
Plasticity of the cis-Regulatory Input
Function of a Gene
Avraham E. Mayo

¤
, Yaakov Setty, Seagull Shavit, Alon Zaslaver, Uri Alon

*

Departments of Molecular Cell Biology and Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel

The transcription rate of a gene is often controlled by several regulators that bind specific sites in the gene’s cis-
regulatory region. The combined effect of these regulators is described by a cis-regulatory input function. What
determines the form of an input function, and how variable is it with respect to mutations? To address this, we employ
the well-characterized lac operon of Escherichia coli, which has an elaborate input function, intermediate between
Boolean AND-gate and OR-gate logic. We mapped in detail the input function of 12 variants of the lac promoter, each
with different point mutations in the regulator binding sites, by means of accurate expression measurements from
living cells. We find that even a few mutations can significantly change the input function, resulting in functions that
resemble Pure AND gates, OR gates, or single-input switches. Other types of gates were not found. The variant input
functions can be described in a unified manner by a mathematical model. The model also lets us predict which functions
cannot be reached by point mutations. The input function that we studied thus appears to be plastic, in the sense that
many of the mutations do not ruin the regulation completely but rather result in new ways to integrate the inputs.
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Introduction

Much of the computation performed by transcription
networks occurs in the DNA cis-regulatory region (CRR) of
each gene. Most genes are regulated by multiple regulators
(inputs) that bind their CRR. The way that these inputs
combine to determine the rate of transcription is described
by the cis-regulatory input function (CRIF) of the gene. Well-
studied examples include input functions that govern
developmental genes [1–4] at specific locations and times,
when certain combinations of regulators are active. The
CRIFs are often described using Boolean functions such as
AND- and OR-logic gates [4–15], although graded [8,16–18]
input functions are also known to occur.

Recently, a high-resolution map of the CRIF of a well-
characterized gene system, the lac operon [19–21] of
Escherichia coli, was obtained, using accurate gene-expression
measurements from living cells [8]. The lac CRIF has two
inputs, corresponding to the two regulators of the system,
cAMP receptor protein (CRP) and LacI. The CRIF was found
to be a rather intricate function, intermediate between
Boolean AND-gate and OR-gate logic [8] (see Figure 1 for
all 16 possible two-input Boolean logic gates). Unlike pure
Boolean gates, which have two plateau levels (high and low)
and one threshold per input, the lac CRIF has four different
plateau levels and two thresholds per input [8].

Here, we ask which changes in a CRIF can be caused by a
few point mutations in the regulatory region and which
changes cannot. This question is related to the way in which
the input function can be shaped by evolutionary selection
[1]. It is believed that gene networks can ‘‘learn’’ new
computations on an evolutionary timescale by means of
mutations [22–25]. Changes are mainly due to point
mutations, gene duplications, and rearrangements [26–28].
The degree to which mutations can change the computation,
without ruining the essential function, may be termed
‘‘plasticity’’ [1,29–32]. The larger the plasticity, the more

readily a network can learn new computations in a new
environment.
To address this, we study the plasticity of the lac input

function. We measured the effects of point mutations in the
lac promoter region on its input function. We find that the lac
input function is quite plastic: even a few point mutations can
significantly change the CRIF, leading to input functions that
resemble pure AND gates, OR gates, and single-input
switches. A mathematical model explains these results and
lets us predict which types of gates can and cannot be
obtained with point mutations.

Results

Library of Variants of the lac CRR
To study the effects of point mutations in the regulator

binding sites of the lac CRR, we constructed a random library
of CRR mutants. The library was based on the 113-bp
regulatory region of the lac operon from wild-type E. coli.
Each CRR variant contained between three to nine point
mutations in selected locations in the regulator binding sites
(Figure 2). There were at most four mutations in the O3 site
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of LacI, at most three mutations in the CRP binding site, and
at most two in the r-70 binding site (the binding site of RNA
polymerase [RNAp]). The mutations were chosen to bring the
sites significantly closer or further to the sites’ consensus
sequence. The CRR library was cloned into a low-copy
plasmid upstream of a green fluorescent protein (GFP) gene.
The plasmids were transformed into E. coli MG1655. We
isolated 62 variants and measured the promoter activity in all

four combinations of saturating or zero concentration of its
two inducers cAMP and isopropyl-D-thiogalactoside (IPTG).
Out of the 62 variants, 25 (about 40%) gave a detectable GFP
signal in at least one of the four conditions. The latter were
sequenced and screened for duplicate variants, yielding 12
unique variants. The CRIFs of these 12 variants were mapped
in detail (see below). Note that our screen did not a prioi
eliminate any potential two-input Boolean functions (e.g.,
XOR gates).

