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Ankyrin-B Coordinates the Na/K ATPase,
Na/Ca Exchanger, and InsPs; Receptor
in a Cardiac T-Tubule/SR Microdomain
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We report identification of an ankyrin-B-based macromolecular complex of Na/K ATPase (alpha 1 and alpha 2
isoforms), Na/Ca exchanger 1, and InsPs receptor that is localized in cardiomyocyte T-tubules in discrete microdomains
distinct from classic dihydropyridine receptor/ryanodine receptor “dyads.” E1425G mutation of ankyrin-B, which
causes human cardiac arrhythmia, also blocks binding of ankyrin-B to all three components of the complex. The
ankyrin-B complex is markedly reduced in adult ankyrin-B™~ cardiomyocytes, which may explain elevated [Ca®'];
transients in these cells. Thus, loss of the ankyrin-B complex provides a molecular basis for cardiac arrhythmia in
humans and mice. T-tubule-associated ankyrin-B, Na/Ca exchanger, and Na/K ATPase are not present in skeletal
muscle, where ankyrin-B is expressed at 10-fold lower levels than in heart. Ankyrin-B also is not abundantly expressed
in smooth muscle. We propose that the ankyrin-B-based complex is a specialized adaptation of cardiomyocytes with a
role for cytosolic Ca>"™ modulation.
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Introduction

Defects in Ca*" homeostasis underlie major diseases of the
heart including congestive heart failure, cardiac hypertrophy,
and fatal cardiac arrhythmias [1,2]. Ca®" ions enter cardio-
myocytes through voltage-sensitive Ca*" channels (dihydro-
pyridine receptor [DHPR]) located in invaginations of the
plasma membrane known as transverse tubules (T-tubules).
DHPR is localized in a microdomain of the T-tubule that is
synapsed with sites in the sarcoplasmic reticulum (SR) that are
enriched in Ca®*"-release channels (ryanodine receptor [RyR];
[3,4]). Ca”" that enters through DHPR must be balanced in
each contraction cycle (~100 ms in mouse) by Ca*" export.
Ca” export is accomplished primarily by the Na/Ca ex-
changer 1 (NCX1), which is driven by the transmembrane Nat
gradient provided by the Na/K ATPase (NKA) [5]. The
requirement for rapid export of Ca®" is a specialized feature
of heart that is not present in skeletal muscle, where DHPR
directly activates RyR without Ca*" import.

Ca”" export has historically been an important therapeutic
target in the management of heart failure. Cardiac glycosides
increase [Ca*'; by inhibiting NKA, thus elevating [Na']; and
indirectly inhibiting Ca?" efflux through NCX1 [6]. Several
considerations suggest that NCX1 and NKA operate together
in diffusion-limited physiological spaces. Cardiac glycosides
do not elevate averaged cytoplasmic [Na'] to levels sufficient
to inhibit NCX1, suggesting NKA and NCX are coupled [6,7].
Arrhythmia caused by cardiac glycoside toxicity is believed to
result from a transient inward current carried by NCX1 [8].
However, NCX1 would not be expected to generate inward
flux of Na' if averaged [Na'] was elevated sufficiently to
inhibit Ca'™ efflux. Numerous studies support a tight func-
tional coupling between NCX1, NKA, and intracellular Ca%t
stores in heart [9-13]. However, while co-localization between
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NCX1, NKA, and intracellular Ca”" stores is described in
smooth muscle [14], the relative localizations of these
proteins in heart are undefined. Additionally, no biochemical
evidence exists for a direct link between NKA, NCX1, and
other SR proteins in cardiomyocytes.

Ankyrin-B is a multivalent adapter present in cardiomyo-
cytes that binds individually to NCXI1, NKA, and inositol
1,4,5-trisphosphate receptors (InsP3Rs), and potentially could
play a role in functional coupling of these proteins [15-17].
Loss-of-function mutations in ankyrin-B cause a dominantly
inherited human cardiac arrhythmia syndrome associated
with sudden cardiac death [15,18]. Mice heterozygous for a
null mutation in ankyrin-B (ankyrin-BH* mice) are haploin-
sufficient and have a similar cardiac phenotype as humans
heterozygous for loss-of-function mutations of ankyrin-B
[15,18]. Adult ankyrin—BH* cardiomyocytes exhibit elevated
[Ca2+]i transients and, in the presence of beta-catechol-
amines, exhibit delayed and early afterdepolarization events
and extrasystoles [15]. In contrast, action potential duration,
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Figure 1. NCX1, NKA, and InsP5R Localization Require Ankyrin-B

Ankyrin-B-Based Complex of Channels/Transporters

Boxes in differential interference contrast images (A and B) represent sites that were imaged in (C-F). Immunolocalization of ankyrin-B (red) and (C)
DHPR (green), (D) InsP3R (green), (E) NCX1 (green), and (F) NKA (green) in wild-type (left) and ankyrin-B*’f cells (right). Ankyrin-B*’f myocytes were
labeled and imaged using identical protocols. M-lines (middle of A-band) are denoted by arrowheads; T-tubules over I-bands are denoted by arrows.
Scale bar =2 pm. Distance between arrowheads is ~1.8 um. Images represent at least twenty Z-sections at 0.18-um intervals. In (C), perpendicular axial

branches are denoted by white arrowheads.
DOI: 10.1371/journal.pbio.0030423.g001

inward Ca®" current, and diastolic [Ca®'] are normal in
ankyrin-BH* cardiomyocytes [15].

We report here that NKA (alpha 1 and alpha 2 isoforms),
NCXI, and InsPgR are complexed with ankyrin-B within a
microdomain of cardiomyocyte T-tubules, and that the
complex is deficient in ankyrin-BHi cardiomyocytes. Addi-
tionally, we present evidence that loss of the ankyrin-B-based
complex is the molecular defect in cardiac arrhythmia due to
ankyrin-B mutation in humans and mice. The ankyrin-B
complex is not present in skeletal muscle, smooth muscle, or
brain, and may have evolved in the context of specialized
requirements for cytosolic Ca?" regulation in cardiomyocytes.

