wild-type CD4 CD8" thymocytes increased to 7.55, whereas
no change was observed in pretumourigenic cells. But is that
increase sufficient to cause Bcl-x;, deamidation? To address
this question, we incubated wild-type thymocytes in the pH
range of 7.2-8.0 for 20 h in the presence of the Na'
ionophore monensin to ensure complete equilibration of
pHi and extracellular pH (pH.), and to neutralize acidic
intracellular compartments [21], and we then assessed the
extent of Bcl-x;, deamidation. Figure 3B shows that whereas
only 22.5% =* 3.2% was deamidated at pH 7.2, this increased
to 56.1% = 3.8% at pH 7.6 and 67.0% * 4.5% at pH 8.0.
Therefore, a rise in pH; comparable with that observed after
DNA damage (Figure 3A) is sufficient to cause substantial
deamidation. Furthermore, the addition of Z-VAD-fmk to
thymic cultures following DNA damage did not inhibit their
alkalinisation (Fig. 3C), showing that the rise in pH; is not
downstream of caspase activation. To investigate Bcl-x,
deamidation, pH;, and apoptosis in parallel, we manipulated
pH; values artificially by incubating cells at varying pH. values
in the absence of monensin. The left panel of Figure 3D shows
that when DNA damage was induced in wild-type thymocytes,
Bcl-x;, deamidation could be largely prevented by artificially
maintaining the pH; at 7.1 (value shown in Figure 3E, left
panel), thereby reducing the percentage of apoptotic
CD4 CD8" thymocytes by 2-fold relative to those incubated
at physiological pH (Figure 3F, left panel). Conversely, Figure
3D (right panel) shows that the resistance to Bcl-x,
deamidation observed in DNA-damaged pretumourigenic
thymocytes could be completely overcome by artificially
increasing the pH; to 7.55 or above (Figure 3E, right panel),
correlating with a 2-fold increase in the percentage of
apoptotic CD4 CD8" thymocytes relative to those incubated
at physiological pH (Figure 3F, right panel). Interestingly,
enforced alkalinisation alone in the absence of DNA damage
caused a marked increase in Bcl-x;, deamidation in the OTK
expressing thymocytes (Figure 3D, right panel), with a
concomitant increase in apoptosis (Figure 3F, right panel),
albeit at a level lower than with DNA damage, perhaps
reflecting the somewhat lower pH; values achieved under
these conditions (Figure 3E, right panel).

We considered that the tight correlation between pH;,
Bcl-x;, deamidation, and apoptosis might nevertheless be
coincidental and that enforced alkalinisation might be
inducing apoptosis by a mechanism independent of Bcl-xg,
deamidation. Mutant Bcl-x;, Ala®%/Al1a% or Asp52/AspF'6, both
of which sequester BH3-only proteins (Figure 2E), were
therefore over-expressed in wild-type CD4 CD8™ thymocytes
by retroviral transduction prior to enforced alkalinisation
by incubation in media at pH 8.0 or 8.5. Figure 3G (middle
panel) shows that, as expected, the Ala®?A1a% mutant
migrates as the lower nondeamidated version of Bcl-xp,
whereas Asp}”Q/Asp66 migrates as the more negatively
charged deamidated version. Interestingly, in the cells
expressing these mutant forms of Bcl-x;, the apoptosis
induced by enforced alkalinisation was reduced 4-fold
compared to cells transduced with empty vector, or more
than 2-fold in comparison with the wild-type protein (Figure
3G, right panel), which of course undergoes deamidation in
response to alkali treatment. These results show that Bcl-xp,
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in a version able to sequester BH3-only proteins protects
thymocytes from an enforced increase in pH;. Nevertheless,
protection was not absolute, suggesting that Bcl-x;, may not
be the only mechanism protecting cells from apoptosis
triggered by alkalinisation. As a further control, we have
confirmed that Bcl-x;, isolated from wild-type thymocytes
exposed to a high pH buffer can no longer sequester Bim
(Figure S2B), thereby mimicking the effects of DNA damage
(Figure 2A).

Taken overall, these results demonstrate that intracellular
alkalinisation following DNA damage is both necessary and
sufficient for nonenzymatic Bcl-x;, deamidation, that the
oncogenic suppression of Bcl-x;, deamidation in pretumouri-
genic thymocytes is caused by inhibition of alkalinisation, and
that versions of Bcl-x;, competent for BH3-only protein
sequestration are sufficient per se to protect cells from
apoptosis at alkaline pH;.

DNA Damage-Induced Alkalinisation, Bcl-x, Deamidation,
and Apoptosis are Mediated by Increased NHE-1 Antiport
Expression

We next investigated the molecular mechanisms leading
from DNA damage to the regulation of pH; and subsequent
Bcl-x;, deamidation. Figure 4A shows that de novo protein
synthesis is essential for Bcl-x;, deamidation following DNA
damage in wild-type thymocytes. Because the NHE-1 Na/H
antiport is a well-established regulator of pH; [22] and has
previously been implicated in the regulation of thymic
apoptosis [23], we measured its expression in wild-type
thymocytes after DNA damage and found that the NHE-1
level increased 2.5-fold within 5 h, whereas this increase was
completely suppressed in pretumourigenic thymocytes (Fig-
ure 4B). No inhibition of increased NHE-1 expression in wild-
type thymocytes was observed following addition of the Z-
VAD-fmk caspase inhibitor (Figure S4A) nor following
depletion of Bax and Bak from the cells (Figure S4B). We
therefore carried out a further series of experiments to
demonstrate that there was a direct causal linkage between
the regulation of NHE-1 expression, pH;, Bcl-x;, deamidation,
and apoptosis. Given that the OTK blocks DNA-damage
induced NHE-1 expression in pretumourigenic thymocytes,
this provides a powerful system for examining the con-
sequences of experimentally enforcing NHE-1 expression in
these cells by retroviral transduction. As Figure 4C illustrates
(upper panel), an enforced 2-fold-3-fold increase in NHE-1
expression in pretumourigenic thymocytes, without DNA
damage, restored Bcl-x;, deamidation to a level comparable to
that observed in a retrovirally transduced wild-type control in
five separate experiments, thereby bypassing the OTK-
mediated inhibition in deamidation. Overexpression of
NHE-1 increased both pH; and apoptosis to comparable
levels in both pretumourigenic and wild-type thymocytes
(Figure 4C, lower panels). These results suggest that increased
NHE-1 expression per se is sufficient to cause increased pH;,
Bcl-x;, deamidation and apoptosis. To address this question
further, we used the selective NHE-1 inhibitor 5-(N,N’-
dimethyl)-amiloride (DMA) to block the actions of the
antiport following its increased expression on thymocytes
upon DNA damage. Figure 4D shows that DMA prevented the
alkalinisation of wild-type thymocytes following DNA damage
(top left panel), their apoptosis (top right panel), and Bcl-xp,
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Figure 3. DNA Damage Causes Intracellular Alkalinisation and Subsequent Bcl-x, Deamidation

(A) Intracellular alkalinisation occurs following DNA damage in wild-type but not in pretumourigenic D45~ Lck™% thymocytes. Cells were treated with
etoposide (Etop) for 20 h or exposed to 5 Gy of irradiation (IR) and then maintained in culture for 20 h. pH; was measured using SNARF by FACS in the
gated live CD4 CD8 subset. The histograms represent mean values £ SD (n = 5).

