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The control of bacterial transcription initiation depends on a primary ¢ factor for housekeeping functions, as well as
alternative ¢ factors that control regulons in response to environmental stresses. The largest and most diverse
subgroup of alternative ¢ factors, the group IV extracytoplasmic function ¢ factors, directs the transcription of genes
that regulate a wide variety of responses, including envelope stress and pathogenesis. We determined the 2.3-A
resolution crystal structure of the —35 element recognition domain of a group IV ¢ factor, Escherichia coli ¢°,, bound to
its consensus —35 element, GGAACTT. Despite similar function and secondary structure, the primary and group IV ¢
factors recognize their —35 elements using distinct mechanisms. Conserved sequence elements of the ¢* —35 element
induce a DNA geometry characteristic of AA/TT-tract DNA, including a rigid, straight double-helical axis and a narrow
minor groove. For this reason, the highly conserved AA in the middle of the GGAACTT motif is essential for —35
element recognition by of,, despite the absence of direct protein-DNA interactions with these DNA bases. These
principles of ¢5,/—35 element recognition can be applied to a wide range of other group IV ¢ factors.
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Introduction

Bacterial transcription is driven by the DNA-dependent
RNA polymerase (RNAP), comprising five core subunits
(a9BB’®) plus an initiation-specific ¢ subunit, which binds
to the core RNAP to form the holoenzyme [1-3]. Promoter-
specific transcription initiation first requires the formation
of a closed complex in which ¢ domains 2 (c3) and 4 (c4) bind
sequence-specifically to the —10 and —35 promoter DNA
elements, respectively [3-5]. Analysis of the available bacterial
genomes has revealed great variation in both the number and
type of o factors that each bacterial species possesses [6,7],
allowing for promoter-specific transcription of defined
regulons.

Most ¢ factors belong to the " family, which can be
broadly divided into five subgroups [7,8]. The group I
(primary) o factors, such as Escherichia coli (Ec) ¢’ and
Thermus aquaticus (Taq) o?, direct the transcription of house-
keeping genes for which basal levels of transcription are
essential for normal cellular processes and survival. The
largest and most diverse subgroup, the group IV, or
extracytoplasmic function (ECF) o factors, direct the tran-
scription of genes that regulate a wide variety of responses
including periplasmic stress, iron transport, metal ion efflux,
alginate secretion, and pathogenesis [7,9-11]. The Ec ECF o
factor oF is an essential protein that directs the response to
periplasmic stress [12-15].

Like many ECF os, Ec o is regulated by an anti-o, RseA
[13,15]. Under normal conditions, RseA inactivates o by
sequestering it at the cytoplasmic face of the inner
membrane. However, when environmental stresses lead to
unfolded proteins in the periplasm, a series of proteolytic
cleavage reactions release o from RseA [16]. The o* is then
free to bind RNAP and drive the transcription of a core set of
genes conserved across most bacteria, as well as a more
variable set of genes [17]. The core genes coordinate the
assembly and maintenance of the bacterial outer membrane.
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Many of the variable oF regulon members are critical for
virulence in important pathogens [18-21].

The structure of Ec 6* bound to the cytoplasmic portion of
its anti-c RseA revealed that, despite little primary sequence
identity, domains 2 and 4 of o" (6% and o%,, respectively)
share striking structural similarity to the corresponding
domains of Tag o* (6% and o*,; [22]). Domain 4 of all
primary os, which contains a helix-turn-helix DNA binding
motif, recognizes the 6-base-pair (bp) —35 consensus TTGA-
CA [4,23], while Ec GF‘4 is thought to directly recognize the 7-
bp —35 element GGAACTT [17]. Taken together, this suggests
that the different groups of ¢ factors share the same general
mechanisms of —35 element binding, but that residue changes
on the surface of the recognition helix account for differ-
ences in promoter specificity. Previous studies have revealed
the molecular details of how domain 4 of the group I ¢ factor
Taq o recognizes its —35 consensus promoter element [4]. To
better understand the structural basis for group IV ¢ factor
promoter specificity, we solved the 2.3-A resolution crystal
structure of Ec GE4 bound to its —35 consensus promoter
element. The structure reveals that, despite the structural
similarity with Taq GA4, Ec GE4 recognizes its —35 element in a
distinct manner. Conserved sequence elements of the of —35
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Figure 1. Overview of Ec 6t,/—35 Element DNA Structure

(A) Synthetic 12-mer oligonucleotides use for crystallization. The black numbers above the sequence denote the DNA position with respect to the
transcription start site at +1. The —35 element is colored light green (nontemplate strand) and dark green (template strand). The flanking bases are
colored light gray (nontemplate strand) and dark gray (template strand).