Results

Ankyrin-B Is Required for T-Tubule Localization of NKA,
NCX1, and InsP3R in Cardiomyocytes

Ankyrin-B as well as NKA, NCX1, and InsP3R are selectively
lost from Z-line/T-tubule sites in haploinsufficient ankyrin-B'H_
cardiomyocytes [15]. The localization of these proteins was
further resolved by three-dimensional rendering of consec-
utive confocal Z-sections of cardiomyocytes labeled by
immunofluorescence (Figure 1). Wild-type ankyrin-B is or-
ganized in an intracellular tubular lattice in parallel with both
the M-line and Z-line/T-tubules, but also including perpendic-
ular axial branches that connect M-line and Z-line staining
(Figure 1C). Z-line ankyrin-B staining is co-linear with the dyad
marker DHPR in two-dimensional images, but is distinct from
the DHPR in three dimensions (<2% of DHPR-positive voxels
[three-dimensional (3D) pixels] overlap with ankyrin-B-pos-
itive voxels; not shown). Z-line ankyrin-B staining significantly
overlaps in three dimensions with InsPsR (~45% of InsPsR-
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positive voxels co-localize with ankyrin-B-positive voxels; Fig-
ure 1D) as well as T-tubule-associated NCX1 (~53%; Figure 1E)
and NKA (~51%; Figure 1F).

In contrast to wild-type cardiomyocytes, ankyrin—BH* cells
lack Z-line staining as well as the axial lattice of ankyrin-B that
connects Z-line- and M-line-associated populations (Figure
1C-1F, right panels). DHPR staining and organization is
unaffected in ankyrin-B*" cardiomyocytes. InsPsR immuno-
fluorescence (Figure 1D), as well as NCX1 and NKA isoform
staining (Figure 1E and 1F) are markedly reduced at T-tubule
sites. Residual InsP3R, NKA, and NCXI1 rarely co-localize with
ankyrin-B (levels of InsP3R, NKA, and NCXI1 are reduced to
levels too low for accurate determination of overlap).

Ankyrin-B-Coupled NKA, NCX1, and InsP3R Are Co-
Localized

The Nal/Ca exchanger has been localized at sites on cardiac
T-tubules distinct from DHPR and RyR [19]. Moreover, NKA
isoforms, NCX1, and InsPgR have been individually localized
at T-tubule sites in cardiomyocytes [15,19-21]. However,
localizations of all three proteins relative to each other have
not been addressed. The relative localization of NCX1 with
NKA alpha 1 and alpha 2 isoforms, InsPsR, DHPR, and RyR
was evaluated using multiple combinations of double-labeled
3D images of mouse cardiomyocytes generated using confocal
Z-stacks (Figure 2; Table 1). As expected, DHPR and RyR are
co-localized, with ~55% voxel overlap of DHPR with RyR and
~42% overlap of RyR with DHPR (Figure 2B; Table 1), values
comparable to voxel overlaps observed previously [19]. T-
tubule NCX1 immunofluorescence (also localized at the
sarcolemma [21]) is distinct from DHPR staining, with a
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Figure 2. The Ankyrin-B-Based Complex of NKA, NCX1, and InsPsR Is
Localized in a Specialized T-Tubule Microdomain of Cardiomyocytes
Adult cardiomyocytes were labeled with indicated antibodies. 3D
reconstructions of each cell (A, differential interference contrast) are
shown for each combination. Staining pairs include (B) DHPR (red) and
RyR (green), (C) DHPR (red) and NCX (green), (D) NCX (red) and NKA
alphat (green), (E) NCX (red) and NKA alpha 2 (green), (F) NKA alpha 1
(red) and NKA alpha 2 (green), (G) InsP3R (red) and RyR (green), and (H)
InsP3R (red) and NCX (green). Voxel co-localization was performed for
non-sarcolemmal voxels. T-tubule/Z-lines are indicated by white arrows.
Scale bar =5 pm.

DOI: 10.1371/journal.pbio.0030423.g002

voxel overlap of less than 5%, as reported previously [19]
(Figure 2C; Table 1).

A new finding is that T-tubule NCX1 immunofluorescence
co-localizes in submicron-sized domains with the T-tubule
population of both NKA alpha 1 (Figure 2D; Table 1) and
alpha 2 isoforms (Figure 2E; Table 1), with 55% (alpha 1) and

Table 1. Analyses of the Extent of Voxel Co-Localization for
Select Cardiac Protein Pairs

Protein 1 Protein 2 Protein 1 Protein 2 n
(Alexa 568) (Alexa 488) with Protein 2 with Protein 1

DHPR RyR> 55.6 £ 2.2 419 = 44 5
DHPR NCX1 3.7 £28 1.8 = 0.9 5
NCX1 NKA alpha 1 547 £ 3.5 578 £ 54 5
NCX1 NKA alpha 2 50.7 = 2.9 528 = 1.9 5
NKA alpha 1 NKA alpha 2 51.8 = 3.8 456 £ 2.1 5
InsP3R RyR> 1.7 =09 20 £ 04 5
InsP3R NCX1 56.2 = 54 496 * 2.6 5

DOI: 10.1371/journal.pbio.0030423.t001
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50% (alpha 2) voxel overlap. T-tubule NCX1 also co-localizes
with InsP3R (Figure 2H; Table 1), with 56% of InsPsR voxels
overlapping NCX1 and 50% of NCXI1 voxels overlapping
InsPsR. In contrast, InsPsR and RyR are not co-localized at T-
tubule sites, with less than 5% voxel overlap (Figure 2G; Ta-
ble 1). This is the first direct evidence to our knowledge that
RyR and InsPgR are localized in spatially defined compart-
ments of the endoplasmic reticulum and SR of ventricular
cardiomyocytes.