(B) Enforced intracellular thymic alkalinisation causes Bcl-x, deamidation. Wild-type thymocytes were maintained in RPMI-1640/10% bovine fetal calf
serum buffered at the indicated pH with Tris-HCl for 20 h in the presence of 20 M monensin prior to lysis and immunoblotting for Bcl-x,. To minimize
any deamidation produced during the gel-running process, the resolving gel buffer was adjusted to pH 8.0 in this experiment. The mean ratio of the
lower band (native Bcl-x) or upper band (deamidated Bcl-x;) to the total (upper plus lower bands) is shown in the graph (lower panel). The error bars
represent SD (n = 3). Note that deamidation becomes prominent at pH 7.5.

(C) Aliquots of the cells from Figure 1A incubated in the presence or absence of Z-VAD-fmk (200 uM) were analysed for pH;, The histograms represent
mean values =SD (n = 3).

(D) Wild-type or CD45 " Lck™% pretumourigenic thymocytes were cultured for 24 h in media at the pH shown without monensin, with or without
etoposide, and then analysed for Bcl-x, deamidation by immunoblotting. The upper and lower bands were quantified and the percentage of upper
bands in total Bcl-x, calculated. The percentages shown below each lane are means = SD (n = 5).

(E) Aliquots of cells used in (D) were assessed for pH; by FACS. The histograms show the pH; of live gated CD4 CD8™ thymocytes from five independent
experiments *=SD. The pH, values refer to the pH values of the extracellular media.

(F) Apoptosis of aliquots of the cells from (D) was analysed by FACS. The histogram shows the sub-G1 peak (%) of CD4 CD8  thymocytes from five
independent experiments = SD.

(G) Wild-type (wt), N52A-N66A (AA), N52D-N66D (DD) Bcl-x;, and empty vector were retrovirally transduced into thymocytes. GFP-positive cells were
FACS sorted (left panel) and cultured in media with the pH, shown for 24 h or 48 h, then processed for immunoblotting with Bcl-x, antibody (middle
panel). Note that 8 X 10° and 1 X 10° cell equivalents were loaded per lane for the empty vector (lanes 1-3) and Bcl-x,_ (lanes 4-12) transfectants,
respectively, such that the endogenous Bcl-x, is invisible in lanes 4-12. The histogram (right panel) shows mean apoptosis (sub-G1) values =SD

generated from five independent experiments.
doi:10.1371/journal.pbio.0050001.g003

deamidation (lower panel), correlating with increased surviv-
al (Figure SHA).

To extend these findings, we also used shRNA to deplete
thymocytes of NHE-1 protein (Figure S6A). NHE-1 knock-
down almost completely blocked the actions of DNA damage
in causing Bcl-x;, deamidation (Figure b5A), intracellular
alkalinisation (Figure 5B), or apoptosis (Figure 5C and Figure
S6B). We measured apoptosis by two different methods to
ensure that DNA damage-induced cell death following
retroviral transduction was by apoptosis and not by necrosis.
Figure 5C and Figure S6B illustrate that double staining for
Annexin V and propidium iodide (PI) followed by FACS
analysis revealed a major increase in Annexin vt PI”
(apoptotic) cells following transduction with the negative
control shRNA followed by either y irradiation or treatment
with etoposide, whereas there was no increase in apoptotic
cells above baseline in the cells depleted of NHE-1: DNA
damage-induced apoptosis was blocked 100%. Comparable
results were obtained by measuring the sub-G1 peak by FACS
(unpublished data) and NHE-1 depletion also correlated with
increased survival (Figure S5B).

We considered that post-translational modification of the
NHE-1 antiport, in addition to regulation of its expression,
might also be involved in mediating the DNA damage
response. For example, a number of serine kinases have been
shown to regulate NHE-1 phosphorylation and activity
[24,25], so we investigated the pSer and pThr levels in NHE-
1 immunoprecipitates from irradiated wild-type and pretu-
mourigenic thymocytes, but the basal level of phosphoryla-
tion did not change after DNA damage and was comparable
between the two cell types (Figure S6C). Nevertheless, we
cannot formally exclude the possibility that not all pSer/pThr
sites were recognised by the cocktail of monocolonal anti-
bodies (mAbs) used. Taken together, our findings therefore
suggest that the increased expression of the NHE-1 trans-
porter is both necessary and sufficient for DNA damage-
induced alkalinisation, Bcl-x;, deamidation, and apoptosis in
wild-type thymocytes, and that the suppression of these three
parameters in pretumourigenic thymocytes is caused by
oncogenic inhibition of the DNA damage-triggered increase
in NHE-1 expression.

iE). PLos Biology | www.plosbiology.org

Enforced Alkalinisation Causes Increased Bcl-x,
Deamidation and Apoptosis in Murine and Human Cancer
Cells

The experiments illustrated in Figures 1-5 were all carried
out on wild-type or primary pretumourigenic CD45 "Ik
thymocytes. Signalling pathways can be markedly different in
fully transformed cells compared to their pretransformed
counterparts. We therefore wondered whether CD45™ ek
T cell tumour cells, which develop from CD4 CD8" thymo-
cytes [16], might display a comparable set of properties.
Figure S7 shows that this was indeed the case: murine tumour
cells resistant to genotoxic insult at physiological pH; values
can be sensitised to die by enforced alkalinisation leading to
Bcl-x;, deamidation. Furthermore, a modest rise in pH;
following incubation in a mildly alkaline buffer produces
levels of Bcl-x;, deamidation and apoptosis in murine tumour
cells comparable to those observed by adding a DNA
damaging reagent to wild-type thymocytes incubated at
physiological pH.