(B) Two views of the Ec 054/735 element DNA complex, related by a 90° rotation about the horizontal axis as shown. The protein is shown as an a-
carbon backbone ribbon, with o, colored yellow and o%4, colored light blue. The DNA is color coded as in (A).

DOI: 10.1371/journal.pbio.0040269.g001

element, including the most highly conserved 'AA’ of the models. The crystals contained two GF‘4IDNA complexes per
GGAACTT motif, are not involved in direct interactions asymmetric unit, with a solvent content of 65%. Iterative
between the protein and the unique edges of the DNA bases. model building and crystallographic refinement converged to

Instead, these DNA elements induce a specific DNA geometry an RIRgc. of 0.241/0.253 (Table 2).
that is required for ¢, binding. Sequence analysis of other
group IV os and their cognate —35 elements indicates that
this principle of —35 element recognition is a conserved
feature of —35 element recognition by group IV o factors.

Overall Structure

Two o"4 molecules in the asymmetric unit each bound a
separate DNA fragment. As anticipated, the recognition helix
of the 6% helix-turn-helix motif bound in the major groove
Results of the —35 element (Figure 1B). The crystallographically
related DNA helices packed head-to-tail, forming a pseudo-
continuous double helix with the 1 bp overhangs forming
Hoogstein base pairs with the adjacent double helices.

Crystallization and Structure Determination

We performed vapor diffusion crystallization trials with Ec¢
c"y (residues 122 to 191) in complex with DNA fragments
corresponding to the Ec 6" consensus —35 promoter sequence c°4~DNA Interactions

GGAACTT [17]. Thin rectangular crystals grown using a 12- Protein—-DNA interactions, which occur exclusively within
bp DNA fragment (Figure 1A) diffracted to 2.3 A-resolution the major groove, extend from —29 to —36, spanning the entire
(see Materials and Methods and Table 1). The structure was —35 element as well as one base of upstream DNA (Figures 2
determined by molecular replacement using both a model of and 3A). The protein anchors itself to the DNA by direct and
Ec 6%, from the Ec 6®/RseA complex structure [22] and the 6- water-mediated side chain and main chain interactions with

bp —35 element from the Tagq 6*4/DNA structure [4] in search the phosphate backbone on the nontemplate strand from —33

Table 1. Ec ot,/DNA Diffraction Data

Dataset Wavelength (A) Resolution (A) Number of Reflections (Total/Unique) Completeness (%) Ile () Ryym™ (%)

Native® 1.0004 20-2.3 (2.38-2.30) 222,494/19,507 97.5 (96.1) 134 (3.8) 5.2 (40.2)

*Reym = 0|l — <I>|/cl, where I is observed intensity and </> is average intensity obtained from multiple observations of symmetry related reflections.
PDataset was collected at the National Synchrotron Light Source Beamline X25.
DOI: 10.1371/journal.pbio.0040269.t001
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Table 2. Ec 65,/DNA Crystallographic Analysis and Refinement
(against Native Dataset)

Space group P2,

Unit cell a = 55009 A, b = 68709 A,
c=61.133 A, o = 90°,
B = 101.254°, y = 90°

Resolution (A) 20-23
Number of solvent molecules 136 H,0O
Reryst/Réree” (%) 24.07/25.28
RMSD bond lengths 0.009 A
RMSD bond angles 1.460°

Reryst = O] |Fopserved| — |Featcutated!l/G|Fopservedl: Riree = Reryst calculated using 10% random
data omitted from the refinement.
DOI: 10.1371/journal.pbio.0040269.t002

to —35 and the template strand from —29’ to —32' [throughout
this paper, DNA bases will be numbered as in Figure 3A, where
negative numbers denote base pairs upstream of the tran-
scription start site. Unprimed numbers denote the non-
template (top) DNA strand, while primes denote the template
(bottom) strand]. Specific protein-DNA base interactions
occur through direct hydrogen bonds and van der Waals
forces (Figures 2 and 3A). In addition, there is one cation-m
interaction between R176 and —36.

Interestingly, the primary base-specific protein-DNA in-
teractions occur at only three positions of the 7-bp —35
element (all Guanines), —35, —34, and —31’ (Figure 3A). The
upstream edge of the —35 element is recognized through a
series of hydrogen bonds and van der Waals interactions,
mostly between R176 and S172 and the guanine bases at —35
and —34. R176 forms two hydrogen bonds with the —35G. In
addition, R176 forms a cation-m interaction with the —36
DNA base, creating a stair motif along with the —35 hydrogen
bonds [24,25]. S172 forms direct hydrogen bond and van der
Waals interactions with the —34G. The protein-DNA base-
specific interactions at the —31' position are almost exclu-
sively from R171, which makes two hydrogen bonds and one
van der Waals interaction with the —31'G.

