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Gene Losses during Human Origins
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Pseudogenization is a widespread phenomenon in genome evolution, and it has been proposed to serve as an engine
of evolutionary change, especially during human origins (the “less-is-more” hypothesis). However, there has been no
comprehensive analysis of human-specific pseudogenes. Furthermore, it is unclear whether pseudogenization itself
can be selectively favored and thus play an active role in human evolution. Here we conduct a comparative genomic
analysis and a literature survey to identify 80 nonprocessed pseudogenes that were inactivated in the human lineage
after its separation from the chimpanzee lineage. Many functions are involved among these genes, with
chemoreception and immune response being outstandingly overrepresented, suggesting potential species-specific
features in these aspects of human physiology. To explore the possibility of adaptive pseudogenization, we focus on
CASPASE12, a cysteinyl aspartate proteinase participating in inflammatory and innate immune response to
endotoxins. We provide population genetic evidence that the nearly complete fixation of a null allele at CASPASE12
has been driven by positive selection, probably because the null allele confers protection from severe sepsis. We
estimate that the selective advantage of the null allele is about 0.9% and the pseudogenization started shortly before
the out-of-Africa migration of modern humans. Interestingly, two other genes related to sepsis were also
pseudogenized in humans, possibly by selection. These adaptive gene losses might have occurred because of
changes in our environment or genetic background that altered the threat from or response to sepsis. The
identification and analysis of human-specific pseudogenes open the door for understanding the roles of gene losses in
human origins, and the demonstration that gene loss itself can be adaptive supports and extends the “less-is-more”
hypothesis.
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Introduction

Although humans are highly similar to chimpanzees at the
genomic sequence and protein sequence levels [1-6], the two
species differ dramatically in many aspects of their biology
such as bipedalism, brain size, languagel/speech capability, and
susceptibility to the human immunodeficiency virus (HIV)/
simian immunodeficiency virus. With rapid progress in
human genetics, comparative genomics, and molecular
evolution, the genetic basis of these differences has begun
to be unraveled. For example, the conserved transcriptional
factor FOXP2 is required for speech development in humans
[7], and it experienced two adaptive amino acid replacements
in hominin evolution, suggesting that these two substitutions
were at least partially responsible for the emergence of
human speech and language [8,9]. Compared to such amino
acid replacements, gene gains and losses are more dramatic
genetic changes [10-14]. In particular, gene loss, or pseudo-
genization, leads to immediate loss of gene function, which
probably affects organisms to a greater extent than do most
amino acid replacements. A number of genes are known to
have been lost in the human lineage since its divergence from
the chimpanzee lineage [15-25]. Recently, Olson [11] and
Olson and Varki [12] proposed the “less-is-more” hypothesis,
suggesting that gene loss may serve as an engine of
evolutionary change. This hypothesis is particularly intrigu-
ing for human evolution, as several human gene losses have
been proposed to provide opportunities for adaptations and
be responsible for human-specific phenotypes. For example,
the pseudogenization of the sarcomeric myosin gene masti-
catory myosin heavy chain 16 (MYHI16) at the time of the
emergence of the genus Homo is thought to be responsible for
the marked size reduction in hominin masticatory muscles,
which may have allowed the brain size expansion [23] (but see
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[25]). In another example, the human-specific inactivation of
the gene encoding the enzyme CMP-N-acetylneuraminic acid
hydroxylase (CMAH) led to the deficiency of the mammalian
common sialic acid NeubGc (N-glycolylneuraminic acid) on
the human cell surface [19]. This inactivation was due to an
Alu-mediated sequence replacement [26] that occurred about
2.7 million years ago [27] and may have had several important
consequences to human biology and evolution [28].

It is thus interesting to systematically identify and analyze
all human-specific gene losses. Here, a human-specific gene
loss refers to a loss that occurred in the human lineage after
the human-chimpanzee divergence; the gene may be lost
independently in other species (except the chimpanzee). Two
attempts to identify human-specific pseudogenes [29,30] have
been made recently using comparative genomic approaches.
However, the first analysis was limited by its comparison

Academic Editor: Laurence D. Hurst, University of Bath, United Kingdom

Received September 7, 2005; Accepted December 16, 2005; Published February
14, 2006

DOI: 10.1371/journal.pbio.0040052

Copyright: © 2006 Wang et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: BLAST, basic local alignment search tool; BLAT, BLAST-like
alignment tool; CASP12, CASPASE12; CCR5, chemokine (C-C motif) receptor 5;
CMAH, CMP-N-acetylneuraminic acid hydroxylase; HIV, human immunodeficiency
virus; LD, linkage disequilibrium; MBL1, mannose binding lectin 1; MHC, major
histocompatibility complex; MYH16, masticatory myosin heavy chain 16; OR,
olfactory receptor; PSG12, pregnancy-specific beta-1 glycoprotein 12; SNP, single
nucleotide polymorphism

* To whom correspondence should be addressed. E-mail: jianzhi@umich.edu

@ These authors contributed equally to this work.

March 2006 | Volume 4 | Issue 3 | €52



between genome sequences of humans and rodents, instead
of chimpanzees [29]. The second analysis compared human
mRNA with the chimpanzee genome sequence, missing all
nontranscribed human pseudogenes [30]. As a result, these
two studies identified only six and nine cases, respectively
[29,30], and the majority of them are not even true human-
specific pseudogenes due to the limitations of their method-
ologies (see below). Moreover, all human gene losses known to
date presumably occurred by random fixations of null alleles
at dispensable loci. There has been no demonstration of
positive selection driving the loss of a human gene, although
the loss may have subsequently allowed future adaptations.
Such passive pseudogenization incidences are not themselves
adaptations. In this work, we explore which types of genes
have been lost in recent human evolution and determine if
there is evidence for adaptive loss of human-specific
pseudogenes. First, we identify human-specific gene losses
by comparing human nonprocessed pseudogenes with the
chimpanzee genome sequence. These human-specific pseu-
dogenes were formed in the last 6 to 7 million years after the
separation of humans and chimpanzees [31]. However,
because positive selection for null alleles cannot be detected
by comparing humans and chimpanzees, we rely on human
population genetic data, which may retain signatures of
selective sweeps for at most 200,000 years [32]. That is, such
evidence is best sought among very recent pseudogenizations.
Using this strategy, we provide evidence that the nearly
complete fixation of a null allele at CASPASEI2 (CASP12)
[6,33,34] has been driven by positive selection, probably
because the allele confers lowered susceptibility to severe
sepsis.