Chronic lymphocytic leukaemia (CLL) is the most common
adult haematological malignancy in the Western world and,
like many cancers, is characterised by the development of
drug resistance. We therefore determined whether genotoxic
treatment in vitro of primary human B lineage CLL (B-CLL)
cells might cause increased NHE-1, alkalinisation, Bcl-xq,
deamidation, and apoptosis, as in primary murine thymocytes
(Figures 3-5), or whether this might be inhibited, as with the
murine cancer cells (Figure S7). In addition, we examined the
consequences for these parameters of incubating cancer cells
in alkaline pH buffers. To perform these investigations, we
divided each sample of patient cancer cells into nine aliquots
that were either untreated, subjected to 7y irradiation, or
exposed to etoposide, followed by incubation at pH 7.2, pH
8.0, or pH 85 for 24 h. Each aliquot was then further
subdivided into three samples to measure pH;, Bcl-x,
deamidation, and apoptosis. As expected, exposure of cells
to mildly alkaline buffers generated pH; values that displayed
some variation between samples from different patients
within a narrow range. The 18 values per patient obtained
from 10 different patients, the mean values calculated for
each pH. value considered separately, and representative
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Figure 4. Bcl-x, Deamidation Induced by DNA Damage Involves Up-Regulation of the NHE-1 Na/H Antiport

(A) Bcl-x, deamidation induced by DNA damage requires de novo protein synthesis. Wild-type thymocytes were either treated with etoposide for 24 h
(Etop), or exposed to 5 Gy of irradiation (IR) and then maintained in culture for 24 h, with or without 0.5 uM cycloheximide (CHX). Cell lysates were
processed by immunoblotting for Bcl-x_ or B-actin (loading control).

(B) DNA damage causes up-regulation of NHE-1 in wild-type but not in CD45 " Lck™% thymocytes. Wild-type or CD457"Lck™ thymocytes were either
treated with etoposide (Etop) for 5 h, or exposed to 5 Gy of irradiation (IR) and then maintained in culture for 5 h before immunoblotting for NHE-1 or
tubulin (loading control). The histogram shows the quantification of relative NHE-1 expression levels SD from five independent experiments. Lane 3 was
defined as 1 (¥).

(C) Migri-NHE-1 or empty Migri vector were transduced into wild-type or pretumourigenic CD45 Lc thymocytes. 72 h after the first round of
infection, cells were immunoblotted for NHE-1 and Bcl-x;. NHE-1 expression levels (NHE-1 relative intensity) were normalised for loading using tubulin
values. Deamidation was calculated as in Figure 1B. The lower left FACS histogram shows the infection efficiency for nontransfected (non), empty-vector
transfected (vector), or NHE-1 transfected (NHE-1) cells as percentage GFP-positive cells. The lower right histograms show the mean pH; and apoptosis
(sub-G1) values = SD (n = 5) analysed on GFP-negative and positive cells.

(D) The NHE-1 inhibitor DMA blocks DNA damage-induced alkalinisation (top left panel), Bcl-x, deamidation (lower panel) and apoptosis (top right
panel) in wild-type thymocytes. Thymocytes were treated with Etoposide for 24 h, or exposed to 5 Gy of irradiation and then maintained in culture for
24 h, with or without 200 uM DMA. pH; was measured by FACS on live CD4 CD8" cells, and the sub-G1 peak was analysed by FACS on CD4 CD8™ cells
to assess apoptosis. The histograms represent mean values = SD (n = 3).

doi:10.1371/journal.pbio.0050001.g004

kF5 05

Bcl-x;, deamidation results from a single patient are
illustrated in Figure 6A, Figure S8A, and Figure S8B,
respectively. Interestingly, unlike the murine tumour cells
expressing an OTK, the B-CLL cells behaved somewhat more
like wild-type thymocytes in that DNA damage at physio-
logical pH. caused a mean increase of pH; of 0.22 units, an
8% increase in Bcl-x;, deamidation, and an 189% increase in
the number of cells undergoing apoptosis (Figure 6A and
Figure S8A), compared to the higher thymocyte values of 0.45
pH; units, 40% increase, and 37% increase, respectively
(Figure 3). The human cancer cell values for these parameters

were greatly increased at alkaline pH,, generating tight
correlations between increasing pH;, Bcl-x;, deamidation,
and apoptosis (r values shown in Figure 6A). Thus, a mean
increased pH; of 0.5 correlated with 1.7-fold and 2.4-fold
increases in Bcl-x;, deamidation and apoptosis, respectively. It
is also striking that enforced intracellular alkalinisation alone
(by 0.3 pH; units), in the absence of experimentally induced
DNA damage, was itself sufficient to increase Bcl-x;, deami-
dation and apoptosis by 1.5-fold and 1.8-fold, respectively.
This point is further illustrated by the gray shaded area shown
in Figure 6A, which encompasses the overlap in sub-Gl
0046
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Figure 5. NHE-1 Knockdown Blocks DNA Damage-Induced Bcl-x, Deamidation and Apoptosis
(A) Empty vector, negative control, or NHE-1shRNA2 were transduced into wild-type thymocytes, then treated with Etoposide (Etop) or irradiation (IR)

prior to immunoblotting for NHE-1 and Bcl-x,.

(B) Aliquots of the cells from (A) were analysed for pH;. The histogram represents mean values = SD (n = 3).
(Q) Aliquots of the cells from (A) were analysed for apoptosis by Annexin V/PI staining using flow cytometry, as illustrated in a representative experiment
(total n = 5). The numbers shown are the percentage of cells in each quandrant. Histograms summarising the percentage of apoptotic cells (Annexin

V'PI") and dead cells (Annexin V'PI") are shown in Figure 6B.
doi:10.1371/journal.pbio.0050001.g005

(apoptosis) values that were obtained either by DNA damage at
physiological pH or by enforced alkalinisation without DNA
damage. Conversely, incubation of B-CLL cells at lower pH
inhibited DNA damage-induced Bcl-x;, deamidation and
apoptosis (Figure 6B). Therefore with respect to enforced
changes in pH;, the B-CLL cells behaved in a comparable way
to both murine thymocytes and tumour cells. A small increase
in pH; induced by incubation in alkaline buffer in the absence
of induced DNA damage generated as much, if not more, Bcl-
xr, deamidation and apoptosis as that triggered by genotoxic
attack at physiological pH..