In contrast to the numerous base-specific interactions at
the —35, —34, and —31’ positions, the —33 and —32 positions
each contain only one base-specific contact, in the form of
van der Waals interactions between the thymidine C5-methyl
groups at —33’ and —32" with F175 and R171, respectively
(Figure 3A). The structure reveals no base-specific protein-
DNA interactions at the —30 and —29 positions.

Geometry of the 6%, —35 Element DNA

Over four of the —35 element positions (=33, —32, =30, —29),
there are a total of only two protein-DNA-base contacts, both
weak, van der Waals contacts (Figure 3A). Nevertheless, the
—33 and —32 positions are the most highly conserved
positions, not only in the Ec¢ of =35 consensus but also across
all group IV o factors where the promoter specificity is
known (Figure 3B; [7,17]). Furthermore, genetic screens for
defective transcription resulting from single nucleotide
substitutions in the —85 element of the Ec 6" homolog from
Salmonella enterica serovar Typhimurium only resulted in the
selection of mutants with substitutions at positions —33 and
—32 [26]. Therefore, how is it that the most highly conserved
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and essential positions in the o™ —35 element are also the
same ones that lack strong protein-DNA base interactions?
The answer for this apparent paradox comes from the unique
DNA geometry of the 6" —35 element (Figure 4).

The unique DNA geometry induced by oligo(dA) e
oligo(dT) tracts, defined by the presence of four to six
consecutive A o T bp, is well established [27-31]. Depending
on its sequence, oligo(dA) e oligo(dT) tract DNA is rigid and
straight, with a high degree of propeller twist and a very
narrow minor groove. Despite not being a true oligo(dA) e
oligo(dT) tract as a result of the cytosine insertion at —31, the
c" —35 element DNA is relatively straight (Figure 4A), with a
high degree of propeller twist (Figure S1), and the minor
groove width begins to narrow at the start of the —33/-32 AA
(Figure 4B). The narrow minor groove is stabilized by a
network of cross-strand hydrogen bonds between adjacent
DNA bases, along with a spine of hydration consisting of
water-mediated hydrogen bonds between the two strands
(Figure 4C). The AA at —33/-32 is the most highly conserved
feature of the c* —35 consensus. After the —31 cytosine
insertion, the consensus comprises TT (—=30/~29). Further-
more, there is a continued run of two additional conserved Ts
at —28/—27 (Figure 3B; [17]).

Interestingly, the nucleosome structure [32] contains a
stretch of DNA, GAAGTT, similar in sequence to —34 to —29
(GAACTT) of the Ec 6" —35 element (Figure S2). Similar to Ec
of —35 element DNA, the nucleosome DNA cannot be
classified as a typical oligo(dA) e oligo(dT) tracts as a result
of the non-A/T base, yet it too displays the hallmark DNA
geometry, such as a very narrow minor groove (Figure S2B).
The presence of similar DNA geometry in two different
structural contexts strongly suggests that the oligo(dA) e
oligo(dT)-like DNA geometry found in the Ec 6" -85 element
DNA complex is an intrinsic property of the DNA sequence
and not due to protein induced conformational changes.

The absence of strong, base-specific protein-DNA inter-
actions at the —33, —32, and —30 to —27 positions (Figure 3A) is
conspicuous in light of the high DNA sequence conservation,
particularly at the —33/-32 positions (Figure 3B). This,
combined with the observation that the DNA sequence
induces a unique geometry in the —35 element DNA (Figure
4), strongly suggests that the DNA sequence is conserved at
these positions to set up the global conformation of the DNA,
and that this DNA conformation is essential for %, binding.

In this light, the results of the previous genetic screen [26]
make good sense. Individual mutations at positions other
than the —33 and —32 could be compensated for by both the
binding interactions at other —35 element positions and by
protein-DNA backbone interactions, which would not be lost
at the mutated position. However, substitutions at the —33/
—32 positions, which disrupt the highly conserved AA, would
in turn disrupt the global DNA geometry necessary for c*,
binding.