Diverse Input Functions Are Generated by a Few Point
Mutations
To measure the CRIF of each CRR variant, we grew the

corresponding reporter strain inside a multiwell fluorimeter
in defined glucose medium supplemented with 88 combina-
tions of the two inducers cAMP and IPTG. The CRIF
describes the promoter activity in the various inducer
combinations. The promoter activity, which corresponds to
the rate of GFP production per cell, was measured over the
exponential phase of growth. The estimated experimental
mean relative error based on day–day repeats was about 15%.
We find diverse input functions in our library. Two

examples, as well as the CRIF of the wild-type promoter
region, are shown in Figure 4. All 12 input functions are
shown in Figure 3 and Table 1. Several variants showed an
OR-like CRIF (Figure 3D, 3E, and 3F), with a high plateau
when at least one inducer is present and a low plateau when
both are absent. Other CRR variants showed a more AND-like
CRIF (Figure 3G, 3H, and 3I), in which plateau III of the wild-
type CRR is significantly lowered. The AND-like CRIF has a
high plateau when both inducers are present and low
expression otherwise.
As shown in Figure 4, the CRR variants were all similar to

AND gates, OR gates, or to functions that are intermediate
between AND and OR gates. Some of the input functions
resemble single-input switches rather than AND/OR gates, in
the sense that the response to one input is much stronger
than to the other input. An example is strain U337 (Figure 4)
that has a stronger response to IPTG than to cAMP.

Mathematical Model
We used a model for the lac CRIF based on the equilibrium

binding of RNAp and the two regulators, CRP and LacI, to
the lac promoter region. In our previous study, this model was
found to describe well the wild-type CRIF [8]. The mathe-
matical model describes the system at the level of effective
binding affinities of the regulators. The three parameters in
the model that define the interactions of CRP, LacI, and
RNAp with their DNA sites are denoted d, c, and a. The
mutant variants in this study correspond to input functions
in which these affinity parameters are varied with respect to
the wild-type input function.

Parameter Space and Phenotype Space
The model allows a convenient description of the range of

CRIFs that can be reached by point mutations in the CRR. The
three parameters that define the interactions of the regulators
and RNApwith their DNA sites, a, c, and d can be used to define
a 3-D parameter space of possible CRR variants (Figure 5A).
Each point in this parameter or ‘‘genotype’’ space

corresponds to a specific CRIF ‘‘phenotype.’’ To describe
the space of phenotypes, note that each CRIF can be

Figure 2. The Wild-Type lac Promoter Region and the Point Mutations

Used in This Study

Locations of point mutations are indicated by dots, where a red indicates
mutations used in all variants, black means change to A or T with equal
probability, and white means change to A, C, or T with equal probability.
Also shown are the positions of the two LacI sites O1 and O3, the CRP
site, and the RNAp site (�10 and �35 regions). Note that the promoter
region is displayed in this figure in two parts: the sequence in the top
part ends just downstream of the beginning of the sequence in the
bottom part. The black arrow indicates the transcription start site of the
lacZ gene.
DOI: 10.1371/journal.pbio.0040045.g002