Results/Discussion

Identification of Human-Specific Pseudogenes

The human genome has an abundance of pseudogenes
[35,36], but the majority of them are processed pseudogenes
[35,36], which are DNA sequences reverse-transcribed from
RNA and randomly inserted into the genome. Although some
processed pseudogenes may become functional genes fortu-
itously [37,38], the majority lack necessary regulatory ele-
ments or complete coding regions and are dead-on-arrival.
Hence, most processed pseudogenes have never been func-
tional. Consequently, these pseudogenizations should not
have affected the organisms. In contrast, nonprocessed
pseudogenes were once functional genes that now have their
coding sequences interrupted. However, many nonprocessed
pseudogenes are formed soon after gene duplication due to
genetic redundancy [10]. In such cases, pseudogenizations are
unlikely to have functional consequences either. We thus
focus on human-specific nonprocessed pseudogenes but do
not consider those resulting from human-specific gene
duplicates.

We start from the 1,781 nonprocessed pseudogenes in the
human pseudogene database [36], which contains 19,537
pseudogenes previously detected from the human genome
sequence (Figure 1). Interestingly, the pseudogene database
includes many sequences with complete ORFs, which are
potentially functional genes but unannotated in the human
genome sequence. These sequences are excluded from our
analysis. We focus on the remaining 887 pseudogenes with at
least one ORF-disrupting mutation, which may be a nonsense
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Figure 1. Flow Chart for Identifying the 67 Human-Specific Non-
processed Pseudogenes

The number of pseudogenes left after each step is given in the boxes.
DOI: 10.1371/journal.pbio.0040052.g001

or frame-shift mutation. For each of the 887 pseudogenes, we
conduct a BLAT search [39] in the draft chimpanzee genome
sequence to identify the best chimpanzee hit, which is
assumed to be the chimpanzee ortholog. Because most of
the human pseudogenes were inactivated long before the
human-chimpanzee divergence, only 83 human pseudogenes
have putatively functional orthologs in chimpanzees. To
ensure the orthology, we BLAT-search the human and
chimpanzee genomes using the human pseudogene as a
query and then take multiple top BLAT hits from both
humans and chimpanzees to construct a phylogenetic tree. A
human pseudogene is considered human specific when the
tree in either Figure 2A or 2B is observed. That is, we exclude
those cases where the human pseudogene is more closely
related to a functional human gene (Figure 2C) or the
putative chimpanzee ortholog is more closely related to a
functional human gene (Figure 2D). This purging step left 76
human-specific pseudogenes. Finally, to verify that these
pseudogenes are nonprocessed, we compare the genomic
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Figure 2. Evolutionary Scenarios for Human-Specific Pseudogenes and Non-Human-Specific Pseudogenes
Functional genes and pseudogenes are represented by open and closed circles, respectively. A, A1, A2, and B represent hypothetical gene names.

(A) The human-specific pseudogene has a functional chimpanzee ortholog.

(B) The chimpanzee functional gene is most closely related to another chimpanzee functional gene.
(C) The human pseudogene is most closely related to a functional human gene.
(D) The chimpanzee functional ortholog is most closely related to a human functional gene. We consider (A) and (B) as human-specific pseudogenes.

DOI: 10.1371/journal.pbio.0040052.9002

regions spanned by the intronless pseudogenes to the
genomic regions spanned by their functional paralogs. If
their functional paralogs have introns, we considered that the
pseudogenes are actually processed pseudogenes but were
misclassified previously. A total of 67 human-specific non-
processed pseudogenes (Tables 1 and S1) are finally identi-
fied. While all pseudogenes with at least one ORF-disrupting
mutation are examined, all detected human-specific pseudo-
genes contain either one (61 of 67 cases) or two mutations.

Because the human genome sequence was obtained from a
small number of human individuals [40], it is possible that
some human-specific pseudogenes we identified from the
genome sequence have yet to be fixed in humans. In 2003, two
large-scale studies verified that the dbSNP database at the
National Center for Biotechnology Information covered 50%
to 60% of all single nucleotide polymorphisms (SNPs) with
frequencies greater than 10% [41,42]. Because the number of
SNPs in dbSNP has more than tripled since these two studies,
it is likely that the majority of SNPs with frequency greater
than 10% are now covered in dbSNP. We used dbSNP to
examine if the ORF-disrupting mutations in these pseudo-
genes are still segregating in humans and found that three of
the 67 human-specific pseudogenes we identified are segre-
gating with their functional alleles. They are immunoglobulin
genes IGKVI-13 and IGLVI-41 and pregnancy-specific beta-1
glycoprotein 12 (PSG12). While no allele frequency data are
available for the immunoglobulin genes, the null allele of
PSGI2 is rare with a frequency of 0.7%.

Functional Bias of Human-Specific Pseudogenes

Some of the pseudogenes we identified had been previously
reported in the literature as human-specific pseudogenes. For
example, one of the two previously identified human-specific
bitter taste receptor pseudogenes [15,17] was identified with
our method. Human-specific olfactory receptor (OR) pseu-
dogenes have also been well documented [18,43,44], although
the exact number is unknown. In a random sample of 50
human OR genes, Gilad et al. [18] found 12 to be human-
specific pseudogenes. Extrapolated to the approximately 800
human ORs (HORDE database v.41) and considering the
human OR pseudogene study excluded roughly 100 human
pseudogenes from OR subfamily 7E, we would expect to
identify 168 human-specific OR pseudogenes instead of only
36 that were identified with our method. Many reasons could
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account for this fivefold difference in the number of human-
specific OR pseudogenes. First, Gilad et al.’s [18] study did not
include polymorphism data, but population surveys have
revealed that many human OR pseudogenes are still
segregating with their functional alleles [45,46]. Therefore,
the projected 168 human-specific OR pseudogenes is an
overestimate. Second, because the OR gene family evolves via
a rapid birth and death process [47], many OR genes were
formed via species-specific duplication. Human pseudogenes
in such species-specific duplications would fall into the
category shown in Figure 2C and would not qualify as
human-specific pseudogenes by our criteria. Finally, since OR
genes have only one exon, their pseudogenes are often
misclassified as intronless processed pseudogenes. Since we
focused on nonprocessed pseudogenes, these misclassified
pseudogenes would not be detected with our method.