NHE-1 expression in response to DNA damage was
investigated in a further six B-CLL patients. Figure 6C shows
by immunoblotting (right panel) that there was some
variation between patients, but that in all cases (left panel),
etoposide caused increased NHE-1 expression by 3 h,
achieving optimal values by 6-9 h ranging from 1.9-fold-
2.6-fold over basal levels. These increases correlate with the
observed increases in Bcl-x;, deamidation and apoptosis in
patients’ cells (Figure 6A) and at the 2.6-fold level, at least, are
comparable with the increases observed in wild-type thymo-
cytes (Figure 4B). Furthermore, DNA damage-induced Bcl-x;,
deamidation in B-CLL cells was prevented by addition of
either cycloheximide (CHX) (Figure S8C) or DMA (Figure
S8D), establishing a possible linkage between DNA damage,
NHE-1 function, and Bcl-x;, deamidation in human cancer
cells.

iE). PLos Biology | www.plosbiology.org
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Discussion

It has previously been suggested that Bcl-x;, deamidation is
critical in the signalling pathway that leads from DNA
damage to apoptosis [9]. This interpretation was based to a
large degree on the observation that N52D/N66D Bcl-x;, one
of the species generated by deamidation, can no longer exert
anti-apoptotic activity nor sequester the pro-apoptotic
protein Bim. However, a secondary mutation in the N52D/
N66D Bcl-xp, construct was later discovered, which, when
corrected, restored binding, thereby casting doubt on the
initial interpretation of the physiological significance of Bcl-
xy, deamidation [13]. We now propose that the initial finding
was correct, but for the wrong reason. Our results indicate
that the major Bcl-x;, species generated by deamidation in
situ is not Asp”®*Asp® but iso-Asp°*liso-Asp®®, which is
consistent with the well-established biochemistry of Asn
deamidation [1], and that this species is unable to sequester
Bim or Puma (Figure 2 and Figure S2). The introduction of
iso-Asp into the disordered loop in which these residues are
located is expected to cause greater conformational change
than Asp, because of the redirection of the peptide backbone
through B carboxyl groups, as indicated by the known
structural and functional changes that occur in proteins
upon conversion of Asn to iso-Asp residues [26,27]. The
structural importance of protein iso-Asp residues is likewise
underlined by the expression of the putative repair enzyme
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Figure 6. DNA Damage Induces NHE-1 Expression, and Enforced Alkalinisation Promotes Apoptosis of Human B-CLL cells

(A) Enforced alkalinisation of cancer cells from patients (n = 10) with B-CLL causes Bcl-x, deamidation and associated cell death. Treatment with
etoposide (Etop) in vitro further amplifies cell death. Patients’ cells (PBMC, in the range 85%-95% CD19"B220") were incubated at pH, values of 7.2, 8.0,
or 8.5, and the pH; values were monitored by SNARF-1 staining using flow cytometry. Apoptosis was evaluated by measurement of sub-G1 peaks using
flow cytometry. The data shows pooled results from ten patients via 30 values per treatment condition: due to identical values, some symbols overlap.
The correlation coefficients (r) of deamidation or sub-G1 versus pH; are shown for each treatment. The p value (significance) for each correlation is
shown in parentheses. The correlation coefficients of sub-G1 versus deamidation are r =0.92 (p < 0.0001) for untreated cells and r=0.87 (p < 0.0001)
for etoposide treated cells.

(B) Purified PBMC from B-CLL patients were cultured for 24 h in media at the pH shown, with/without etoposide for 48 h, and then analysed for Bcl-x,
deamidation by immunoblotting (left panel). The upper and lower bands were quantified and the upper deamidated Bcl-x, band was expressed as a
percentage of total Bcl-x,. The percentages shown below each lane are means * SD (n =4). The same cell aliquots cultured in RPMI/10% FCS for 24 h or
48 h were analysed for apoptosis by sub-G1 staining (right panel).

(C) Assessment of NHE-1 expression in B-CLL patients’ samples following exposure to etoposide for the times shown. Representative immunoblotting
results are shown for three patients in the right panel and the values for six patients (normalized for tubulin loading) are graphed in the left panel.
doi:10.1371/journal.pbio.0050001.g006

L-isoaspartate O-methyltransferase which converts iso-Asp to
Asp residues: its deletion has striking effects on protein
functions [28-30]. Furthermore, comparison of the crystal
structures of native rat Bcl-x;, with its deamidated version has
revealed significant differences [10]; the structural implica-
tions of introducing iso-Asp residues into the disordered loop
environment of Asn®%/Asn®® merits further work.

We have identified critical elements in the signalling
pathway leading from DNA damage to Bcl-x;, deamidation

i(E). PLos Biology | www.plosbiology.org

in thymocytes and have shown, as Figure 7A illustrates, that
deamidation is induced upon DNA damage by up-regulation
of the NHE-1 antiport and consequent intracellular alkalin-
isation (Figures 3-5). To the best of our knowledge, this
represents the first description of a molecular mechanism for
the regulation of protein internal Asn deamidation in cells.
Our results are consistent with the failure, until now, to
identify genes encoding internal protein Asn deamidases [1].
The regulation of NHE-1 antiport function is complex,
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Figure 7. Models lllustrating the Linkage Between DNA Damage, the NHE-1 Antiport, Alkalinisation, Bcl-x, Deamidation, and Apoptosis in Wild-Type

and Cancer Cells

(A) In wild-type thymocytes, DNA damage causes increased NHE-1 expression and a consequent rise in intracellular pH, Bcl-x, deamidation, and apoptosis.
(B) In pretumourigenic thymocytes expressing an OTK, the DNA damage-induced rise in NHE-1 expression is blocked, preventing alkalinisation, Bcl-x,

deamidation, and apoptosis.

(C) Enforced alkalinisation of murine tumour cells, or human B-CLL cells, causes Bcl-x, deamidation and subsequent apoptosis, even in the absence of

external genotoxic attack.
doi:10.1371/journal.pbio.0050001.g007

involving modulation of its expression, phosphorylation, and
binding of regulatory proteins [24,25,31]. Our data are
consistent with a model in which DNA damage causes
alkalinisation by a direct 2-3-fold increase in NHE-1
expression (Figures 4B and 6C), although we cannot exclude
the possibility that undetected changes in phosphorylation
might shift the pH dependence of the antiport to a more
alkaline range as described for myocardial tissue [32].
Furthermore, the calcineurin B homologous protein 1
(CHP-1) has been characterised as an essential cofactor for
NHE-1 in normal tissues [33], whereas its CHP-2 homologue
is up-regulated in transformed cells [34], so regulation of
these proteins might also be involved in activation of the
antiport. Intracellular NHE-1 mediated alkalinisation has
previously been implicated in the regulation of HL-60 cell
apoptosis [35] and in apoptosis after trophic factor with-
drawal [24]. In our present work, it is clear that the
alkalinising affects of DNA damage can be mimicked simply
by overexpressing NHE-1 on wild-type thymocytes in the
absence of DNA damage (Figure 4C). Furthermore, either
inhibition or depletion of the antiport blocks DNA damage
induced alkalinisation, Bcl-x;, deamidation, and apoptosis
(Figures 4D, 5A-5C, and Figure S8D).