Figure 1. All 16 Possible Two-Input Boolean Logic Gates

The gates are functions of two inputs, x and y, each of which can be 0 or 1.
The top left gate, for example, is an AND gate whose output is 1 only
when both x ¼ 1 and y ¼ 1, and zero otherwise. The AND gate is
represented by a high plateau when x ¼ 1 and y ¼ 1, and by three low
plateaus for the other combinations of x and y. The six gates with a
shaded background are realizable by the model of the lac input function,
whereas the ten gates with a white background are not (forbidden gates).
DOI: 10.1371/journal.pbio.0040045.g001
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described by the ratios of the three plateaus (plateaus I, II,
and III defined in Figure 3) to the fully induced plateau
(Plateau IV): p1 is the ratio of expression with no inducers to
expression with both saturating inducers, and p2 and p3 are
the ratios of expression with only one inducer (IPTG or
cAMP, respectively) to expression with both. This defines a 3-
D phenotype space or CRIF space (Figure 5B). Pure logic
gates lie at the vertices of this space. For example, pure AND
gates have coordinates ([p1, p2, p3] ¼ [0,0,0]), pure OR gates
have coordinates (0,1,1), and ‘‘dysfunctional gates’’ (in which
all plateaus are equal either to 1 or 0) have coordinates (1,1,1),
as shown in Figure 5B. Figures 5A and 5B show how uniformly
distributed points in parameter space result in a nonuniform
distribution of phenotypes in CRIF space. The phenotypes
are all confined to a restricted region of CRIF space. This
indicates that some CRIFs cannot be reached by point
mutations in the CRR. The unreachable CRIFs include the
EQUAL gate, in which expression occurs when neither, or
both, inducers are present, but not if only one is present. An
additional ‘‘forbidden’’ CRIF is an XOR gate, where expres-
sion occurs when only one, but not both, inducers are
present. All ten forbidden forms are noted in Figure 1.
In contrast to forbidden CRIFs, some CRIF forms lie in

dense regions of the design space and, thus, can be readily
reached by point mutations in the CRR. These functions
include AND gates, OR gates, and single-input switches.
The CRR variants in the present study are represented in

phenotype space in Figure 5C. The characterized variants
form a cloud in phenotype space around the wild type. The
mutations in our study thus appear to form phenotypes in the

Figure 3. Input Function of the Wild-Type lac Promoter Region and Two Variant CRRs

The input functions describe the promoter activity as a function of the concentrations of the two inducers IPTG (in lM) and cAMP (in mM), measured in
midexponential growth in an automated fluorimeter by means of a GFP-promoter fusion on a low-copy plasmid. (A) Surface plot of log wild-type input
function. (B) Contour plot of wild-type input function. (C) Schematic drawing showing the activation thresholds and the four plateaus of the input
function. (D–F) Same for strain U340, with an OR-like input function. (G–I) Same for strain U339 with an AND-like input function. The plateaus of the
input functions are marked by roman numerals in (C, F, and I). Plateau I occurs at zero concentration of inducers, plateau II at saturating cAMP and zero
IPTG, plateau III at saturating IPTG and zero cAMP, and plateau IV occurs when both inducers are saturating.
DOI: 10.1371/journal.pbio.0040045.g003

Figure 4. Input Functions of lac CRR Variants

The input functions are ordered from top left to bottom right to range
from those that most resemble OR gates to those that most resemble
AND gates. (A) The most OR-like input function. (B) Input function
resembles a single-input switch that responds only to IPTG and not to
cAMP (note the elevated plateau III compared to the wild-type). (C) Wild-
type input function. (D) The most AND-like input function, whose main
difference from wild type is a lower plateau III.
DOI: 10.1371/journal.pbio.0040045.g004
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vicinity of the wild type. Additional mutations should allow
access to variants that are more broadly distributed in
parameter space.

Discussion

The effect of point mutations on the input function of a
promote region was studied. We found that a few point

mutations can change the input function significantly,
resulting in AND-like gates, OR-like gates, and single-input
switches. The observed CRIF variants can be explained in a
unified way by means of a mathematical model. The model
explains which gates cannot be reached by point mutations in
the regulator sites.
The mathematical model allows depiction of the mapping

between parameter space and phenotype space (or CRIF

Table 1. Lac Promoter Variants and Their CRIFs

Strain Mutationsa p1
b p2

b p3
b P4/Pwt

4
c

O3 CRP O1 RNAp

MG1655 — — — — 0.07 (1) 0.14 (2) 0.28 (5) 1

U331 1GA 2GA 3CT 4AT 20CA 21AT 19AT 21TG — 0.01 (2) 0.15 (3) 0.26 (5) 6.8 (1)

U332 1GA 2GA 3CT 4AT 20CA 21AT — 7TA 0.003 (5) 0.08 (1) 0.11 (2) 24 (4)

U333 1GA 2GA 3CT 4AT 15TA 20CT — — 0.007 (1) 0.20(1) 0.15(1) 9.6 (1)

U334 2GA 3CT 4AT 20CA — — 0.01 (1) 0.14 (2) 0.25 (5) 9 (1)

U337 1GA 2GA 3CT 4AT 19TA 20CT — 7TA 0.01 (1) 0.053 (1) 0.4 (8) 12 (2)