Some human-specific pseudogenes previously reported in
the literature, such as EGF-module containing mucin-like
receptor (EMR4) [20], MYHI16 [23], CMAH [19], tropoelastin
(ELN) [24], type I hair keratin (phHaA) [22], CASP12 [33,34],
and a bitter taste receptor T2R62P [15,17], were not detected
with our method (Table 1), because they are all absent from
the pseudogene database [36]. Additionally, our method did
not detect the 15 pseudogenes identified in two earlier
studies [29,30]. However, using our criteria aforementioned,
only six of them qualify as human-specific nonprocessed
pseudogenes (Table 1). The rest are either potentially
processed, functional, or non-human specific or do not have
complete sequence in the chimpanzee genome sequence.
Thus, while our method does not reveal all human-specific
pseudogenes, it has revealed substantially more than previous
attempts [29,30]. Our method has been limited by the
pseudogene database, and 1,781 [36] is likely a conservative
estimate of the number of human nonprocessed pseudogenes.
Our method has also been limited by the quality of the
chimpanzee genome sequence as 198 of the 887 human
pseudogenes had either no chimpanzee match or a chimpan-
zee match with incomplete sequence. It should be noted that
in our analysis, pseudogenes are defined by the presence of
premature stop codons or frame-shifting mutations. It is
possible that a young pseudogene contains a severe mutation
in its coding or regulatory regions but still retains its ORF.
Such pseudogenes are undetectable with our method.
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Table 1. Human-Specific Pseudogenes Identified in This Study or Previously Reported

Gene Description/Identifier

Gene Ontology (GO) Function

Pseudogene similar to hypothetical protein DJ845024.1
Pseudogene similar to hypothetical protein DJ845024.1
Pseudogene similar to bA476115.3 (novel protein similar to septin)
Histone 3, H2ba (HIST3H2BA) pseudogene

Immunoglobulin IGKV1-13 pseudogene

Pseudogene similar to UDP glycosyltransferase 2 family, polypeptide B10
Camello-like 2

Protocadherin beta 18 pseudogene

Glutathione S-transferase A pseudogene 1 (GSTAP1)
Pseudogene similar to ZNRF2 protein

Pseudogene similar to calcitonin gene-related peptide receptor component
T cell receptor Vbeta 3 pseudogene

T cell receptor TCRBV12P

Mannose-binding lectin 1 pseudogene (MBLP1)

Pseudogene similar to mannose-binding lectin 1

Tripartite motif-containing pseudogene

Pseudogene similar to synArfGEF

Taste receptor pseudogene T2R64

Pseudogene similar to chimpanzee LOC465301

Pseudogene similar to acidic leucine-rich nuclear phosphoprotein 32 family mem-
ber B (PHAPI2 protein)

Unknown pseudogene on chromosome 16

Pseudogene similar to zinc finger protein 100

Pseudogene similar to zinc finger protein 492

Pseudogene similar to zinc finger protein

Pseudogene similar to hypothetical protein FLJ32191
Pregnancy-specific beta-1 glycoprotein 12 (PSG12) pseudogene
Pseudogene similar to hypothetical protein LOC342892

Zinc finger pseudogene

Pseudogene similar to NHE-3

Immunoglobulin IGLV70 pseudogene

Immunoglobulin IGLV1-41 pseudogene

36 Olfactory receptors®

Caspase 12 (Casp12)°

EGF-module containing mucin-like receptor (EMR4)°

Myosin heavy chain 16 (MYH16)®

CMP-N-acetylneuraminic acid hydroxylase (CMAH)®
Tropoelastin (ELN)®

Type | hair keratin (hHaA)°

Taste receptor T2R62°

FLI33674°

Williams Beuren syndrome chromosome region 27 (WBSCR27)°
DnaJ (Hsp40) homolog, subfamily B, member 3 (DNAJB3)P

G protein—coupled receptor 33 (GPR 33)°

Zinc finger, CCHC domain containing 13 (ZCCHC13)P

Breast cancer and salivary gland expression gene (BASE)°

Unknown

Unknown

Unknown

DNA binding

Antigen binding

Glucuronosyltransferase

N-Acetyltransferase

Calcium ion binding

Glutathionetransferase

Zinc ion binding, ubiquitin protein ligase
Calcitonin receptor activity

MHC-protein binding, peptide antigen binding
MHC-protein binding, peptide antigen binding
Mannose binding

Mannose binding

Zinc ion binding, ubiquitin protein ligase
Unknown

Taste receptor activity

Unknown

Unknown

Unknown

DNA binding, zinc ion binding

DNA binding

Unknown

Unknown

Unknown

Unknown

Unknown

Antigen binding

Antigen binding

Antigen binding

Olfactory receptor activity

Caspase activity

Calcium ion binding, receptor activity

Actin binding, ATP binding, motor activity

Oxidoreductase activity

Endonuclease activity, extracellular matrix structural constituent
Structural constituent of cytoskeleton, structural molecule activity
Taste receptor activity

Unknown

S-Adenosylmethionine-dependent methyltransferase activity
Heat shock protein binding, unfolded protein binding
Receptor activity

Nucleic acid binding

Unknown

“All olfactory receptor pseudogenes identified are listed in Table S1.
bPreviously reported cases that satisfy our criteria of human-specific pseudogenes.
DOI: 10.1371/journal.pbio.0040052.t001

With these limitations, we analyzed a total of 80 human-
specific pseudogenes identified here (67) and in previously
studies (13). These pseudogenes have a diverse array of
molecular functions (before pseudogenization), such as
enzymes, receptors, and immunoglobulins (Table 2). To
determine whether a molecular function is overrepre-
sented, we used Fisher’s exact test for each molecular
function. The most striking bias is found in genes that
function in chemoreception (olfaction and gustation) or
immune response, two functional categories character-
istic of rapidly evolving gene families with species-specific
repertoires [6,47]. In particular, OR activity, a chemo-
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reception function, is overwhelmingly overrepresented as
nearly half of the identified pseudogenes are ORs, while
less than 2% of human functional genes are ORs [47].
Additionally, major histocompatibility complex (MHC)-
protein binding, mannose binding, antigen binding, and
protein antigen binding, all involved in immune re-
sponses, are highly overrepresented. There are 14 identi-
fied pseudogenes with unknown functions. Of the 30
molecular functions present among the 80 human-specific
pseudogenes, nine functions are significantly overrepre-
sented (Table 2). In addition to the seven functions that
can be largely included in chemoreception or immunity,
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Table 2. Functional Bias in Human-Specific Pseudogenes