The dlrect role played by the deamidation of Bcl-xy, to its
iso- Asp 2fiso- Asp version in the signalling pathway from
DNA damage to apoptosis is supported by the finding that
cither the N52D/N66D or N52A/N66A Bcl-x;, mutants, which
still bind BH3-only proteins (Figure 2E), protect thymocytes
from dying upon enforced intracellular alkalinisation (Figure
3G). An alternative hypothesis involves the generation of new
BH3-only family members as a consequence of alkalinisation,
which compete for binding to Bcl-x, thereby displacing Bim
and Puma. However, such a hypothesis does not explain why
the Bcl-x;, mutants that still bind BH3-only proteins retain
their anti-apoptotic potency at high pH (Figure 3G).

The striking blockade in DNA damage-induced NHE-1
expression, alkalinisation, Bcl-x;, deamidation, and apoptosis
noted in CD45 "Ik pretumourigenic thymocytes (Figures
3 and 4), together with the reversal of this blockade by
enforced expression of NHE-1 (Figure 4C), provide strong
support for the model illustrated in Figure 7B. The oncogenic
hyperactive pBGICk’YF’%F tyrosine kinase [15] must inhibit one

iB). PLoS Biology | www.plosbiology.org

or more steps on the pathway from DNA damage to increased
NHE-1 expression, a mechanism that is under active inves-
tigation. We have previously demonstrated in pretumouri-
genic thymocytes a tight correlation between inhibition of
Bcl-x;, deamidation, resistance to DNA damage induced
apoptosis, and oncogenesis, suggesting that the consequent
accumulation of DNA-damaged thymocytes is critical in the
transforming process [14,15]. It therefore seems conceivable
that the OTK-induced inhibition of NHE-1 is likewise
important in thymic transformation, and further in vivo
work will be necessary to investigate this possibility.

F505 .
kY murine

The resistance to genotoxic attack by CD45 " I
tumour cells correlates, as in their pretumourigenic counter-
parts, with the inhibition of DNA damage-induced NHE-1
antiport expression, alkalinisation, Bcl-x;, deamidation, and
apoptosis (Figure S7), which is an apparent example of
“oncogene addiction”, whereby oncogene expression con-
tinues to be important for survival [36]. By contrast, DNA
damage of human B-CLL cells, which should not express
OTXKs, triggered increased NHE-1 expression and apoptosis,
achieving levels comparable with wild-type thymocytes
(Figure 6C). However, enforced alkalinisation of either the
murine (Figure S7) or human (Figure 6) cancer cells triggered
significant increases in Bcl-x;, deamidation and apoptosis,
even in the absence of genotoxic attack (Figure 7C). In the
case of the B-CLL cells, we cannot yet exclude the possibility
that the tight correlation observed between these events does
not reflect causal efficacy, and further work will be necessary
to elucidate this point. In any event, the key issue for cancer
cell therapy in this context is not whether inhibition of Bcl-xy,
deamidation is involved in the initial transforming process,
but whether Bcl-x;, is the main prosurvival protein protecting
the tumour cells from the normal consequences of DNA
damage. An extensive literature suggests that Bcl-x;, does
indeed play this role in many tumour types [37]. For example,
the down-regulation of Bcl-x;, promoted the apoptosis of
KARPAS-299 cells derived from a patient with anaplastic
large cell lymphoma [38], and down-regulation of Bcl-xy,
suppresses the tumourigenic potential of the causative NPM-
ALK oncogenic fusion protein in vivo [39]. Knockdown of
Bcl-x;, also significantly reduces the viability of pancreatic
cancer cells to tumour necrosis factor o (TNF-o)- and
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TNF-a - related apoptosis-inducing ligand (TRAIL)-mediated
apoptosis by antitumour drugs [40]. Furthermore, Bcl-x,
deamidation is inhibited in hepatocellular carcinomas, which
are highly resistant to genotoxic treatments [11]. Our findings
therefore have potential relevance to cancer therapy, where-
by enforced alkalinisation, perhaps by amplification of NHE-
1 expression, would promote Bcl-x;, deamidation, thereby
triggering apoptosis.

The pioneering work of Warburg [41] established that
tumours display acidic extracellular pH, although more than
half a century passed before it was clearly established that the
intracellular pH of tumour cells is comparable with normal
cells [42]. Warburg’s legacy has included intermittent interest
in the possibility of pH manipulation as a means to cancer
therapy. Our findings not only establish that protein
deamidation can be regulated by intracellular pH change in
vivo, but they also suggest that strategies for pH manipulation
in antineoplastic therapy should continue to receive atten-
tion, albeit for reasons different from those envisaged by
Warburg.

Materials and Methods

Mice. All mice were bred and housed in specific pathogen-free
conditions in the animal facility at The Babraham Institute,
Cambridge, United Kingdom. The p56-<<¥30 E}ELGF—A) transgenic
mice [43] and the CD457 and CD45 " Ick™” mice have been
previously described [16].

Reagents and antibodies. Etoposide, CHX, DMA, PI, monensin,
nigericin, and goat-anti-rat immunoglobulin-agarose were from
Sigma (St. Louis, Missouri, United States); protein A-sepharose and
protein G-sepharose were from Amersham (Uppsala, Sweden);
SNARF-1 was from Molecular Probes (Eugene, Oregon, United
States); Z-VAD-fmk was from Santa Cruz Biotechnology. The
following antibodies were used for Western Blotting: Bim (559685)
from Pharmingen (San Diego, California, United States); Bcl-xp,
(610212) and NHE-1 (clone 54) from Transduction Lab (New Jersey,
United States); Puma (ab9643) from Abcam (Cambridge, United
Kingdom); Bax (06-499) and Bak (06-536) from Upstate (New York,
United States); Caspase-9 (9504) from Cell Signaling (Beverly,
Massachusetts, United States); phosphoserine detection kit from
Calbiochem (Darmstadt, Germany); B actin and o tubulin from Sigma.