Comparison of o, and o*, —35 Element Recognition
Superposition of the DNA from the Ec¢ 0E4 and Tagq GA4 [4]
—35 element complexes reveals that Ec 6% binds 4 A further
into the major groove than the group I & factor Taq c”,,
allowing Ec 6", to form more extensive interactions with the
DNA (Figure 5A). In addition, this shift extends the DNA
recognition surface of the protein toward the C-terminus of
the helix-turn-helix motif recognition helix of Ec o™y (Figure
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Figure 2. Ec GE4/DNA Contacts; Structural View

<+— downstream

Two stereo views (front and back) of the Ec 0E4/735 element DNA complex, related by a 180° rotation about the vertical axis as shown. The protein is
shown as an o-carbon backbone worm, with ot colored yellow and 4, colored light blue. Side chains are shown for those residues that make
protein—-DNA contacts. Carbon atoms of the side chains are colored as the backbone, except atoms involved in polar contacts with the DNA are colored
(nitrogen atoms, blue; oxygen atoms, red). The DNA is color-coded as in Figure 1A, except atoms involved in polar contacts with the protein are colored
(nitrogen atoms, blue; oxygen atoms, red). Water molecules are indicated with red spheres. Dashed black lines indicate hydrogen bonds or salt bridges.

DOI: 10.1371/journal.pbio.0040269.9002

5B). For example, even though both promoters have a G at
—31', with Tagq ™, it is recognized by R409 and with Ec 6", it
is recognized by R171, which is four residues (one helical
turn) further toward the C-terminus in the aligned sequences.

Furthermore, the aligned residues Taq GA4 K418 and Ec GE4
R176 contact the DNA at different positions. Whereas Tag
o™, K418 makes contacts upstream of the Taq 6™ —35 element
at—38, Ec 6", R176 forms many important interactions within

@ PLoS Biology | www.plosbiology.org

the 6%, —35 element at —35. Interestingly, Tag o4 makes one
van der Waals and four hydrogen bond protein-DNA
contacts upstream of the —35 element at —36 and —38,
whereas, Ec ¢, only makes one van der Waals and one
cation-1 interaction with the nearby —36 DNA base. In
essence the 4-A shift causes the regions of Taq o4 that were
involved in upstream non-promoter element contacts to be
involved in sequence specific —35 element contacts in the FEc¢
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Figure 3. Ec o54/DNA Contacts; Schematic View

(A) Schematic representation of o,~DNA interactions for Ec csE4 (top) and Taq o” (bottom; [4]). The nontemplate/template strand DNA is colored light
gray/dark gray (respectively), except the —35 element is colored light green/dark green (for Ec 6%,) or pink/magenta (for Tag c*). Colored boxes denote
protein residues. Color-coding for the proteins, as well as the meaning of the lines indicating interactions, is explained in the legend (lower right). Double
thick solid black lines indicate two hydrogen bonds with the same residue. Water molecules mediating protein-DNA contacts are shown as red circles.
(B) Sequence logo denoting sequence conservation within the Ec csE4 —35 element [17,51].

DOI: 10.1371/journal.pbio.0040269.9003

(SE4/DNA structure. For example, in both structures aligned GF‘4 they all make interactions within the —35 element at —35
residues K418/R176 (Taq GA4/EC GE4), T408/P166, R411/T169, and —34, whereas in Tag GA4 they make interactions mostly
and Q414/S172 make up the majority of the upstream upstream of the —35 element (=38 to —35). Similarly, the
nontemplate strand interactions. However, in the case of Fc aligned residues R387/R149, L398/Y156, and E399/E157
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(A) Cartoon views of the DNA backbone geometry. The DNA was aligned using the template strand DNA from —35’ to —30’, giving an RMSD of 0.839
over 30 atoms for Ec 65,/DNA and Tag c”4/DNA. Straight B-form dsDNA is blue, Ec & —35 element DNA is green, while Tag ¢* —35 element DNA is
magenta. The paths of the DNA helical axes, calculated using Curves (http://www.ibpc.fr/UPR9080/Curindex.html), are also shown.

(B) Graph showing the DNA minor groove width (calculated using 3DNA) for B-form DNA (blue), Ec 0E4 —35 element DNA (green), and Taq o* -35
element DNA (magenta; [49]). Minor groove width was calculated as the P-P distance minus 5.8 A to take into account the radii of the phosphate groups.
(C) View of the hydrogen bonds important in stabilizing the unique geometry of the downstream = —35 element DNA. The waters participating in the
spine of hydration are indicated by red spheres. Dashed black lines indicate water-mediated minor groove hydrogen bonds. Dashed blue lines indicate

cross-strand hydrogen bonds formed between adjacent bases.
DOI: 10.1371/journal.pbio.0040269.9004

interact in both structures with the downstream template
strand DNA backbone. However, in Ec ¢*;, R149 and E157
make their contacts 1 to 2 bp farther downstream than Taq
c™4 R387 and E399 (Figure 5B).