All (n = 80)? Without Olfactory and Unknown Functions (n = 30)?
Molecular Function® Observed Expected Observed/ P¢ Corrected Observed Expected Observed/ P Corrected
Expected pd Expected pd

Actin binding 1 1 1 NS NS 1 0.4 3 NS NS
Antigen binding® 4 0.5 8 ++ NS 4 0.2 20 ++++  +
ATP binding 1 6.8 0.1 NS NS 1 25 0.4 NS NS
Calcium ion binding 2 3.2 0.6 NS NS 2 1.2 2 NS NS
Calcitonin receptor 1 0.01 100 I NS 1 0.003 333 S NS
Caspase activity 1 0.1 10 NS NS 1 0.03 33 + NS
DNA binding 3 5.1 0.6 NS NS 3 1.9 2 NS NS
Endonuclease 1 0.3 3 NS NS 1 0.1 10 NS NS
Extracellular matrix structural

component 1 0.4 3 NS NS 1 0.2 5 NS NS
Glucuronosyltransferase 1 0.06 17 NS NS 1 0.02 50 + NS
Glutathione transferase 1 0.05 20 NS NS 1 0.02 50 + NS
Heat shock protein binding 1 0.2 5 NS NS 1 0.09 1 NS NS
Mannose binding® 2 0.03 67 SFAEE AR 2 0.01 200 ++++  ++
MHC-protein binding® 2 0.05 40 ++ + 2 0.02 100 ++++  ++
Motor activity 1 0.4 3 NS NS 1 0.1 10 NS NS
N-Acetyltransferase 1 0.08 13 NS NS 1 0.03 33 + NS
Nucleic acid binding 4 4.6 0.9 NS NS 4 1.7 2 NS NS
Olfactory receptor’ 36 1.7 21 ++++ A+t 0 NA NA NA NA
Oxidoreductase 1 2 0.5 NS NS 1 0.8 13 NS NS
Peptide antigen binding® 2 0.2 10 +++  + 2 0.09 22 ++++  ++
Receptor 39 5.9 6.6 ++++ ++++ 3 22 14 NS NS
S-Adenosylmethionine-

dependent methyltransferase 1 0.2 5 NS NS 1 0.08 13 NS NS
Structural constituent of cytoskeleton 1 0.3 3 NS NS 1 0.1 10 NS NS
Structural molecule 2 1.8 1 NS NS 2 0.7 3 NS NS
Taste receptorf 2 0.04 50 TFF 4 1 0.02 50 AFrar +
Transferase 4 39 1 NS NS 4 15 3 NS NS
Ubiquitin protein ligase 2 1.9 1 NS NS 2 0.7 3 NS NS
Unfolded protein binding 1 0.7 14 NS NS 1 0.3 3 NS NS
Zinc ion binding 3 7.5 0.4 NS NS 3 2.8 1.1 NS NS
Unknown 14 3.2 4 ++++ +++ 0 NA NA NA NA

“The number of pseudogenes for each analysis is in parentheses.
PNote that one gene might have multiple molecular functions.

“Determined by Fisher's exact test. NA, not applicable; NS, not significant; + overrepresented with P < 0.05; ++, overrepresented with P < 0.01; +++, overrepresented with P < 0.001; +++, overrepresented with P <

0.0001.

9Bonferroni corrected for 30 tests; +, overrepresented P < 0.05; ++, overrepresented with P < 0.01; +-+, overrepresented with P < 0.001; 4+ overrepresented with P < 0.0001.

“Immune response.
fChemoreception.
DOI: 10.1371/journal.pbio.0040052.t002

there are two other functions that are overrepresented:
calcitonin receptor activity and unknown functions. We
also reexamined functional bias in our sample after
excluding ORs and genes of unknown functions. Among
the remaining 30 pseudogenes, ten molecular functions
are significantly overrepresented, including taste recep-
tion, glucuronosyltransferase, calcitonin binding, caspase
activity, glutathione transferase, N-acetyltransferase, and
four immunity-related functions (Table 2). Note that
glucuronosyltransferase activity and glutathione trans-
ferase activity are involved in detoxification; thus they
may be grouped together with immunity genes as host-
defense genes. Because multiple tests were conducted,
Bonferroni corrections were applied. After the correc-
tion, chemoreception and immunity pseudogenes still
remain significantly overrepresented (Table 2). Note that
although a gene may be classified into more than one
functional category, the above conclusion is not affected
because chemoreception genes and immunity genes are
mutually exclusive.
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Adaptive Loss of CASP12 in Human Evolution

Although the functional and physiological consequences of
pseudogenization may be inferred from the gene ontology
information (Table 1), a better understanding may be gained
by examining the phenotypes of the mice with the functional
orthologs deleted. However, among the 67 human-specific
pseudogenes we identified, only one has such phenotypic
information from mouse knockout experiments. The mouse
gene is MblI, which is the ortholog of the human mannose-
binding lectin 1 pseudogene. Interestingly, compared to the
wild-type controls, mice homozygous for disruptions of MblI
show increased survival due to lowered susceptibility to sepsis
[48]. More interestingly, the primate mannose binding lectin
1 (MBLI) gene was duplicated in the common ancestor of
humans and rhesus monkeys. After duplication, both daugh-
ter genes remain functional in rhesus monkeys and chim-
panzees, but both became pseudogenes in humans. Because
deletion of MblI increases survival in a mouse model of acute
septic peritonitis, the losses of the two MBLI genes in humans
may have been adaptive. But this hypothesis is difficult to test,
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as the fixations of the null alleles presumably occurred in the
past 6 to 7 million years, most likely too long for traces of
selective sweeps to be detected today. Nevertheless, the
evolutionary comparison illustrates the possibility that some
human-specific gene losses may have been driven by natural
selection. The connection with sepsis in the above example
prompted us to examine CASPI2, another human-specific
pseudogene related to sepsis. Because the pseudogenization
of CASPI12 has yet to be complete [34], there is a high chance
to detect the evolutionary forces responsible for the
pseudogenization.