Recombinant Bcl-x;, analysis. Image clone (2823873) containing the
sequence for human Bcl-x;, was obtained from the MRC gene service
(United Kingdom). The DNA coding amino acids 1-196 (of 233) was
amplified by PCR and cloned into pENTR/D-TOPO (Invitrogen,
Carlsbad, California, United States). The DNA was sequenced and the
insert subcloned into pDEST17 (coding for a hexa-histidine tag) and
transformed into Escherichia coli expression host DE3 (Novagen,
Madison, Wisconsin, United States). Recombinant Bcl-x;, (His-N
terminal tagged) was expressed in E. coli and purified using Co?"
chelation beads so that rapid elution could be performed at pH 7.0 to
prevent deamidation. After anion exchange purification, three peaks
(A, B, and C) were collected. Aliquots (1 pl) of each peak were desalted
for mass spectrometric analysis by solid-phase microextraction on C4
Zip Tips (Millipore, Billerica, Massachusetts, United States) and the
proteins eluted with 0.1% formic acid/50% aqueous acetonitrile (1 pl)
directly into a nanospray tip (Protana Engineering, Odense, Den-
mark). The nanospray tip was inserted into a nanoelectrospray ion
source (Protana Engineering) attached to a quadupole time-of-flight
(TOF) mass spectrometer (Qstar Pulsar i, Applied Biosystems-MDS
Sciex, Foster City, California, United States) and full scan TOF
spectra were acquired at an ionization potential of 900V for 5 min
over the mass/charge (m/z) range of 500-2000 atomic mass units. The
mass spectrometric data were averaged and deconvoluted using the
Bayesian Protein Reconstruct function in BioAnalyst software
(Applied Biosystems). For nickel precipitation, each rBcl-x;, species
was added to C57BL/6 thymocyte lysates for 2 h at 4 °C at pH 7.2, and
Ni* beads were used to precipitate the rBcl-x; and complexed Bim.

Mass spectrometric analysis of Bcl-xy, peptides. Samples of native
and base-treated rBcl-x;, (0.1 pg/ul) were digested with chymotrypsin
(sequencing grade, 10 ng/ul; Roche, Basel, Switzerland) in 0.1 M
ammonium acetate pH 6.2 containing 0.1% octylglucoside for 16 h at
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30 °C. These digestion conditions were chosen after careful
optimisation to give good and consistent yields of the peptides
SDVEENRTEAPEGTESEMETPSAINGNPSW (peptide 1) and HLAD-
SPAVNGATGHSSSL (peptide 2), containing the putative deamida-
tion sites N52 and N66, respectively, but without inducing further
deamidation. Aliquots of the digestion mixtures were analysed by
liquid chromatography mass spectrometry (LC-MS) on a quadrupole
TOF mass spectrometer (Qstar pulsar i, Applied Biosystems-MDS
Sciex), with online separation by reversed-phase nano-LC. Peptides
were eluted from the column (0.075 mm X 100 mm, Vydac C18) with a
gradient of 5%-35% acetonitrile (containing 10 mM ammonium
acetate pH 5.3) over 30 min at a flow rate of 250 nl/min. During the
development phase of the methodology, the mass spectrometer was
operated in MS/MS mode to conclusively identify the peptide
digestion products and to confirm the sites of deamidation as N52
and N66. Once the identities of the peptides had been established, the
mass spectrometer was operated in MS mode for subsequent analyses.

For relative quantification of specific peptides, peak areas were
obtained from extracted ion chromatograms of the monoisotopic
mass of the corresponding pseudomolecular ions. These were: 816.60
(IM4H]* peptide 1), 816.85 (IMH4HT* peptide 1 deamidated),
574.28 ( [M4+3H]*" peptide 2), and 574.61 ( [M4+3H]*" peptide 2
deamidated). The chromatographic conditions used for the separa-
tion of the peptides in the LC-MS analyses were optimised so as to
resolve the Asn, Asp, and iso-Asp forms of peptides 1 and 2. The Asp
and iso-Asp forms of the two peptides were identified by spiking an
aliquot of a digestion mixture with Asp- or iso-Asp-containing
synthetic peptides prior to LC-MS.

DNA damage treatments. Freshly isolated thymocytes were
irradiated with 10 Gy using a caesium source or treated with
etoposide in DMSO at a concentration of 25 uM for murine cells, or
50 uM for B-CLL cells, for the times indicated. Carrier DMSO was
added to control cells.

Immunoblotting and immunoprecipitation. Cells were lysed in 50
mM HEPES (pH 7.2), 150 mM NaCl, ImM EDTA, 0.2% NP-40, and
complete protease inhibitors. Cell lysates were resolved by standard
Laemmli’s SDS-PAGE (pH 8.8) unless otherwise stated. For immuno-
precipitations: rat Bim antibody (Oncogene, San Diego, California,
United States) was coated to goat-anti-rat immunoglobulin-agarose;
rabbit Puma antibody was coated to protein A-sepharose; mouse
NHE-1 antibody was coated to protein G-sepharose; rabbit Bcl-xp,
antibody was coated to goat-anti-rabbit immunoglobulin-agarose.
Lysates were precleared with the appropriate agarose. Quantification
of immunoblots was carried out using a phosphorimager (Fuji
FLA3000, http:/lwww.fujifilm.com).

Intracellular pH measurement. Intracellular pH was measured
using a standard ratiometric method with a pH-sensitive fluorophore
SNARF-1 by flow cytometry [44]. Briefly, cells in phosphate-buffered
saline (PBS) were loaded with 10 uM SNARF-1 for 40 min at 37 °C,
followed by washing and incubation in PBS at room temperature for
30 min prior to measurement of pH;. pH calibration was carried out
using high potassium buffer with 10 pM nigericin. FACS data were
analysed using Flowjo software to obtain the ratio based on the F13/
F12 channels. It should be noted that SNARF-1 measurements provide
the average pH; of the intracellular environment in a cell population
including, presumably, the contribution of acidified intracellular
compartments. However, even if such compartments contribute
slightly to the mean pH; values measured, in this work, it is the change
in pH; that is most important. This point was also addressed by
neutralising acidic compartments using monensin in some experi-
ments.

Measurement of apoptosis. Cells were stained with 20 pg/ml PI
(with 50 pg/ml RNase A) and analysed by flow cytometry, gating on the
CD4 CD8 subset as necessary. The sub-G1 peak was quantified as a
measure of apoptosis. In addition, apoptosis was measured using the
Annexin-V-Fluos Staining Kit (Roche) according to the protocol
provided. To measure the percentage of dead cells, PI was used at 0.5
pg/ml.