U338 1GA 2GA 3CT 4AT 20CT 21AC — — 0.01 (1) 0.092 (1) 0.09 (1) 12 (2)

U340 1GA 2GA 3CT 4AT 19TA 20CT 21AT 6TA 7TA 0.07 (1) 0.32 (6) 0.63 (1) 1.0 (2)

U343 1GA 2GA 3CA 4AT 20CA 21AT — — 0.01 (1) 0.09 (1) 0.28 (5) 9.8 (1)

U348 1GA 2GA 3CA 4AT 20CA 21AT — 2TA 0.01 (1) 0.09 (1) 0.11 (2) 12 (2)

U349 1GA 2GA 3CT 4AT 19TA 20CT 21AT — 7TA 0.06 (1) 0.23 (4) 0.41 (8) 1.1 (2)

U350 1GA 2GA 3CA 4AT 20CA 21AC — 2TA 0.05 (1) 0.3 (6) 0.18 (3) 1.3 (2)

U339 1GA 2GA 3CT 4AT — — 7TA 0.05 (1) 0.11 (2) 0.081 (1) 1.4 (2)

12CG 14AT 15CA 16GA

aPosition of point mutation, where O1 and O3 are the LacI sites, CRP is the CRP site, and RNAp is the RNA-polymerase r-70 binding site. Coordinates within the sites are according to
Figure 2. Thus 1GA means that the first base in the site was changed from G to A
bRelative expression level; pi is the ratio of expression of plateau i to plateau IV (pi¼ Pi /P4). Numbers in parentheses are estimates of the errors.
cNormalized maximal expression level relative to wild type. Numbers in parentheses are estimates of the errors.
DOI: 10.1371/journal.pbio.0040045.t001

Figure 5. Parameter Space and Phenotype Space of the lac CRIFs

(A) Parameter space is the space of the three parameters a, c, and d that describe the relative binding affinity of RNAp, LacI, and CRP to their sites in the
lac CRR; 5,000 points log-uniformly distributed in this space are shown. (B) Phenotype space, whose axes correspond to the ratio of plateaus I, II, III to
plateau IV in the input function (see Figure 3C for definition of these plateaus). The phenotypes of the points in (A) are shown; corresponding points in
parameter and phenotype space have the same color. Also plotted are the input functions that correspond to the eight extreme corners of phenotype
space. Input functions marked with a star cannot be reached with point mutations in the regulator binding sites according to the model. In the case of
the (1, 1, 1) vertex, all plateaus are equal (either to 1 or 0). We depict this situation by the FALSE gate. (C) Phenotype space: the experimentally observed
input functions are indicated in green dots and that of the wild type promoter region in a red dot; black dots are the phenotypes of points shown in (A).
DOI: 10.1371/journal.pbio.0040045.g005
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space) (Figure 5A and 5B). Note that the density of points in
phenotype space is not uniform. Some functions seem to be
easier to find in a random mutational walk in parameter
space than others. Sparse regions of CRIF space correspond
to input functions that are very plastic with respect to
mutations: small changes in parameters can carry them far
from their original phenotype. (This can be quantified by
measures such as the Jacobian of the transformation of model
parameters to phenotypes.) In particular, the input function
of the wild-type lac promoter region is in a rather sparse
region in CRIF space. To preserve the wild-type CRIF,
mutants must continually be selected against; genetic drift
would tend to shift the input function away from its present
position. In contrast, a pure AND gate, close to the lower left
corner of the space, would be more robust to mutations [33]
and remain AND-like despite significant changes in binding-
site parameters.

The wild-type CRIF appears to be easily changed by
mutations into new functions. It is plastic in the sense that
many mutations do not ruin the input function completely,
but rather result in a new computation, a new way to
integrate the inputs. A CRIF that can access potentially useful
computations with few mutations can readily adapt in case
the environmental conditions change [1]. Not all new
computations can be learned, however, with point mutations
in the cis-regulatory sites of this promoter. The range of
functions that can be reached by simple point mutations is
strongly constrained by the structural form of the CRR and
its input regulators. For example, input functions in which
plateau IV is lower than plateau I, II, or III cannot be reached.
Similarly, input functions in which plateau I is higher than
any other plateau cannot be reached. The set of forbidden
functions include NAND, NOR, XOR, and EQUAL gates, and
others (ten of the 16 possible two-input logic functions are
forbidden; Figure 1). These forbidden input functions might
conceivably be useful in some environments. They may be
reached by rearrangements of the promoter region [7] or by
new protein–protein interactions. For example, making the
CRP site overlap the RNAp site can turn the activator CRP
into a repressor [34] and allow access to additional input
functions.