CASP12 belongs to the caspase family, which are cysteinyl
aspartate proteinases that play important roles in the
processing of inflammatory cytokines and the initiation and
execution of apoptosis [49,50]. In humans, 11 functional
caspase genes are known: CASPASE] through CASPASEI(0 and
CASPASEI4. Human CASPI2 was identified as a pseudogene
following the cloning of mouse Caspasel2 [33]. Compared with
other mammalian orthologs, human CASPI2 contains a
premature stop codon due to a C — T nonsense mutation
at nucleotide position 629 of exon 4 [33,34]. This mutation
leads to the production of truncated nonfunctional CASP12
in humans [34]. The null T allele is fixed in a sample of 347
non-Africans and has a frequency of 89% in 776 individuals
of African descent [34]. Interestingly, the T allele is associated
with a reduced incidence and mortality of severe sepsis [34],
suggesting that the loss of functional CASP12 is beneficial to
present-day humans. To test whether the nearly complete
fixation of the null allele at CASPI2 has been driven by
positive selection, we looked for signals of recent (incom-
plete) selective sweeps by examining the intraspecific
variation of putatively neutral regions surrounding the C/T
polymorphism. The positive selection hypothesis predicts
that the level of polymorphism in these regions is lower in the
T allele than in the C allele, especially in the proximity of the
C/T polymorphism, due to the hitchhiking effect [51].
Furthermore, the frequency distribution of the neutral
polymorphisms in the T allele should deviate from the
neutral expectation, generating negative values of Tajima’s D
[52] and Fay and Wu’s H [53].

From a sample of 63 humans of African descent, we
identified four C/C homozygotes and 43 T/T homozygotes. We
sequenced the four C/C homozygotes and four randomly
chosen T/T homozygotes in nine noncoding regions of
varying distances from the C/T polymorphism (Figure 3).
The sequenced regions vary in size from about 600 to 2,400
nucleotides. In total, 53 and 29 SNPs were identified from
8,925 nucleotide sites in C/C and T/T individuals, respectively
(Figure S1 and Table S2). Although the T allele is much more
prevalent than the C allele in the population, the T allele has
a significantly lower number of SNPs per nucleotide than the
C allele in the linked regions (P < 0.01, Fisher’s exact test).
Nucleotide diversity per site (m) is also lower in the T alleles
(mrr=10.00131 = 0.00019) than in the C alleles (1o =0.00218 *
0.00031) (P=0.02, two-tailed Z test). More strikingly, although
the variation of m¢ across the nine regions is more or less
random, that of mr exhibits a V shape, with the bottom of the
valley located in region 4, which has its 3’ end only 607
nucleotides from the C/T polymorphism (Figure 3). When one
moves approximately 10,000 nucleotides from this poly-
morphism, mr rises to a level comparable to mc. To exclude
the possibility that the low mp observed around the C/T

@) PLos Biology | www.plosbiology.org

Gene Losses in Human Origins

polymorphism was due to the use of a small sample, we
sequenced seven additional T/T individuals of African
descent in regions 4, 5, and 6. The nt values obtained from
the combined data of 11 individuals were either lower than or
similar to those from the four individuals (Table S2),
suggesting that the observation of low mr is not due to a
small sample. In region 4, where the greatest reduction in
polymorphism is observed, only one SNP is found across the
2,413 nucleotide positions among the 22 T alleles sequenced.
By contrast, 19 SNPs were found in the same region among
eight C alleles examined. Region 4 was also sequenced in six
non-Africans (all non-Africans are T/T homozygotes [34]), but
no SNP was detected and all non-African T alleles are
identical to the predominant T allele from Africans. This
indicates a common origin of African and non-African T
alleles.

In a formal test of the selective sweep hypothesis, we used
coalescent simulations to examine whether the polymor-
phisms observed in region 4 can be explained by neutral
models of evolution. Such tests require a sample that is
representative of the population under investigation. We thus
sequenced 20 additional African T/T homozygotes so that our
sample comprises 89% (62 of 70) of T alleles and 11% (8 of
70) C alleles, expected in populations of African descent [34].
In the 70 chromosomes sequenced, the two most common
haplotypes observed (with a total frequency of 61 of 70) are
both from T alleles and these two haplotypes have only one
nucleotide difference. Let k; be the number of chromosomes
with the most common haplotype in a sample and ko be the
number of chromosomes with the most frequent haplotype
among those that are one nucleotide different from the most
common haplotype in the sample. We first simulated the
evolution of a population with a constant size. In 0.066% of
the 50,000 replications, we observed ky + ko > 61. We also
simulated various demographic changes to mimic the
evolution of human populations, and k; + ks > 61 was
observed in fewer than 1% of simulation replications in all
models considered (Table S3). These demographic models
included ancient or recent population expansions, severe
bottleneck, repeated bottlenecks with subsequent expansion,
and population subdivision and admixture [54] (see Protocol
S1). Previous studies suggested that the models used here are
much more stringent than that associated with the real
demographic history of humans [55,56]. Hence, our tests are
conservative.

We also computed statistics D and H for regions 4 and 5 in
the T allele, as these two regions have significantly lower mp
than ne (Table S2). Both statistics were significantly negative
in region 5 (D = —-2.08, P < 0.01; H = —4.71, P < 0.025),
consistent with the expectations from a selective sweep. D
(—0.23, P=0.47) and H (—0.90, P = 0.09) were not significantly
negative in region 4, probably because the number of SNPs is
too small for the statistic tests to be powerful. It should be
noted that the above tests are less rigorous than the
coalescent simulations because the tests are conducted on
subsets of the genealogy [54]. Linkage disequilibrium (LD) can
also be used to test recent selective sweeps if long-range
haplotypes can be reliably inferred [57]. In the present case,
however, long-range haplotypes are difficult to infer with
certainty due to the small number of C/C homozygotes
available. However, the genotypes shown in Figure S1 provide
a visual indication of longer LD in T alleles than in C alleles
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Figure 3. Intraspecific DNA Sequence Variation in Noncoding Regions Linked with the Human CASP12 Gene