Generation of Bcl-x;, mutants. Mouse Bcl-x;, ¢cDNA was kindly
provided by S. Korsmeyer (Howard Hughes Medical Institute,
Harvard Medical School, Boston, Massachusetts, United States).
N52A-N66A and N52D-N66D mutants were made using the Quick-
Change Site-Directed Mutagenesis Kit from Stratagene (La Jolla,
California, United States) according to the instructions provided. The
sequences of the constructs were confirmed by DNA sequencing.

Retroviral gene knockdown and overexpression. Murine
CD4 CD8" thymocytes were purified and cultured in the presence
of interleukin-4 (IL-4) and PdBu as described [15]. The Suppressor-
Retro kit was purchased from Imgenex (San Diego, California, United
States), and NHE-1 shRNA sequences were designed using the “siRNA
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tool” from the company’s website. Five selected sequences were
cloned into pSuppressorRetro. The sequence of NHE-1 shRNA2 is 5'-
GAAACAAAGCGCTCCATCAAC-3'. Retroviral production and in-
fection were performed according to the protocol provided. For
overexpression, NHE-1 or Bcl-x;, (wild-type, N52A-N66A, and N52D-
N66D) cDNA were amplified with AccuPrime Pfx DNA polymerase
(Invitrogen), and cloned into Xhol and EcoR1 sites of the multiple
cloning sites of the MigRI vector [45] upstream of an internal entry
site followed by enhanced gree fluorescent protein (EGFP). The
sequences of the inserts were verified by DNA sequencing. The
plasmids were transfected into ¢NX cells using Lipofectamine
(Invitrogen). Viral infection of CD4 CD8" thymocytes was performed
by spinoculation (1,200 g for 90 min at 30 °C). To achieve high
efficiency of gene transduction, the infection was repeated every 24 h
for 2-3 d. GFP-positive cells were sorted by flow cytometry using a
FACsAria.

Bax, Bak double knockdown. The SureSilencing shRNA kit for Bax
and Bak was purchased from SuperArray (Frederick, Maryland,
United States). One plasmid from each kit was screened out for the
best gene ablation efficiency by transient transfection. The shRNA
sequence for Bax is TCAGGATCGTCCACCAAGAA, and the shRNA
sequence for Bak is GGGCTTAGGACTTGGTTTGTT. To enrich the
cells transfected with both plasmids which express GFP, the GFP
sequence in the shRNA:Bak plasmid was replaced by DsRed using the
Smal restriction site before GFP and the Agel restriction site after
GFP. ShRNA:Bax-GFP and shRNA:Bak-DsRed were cotransfected
into primary thymocytes using the Amaxa mouse T cell nucleofector
kit (Amaxa Biosystems, Koeln, Germany). Cells positive for both GFP
and DsRed were sorted by flow cytometry and used for subsequent
experiments.

B-CLL patients’ cell purification. B-CLL donor peripheral blood
was centrifuged through Lymphoprep (Axis-Shield PoC, Oslo, Nor-
way), and the interphase peripheral blood mononuclear cells
(PBMCs) were harvested for subsequent experiments. The purity of
PBMCs was routinely checked by staining with antibodies CD3-Cyb,
CD19-Fitc, and B220-PE and was analysed by flow cytometry.

Statistics. The Pearson coefficient of correlation (SPSS package,
Chicago, Illinois, United States) was used to analyse the correlation
between variables within the same group of data.

Supporting Information

Figure S1. DNA Damage-Induced Bcl-x;, Deamidation Correlates
with the Kinetics of Thymic Apoptosis

(A) The membrane from Figure 1C was stripped and reprobed with
caspase-9 antibody. Cleaveage of caspase-9 following DNA damage
was inhibited in Bax/Bak knock-down thymocytes.

(B) Wild-type thymocytes were cultured in RPMI-1640/10% bovine
fetal calf serum with 25 pM etoposide for the times shown, and
aliquots of cells from each time point were stained with 7-AAD and
analysed by flow cytometry to estimate the percentage of cells
undergoing apoptosis (sub-G1 peak expressed as a % of total cells).
The data illustrate a representative experiment and the mean values
* SD from five independent experiments are quantified in (B) (blue
bars).

(C) Aliquots of cells from the experiments shown in (A) were analysed
for Bcl-x;, expression by immunoblotting, and the membrane was
reprobed with tubulin (loading control). The upper bands (deami-
dated) and lower band (native) of Bcl-x;, were quantified using a
phosphorimager, and the percentages of upper bands in comparison
to the total (upper plus lower bands) were calculated. The mean
values = SD from five independent experiments are shown in the
histogram (red line).

Found at doi:10.1371/journal.pbio.0050001.sg001 (976 KB TIF).

Figure S2. Deamidation Disrupts the Sequestration of BH3-Only
Proteins by Bcl-xp,

(A) Puma binds to the native but not deamidated form of Bcl-xy.
Either wild-type (1.5 X 10’, lanes 3 and 4) or pretumourigenic
CD45 " LckP>0° thymocytes (1.5 X 107, lanes 5 and 6) were treated as in
Figure 2A, and cells were lysed and subjected to immunoprecipitation
with Puma antibody, followed by blotting with either Bcl-x;, or Puma
antibodies. Lane 1 is a wild-type thymocyte whole cell lysates (WCLs)
control to facilitate comparison of native and deamidated forms of
Bcl-x;. The asterisk indicates the light chain of the Puma antibody
used for immunoprecipitation.

(B) Deamidated Bcl-x;, from alkali treated thymocytes no longer binds
to Bim. Wild-type thymocytes were incubated in neutral (pH 7.0) or
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alkaline (pH 9.0) buffer at 37 °C for 24 h. Bim was immunoprecipi-
tated from WCLs and WCL samples. Bim immunoprecipitates and
Bim-depleted lysates were then separated and immunoblotted for
either Bcl-x;, or Bim.

Found at doi:10.1371/journal.pbio.0050001.sg002 (944 KB TIF).

Figure S3. The Asp and iso-Asp Forms of Bcl-x;, Chymotryptic
Peptides 1 and 2 Were Identified by Spiking an Aliquot of a Digestion
Mixture with Asp- or iso-Asp-Containing Synthetic Peptides Before
LC-MS

Peptides SDVEENRTEAPEGTESEMETPSAINGNPSW (peptide 1) and
HLADSPAVNGATGHSSSL (peptide 2) and the corresponding
deamidated forms, which contain the putative deamidation sites
Nb52 and N66, respectively, were generated by digestion of rBcl-xp,
with chymotrypsin. The chromatographic conditions used for the
separation of the peptides in the LC-MS analyses were optimised so as
to resolve the Asn, Asp, and iso-Asp forms of peptides 1 and 2. The
Asp and iso-Asp forms of the two peptides were identified by spiking
an aliquot of a digestion mixture with Asp- or iso-Asp-containing
synthetic peptides prior to LC-MS as shown. The chromatograms
show LC-MS analyses at time point 72 h of the rBcl-x base treatment.