NKA alpha 1 and alpha 2 isoforms were similarly
distributed over the T-tubule (Figure 2F; Table 1) and
sarcolemma (not shown). The T-tubule co-localization
occurred in three dimensions as voxels with alpha 1 signal
containing alpha 2 signal ~52% of the time, while voxels
containing alpha 2 signal contained alpha 1 signal ~46% of
the time. NKA isoforms have been proposed to have unique
functions based on differences in localization and/or affinity
for cardiac glycosides [22]. These differences may depend on
the species and cell type, and have not been reported in
mouse cardiomyocytes [23]. Our results in mouse ventricular
cardiomyocytes suggest no major differences in NKA alpha 1
and alpha 2 localization at T-tubules (Figure 2) or sarcolem-
ma (not shown). These results demonstrate co-clustering of
NCXI1, NKA, and InsPsR within microdomains along the T-
tubule/SR that are distinct from classic T-tubule/SR junctions
populated by DHPR and RyR. Moreover, the clusters of these
proteins as well as ankyrin-B are reduced or absent in
ankyrin-BMﬁ cardiomyocytes.

T-Tubule-Associated Ankyrin-B Is a Specialized Adaptation
of Cardiomyocytes

The expression of 220-kDa ankyrin-B in skeletal muscle is
nearly 10-fold lower than in heart (Figure 3A). Moreover, in
contrast to ankyrin-B localization in cardiomyocytes (Figure
3B), ankyrin-B is not present over T-tubules of skeletal
muscle, but instead is concentrated at punctate sites on the
sarcolemma, over the A-band, and at costameres (Figure 3B).
Additionally, in contrast to cardiac muscle, NCX1 and NKA
isoforms are nearly undetectable over T-tubules of skeletal
muscle, but are instead concentrated at the sarcolemma
(Figure 3C). Finally, ankyrin-B expression is nearly absent
from smooth muscle (Figure S1), and ankyrin-B-based
complexes of NCXI1, NKA isoforms, and InsPsR are not
detectable in brain (see below). Therefore, the ankyrin-B-
based complex of NKA, NCXI1, and InsPsR is a specialized
feature of cardiac myocytes.

Ankyrin-B Coordinates NKA, NCX1, and InsPsR in a
Macromolecular Protein Complex in Cardiomyocytes

The finding that ankyrin-B is co-localized with NKA, NCXI,
and InsPgR in cardiac T-tubule microdomains and that all of
these proteins are coordinately reduced in ankyrin-B™
cardiomyocytes raises the question of their molecular
organization. Given previous evidence that ankyrin-R can
form heterocomplexes between two ankyrin-binding proteins
[24], we wondered whether ankyrin-B could form a multi-
protein complex involving NKA, NCXI, and InsP3sR in
cardiomyocytes. We therefore performed a series of immu-
noprecipitations from detergent extracts of mouse heart with
antibodies against NCXI1, alpha 1 and alpha 2 isoforms of
NKA, and InsPgR, followed by immunoblots to detect
associated proteins (Figure 4). As reported previously,
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Figure 3. The Ankyrin-B-Based Complex Is a Specialized Feature of Heart

(A) Relative expression of 220-kDa ankyrin-B in adult mouse heart and
skeletal muscle (n=3, p < 0.05). For the immunoblot in the left panel, 50
ug of total lysate was analyzed.

(B) Ankyrin-B (AnkB) immunostaining (red) in frozen sections of heart (H)
and skeletal muscle (Sk Mus, SkM). The Z-lines (arrowheads, also asterisks
in right skeletal muscle panel) overlap with alpha-actinin (green). Arrows
indicate A-bands. Ankyrin-B is localized at costameres in skeletal muscle,
visualized as staining continuous with alpha-actinin near the sarcolem-
ma, but does not extend into the interior. Ankyrin-B localizes over the A-
band in both heart and skeletal muscle. Scale bars =5 pm.

(C) NCX1 (left panel), NKA alpha 1 (middle panel), and NKA alpha 2
immunostaining (right panel) in skeletal muscle. Scale bars = 18 pm.
DOI: 10.1371/journal.pbio.0030423.g003

ankyrin-B antibody co-immunoprecipitated NKA isoforms,
NCXI1, and InsP3R, but not DHPR, SR Ca®t ATPase (SERCAZ2),
or calsequestrin (Figure 4A) [15]. NCX1 antibody co-
immunoprecipitated 220-kDa ankyrin-B as well as NKA alpha
1 and alpha 2 isoforms and InsP3R; DHPR, SERCA2, and
calsequestrin were not co-immunoprecipitated (Figure 4).
Moreover, NKA alpha 1- and alpha 2-specific antibodies co-
immunoprecipitated 220-kDa ankyrin-B as well as NCX1 and
InsPsR, but, again, not DHPR, SERCA2, or calsequestrin
(Figure 4A). Finally, antibody specific for InsP3R also co-
immunoprecipitated 220-kDa ankyrin-B along with NKA
alpha 1 and alpha 2 and NCXI1, but not DHPR, SERCA2, or
calsequestrin. DHPR-, SERCA2-, and calsequestrin-specific
antibodies did not co-immunoprecipitate 220-kDa ankyrin-B,
NCXI1, InsP3R, or NKA isoforms. These mutual co-immuno-
precipitations provide evidence for a macromolecular pro-
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tein complex in heart containing ankyrin-B coupled to alpha
1 and alpha 2 isoforms of NKA, NCXI, and InsPgR. While
other proteins may be in this protein complex, components
of the classic T-tubule/SR junction (DHPR [also RyR; not
shown]) as well as components of the SR (SERCA2 and
calsequestrin) are not included.