CASPASE12 is shown in blue, with the exons depicted by solid blue bars on the chromosome. The premature stop codon generated by the C — T
nonsense mutation is shown by an asterisk in exon 4. The nine noncoding regions sequenced are indicated below the chromosome. Exons, introns, the
nine noncoding regions, and spaces between regions are drawn to scale as indicated. Red circles (connected by the red dotted line) show nucleotide
diversity per site among African T alleles (r1) and the red boxes shows ny = one standard error of ntr. Green squares (connected by the green dotted
line) show nucleotide diversity per site among African C alleles (nc) and the green boxes shows ¢ = one standard error of nc. The broken green line
shows the mean mc across the nine noncoding regions sequenced. Black triangles (connected by the black solid line) show the ratio between nr and nic
for each region. nic is estimated from eight alleles. 7ty is estimated from 22 alleles for regions 4, 5, and 6 and from eight alleles for the other regions.
When only eight alleles are used, mr is 0.00018 = 0.00007, 0.00129 =+ 0.00071, and 0.00145 * 0.00057 for regions 4, 5, and 6, respectively. mr is

significantly lower than mc in regions 4 and 5 (Table S2).
DOI: 10.1371/journal.pbio.0040052.9003

and a decay of LD when one moves away from the C/T
polymorphism, consistent with the recent origin of T alleles.
Taken together, our observations, especially the proximity of
the mr valley to the C/T polymorphism and the coalescent
simulations, strongly suggest that the spread of the T allele
among Africans and non-Africans has been driven by positive
selection and that the selective advantage was directly
conferred by the C — T nonsense mutation.

Dating the Pseudogenization Event and Selective Sweep
in CASP12

When did the pseudogenization of human CASPI2 start?
We took two approaches to estimate the age of the T allele. In
the first method, we used the information of noncoding
region 4, which is longest among the nine sequenced regions
and is also closest to the C/T polymorphism. The founding
haplotype of T alleles is inferred, and the proportion (P) of
present-day T alleles identical to the founding haplotype is
estimated. It can be shown that P= (1 —r)®, where G is the age
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of the T allele in generation and r is the total rate of mutation
and recombination per sequence per generation [58]. In the
present case, it is easy to infer the founding haplotype (for
region 4) because of the low polymorphism and the
availability of an outgroup (chimpanzee) sequence. P is
estimated to be 0.811 based on the observation of 60 copies
of the founding haplotype in a total of 74 T alleles sequenced
(including both Africans and non-Africans). The mutation
rate is estimated to be 23/(12 X 10°% X 25 = 4.792 X 107 per
sequence per generation. Here 23 is the average number of
nucleotide differences between human and chimpanzee in
region 4, 12 X 10% is twice the divergence time in year
between the two species [31], and 25 is the average human
generation time in years. The recombination rate is estimated
to be 0.7 X 107% X 3,720 = 2.269 X 107° per sequence per
generation, where 0.7 X 107® is the pedigree-based recombi-
nation rate per generation per nucleotide at the CASPI2
locus [59] and 3,720 is the number of nucleotides between the
5" end of region 4 and the C/T polymorphism. We thus
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estimated that G = 2,970 generations (Figure S2A), which
corresponds to 74,250 years. The 95% confidence interval for
P is between 0.647 to 1. If we consider the sampling error of P,
the 95% confidence interval for the estimated time is from 0
to 154 thousand years. The standard error of the estimated
mutation rate is 1/v/23=21% of the estimate, while the error
of the recombination rate is difficult to evaluate.

In the second method, we used a deterministic selection
model [60] to estimate the number of generations required
for the T allele to rise to its present-day frequency among
individuals of African descent. It has been estimated that the
incidence of severe sepsis is /= 0.59% and the mortality rate
is M = 26.5% among African Americans [61]. The genotype
frequencies among individuals of African descent are foc =
1.675%, fcrr = 18.6%, and frr = 79.77%, respectively [34].
Here we used the genotype frequency data from [34] because
their sample is considerably larger than ours. The propor-
tions of the three genotypes among severe sepsis patients
have been estimated to be P(C/C|sepsis)=10.5%, P(C/T|sepsis)
=29.0%, and P(T/T|sepsis)=60.5% [34]. Using Bayes theorem,
we calculated the survival rate (S) for a given genotype X by Sx
=1 — MP(sepsis|X) = 1 — IMP(X|sepsis)lfx and obtained S¢;c =
0.9902, S¢;r = 0.9976, and St/ = 0.9988. Here we assumed that
the prereproductive-age incidence of sepsis in much of the
human history is comparable to the total incidence of sepsis
estimated today [61]. The relative fitness of C/C to the fitness
of TIT is therefore We ¢ = ScicfStr = 0.991. Similarly, Wer =
Scrr!Str=0.999 and Wy = 1. The selective disadvantage of C/
C compared with T/T is s=1— W= 0.009 and the degree of
dominance of the C allele relative to the T allele is A= (1 — W,
/(1 = W) =0.11. The number of generations required for a
given change in allele frequency was calculated using the
differential equation dpldt = p(1 — p)s[ph+(1 — p)(1 — h)] with
the current T frequency p = 0.891 [34] and the initial T
frequency py = 1/(2N), where N is the effective population size
of humans [60]. The calculated number of generations is ¢ =
2,111 (Figure S2B), under the assumption of an effective
population size of 10" individuals [62,63]. In this computa-
tion, we ignored the effect of random genetic drift because
2Ns =180 > 1 and the behavior of the alleles is dominated by
selection [64]. Because of the sampling error, the 95%
confidence interval of p is [0.875, 0.907], which gave the
95% confidence interval of the time required for the T allele
to reach today’s frequency to be 51,000 to 55,000 years. Note
that the actual error of the time estimate may be considerably
larger because the estimation errors of & and s are difficult to
assess. Here we assumed that positive selection acted as soon
as the null allele appeared. It is possible that the null allele
was initially neutral but later became beneficial due to a
change in the genetic or environmental background. If this is
the case, the appearance of the T allele would be earlier than
dated by this method.

Strictly speaking, the first approach we used was to date the
appearance of the T allele, whereas the second approach was
to date the onset of the selective sweep. These two events
were not necessarily simultaneous, although the appearance
of the T allele was a prerequisite for the selective sweep.
Despite the potentially large errors, the two estimates were
close, suggesting that the T allele might have been beneficial
since its appearance. Because the T alleles of Africans and
non-Africans share the same origin, the C — T nonsense
mutation must predate the out-of-Africa migration of

@) PLos Biology | www.plosbiology.org

Gene Losses in Human Origins

modern humans, which is believed to have occurred 40,000
to 60,000 years ago [65]. Our dating suggests that the
pseudogenization of CASPI2 began not long before this
migration. As a comparison, it is interesting to compute the
mean time required for a neutral allele to rise to the current
frequency of P=0.891. This can be estimated by —4Np(Inp)/(1
— p) = 37,736 generations, or 943,000 years [66]. In the above,
N is the effective population size of humans and is assumed to
be 10*. Thus, it would have taken a considerably longer time
for the null allele to reach today’s frequency if it were neutral.