Found at doi:10.1371/journal.pbio.0050001.sg003 (1.1 MB TIF).

Figure S4. DNA Damage-Induced NHE-1 Up-Regulation Is Mito-
chondrial Apoptosis-Independent

(A) Aliquots of the cells from Figure 1A incubated in the presence or
absence of Z-VAD-fmk (200 pM) were analysed for the expression of
NHE-1 and tubulin (as loading control) by immunoblotting.

(B) Aliquots of the cells from Figure 1C were analysed for the
expression of NHE-1 by immunoblotting. Tubulin was reprobed as
loading control.

Found at doi:10.1371/journal.pbio.0050001.sg004 (645 KB TIF).

Figure S5. Thymocytes Treated with DMA or Transduced with NHE-1
siRNA Display a Survival Advantage In Vitro Following DNA Damage

(A) Purified double-negative (DN) thymocytes treated with/without
DMA, etoposide, or irradiation were cultured in vitro. At 24 h, 48 h,
or 72 h, an aliquot of cells was analysed by PI staining (0.5 ug/ml) using
flow cytometry; PI-positive cells represent dead cells.

(B) Purified DN thymocytes transduced with NHE-1 shRNA2 or
empty vector were treated with or without etoposide and irradiation
and then cultured in vitro. At 24 h, 48 h, or 72 h, an aliquot of cells
was analysed as in (A).

Found at doi:10.1371/journal.pbio.0050001.sg005 (431 KB TIF).

Figure S6. Supplementary Information for NHE-1 Knockdown and
Phosphorylation Analysis.

(A) Knockdown of NHE-1 by shRNA. NHE-1 shRNA (shRNA1-5),
negative control, and empty vector were transduced into wild-type
thymocytes. Immunoblotting for NHE-1 and tubulin showed that
shRNA2 is the most potent shRNA2 inhibiting NHE-1 expression;
soshRNA2 was used in subsequent experiments.

(B) The histograms summarise the percentage of apoptotic cells
(Annexin V*PI") and dead cells (Annexin V'PI") from the experiment
illustrated in Figure 5C. The data are means based on five
independent experiments.

(C) The Ser phosphorylation of the NHE-1 antiport remains
unchanged following DNA damage. Wild-type or CD45 " Lck™%
thymocytes were exposed to 5 Gy of irradiation and maintained in
culture for the times shown. NHE-1 immunoprecipitates were then
immunoblotted for p-Ser (16B4). The membrane was stripped and
reprobed for total NHE-1. The histogram shows the relative
quantification of p-Ser £SD from three independent experiments.
Lane 1 was defined as 1 (*). Note that immunoblotting with one
additional p-Ser antibody and two additional p-Thr antibodies gave
comparable results to those shown here.

Found at doi:10.1371/journal.pbio.0050001.sg006 (1.0 MB TIF).

Figure S7. Primary Tumour Cells Are Resistant to DNA Damage-
Induced Bcl-x;, Deamidation and Apoptosis, but Enforced Alkalinisa-
tion Overcomes this Resistance.

(A) DNA damage-induced Bcl-x;, deamidation is inhibited in
CD45 " Lek™” tumour cells. Wild-type, CD45 " Lek™? pretumouri-
genic, and CD45 7 Lek™% tumour cells were either treated with
etoposide for 24 h or exposed to 5 Gy of irradiation and then
cultured for 24 h. Cells were lysed and subjected to immunoblotting
for Bcl-x;, or tubulin (loading control).

(B) Intracellular alkalinisation and apoptosis induced by DNA
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damage are both inhibited in CD45 " Lek™” tumour cells. pHi (upper
panel) and apoptosis (lower panel) were analysed as in Figure 3A and
Figure 1A.

(C) DNA damage causes up-regulation of NHE-1 in wild-type but not
in CD45 Lck™ % tumour cells. Wild-type thymocytes or
CD45 " Lek™? tumour cells were either treated with etoposide (Etop)
for 5 h or exposed to 5 Gy of irradiation and then maintained in
culture for 5 h, followed by immunoblotting for NHE-1 or tubulin.
The histogram shows the quantification of NHE-1 expression from
five independent experiments SD. Lane 3 was defined as 1(¥).

D) CD45 " Lck™” tumour cells were cultured in the media with the
pH. as shown without monensin, treated with irradiation or etopo-
side, and analysed for Bcl-x;, deamidation by immunoblotting. The
percentage deamidation was calculated as in Figure 1B.

(E) Aliquots of the cells used for (D) were assessed for pH; .

(F) Aliquots of the cells used for (D) were assessed for apoptosis. The
histograms represent mean values = SD (n = 3).

(A) shows that Bcl-x;, deamidation following DNA damage was
suppressed in primary tumour cells to the same extent as in
pretumourigenic thymocytes 24 h after inducing DNA damage,
although after 48 h, the inhibition of deamidation was somewhat less
(68.1% * 5.2% inhibition in tumour cells compared to 96.2% =*
3.8% in pretumourigenic thymocytes, unpublished data). Likewise,
alkalinisation (B, upper panel), apoptosis (B, lower panel) and
increased NHE-1 expression (C) were all suppressed in tumour cells
to nearly the same extent as in pretumourigenic thymocytes.
Furthermore, in the absence of monensin, extracellular buffers at
pH 8.0-8.5 forced pH; values of 7.5-7.7 (E) triggering Bcl-x;,
deamidation (D) and apoptosis (F). It is particularly striking that
incubation in buffer at pH 8.0, for example, which achieves a pH;
value of 7.43, triggers 66.4% and 36.6% levels of Bcl-x. deamidation
and apoptosis, respectively, irrespective of whether, in addition, DNA
damage was induced by etoposide or by y irradiation. These results
show that murine tumour cells resistant to genotoxic insult at
physiological pH; values can be sensitised to die by enforced
alkalinisation leading to Bcl-x;, deamidation.

Found at doi:10.1371/journal.pbio.0050001.sg007 (1.3 MB TIF).

Figure S8. Inhibition of NHE-1 Synthesis by CHX or Inhibition of
NHE-1 Function by DMA in B-CLL Cells Blocks DNA Damage-
Induced Bcl-x;, Deamidation

(A) Replotting of data from Figure 6A to show the absolute mean
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