In contrast to the genetic screen for nucleotide substitu-
tions in the ¢ —385 element, which only found decreased
transcription from mutations at two of the seven promoter
positions (=33 and —32; [26]), systematic mutational studies of
the Ec 67" —35 element have shown decreased transcription
from mutations at five of the six promoter positions (—35 to
—31; [33]). The two structures also show major differences in
the geometry of the —85 element DNA. Whereas Tag 6,
bends its —35 element, the protein-bound Ec¢ GF‘4 —35 element
DNA is relatively straight (Figure 4A). Unlike the ¢’ —35
element, the Ec 6" —85 element itself adopts a unique DNA
geometry (described above) that leads to a rigid, straight DNA
segment. In fact, unlike the primary os, which utilize the
flexibility of its —35 element DNA, Ec 6" appears to use the
rigidity of its —35 element DNA sequence to increase
specificity.

Superposition of the proteins from the Fc GF‘4 and Taq GA4
—35 element complexes highlights the significant differences
in the positioning of the —35 element DNA with respect to the
protein, and the different properties of the protein surfaces
available for interacting with other proteins bound to the

@ PLoS Biology | www.plosbiology.org

upstream DNA (Figure 5C). Conserved, basic residues of the
group I 6 domain 4 are key targets for interacting with acidic
residues of class II transcriptional activators that bind just
upstream of the —35 element [4,34,35]. The role of transcrip-
tional activators in controlling of transcription is largely

unknown.

Implications for —35 Element Recognition by Other Group
IV o Factors

The primary sequences of the group IV & factors are much
more divergent from each other than the members of the
other 070-family subgroups. Furthermore, some genomes
contain over 60 group IV o factors, each of which can
recognize unique, but overlapping, sets of promoter sequen-
ces. Nevertheless, the various group IV o factors generally
share a high degree of conservation in their —35 element
sequences, implying that the less conserved —10 element
sequences provide the primary basis for promoter specificity
between the different group IV os, especially within the same
species [7,36,37]. Therefore, the mechanism of —35 element
recognition revealed in the Fc GF‘4/DNA structure should be
relevant to other group IV o factors.

Partial to fully characterized regulons have been described
for at least eight group IV os: Ec o" [17), Bacillus subtilis (Bsw)
o™ [38], Bsu ¢" [39], Pseudomonas aeruginosa (Paer) o™ [37,40],
Mycobacterium tuberculosis (Mtub) o" [41], Miub o™ [42],
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Figure 5. Structural Comparisons of Ec ct, and Tag ¢, —35 Element Recognition

(A) Ec 654/—35 element DNA and Taq 6”,/—35 element DNA complexes were aligned using the template strand DNA from —35’ to —30’, giving an RMSD
of 0.839 over 30 atoms. The two views are related by a 90° rotation about the horizontal axis as shown. Proteins are shown as o-carbon backbone
worms, color-coded as shown. The Ec 6F —35 element DNA is colored light green (nontemplate strand) and dark green (template strand). The Tag o

—35 element is colored plnk (nontemplate strand) and magenta (template strand).

(B) Compoarison of the Ec o, and Taq "4 protein—-DNA interactions. The Ca-backbone of Ec o, and Taq o™, were aligned using Ec o, residues 137 to
150 and 155 to 182 with Tag ", residues 375 to 388 and 397 to 424, giving an RMSD of 1 00 A over 42 atoms. Protein residue numbering is shown
between the sequences (Tag/Ec). Residues in o4, are highlighted in red/yellow (Tag 6*/Ec o) and those in o, are colored purple/blue. Red dots
denote protein residues that make base-specific DNA contacts. Colored dots denote protein residues that make DNA contacts. Black dots denote
hydrogen bonds (less than 3.2 A) or salt bridges (less than 4.0 A) originating from the protein side chain. Magenta dots denote hydrogen bonds
originating from the protein main chain. Blue dots denote van der Waals (hydrophobic) contacts (less than 4.0 A). Yellow dots denote cation-n
interactions. The positions along the DNA that are contacted by each residue are indicated above and below the contact circles.

(C) The protein a-carbon backbones of Ec ot and Tag o*, were aligned as described in (B). The superimposed proteins, shown as a-carbon backbone
worms, are shown on the left, color-coded as in (A). The Ec 6t,/—35 element and Taq o”/=35 element complexes are shown separately (middle and left,
respectively). In these views, the proteins are shown as molecular surfaces, color-coded according to electrostatic surface potential. The DNAs are
shown as phosphate-backbone ribbons, with bases indicated schematically as sticks.