We next asked whether ankyrin-B was required for mutual
co-immunoprecipitation of NKA, NCXI1, and InsPsR by
comparing wild-type hearts and ankyrin-B""" hearts, which
are deficient in ankyrin-B (Figure 4B and 4C). Ankyrin—BH*
hearts express reduced levels of 220-kDa ankyrin-B (decreased
~50%), NKA alpha 1 and alpha 2 (both reduced ~15%),
NCXI1 (reduced ~16%), and InsP3R (reduced ~33%) [15].
Strikingly, ankyrin-B*'~ heart lysates exhibited over 60% loss
of the ability of ankyrin-B antibody to co-immunoprecipitate
NKA, InsP3R, or NCX1, even when the quantity of lysate was
doubled to equalize the starting amount of ankyrin-B (Figure
4B). Moreover, a similar reduction in NCX1 co-immunopre-
cipitation of Na/K pump isoforms and InsP3R occurred using
doubled ankyrin-B" lysates (Figure 4C). NKA alpha 1 and
alpha 2 antibody also failed to co-immunoprecipitate a
significant fraction of NCX1 or InsPsR from ankyrin—BH*
doubled lysates. Finally, InsPsR antibody immunoprecipitated
minimal levels of NCX1 or NKA isoforms from ankyrin-BW
heart (Figure 4C). These results demonstrate that a specialized
population of ankyrin-B, which is reduced in ankyrin—BHﬁ
heart, is critical for ankyrin-B interactions with NKA alpha 1
and alpha 2, NCX1, and InsPsR.

Ankyrin-B, NKA, InsP3R, and NCXI1 are all expressed in
brain at levels comparable to those in heart tissue. However,
while immunoprecipitation of 100,000g detergent extracts of
brain tissue with antibody against the InsP3R co-immuno-
precipitated ankyrin-B, NKA and NCX1 were not present
(Figure 4D). Moreover, NKA and NCXI1 were also missing
when the immunoprecipitation was performed with antibody
against ankyrin-B (not shown). These results are in contrast to
the report that NCXI1, NKA, InsP3R, and ankyrin-B co-
immunoprecipitate along with several other proteins from
27,000g supernatants of detergent extracts from brain [25].
The difference could result from use of a 27,000g supernatant
in the other study and a 100,000g supernatant in our
experimental protocol. A major complication with a lower
speed supernatant is the likely presence of large complexes
such as those connected by short actin filaments that would
be removed with more centrifugation. Our results demon-
strate that co-expression of ankyrin-B with NCX1 and NKA in
the same tissue is not sufficient for formation of a complex
from a 100,000g supernatant.

Reconstitution of an Ankyrin-B-Based Complex of NKA,
NCX1, and InsPsR

Co-immunoprecipitation experiments as presented in
Figure 4 provide evidence for interactions between ankyrin-
B and its partners in vivo. We next evaluated whether
ankyrin-B could form a complex with the NKA, NCX1, and
InsPsR in vitro using purified proteins (See Materials and
Methods). We first confirmed, using '*I-labeled proteins and
immobilized ankyrin-B membrane-binding domain, that
purified ankyrin-B membrane-binding domain directly in-
teracts in vitro with purified NCX1 expressed in Sf9 cells (Kq4
=5 nM), purified NKA from kidney (K4= 50 nM), and purified
InsPsR from cerebellum (K4 = 3 nM) (Figure 5).
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Figure 4. Ankyrin-B Forms a Macromolecular Complex with NKA, NCX1, and InsPsR That Is Missing in Ankyrin-B"~ Heart
(A) Immunoprecipitations and co-immunoprecipitations from detergent-soluble extracts from adult mouse heart.

(B and C) Detergent-soluble lysates from wild-type or ankyrin-B"~

mouse hearts were used for immunoprecipitations with indicated antibodies (IB,

immunoblot; IP, immunoprecipitation). Immunoprecipitations of ankyrin-B*~ extracts employed doubled amounts of input lysate to compensate for

50% reduction of ankyrin-B.

(D) InsPsR co-immunoprecipitates 220-kDa ankyrin-B, NCX1, and NKA from detergent-soluble heart lysates (Input = 10%). In contrast, InsPsR co-
immunoprecipitates 220-kDa ankyrin-B, but not NCX1 or NKA, from detergent-soluble lysates of mouse brain (Input = 10%).

ANKB, ankyrin-B; C. IG, control Ig.
DOI: 10.1371/journal.pbio.0030423.g004

We next asked whether ankyrin-B could form a multivalent
complex with these proteins. Association of InsP3R with NKA
and NCXI in the presence or absence of soluble ankyrin-B
membrane-binding domain (purified as a GST-fusion protein
and then cleaved from the GST-tag; Figure 6A) was assessed
using biotinylated InsP3R bound to neutravidin-Dynabeads
(Figure 6B) and '*"I-labeled NCX1 and NKA. '*’I-labeled
NCX1 and '®’I-labeled NKA associated with InsPsR-coated
beads only in the presence of ankyrin-B membrane-binding
domain (Figure 6C). In fact, while the intensity of the NCX1
band is ~509% of the band intensity of NKA (not shown), the
picomoles of each protein bound to the InsPgR-coated beads
was approximately equal (Figure 6C; specific activity of '*°I-
NKA ~504,000 cpm; *I-NCX1 ~270,000 cpm). In contrast,
'®’L-labeled NCX1 and '*’I-labeled NKA failed to bind to
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InsPsR-coated beads in the absence of ankyrin-B (Figure 6C).
Additionally, in the presence of ankyrin-B, InsPsR-coated
beads simultaneously associated with both %5 labeled NCX1
and '®I-labeled NKA with no decrease in binding capacity
compared to reactions where only one labeled protein was
used (Figure 6C). These results demonstrate that interaction
of InsP3R with either NCX1 or NKA is ankyrin-B-dependent
and that these proteins can assemble in vitro in the absence
of additional co-factors or regulatory proteins.

Human E1425G Mutation Abolishes Ankyrin-B Association
with NCX1, NKA, and InsPsR

One test of the physiological importance of the ankyrin-B-
based complex is whether mutations in ankyrin-B resulting in
loss of the complex also cause arrhythmia. E1425G mutation
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of ankyrin-B causes human cardiac arrhythmia and loss of
activity of ankyrin-B in restoring normal Ca®" waves to
ankyrin-B*" neonatal cardiomyocytes [15]. The mechanism
for loss of function due to the E1425G mutation, which is
located close to the C-terminal regulatory domain and distant
from the membrane-binding domain (Figure 7A), is not
known. However, the regulatory domains of ankyrins (Figure
7A) can modulate activities of N-terminal membrane- and
spectrin-binding domains [26,27].