The present approach can also be used to construct and
characterize new input functions. New input functions are
useful for the design of synthetic gene circuits made of well-
characterized transcription factors [24,35–50]. Most synthetic
circuits built so far have promoters with only a single-input
regulator. Addition of multi-input functions [5,51] could
significantly strengthen the computational power of synthetic
gene circuits and mimic real biological design [52,53]. One
limitation is our current lack of understanding of the precise
mapping between the DNA sequence of a binding site and the
model parameters that describe its effective in vivo affinity.
For example, we find that some of the changes in the CRIFs
do not correlate in a simple way with the distance of the
mutated binding sites from their consensus sequences. That
is, in some cases a mutation moved a site closer to its
consensus sequence, whereas the model affinity parameter
was predicted to be lower for the mutated CRR than for wild
type (unpublished data). Indeed, the in vivo affinity and
efficacy of a regulator may depend on the sequence context
outside of its site. This means that in some cases we may not
be able to fully predict in vivo parameters based solely on the

DNA sequence of the CRR, requiring an empirical search
similar to the present study.
Our main finding is that a few mutations can change an

input function significantly, resulting in AND-like gates, OR-
like gates, and single-input switches. The present study thus
relates to the question of how input functions are shaped by
evolutionary selection. This question may also be further
studied experimentally [22,23,25,54,55] by evolving bacteria
in defined environments that favor different input functions.
It would also be interesting to study how input functions vary
between species that live in different environments. The
present experimental and theoretical approach could be
readily extended to study plasticity in other gene systems.

Materials and Methods

Plasmids and strains. Promoter activity was measured using low-
copy plasmids [8] that report for transcription rate of a fast-folding
GFP reporter from the CRR of interest. The wild-type lac CRR of E.
coli K12 strain MG1655 was used as a basis for mutations. Variants of
the CRR were generated by custom synthesis (BaseClear, Leiden, The
Netherlands) of a 113-bp DNA fragment with the sequence (genomic
coordinates 365438–365669): AAWTGTGAGC GCAACGCAAT
TAATGTGAGT TAGCTCACWW HTTAGGCACC CCAGGCTWTA
CACTTTATGC TTCCGGCTCG WATGTTGTGT GGAATTGTGA
GCGGATAACA ATT, where W at positions 3, 39, 40, 57, and 81 is
A or T with equal probability and H at positions 41 is A, T, or C with
equal probability. The CRR library was cloned into pU66 [8] and
transformed into MG1655. Colonies were isolated and the CRR was
fully sequenced. One of the CRR variants (U339) was synthesized
(GenScript, Piscataway, New Jersey, United States) to also have the O3
sequence replaced by the O1 sequence. Reporter strains are listed in
Table 1.

Culture and growth conditions. Cultures (1 ml) inoculated from
single colonies were grown for 16 h in M9C defined medium (M9, 2
mg/ml glucose, 1 mM MgSO4, 0.1 mM MgCl2, 25 lg/ml kanamycin) at
37 8C with shaking at 250 rpm. To map each CRIF, the cultures were
diluted to OD600 ¼ 0.003 into M9C with different concentrations of
cAMP (0–20 mM, Sigma, St. Louis, Missouri, United States) and IPTG
(0–200 lM), at a final volume of 150 ll per well in a flat-bottomed 96-
well plate (Sarstedt, Beaumont Leys, United Kingdom). The cultures
were covered with 100 ll of mineral oil (Sigma) to prevent
evaporation and grown for about 18 h in a WallacVictor2 multiwell
fluorimeter (PerkinElmer, Wellesley, California, United States) at 37
8C, set with an automatically repeating protocol of shaking and OD600
and fluorescence readings [8]. Time between repeated measurements
was 6 min. In order to correct for the differences in growth rates
(especially due to the different concentrations of cAMP), background
fluorescence at a given OD was determined from the fluorescence of
cells bearing a promoterless GFP vector at the same OD and at the
same cAMP concentrations (total of 12 different control conditions.
IPTG was not found to have a large effect on the cell growth rate, data
available on request). Cells growing on glucose, with saturating
external cAMP, and cells growing on glycerol (high endogenous
cAMP), without exogenous cAMP, show similar lac promoter activity
and growth rates. The rate of GFP production, divided by the OD at
midexponential growth, provided a measure of the promoter activity:
PA¼dGFP/dt/OD [8]. Note that promoter activity measurement takes
dilution by growth into account because if GFP is produced at rate b
per cell per unit time, and there are N(t) cells then dGFP/dt¼ b N(t).
At all conditions, the promoter activity achieved an approximately
constant value during about two cell cycles in midexponential
growth. We computed the promoter activity in each of the 88 growth
conditions by an average of the promoter activity over these two cell
cycles, resulting in the CRIF map. Day-to-day variability in
fluorescence and OD data gathered from the instruments was about
10% (both for GFP fluorescence and absorbance) [56]. The relative
error in the promoter activity measurement is about 15%. Each of
the variants in our study was mapped in the same conditions and in
the same strain as all other variants. Hence, the changes in GFP
expression result from the mutations in the promoter. The wild-type
lac system is intact on the chromosome and identical for all variants.