DOI: 10.1371/journal.pbio.0040269.9005

Streptomyces coelicolor (Scoe) c® [43], and Pseudomonas syringae elements recognized by these group IV os can be directly

(Psyr) HrpL [44]. When considering the —35 elements
recognized by these group IV os together, the —35 element
can clearly be divided into three distinct regions. The first is
an upstream G region, the second is the previously
recognized AAC motif [7], and the third is a less well-
conserved downstream T-tract (Figure 6 and Figure S3). The
differences and similarities between the consensus —35

@ PLoS Biology | www.plosbiology.org

explalned from the c®; sequence alignments in light of the

o"4/DNA structure (Figure 6). For example, when consensus
sequences for the —35 elements are aligned by the highly
conserved AAC motif, all but one of them contain a G at the
position equivalent to the Ec —35 position. In the structure,
this position is recognized by Ec 6" R176, which is conserved
across all the Group IV os. At the —34 position of the
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Figure 6. Correlation of o, and —35 Element Sequences for Several Group IV ¢ Factors

The top shows a sequence alignment of the proposed —35 element DNA binding region of several group IV o factors. The residue positions that are
important in —35 element DNA recognition in the Ec ¢ E,/—35 element DNA structure are highlighted green (similar to Ec o%) or red (dissimilar to Ec o).
The bottom shows the alignment of the known —35 consensus sequences from several group IV o factors. The three —35 element regions are
highlighted with the upstream G region (blue), the middle AAC motif (red), and the downstream T rich reg|on (green). Lines connecting the two
alignments indicate protein residue-DNA base interactions important for —35 element recognition in the Ec 65,/DNA structure.

DOI: 10.1371/journal.pbio.0040269.9g006

promoter consensus, the occurrence of G or A correlates
perfectly with the presence of S or T (respectively) at amino
acid position 172.

In the Ec GF‘4I735 element structure, the face of the phenyl-
ring of F175 makes van der Waals interactions with the C5-
methyl group of the T opposite the absolutely conserved A at
position —33. Consistent with this, all of the Group IV os
except for Psyr HrpL have either an F or an H (which could
contribute similar van der Waals interactions) at the
equivalent amino acid position.

Amino acid residue R171 of ¢, donates a hydrogen bond
to the G opposite the highly conserved C at position —31.
Correlating with the conservation of C at this position of the
promoter is the occurrence of amino acid residues R or K
(which could also donate a hydrogen bond to the comple-
mentary G). In the two exceptions, Mtub ' and Scoe c® have
M at this amino acid position, and the Scoe G® consensus has a
T at this position, while the Mtub "' —35 element has a very
weak C[/T at this position. Even the downstream T rich
sequence, whose primary residue-specific interaction is with
R149, is found only in the consensus of those ¢ factors (Bsu
GX, Bsu GW, Paer GE) which contain an R or equivalent residue
at this position. These correlations suggest that the mecha-
nism of binding found in the Ec ¢";/DNA structure can be
generalized to other group IV o factors.

Conclusion

Despite similar function and secondary structure, the
group I and IV o factors recognize their —35 elements using
distinct mechanisms. The group IV o© factor Ec¢ (SF‘4 binds 4 A

further into the major groove than the group I ¢ factor Taq
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0A4, making more extensive contacts. Unlike Tagq GA4, Ec GF‘4
does not bend the DNA. Instead, conserved sequence
elements of the ¢® —85 promoter induce DNA geometry
characteristic of oligo(dA) e oligo(dT)—tract DNA, including
pronounced minor groove narrowing. For this reason, the
highly conserved AA at —33/-32 is essential for —35 element
recognition by ", even in the absence of direct protein
interactions with the DNA bases. It appears that these
principles of GF‘4/735 element recognition can be applied to
a wide range of other group IV o factors.