The effect of the E1425G mutation on the ability of ankyrin-
B to bind to NKA, NCXI1, and InsP3R was evaluated using
detergent extracts of heart tissue (not shown) and using
purified proteins isolated as in Figure 6A. Evaluation of the
binding properties of the E1425G mutant protein requires
full-length 220-kDa ankyrin-B. We have not yet successfully
generated full-length 220-kDa ankyrin-B in bacteria. There-
fore, we used mammalian HEK293 cells to generate full-length
wild-type and mutant ankyrin-B polypeptides for our binding
studies. Recombinant green fluorescent protein (GFP)-220-
kDa ankyrin-B that was either wild-type, with the E1425G
mutation, or with a E1425D mutation was expressed and
immuno-isolated from HEK293 cells using an affinity-purified
antibody against GFP immobilized on Protein A agarose.

The levels of immobilized GFP-ankyrins were all equivalent
in these assays (Figure 7B). E1425G ankyrin-B exhibited a
60%-70% loss of association with NCX1, NKA alpha 1 and
alpha 2, and InsP3R from cardiac lysates (not shown), and as
pure proteins (Figure 7C-7E). The conservative E1425D
mutation at this site had no effect on binding of NCXI,
NKA, or InsPsR (Figure 7C-7E). The finding that the E1425G
mutation abolishes the ability of ankyrin-B to bind to NCX1,
NKA, and InsP3R (Figure 7) suggests that interaction of
ankyrin-B with either all three or some combination of these
proteins is required for its function. It is possible that the
E1425G mutation affects other protein interactions of
ankyrin-B, although these remain to be identified.

Discussion

This study presents the discovery of an ankyrin-B-based
macromolecular complex of NKA (alpha 1 and alpha 2
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isoforms), NCX1, and InsP3R in cardiomyocytes. The complex
is localized in a microdomain along cardiomyocyte T-tubules
resolved by 3D confocal microscopy as distinct from the
classic dyad formed by DHPR and RyR. This microdomain
was first described by Moore and colleagues, who also
distinguished the T-tubule NCX1 from dyad proteins RyR
and DHPR and from voltage-gated sodium channels by light
microscopy using image deconvolution and wide-field epi-
fluorescence microscopy [19]. T-tubule-associated ankyrin-B
is a specialized adaptation of cardiomyocytes and is not
evident in smooth muscle, which does not express significant
ankyrin-B levels, or in skeletal muscle, where ankyrin-B is
expressed at 10-fold lower levels than in heart. The T-tubule
domain containing ankyrin-B-coupled NKA, NCXI, and
InsP3R thus is a specialized adaptation of cardiac cells that
is not present in other types of muscle cells.

We propose a scale model for the ankyrin-B-based complex
(Figure 8) based on previous structural reports and on
evidence from this study that ankyrin-B can promote
association between purified NKA, NCX1 and InsPsR (see
Figure 6). In this scheme, the extended ankyrin-B membrane-
binding domain adapts the NKA and NCXI1 to the InsP3R in a
configuration that would allow for regulation of cytosolic
Ca®" in a spatially privileged domain (Figure 8). It is likely
that all participants in such an assembly have mutually
interacting surfaces. In this case, the role of ankyrin-B could
be to stabilize the assembly and/or possibly direct its cellular
localization. The resulting macromolecular complex capable
of coupled transport would accomplish the intended purpose
of “restricted space” previously invoked to explain the action
of cardiac glycosides [28]. However, the dimensions of a
complex would be on the order of 10-20 nm, while an
anatomical space or “synapse” between the endoplasmic
reticulum and plasma membrane is 500-1,000 nm in size and
would not provide a effective barrier to diffusion of small
ions with radii less than 1 nm. A test of the idea of coupled
transport by ankyrin-B-complexed proteins would be to
selectively interfere with participation of individual members
of the complex by knocking in mutants lacking ankyrin-B-
binding activity.
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Figure 6. Reconstitution of the NCX1, NKA, and InsPsR Complex Requires
Ankyrin-B

(A) Purified NKA (o/f subunits), InsPsR, NCX1, and ankyrin-B membrane-
binding domain (ANKB MBD) were examined by SDS-PAGE and
Coomassie blue.

(B) Stained gel of control beads and beads plus purified InsP3R.

(©) NKA and NCX1 were '®IHabeled and incubated with control
Dynabeads or Dynabeads coated with InsP3R with or without ankyrin-B
membrane-binding domain. Bound protein was analyzed by a gamma-
counter (C) and by SDS-PAGE and phosphorimaging (not shown; see
Materials and Methods for protein measurement, n =3, p < 0.05).

DOI: 10.1371/journal.pbio.0030423.g006

While binding and localization data are consistent with
simultaneous interaction of a single ankyrin-B molecule with
NCXI1, NKA, and InsP3 receptor, it also is possible that only
one or two ankyrin-B-associated proteins are bound at a
given time. It will be important in future experiments to
isolate ankyrin-B-based macromolecular assemblies and
directly determine stoichiometries of component proteins.
A current challenge is that ankyrins also associate with
spectrin and spectrinfactin complexes (reviewed in [17]), as
well as proteins such as obscurin [29,30].

A role for InsPsR in heart is unknown. InsPsR-dependent
Ca®" signaling has been proposed to regulate excitation—
contraction coupling in atrial myocytes by modulation of the
activity (priming) of juxtaposed RyR [31]. However, based on
the low ratio of InsP3R to RyR [32], the high Ca®" buffering
capacity of the cytosol [33], and now the distinct localizations
of these Ca*"-release channels, it is unlikely that InsP3R Ca®"
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Figure 7. Human Ankyrin-B E1425G Mutation Abolishes Binding to NKA,
NCX1, and InsP3R

(A) 220-kDa ankyrin-B domain organization. The human LQT4 E1425G
mutation is marked.

(B) Immunoblot of expressed wild-type and mutant GFP-ankyrin-B
proteins.

(C-E) Relative binding of rat heart lysate (C) InsP3R, (D) NCX1, and (E) NKA
to wild-type and mutant GFP-ankyrin-B proteins. Bound NCX1, NKA, and
InsPsR were evaluated following quantitative immunoblot (pan-InsPsR,
pan-NKA, and NCX1 Ig) and phosphorimaging (n =3, p < 0.05).