Implications

The identification of the human-specific gene losses helps
us understand the human-specific features and their genetic
basis. The overwhelming overrepresentation of chemorecep-
tion and immunity functions among the human-specific
pseudogenes indicates substantive changes in these two
aspects of physiology during human evolution. The loss of
chemoreception genes is broadly consistent with the common
belief that humans have a reduced sense of smell (but see [67])
and may reflect significant changes in the way humans
interact with each other and with the environment, human
diet, and human behavior during the past few million years
[15,18]. The losses of many immunity genes are consistent
with and may in part account for the many differences
between humans and their related primates in susceptibility
to various pathogens such as HIV/simian immunodeficiency
virus and Plasmodium falciparum (malaria). As aforementioned,
the species-specific losses of several other genes such as
CMAH and MYH]I16 have been suggested to be responsible for
certain human-unique features or related to human adapta-
tions. Our identification of human-specific pseudogenes
opens the door for systematic evaluations of the timings,
functional consequences, and potential roles of gene loss
during human evolution.

Identifying human-specific pseudogenes is only one half of
the story. It is unclear whether the functional bias we
observed in human-specific pseudogenes is also found among
chimpanzee-specific pseudogenes. Unfortunately, computa-
tional identification of chimpanzee-specific pseudogenes
requires a highly accurate chimpanzee genome sequence [6],
because a small sequencing error, such as a misreading of
trinucleotide GGG into GG in a coding sequence, causes
frame-shifting and produces erroneous species-specific pseu-
dogenes. Our preliminary analysis reveals many more
chimpanzee-specific pseudogenes than human-specific pseu-
dogenes, but subsequent resequencing of a few chimpanzee
“pseudogenes” suggests that this difference in pseudogene
number is likely due to errors in the currently available
chimpanzee genome sequence, which has a low accuracy (3.5X
coverage). Similarly, although 53 potentially chimpanzee-
specific gene losses were identified in a recent analysis, the
majority of them could not be confirmed [6]. These
uncertainties notwithstanding, detailed analyses of olfactory
and bitter taste receptor genes suggested that the pseudoge-
nization rates in these chemoreception genes are lower in
chimpanzees than in humans [15,17,18] (but see [16]). Thus, it
is expected that the two lineages have differences in the
pattern of pseudogenization.

Our population genetic study provided strong evidence
that the nearly complete fixation of a null allele at human
CASPI2 has been driven by positive selection, possibly
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because it confers resistance to severe sepsis. CASPI2 is a
functional gene in all mammals surveyed except humans [34],
suggesting that it is indispensable in a typical mammal. The
functional human CASP12 acts as a dominant-negative
regulator of essential cellular responses including the
necrosis factor-xB and interleukin-1 pathways; it attenuates
the inflammatory and innate immune response to endotoxins
[34]. Because an appropriate level of immune response that is
neither excessive nor insufficient is important to an
organism, one can imagine that the immune suppression
function of CASP12 becomes harmful when the immune
system cannot fully respond to a challenge. It is likely that
during human evolution alterations in our genetic and/or
environmental background resulted in a malfunction of the
immune response to endotoxins, which rendered the pre-
viously necessary function of CASP12 deleterious in humans
and the null allele advantageous over the functional one.
Identification of such genetic and/or environmental alter-
ations will be valuable for understating human-specific
immune functions. It is interesting to note that mouse
Caspasel?2 is implicated in amyloid-induced neuronal apop-
tosis, whereas the functional form of human CASP12 does not
have this function. The reasons and consequences of this
difference, particularly in relation to the human-specific
pathology of Alzheimer disease, are intriguing [6].

The “less-is-more” hypothesis emphasized that gene loss
can sometimes play an active role in evolution [11], with the
premise that gene loss may provide opportunities for future
adaptations. Our finding that gene loss itself can be adaptive
supports and extends the “less-is-more” hypothesis. Although
CASPI12 is the first demonstrated case of adaptive gene loss in
humans, similar events may have occurred or are occurring at
other loci, possibly including the human-specific pseudo-
genes we identified, because human lifestyle and environ-
mental interactions have changed immensely in the past few
million years. Such changes may have made formerly useful
gene functions harmful. Pseudogenizations of the two
paralogous MBLI genes in humans and the finding that
deleting MblI increases survival in a mouse model of sepsis
suggests that the losses of the two human MBLI genes may
have also been driven by positive selection. The common
connection to sepsis among CASPI2 and the two MBLI genes
reinforces the conjecture that the way humans respond to
sepsis and/or the threat of sepsis to humans might have been
significantly different from those in other species. In the
context of pathogenic threats, it is interesting to mention two
examples where human null alleles are selected for in certain
geographic areas [58,68]. In the first example, a null allele
generated by a 32-nucleotide deletion in the chemokine (C-C
motif) receptor 5 (CCR5) gene was subject to positive
selection in Caucasians in the recent human history [58]
(but see [69]). CCR5 is used by pathogens, such as HIV, as a
coreceptor to enter host cells; the null allele protects humans
from attacks of these pathogens. The exact pathogens that
were responsible for the spread of the CCR5-null allele,
however, are still under debate [70]. In the second example, a
null allele at the Duffy blood group locus was shown to be
beneficial in some Africans, probably because it confers
resistance to malaria [68]. Nevertheless, in both of these
examples, the null alleles appear to be less fit than the
functional alleles when the pathogens are rare or absent.
Thus, the positive selection for the null alleles is limited to
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small geographic areas, and it is unlikely that they will lead to
the eventual loss of the two human genes. By contrast,
CASPI2 has been lost in non-Africans and is nearly lost in
Africans.