Materials and Methods

Clomng, expression, and purification of Ec 6*4. The gene encoding
Ec oy (residues 122 to 191) was PCR subcloned from pLC31 [22] into
the Ndel/BamHI sites of the pET-15b expression vector (Novagen,
Madison, Wisconsin, United States), creating pWJL3. The plasmid was
transformed into Ec BL21(DE3)pLysS cells, and transformants were
grown at 37 °C in LB medium with amplicillin (100 pg/ml) to an ODggq
of 0.4 to 0.6. Protein expression was induced with 1 mM IPTG for 4 h.
Cells containing the overexpressed protein were harvested and
resuspended in lysis buffer (20 mM Tris-HCI [pH 8.0], 0.5 M NaCl,
5% glycerol, 0.1 mM EDTA, 5 mM imidazole [pH 8.0], 0.5 mM B-ME,
and 1 mM phenylmethylsulfonylfluoride). Cells were lysed using a
sonicator and cldrlﬁed by centrifugation. Supernatants were applied
to 2 X 5 ml of Ni*'-charged HiTrap metal-chelating columns
(Amersham Biotech [GE Healthcare], Piscataway, New Jersey, United
States). Lysis buffer with 20 mM imidazole was used to wash the
column, followed by elution of the tagged protein using lysis buffer
with 250 mM imidazole. To remove the (His)s-tag, samples were
diluted into thrombin digestion buffer (20 mM Tris-HCI [pH 8], 0.15
M NaCl, 5% glycerol, 5 mM CaCly, and 0.5 mM B-ME) and treated
with thrombin (500 p g/100 mg protein) at 4 °C. To separate the
cleaved (untagged) protein from the thrombin and uncleaved, (His)s-
tagged proteln the sample was reapplied to the Ni*" -charged HiTrap
column in tandem with a 1 ml Benzamidine FF HiTrap column
(Amersham), and the flow-through was collected. The sample was
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then precipitated using ammonium sulfate (60 g/100 ml sample),
centrifuged, and resuspended in gel filtration buffer (20 mM Tris-HCI
[pH 8], 0.5 M NaCl, 5% glycerol, and 1 mM DTT). The resuspended
sample was applied to a Superdex 75 gel filtration column
(Amersham) equilibrated with gel filtration buffer. The eluted Ec
o4 was concentrated to 30 mg/ml by centrifugal filtration (ViaS-
cience, Hanover, Germany) and exchanged into a low salt crystal-
lization buffer (20 mM Tris-HCI [pH 8], 0. 2 M NaCl, 5% glycerol, 0.1
mM EDTA, and 1 mM DTT). Since Ec ", rapidly precipitated at
room temperature when in a low salt buffer (less than 0.3 M NaCl), all
subsequent steps were done in the cold room using prechilled
supplies. The final purified protein product was aliquoted, flash
frozen, and stored at —80 °C. Electrospray mass spectrophotometry
was used to confirm the mass of the purified product (8,427 Da).

Nucleic acid preparation. For the purposes of Lrystdlllzatlon
several different DNA constructs were designed, based on the Ec o,
—35 consensus. Construct length and flanking bases were varied in an
attempt to promote crystallization through end-to-end dsDNA
contacts. Lyophilized, tritylated, single-stranded oligonucleotides
(Oligos Etc., Wilsonville, Oregon, United States) were detritylated
and purified on an HPLC using a Varian (Palo Alto, California,
United States) Microsorb 300 DNA column [45]. The purified
oligonucleotides were dialyzed into 5 mM TEAB (pH 8.5) and dried
on a SpeedVac (Savant). The dried oligonucleotides were resus-
pended in 5 mM Na cacodylate (pH 7.4), 0.5 mM EDTA, 50 mM NaCl
to a concentration of 1 mM. Equimolar amounts of oligonucleotides
were annealed by heating to 95 °C for 5 min and then cooling to 22 °C
at a rate of 0.01 °Cls. The annealed oligonucleotides were dried in a
SpeedVac and stored at —20 °C.

Crystallization and structure determination of the Ec © E-DNA
complex. Co-crystals were obtamed by vapor diffusion by mixing the
duplex DNA (Figure 1A) and Ec o™, (molar ratio 1:1.5) with the final
concentration of protein at 1.8 mM (15 mg/ml). The mixture was
centrifuged for 30 min, then was mixed with an equal volume of well
solution (0.04 M MgCly, 0.05 M Na-Cacodylate [pH 6.0], and 5% vlv 2-
methyl-2,4-pentanediol). Rectangular crystals (0.3 X 0.1 X 0.06 mm)
grew within 5 d. Crystals were prepared for cryocrystallography by
soaking in the crystallization solution supplemented with 25% 2-
methyl-2,4-pentanediol, followed by flash freezing in liquid nitrogen.
A native dataset was collected to 2.3 A at The National Synchrotron
Light Source (NSLS, Brookhaven National Laboratory, Upton, New
York, United States), Beamline X25 (Table 1).