DOI: 10.1371/journal.pbio.0030423.g007

release could affect the activity of RyR-mediated Ca®'-
induced Ca" release in ventricular cardiomyocytes. Also, a
role of InsP3R in Ca®" signaling is difficult to reconcile with
an environment where [Ca%]i transients occur continuously
[2]. Our model suggests a counterintuitive role for InsP3R as a
“Ca*" pressure valve” for export of excess SR Ca®" from the
cell (Figure 8). Consistent with this idea is experimental
evidence for functional coupling of SR Ca*" stores with Ca*"
efflux [9,11].

Loss of the ankyrin-B-based complex may provide an
explanation for the cardiac arrhythmia syndrome due to
ankyrin-B mutations in humans and mice. The EI1425G
mutation of ankyrin-B, which causes human cardiac arrhyth-
mia, also blocks binding of ankyrin-B to all three components
(NCX1, NKA, and InsP3R) of the complex (see Figure 7).
Moreover, ankyrin-B"~ mice have a related cardiac arrhyth-
mia, and ankyrin-BH* cardiomyocytes are also deficient in the
complex, while the expression and subcellular localization of
other cardiac ion channels and transporters (e.g.,, Na,
channels, which associate with a second ankyrin gene
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Figure 8. Model of the Cardiac Ankyrin-B Complex
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(Left) Model of ankyrin-B-dependent complex of NKA, NCX1, and InsP3R at T-tubule/SR sites distinct from the classic “dyad.”
(Right) Scale model of ankyrin-B complex based on approximate dimensions of represented proteins. The protein ratios are not representative for in
vivo couplings as there are likely 50-100 RyR; for each InsP3R in a ventricular cardiomyocyte [32].

DOI: 10.1371/journal.pbio.0030423.g008

product, ankyrin-G) remain normal [15,18,34]. The electrical
basis for ankyrin-B-dependent cardiac arrhythmia has been
proposed, based on observations with ankyrin—BH* cardio-
myocytes, to be due to elevated Ca®" transients that provoke
afterdepolarizations and extrasystoles following catechol-
amine-induced stress [15]. These predictions of a calcium-
based phenotype are also supported by absence of abnormal-
ities in the localization or expression of Na, channels (also
normal cardiac action potentials) and K channels in ankyrin-
B™" and ankyrin-B_/_ cardiomyocytes [15,18]. Absence of the
ankyrin-B complex would be predicted to result in less
efficient export of calcium from the SR and could result in
elevated calcium transients.

Ankyrin-BH* cardiomyocytes display preferential loss of
ankyrin-B immunoreactivity at Z-line/T-tubule domains
compared with M-line staining (see Figure 1). Potential
explanations for this preferential loss may include reduced
T-tubule ankyrin-B protein stability (half-life), increased T-
tubule/SR membrane turnover, or differences in the associ-
ation of each ankyrin-B population with the underlying
cytoskeleton. Alternatively, reduced expression of the T-
tubule/SR population of ankyrin-B in ankyrin-BH* cardio-
myocytes may result from differences in the molecular
identities of ankyrin-B polypeptides at each domain. For
example, ankyrin-B immunoreactivity at the M-line may
represent an ankyrin-B splice form that lacks Ank2 exon 23
(exon targeted in the ankyrin-B knock-out mouse) but still
reacts with ankyrin-B Ig.

Interaction between InsP3R and ouabain-associated Na/K
pump has been reported to be responsible for slow Ca*"
oscillations in cultured renal proximal tubule and Cos7 cells
[35]. Our results with pure proteins suggest that InsPsR and
the NKA do not interact directly, at least not with high
affinity (see Figure 7). Thus, it will be of interest to evaluate
possible participation of ankyrin-B or possibly other adaptor
proteins in this system. More generally, determinants of
cellular localization and partnerships with physiologically
related proteins likely are an essential aspect of function for
all ion channels and transporters. Ankyrins are ubiquitously
expressed and display diversity in protein interactions. Based
on the findings of this study, and previous findings that
ankyrin-G is required for coordinating voltage-gated Na
channels and L1CAM cell adhesion molecules at axon initial
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segments [36,37], we predict that ankyrins are likely to
contribute to higher order organization of multiple channels
and transporters in a variety of tissues.

Materials and Methods

Animals. Mice used in these studies were adult WT C57BL/6 mice
and ankyrin—BH* littermates (C57BL/6), 3-6 mo of age and weighing
30-40 g. Animals were handled according to approved protocols and
animal welfare regulations of the Institutional Review Board of Duke
University Medical Center. Mouse ventricular cardiomyocytes were
isolated as described in [15].

Immunofluorescence. Antibodies not described in [15] include
NCXI1 (Affinity Bioreagents, Golden, Colorado, United States; Swant,
Bellinzona, Switzerland), alpha 1 and alpha 2 ATPase (Transduction),
DHPR (ABR, Alomone), affinity-purified GFP polyclonal Ig, and
affinity-purified pan-InsPsR polyclonal Ig generated against the C-
terminus of mouse InsP3R (residues 2592 —2750). When unavoidable,
mouse cells were immunostained with monoclonal antibodies that
had been first affinity-purified. For these monoclonal antibodies, we
confirmed that our staining was specific by control experiments in rat
cells. Additionally, Alexa anti-mouse secondary antibodies were
examined for background immunoreactivity. Adult cardiomyocytes
were stained as described [15]. Isolated ventricular mouse cardio-
myocytes were double-labeled and imaged in three dimensions by
rendering of confocal Z-scans obtained at 0.18-um increments near
the center of isolated cells using a 100 power/1.45 NA objective (LSM
510, Zeiss, Oberkochen, Germany). LSM Z-stacks were transferred to
Volocity software (Improvision, Lexington, Massachusetts, United
States), and identical protocols were used for 3D rendering of WT
and ankyrin-B™" cells. Volocity Classification software or LSM 510
software was used to measure voxel or pixel co-localization. Data
represent at least three separate experiments with at least five areas
measured for each experiment. Areas measured do not include
sarcolemmal membrane voxels. Using monoclonal and polyclonal
antibody directed against the same protein, cardiac double-labeling,
and voxel co-localization revealed that the maximal co-localization
for the same protein was ~65% consistent with previous studies [19].