In our previous study [8], we reported a comparison of the present
GFP-reporter plasmid and a direct chromosomal enzyme production
assay using a colorimetric substrate to assay the production of LacZ
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from its endogenous locus. The lac system has classically been studied
by using such colorimetric assays for the lacZ gene product. The
present GFP-reporter plasmid measurement is different in several
ways from assays of enzyme activity from the chromosomally encoded
operon: (i) the low-copy plasmid (pSC101 origin) introduces several
extra copies of the promoter region, thus potentially titrating out
LacI; (ii) the promoter region on the plasmid lacks the O2 binding
site (þ411 in the lacZ coding region), a site whose absence makes
shutoff of the promoter about 5-fold weaker; and (iii) the plasmid
DNA may be harder to loop, reducing repression strength. The
previous experiments [8] with the colorimetric assay, using accurate
time-resolved ONPG absorbance measurements, indicated that the
input functions found by the two methods are qualitatively similar
with four plateaus and four threshold levels. However, some of the
plateaus were deeper in the ONPG assay. This difference presumably
reflects the above-mentioned plasmid effects.

We also measured cell–cell variability in GFP expression using flow
cytometry with a narrow gate on side- and forward-scatter (Figure
SOM 1A in Protocol S1). We found that in the present conditions the
GFP distributions were single peaked, and few all-none effects [57,58]
were discerned (Figure SOM 1B in Protocol S1).

Mathematical model. Promoter activity was modeled based on
equilibrium binding of the regulators CRP and LacI as described in
[8]. The promoter activity is:

P ¼ ða� cÞ að1þ g � d � AÞ
1þ aþ ða � gþ 1Þd � Aþ c � Rþ c ð1Þ

where CRP activity (fraction of CRP bound to cAMP) is A ¼ [CRP–
cAMP]/[CRPT] ¼ Xn/(1 þ Xn), in which X ¼ [cAMP]/KcAMP is cAMP
concentration in units of its dissociation constant for CRP.
Cooperativity is described by the Hill coefficient n. Similarly, the
fraction of LacI not bound to IPTG is R¼ [LacI-free]/[LacIT]¼ 1/(1þ
Ym), with Y ¼ [IPTG]/KIPTG, where m is the Hill coefficient. Three
parameters, a, c, and d define the binding affinity of the regulators
RNAp to their sites: a¼ [RNAp]/KP is RNAp concentration in units of

its dissociation constant to a free promoter when cAMP–CRP is not
bound to the CRR, c¼ [LacI]/KR is LacI concentration in units of its
dissociation constants to its site, and d ¼ [CRP]/KC, is CRP
concentration in units of the dissociation constant for binding to
its site. The stabilization of RNAp binding by CRP is given by the
ratio of its affinity without and with cAMP–CRP binding: g¼KP/KCP
(using the notation of [8] Equation 10, g¼ b/a. Note the typo with 2b
instead of b in the corresponding equation in [8]). Finally, a and c are
the maximal and basal transcription rates. We note that the present
experimental data do not appear to be sufficient to obtain unique fits
to all of the model parameters, without further measurements (such
as direct estimates of the parameter g).

Supporting Information

Protocol S1. Plasticity of the CRIF of a Gene

Found at DOI: 10.1371/journal.pbio.0040045.sd001 (171 KB PDF).
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