The structure was solved by molecular replacement with Molrep
8.1 [46] using Ec o, from the Ec c"-RseA complex structure [22].
Initially, Molrep was used to search for solutions with 2 or 3
molecules per asymmetric unit. Both searches yielded a solution with
two molecules of Ec 6% arranged in a symmetrical dimer (Molrep
Corr = 0.252). Though there were some slight clashes between the
flexible N- and C-term regions, the crystal symmetry related
molecules did not clash and in fact stacked upon one another in
one direction. Additionally, there was room for the dsDNA. However,
when this solution was used to generate an electron density map
there was no observable density for the DNA. In an effort to improve
the solution, the two-molecule dimer was used as a search model to
generate a new Molrep solution (Molrep Corr = 0.439), which yielded
some clear dsDNA density. Molrep was further used to improve the
dsDNA density by keeping the Ec 6*, dimer fixed and doing two
tandem molecular replacement searches using the 6-bp —35 element
from the Taq & A /DNA structure ([4]; first DNA: Molrep Corr = 0.464
and second DNA: Molrep Corr = 0.475). In addition to placing the
dsDNA into the previously seen DNA density, it extended the density
one or two bases past the DNA search model. The solution was
further improved by using a 1-bp register offset between the two
search model DNAs, to generate a 7-bp DNA which was used to do
two tandem Molrep molecular replacement searches (first DNA:
Molrep Corr = 0.469 and second DNA: Molrep Corr = 0.487). CNS
v1.1 [47] was then used to perform density modification, giving an
improved electron density map in which clear density could be seen
for the entirety of both dsDNAs, excluding the overhanging base at
the downstream end of the DNA. The final DNA was built using a
starting template of straight B-form dsDNA corresponding to the
crystallization oligos (constructed using Namot2; http:/namot.
sourceforge.net). Model building was done using O v9.0.7 [48] and
refinement using CNS v1.1 (Table 2).

Protein-DNA contacts were analyzed using the program CON-
TACT, followed by geometric verification using PyMOL v0.98 (http://
www.pymol.org). Cation—7 interactions were visualized using a custom
PyMOL script based on previously determined geometric criteria [25].
DNA geometry was analyzed using 3DNA v1.5 [49] and Curves vb5.1
(http:/lwww.ibpc.fr/UPR9080/Curindex.html). Electrostatic surfaces
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were calculated using APBS: Adaptive Poisson-Boltzmann Solver
[50]. All structural figures were prepared using PyMOL.

Supporting Information

Figure S1. Comparisons of Ec 6*, and Tag 6*, —35 Element DNA

Geometry

(A) Propeller twist, (B) DNA buckle, (C) curvature, and (D) major
groove width calculated using 3DNA.

Found at DOT: 10.1371/journal.pbio.0040269.sg001 (569 KB TIF).

Figure S2. Comparison of Ec 6%, —85 Element DNA and Nucleosome
DNA

(/}) The nucleosome structure contains a sequence similar to the Ec
o4 —35 Element DNA. Both DNA sequences contain an AA-tract
followed by a non-A/T base and then a TT-tract. Despite the non-A/T
base, both structures contain narrow minor grooves, which are
characteristic of oligo(dA) e oligo(dT) tracts. The DNA structures
were aligned using the template strand phosphates. The minor
groove narrowing is evident from the locat10n of the non- template
strand DNA relative to B-form DNA. The Ec 6%, =85 element DNA is
in green and the nucleosome DNA orange.

(B) Graph showing the DNA mmor groove width (calculated using
3DNA) for B-form DNA (blue), Ec 6%, —35 element DNA (green), and
nucleosome DNA (orange), Minor groove width was calculated as the
P-P distance minus 5.8 A to take into account the radii of the
phosphate groups.

Found at DOT: 10.1371/journal.pbio.0040269.sg002 (2.7 MB TIF).

Figure S3. Correlation of 64 and —35 Element Sequences, along with
the —10 Element Consensus, for Several Group IV ¢ Factors

The top shows a sequence alignment of the proposed —35 element
DNA binding region of several group IV o© factors. The residue
pos1t1ons that are important in —35 element DNA recognition in the
Ec 6%4~35 element DNA qtructure are highlighted green (similar to Ec
6" or red (dissimilar to Ec 6%). The bottom shows the alignment of
the known —10 (right) and —35 (left) consensus sequence logos from
several group IV o factors. The three —35 element regions are
highlighted with the upstream G region (blue), the middle AAC motif
(red), and the downstream T rich region (green). Lines connecting the
two alignments indicate protein residue-DNA base interactions
important for —35 element recognition in the Ec c"*,~DNA structure.
Despite being more divergent then the —35 elements it is still possible
to generate a proposed —10 element alignment. Possible regions of
similarity within the —10 elements have been highlighted in light blue,
magenta, and gray. The single base change thought respons1ble for
the differential gene regulation between Bsu ¢ and Bsu " is
indicated with a red arrow. The column to the right of the sequence
logos contains the signal and mechanism of regulation for each o
factor.

Found at DOL: 10.1371/journal.pbio.0040269.sg003 (1.7 MB TIF).

Accession Numbers

Structure coordinates and structure factors from the Ec GE/JDNA
crystals have been deposited in the Protein Data Bank (http:/fwww.
resb.org/pdb) under ID code 2H27. The Protein Data Bank accession
number for the nucleosome structure in Figure S2A is 1KX4.
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