Ankyrin-B mutagenesis. GFP-220-kDa ankyrin-B mutants E1425G
and E1425D were created using site-directed mutagenesis. The
mutated region was subcloned into a native GFP-220-kDa ankyrin-
B plasmid, and the plasmid was completely sequenced to verify that
no additional mutations were introduced.

Statistics. When appropriate, data were analyzed using a two-tailed
Student’s ¢-test, and values less than p < 0.05 were considered
significant. Values are expressed as the mean * standard deviation.

Protein modeling. 3D protein structures for the model in Figure 8
were approximated based on published structures [38-43].

Immunoprecipitation and solubilization of heart proteins. Adult
heart immunoprecipitations and quantitative immunoblotting were
performed as described [15]. Briefly, adult mouse heart and brain were
dissected and rinsed in PBS plus 0.32 M sucrose and 2 mM Na EDTA,
flash frozen in liquid nitrogen, and ground into a fine powder. The
powder was resuspended in 4 volumes of 50 mM Tris HCI (pH 7.35), 10
mM NacCl, 0.32 M sucrose, 5 mM Na EDTA, 2.5 mM Na EGTA, 1 mM

December 2005 | Volume 3 | Issue 12 | e423



PMSF, 1 mM 4-(2-aminoethyl) benzenesulfonylfluoride hydrochloride
(AEBSF), 10 pg/ml leupeptin, and 10 pg/ml pepstatin using a Dounce
homogenizer (Kimble/Kontes, Vineland, New Jersey, United States).
The homogenate was centrifuged at 1,000g to remove nuclei. Triton X-
100 and deoxycholate were added to the post-nuclear supernatant for
final concentrations of 1.5% Triton X-100 and 0.75% deoxycholate.
The lysate was pelleted at 100,000g for 1 h at 4 °C, and the supernatant
was re-cleared at 100,000g for 1 h to remove residual large membranes
or vesicles. The resulting supernatant was used for immunoprecipi-
tation (see Figure 4) as described [16], or for binding experiments.

Binding studies. GFP-220-kDa ankyrin-B and mutants (E1425G and
E1425D) were expressed in HEK293 cells and purified using affinity-
purified GFP Ig coupled to Protein A agarose beads. Briefly, cells were
lysed inabove homogenization buffer plus 1.0 % Triton X-100 and 0.5%
deoxycholate. The extract was centrifuged at 100,000g, and the
supernatant was incubated with GFP affinity-purified Ig coupled to
Protein A sepharose. The beads were washed with homogenization
buffer plus 1.0% Triton X-100. Purified proteins were incubated with
10 pg of affinity-purified GFP Ig or control Ig coupled to Protein A
sepharose beads for 4 h at 4 °C. The beads were washed four times with
homogenization buffer plus 1.0% Triton X-100. Protein bound to each
mutant GFP-220-kDa ankyrin-B was eluted, analyzed by quantitative
2% Jabeled Protein A immunoblot, normalized for relative GFP-
ankyrin-B expression, and then compared to WT GFP-220-kDa
ankyrin-B binding.

For in vitro complex reconstitution experiments, 0.5 ml of
Dynabeads M-270 Epoxy (1 X 107) beads (Dynal Biotech, Brown Deer,
Wisconsin, United States) were washed in PBS and incubated with 5
mg of neutravidin in PBS in a final volume of 1 ml for 48 h at 25 °C.
Beads were then washed in BSA binding buffer (20 mM Hepes [pH 7.3],
50 mM NaCl, 1 mM Na EDTA, 0.1% Triton X-100, 1 mM sodium azide,
and 5 mg/ml BSA). Purified InsP3R (0.5 ml; 200 pg/ml) was incubated
with a 20-fold molar excess of NHS-LC-biotin (Pierce Biotechnology,
Rockford, Illinois, United States) overnight at 4 °C. For control biotin,
the same biotin was incubated overnight in PBS. Biotin-InsP3R was
then dialyzed against binding buffer without BSA to remove unbound
biotin. Then 50% of the neutravidin Dynabeads were pre-incubated
with the control biotin for 2 h at 4 °C, washed, and resuspended in BSA
binding buffer (control neutravidin Dynabeads). Neutravidin Dyna-
beads were incubated with the dialyzed biotin-InsPgR while control
neutravidin Dynabeads were incubated with the same concentration
of unlabeled InsPsR for 2 h at 4 °C. Dynabeads were then washed 3X in
BSA binding buffer and used for binding experiments. Coated
Dynabeads (InsPsR at 20 nM) were incubated with 125 Jabeled NCX1
g(QO nM final concentration; specific activity 274,000 cpm/pmol) and/or