How often does adaptive gene loss occur in general? While
this problem has not been investigated systematically, two
nonhuman cases have been reported recently. The first
occurred in a gene responsible for pheromone synthesis in
insects, and the pseudogenization led to the origin of a
partially reproductively isolated race of Drosophila melanogaster
[71,72]. The second case involves a gene whose functional
product prevents selfing in plants and the pseudogenization
event allowed the evolution of self-pollination in Arabidopsis
thaliana [73). Given the high frequency of pseudogenization in
eukaryotic genomes, one may speculate that adaptive gene
loss is not uncommon. Interestingly, two of the three adaptive
pseudogenizations so far documented happened to genes that
are involved in chemoreception or immunity, consistent with
the previous finding that genes of these functions tend to
evolve rapidly with high rates of turnover [74,75] and our
current finding that these functions are overrepresented
among human-specific pseudogenes. Although detection of
adaptive gene loss is restricted due to a rapid decay of
population genetic signals of selective sweeps [32], it is
possible that adaptive gene loss is more frequent than
previously thought, especially from the above two functional
categories. This said, the study of the roles that gene losses
play in evolution has just begun; more empirical evidence is
needed to demonstrate the importance of the “less-is-more”
hypothesis during evolution in general and human evolution
in particular.

Materials and Methods

Human-specific pseudogenes. The human pseudogene database
includes pseudogenes detected from the human genome build34 and
can be found at http://[www.bork.embl-heidelberg.de/Docu/
Human__Pseudogenes. We restricted our search to nonprocessed
pseudogenes. Surprisingly, half of the nonprocessed pseudogenes
from the database had neither a nonsense nor a frame-shifting
mutation. These are potentially functional genes, but unannotated in
the human genome sequence at the time of building the pseudogene
database. We only investigated pseudogenes with at least one ORF-
disrupting mutation. We BLAT-searched [39] the identified human-
specific pseudogenes against the chimpanzee genome sequence from
the UCSC Genome Browser (http://genome.ucsc.edu) and identified
top hits based on 95% or greater nucleotide identity in the coding
region and correct synteny. We BLASTed (basic local alignment
search tool) the identified human-specific pseudogenes against the
nonredundant NCBI Human Database (http://www.ncbi.nlm.nih.gov),
identified their best-hit functional genes, and retrieved their
molecular functions from the Gene Ontology database (http:/lwww.
geneontology.org). Gene trees were reconstructed using the neigh-
bor-joining method [76] by MEGA3 [77].

Only five of the 67 newly identified human-specific pseudogenes
have more than two exons. To determine if these pseudogenes could
be alternatively spliced to yield functional proteins, we looked for
splice variants of the best-hit human functional paralog in Ensembl
(www.ensembl.org) and none of them have known alternative splicing.
To determine if there is a bias for any of the functional categories, we
computed the expected number of pseudogenes for a given func-
tional category by 80m/26445, where m is the number of functional
genes belonging to the functional category and was obtained from
Gene Ontology database annotations (http://lwww.geneontology.org/
GO.current.annotations.shtml), 26,445 is the total number of human
functional genes and 80 is the total number of human-specific
pseudogenes (identified in this and previous studies). Fisher’s exact
tests were then conducted to compare the observed and expected
numbers of human-specific pseudogenes for given functional
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categories. We retrieved from the mouse genome informatics web site
(http://www.informatics.jax.org) the mouse knock-out phenotypes for
the 67 human-specific pseudogenes we identified. The duplication
and evolution of the primate MBLI genes were analyzed using the
human and chimpanzee genome sequences, as well as the rhesus
monkey genome sequence assembly (http://genome.ucsc.edu).

DNA amplification and sequencing of CASPI2 alleles. All human
genomic DNA samples were purchased from Coriell Cell Repository
(http:/llocus.umdnj.edumigms). The genotypes of 63 individuals of
African descent at the C/T polymorphism (position 629 of exon 4)
were determined by sequencing a portion of exon 4. These
individuals included 48 African Americans, six African pygmies,
and nine Africans (south of the Sahara). Four C/C homozygotes
(three African Americans and one African pygmy), 43 T/T
homozygotes, and 16 C/T heterozygotes were identified. The T
allele has a frequency of 81% = 0.035% in our sample, slightly
lower than that (89%) reported in a previous study, which was based
on a much larger sample [34]. All four C/C individuals and four
randomly picked T/T individuals (three African Americans and one
African pygmy) were sequenced in nine noncoding regions as shown
in Figure 3. To ensure that the low polymorphism found among T/T
individuals in regions 4, 5, and 6 was not due to the small sample
size, we sequenced seven additional T/T individuals (all African
Americans) in the three regions. The genotypes of six non-Africans
(two Caucasians, one Chinese, two Pacific Islanders, and one Andes)
at the C/T polymorphism were also determined by the same
approach and all were found to be T/T homozygotes. (Note that
the fixation of the T allele in non-Africans was previously
demonstrated in a sample of 347 individuals [34].) Region 4 was
sequenced in these six non-Africans and no SNPs were found. For
conducting coalescent simulations by the ms program [78], we
sequenced 20 additional T/T individuals of the African descent for
region 4, so that our sample of Africans comprised four C/C and 31
TIT individuals, with the frequency of T alleles being 89%, which is
expected for Africans [34]. Our sample can be treated as a random
sample under the reasonable assumption of random mating with
respect to the C/T polymorphism.

The experimental procedure was as follows. Fragment-specific
primers were designed according to the human genome sequence.
PCRs were performed with MasterTaq (Eppendorf, Hamburg,
Germany) under conditions recommended by the manufacturer.
PCR products were separated on 1.5% agarose gel and purified using
the Gel Extraction Kit (Qiagen, Valencia, California, United States).
Amplified DNA fragments were sequenced from both directions in an
automated DNA sequencer using the dideoxy chain termination
method. Sequencher (Gene Codes, Ann Arbor, Michigan, United
States) was used to assemble the sequences and to identify DNA
polymorphisms. All singletons were confirmed by an independent
PCR and sequencing experiment. After removing the primer regions,
each sequenced fragment is 500 to 800 nucleotides long. All the SNPs
identified in this study are listed in Table S4.

Population genetic analysis. Nucleotide diversity per site m [52],
Tajima’s D [52], and Fay and Wu’s H [53] were computed by DnaSP
[79]. Gaps in the sequence alignments were excluded from the
analysis. The chimpanzee genome sequence available in GenBank
was used as an outgroup in computing H. Tajima’s test [52] and
Fay and Wu’s test [53] were conducted by DnaSP using coalescent
simulations with 50,000 replications under the assumption of no
recombination, which gave more conservative results than when
recombination is considered. To test the hypothesis of selective
sweeps more rigorously, we modeled various demographic scenar-
ios of human populations by coalescent simulations (50,000
replications per model). The parameters used in the coalescent
simulations are described in Protocol S1. Two methods were used
to estimate the age of the T allele, as described in detail in Results/
Discussion.
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