#L-labeled NKA (20 nM final concentration; specific activity
~504,000 cpm/pmol) in the presence or absence of a pre-incubation
with ankyrin-B membrane-binding domain (20 nM final concentra-
tion) in a final volume of 50 pl of BSA binding buffer (20 mM Hepes
[pH 7.3]; 50 mM NaCl, 1 mM Na EDTA, 0.2% Triton X-100, 1 mM
NaNg, and 5 mg/ml BSA). Following 4 h, the beads were washed in
binding buffer minus BSA, and both pellet and supernatant samples
were assayed for '®°I in a gamma counter (n = 3). The samples were
then examined by SDS-PAGE and phosphorimagi(ng (n=3). Values for
picomoles bound of "BLlabeled NCX1 or '*l-labeled NKA in
experiments where only one labeled ligand was used were calculated
from counts of '*’L-labeled protein bound and specific activity.
Values for picomoles bound of '*’I-labeled NCX1 and '*’I-labeled
NKA when two labeled proteins were incubated together (**I
labeled NCX1 + '*I-labeled NKA) were calculated by first determin-
ing a ratio of counts of %L Jabeled protein bound/band intensity for
unique bands of '*’I-labeled NCX or '*I-labeled NKA in single
protein binding experiments (i.e., '*I-labeled NCX + ankyrin-B +
InsP3R beads). The intensity of these same bands was measqred in the
gel lanes where the two proteins (i.e., '*’I-labeled NCX + '*’I-labeled
NKA + ankyrin-B + InsP3R beads) were combined to determine the
number of picomoles bound of each protein. We observed
approximately equal picomoles of %*Llabeled NCX1 and '*I-labeled
NKA bound to InsP3R beads when ankyrin-B was included in the
binding reaction. However, because of the lower specific activity of
1257 Jabeled NCXI1, the band intensity on the gel was approximately
50% of that of *°I-labeled NKA. Saturation binding was performed
essentially as described in [16] but using glutathione beads. Briefly,
ankyrin-B membrane-binding domain was purified as de(srcribed in
[16]. Increasing concentrations of '*’I-labeled InsP3R, '*’I-labeled
NCXI1, or 125 Jabeled NKA were incubated for 2 h at 25 °C with
glutathione Sepharose-immobilized GST-ankyrin-B membrane-bind-
ing domain or GST. The beads were washed and counted in a gamma
counter. The data were corrected for nonspecific binding at each
concentration by subtracting values obtained with GST-coated beads.
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Protein purification. Full-length human NCXI1 was cloned from a
human heart library (Clontech, Palo Alto, California, United States)
into pBacPak9 (Clontech) using standard molecular techniques. For
purification of NCXI1, a His-tag was engineered to the C-terminus.
NCX1 was expressed in SF21 insect cells using a generated
recombinant baculovirus. Cells were infected in monolayer cultures
with a MOI of ten for 72 h at 27 °C. Cells were harvested and washed
in PBS, and cell pellets were snap frozen and stored at —80 °C. All
subsequent procedures were performed at 4 °C in the presence of
protease inhibitors (100 pg/ml AEBSF, 100 pg/ml benzamidine, 30 pg/
ml leupeptin, and 10 pg/ml pepstatin). Cells were syringed and
sonicated in cell homogenization buffer (PBS, 1 mM Na EDTA, 1 mM
DTT, and 1 mM sodium azide) to break the cell membranes, then
centrifuged at 100,000g for 30 min to collect membranes. Cell
membranes were pre-extracted with 20 mM CHAPS (pH 12) for 30
min followed by 20 mM PB (pH 7.3), 0.5 M NaCl, 0.5 M urea, 0.5%
Triton X-100, and 0.5 mM beta mercaptoethanol. The cell residue was
resuspended in extraction buffer (50 mM PB (pH 8.0), 0.3 M NaCl, 10
mM imidazole, 0.2% Triton X-100, 1 mM beta mercaptoethanol, 1
mM sodium azide, and 2% Sarkosyl) for 20 min. The extract was
centrifuged at 100,000g for 1 h, and the supernatant collected and
diluted 10-fold in buffer lacking Sarkosyl. The diluted extract was
applied to a column of Ni-NTA Sepharose, washed with 10-20
column volumes of dilution buffer, and eluted with buffer plus 0.3 M
imidazole. Peak fractions were pooled, adjusted to 10% glycerol, snap
frozen, and stored at —80 °C. Sheep kidney NKA was isolated in
membrane-bound form from outer medulla as previously described
[44]. The NKA was extracted and purified as previously described
[45]. The InsP3R was purified from frozen bovine brain cerebellum by
a modification of published procedures [16,46]. All procedures were
carried out at 4 °C in the presence of protease inhibitors (100 pg/ml
AEBSF, 100 pg/ml benzamidine, 30 pg/ml leupeptin, and 10 pg/ml
pepstatin). Cerebellum was homogenized using a polytron in five
volumes (weight/volume) of homogenization buffer (10 mM Hepes
[pH 7.3], 0.32 M sucrose, 2 mM EGTA, 1 mm DTT, and 1 mM sodium
azide), and centrifuged at 2,000 rpm for 10 min. Membranes were
then collected at 30,000g for 1 h. Membranes were prewashed in wash
buffer (50 mM Tris HCI [pH 8.0], 1 mM Na EGTA, 1 mM DTT, and 1
mM Na azide), then resuspended to the homogenization volume with
the wash buffer. InsP3R was extracted from the membranes by the
addition of 2% final Triton X-100 for 30 min, and supernatants
collected after centrifugation at 30,000g for 1 h. The extract was
adjusted to 0.25 M NaCl and applied to a 50-ml heparin Sepharose
column equilibrated in 0.25 M NaCl and 0.2% Triton X-100
extraction buffer. The heparin Sepharose was washed with ten
column volumes of equilibration buffer, and then eluted with 0.5 M
NaCl buffer. Peak fractions were pooled and dialyzed against ten
volumes of column buffer lacking NaCl and 20 mM Tris HCI (pH 8.0).
A precipitate formed after dialysis and was collected by centrifuga-
tion at 100,000g for 20 min. The pellet was resuspended in column
buffer with the addition of 1.0 M NaCl and was re-centrifuged as
above. The InsP3R released into the supernatant was then adjusted to
0.2 mM CaCly, and 0.2 mM MnCly and applied to a 4-ml ConA
Sepharose column. The column was washed in 20 column volumes of
buffer, the elution started with the addition of 1 M mannose, the
elution stopped, and the column allowed to sit in elution buffer
overnight. The elution was continued the following day and fractions
collected, aliquoted, snap frozen, and stored at —80 °C.

Supporting Information
Figure S1. Ankyrin-B-Based Complex Is a Specialized Feature of
Cardiac Myocytes

Ankyrin-B is expressed in ventricular cardiomyocytes but not in
smooth muscle lining large arteries. Image represents adult mouse
heart immunostained with ankyrin-B-specific Ig.

Found at DOI: 10.1371/journal.pbio.0030423.sg001 (2.7 MB TIF).

Accession Number

The NCBI (http:/lwww.ncbi.nlm.nih.gov/) accession number for
ankyrin-B is NM__020977.
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