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The Genetics of Speciation by Reinforcement
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Reinforcement occurs when natural selection strengthens behavioral discrimination to prevent costly interspecies
matings, such as when matings produce sterile hybrids. This evolutionary process can complete speciation, thereby
providing a direct link between Darwin’s theory of natural selection and the origin of new species. Here, by examining
a case of speciation by reinforcement in Drosophila, we present the first high-resolution genetic study of variation
within species for female mating discrimination that is enhanced by natural selection. We show that reinforced mating
discrimination is inherited as a dominant trait, exhibits variability within species, and may be influenced by a known
set of candidate genes involved in olfaction. Our results show that the genetics of reinforced mating discrimination is
different from the genetics of mating discrimination between species, suggesting that overall mating discrimination
might be a composite phenomenon, which in Drosophila could involve both auditory and olfactory cues. Examining the
genetics of reinforcement provides a unique opportunity for both understanding the origin of new species in the face
of gene flow and identifying the genetic basis of adaptive female species preferences, two major gaps in our

understanding of speciation.
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Introduction

During reinforcement, mating discrimination is strength-
ened by natural selection in response to maladaptive hybrid-
ization between closely related taxa (Dobzhansky 1940; Fisher
1958). Although reinforcement was a contentious issue in the
past Butlin 1989; Howard 1993; Noor 1999), recent theoretical
work has identified the most favorable conditions for its
existence (Liou and Price 1994; Kelly and Noor 1996; Servedio
and Kirkpatrick 1997; Kirkpatrick and Servedio 1999; Servedio
2000), and empirical data have provided potential examples of
its occurrence in nature (Noor 1995; Saetre et al. 1997; Rundle
and Schluter 1998; Nosil et al. 2003).

Theoretical work on reinforcement shows that reproduc-
tive isolation may be strengthened when either the same (one)
or different (two) alleles conferring mating discrimination
spread in the emerging species (Felsenstein 1981). In two-
allele models, alleles conferring mating discrimination spread
if they become genetically correlated with alleles reducing
hybrid fitness. However, the evolution of such a correlation is
opposed by recombination because alleles conferring dis-
crimination in a given species do not confer discrimination
in the other species. Consequently, two-allele models require
either very strong selection, or tight linkage (e.g., physical or
via chromosomal rearrangements) between alleles conferring
mating discrimination and alleles reducing hybrid fitness
(Kirkpatrick and Ravigné 2002). In contrast, one-allele models
are not opposed by recombination because alleles conferring
mating discrimination reduce hybridization in the genetic
background of both species (Kelly and Noor 1996; Servedio
2000) and so may be more conducive to reinforcement.
Unfortunately, empirical data concerning these two models
of speciation are lacking (see Ortiz-Barrientos et al. 2002;
Servedio and Noor 2003).

In addition to providing fundamental information for
theoretical models, discerning the genetics of reinforcement
will also develop our understanding of both the physiological
basis of and forces governing changes in female preference.
Furthermore, because the strengthening of female preference
is driven by natural selection, the genetics of reinforcement
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will provide unique insights into the genetics of adaptation,
another unsettled issue in evolutionary biology. Finally, high-
resolution genetic studies of reinforcement can identify
candidate speciation genes with effects on mating discrim-
ination, information almost nonexistent in speciation studies
(but see, Ritchie and Noor 2004). Here, we address these many
fundamental issues in speciation by examining a case of
reinforcement in Drosophila and present for the first time a
high-resolution genetic study of variation within species in
female mating discrimination, including a set of candidate
reinforcement genes and a discussion of the evolutionary
implications of our findings.

The North American fruitflies Drosophila pseudoobscura and
D. persimilis hybridize in nature and produce sterile male
hybrids. While D. pseudoobscura occurs alone in non-coastal
western United States and Central America, the two species
co-occur in California and the Pacific Northwest. Males court
females from both species indiscriminately (Noor 1996), but
females mate preferentially with individuals from the same
species. The strength of this discrimination is not homoge-
neous across the species’ geographic range: in a previous
study, Noor (1995) showed that D. pseudoobscura females
derived from populations where D. persimilis was absent
exhibited weak mating discrimination (hereafter, “basal
mating discrimination”) while females derived from popula-
tions where D. persimilis is present exhibited strong mating
discrimination (hereafter “reinforced mating discrimina-

Received June 10, 2004; Accepted October 4, 2004; Published November 23,
2004
DOI: 10.1371/journal.pbio.0020416

Copyright: © 2004 Ortiz-Barrientos et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Abbreviations: CIM, composite interval mapping; cM, centi-Morgan; QTL, quanti-
tative trait locus; XL, left arm of the X chromosome; XR, right arm of the X
chromosome

Academic Editor: Nick Barton, University of Edinburgh

*To whom correspondence should be addressed. E-mail: dortiz1@Isu.edu

December 2004 | Volume 2 | Issue 12 | e416



tion”). This difference in mating discrimination is likely the
evolutionary consequence of maladaptive hybridization
where the two species coexist: reinforcement has strength-
ened mating discrimination in the D. pseudoobscura popula-
tions co-occurring with D. persimilis. These observations and
the recent completion of the genome sequence of D.
pseudoobscura (BCM-HGSC 2004) make these species an ideal
system to genetically dissect the enhancement of mating
discrimination in sympatry.

Although the genetics of reinforcement has not been
studied in D. pseudoobscura, or in any system, the genetic basis
of other traits contributing to the species’ reproductive
isolation (i.e., hybrid sterility and basal mating discrimina-
tion) is known in detail. All traits contributing to reproduc-
tive isolation between D. pseudoobscura and D. persimilis,
including traits for basal discrimination, map primarily or
exclusively to regions bearing fixed chromosomal inversion
differences between the species (Noor et al. 2001a, 2001b).
This result is consistent with a two-allele model of speciation
in which the reduction in recombination between alleles for
hybrid unfitness (i.e., hybrid sterility) and mating discrim-
ination creates the necessary genetic correlations to advance
divergence in the presence of gene flow. However, we do not
know whether the genetic basis of reinforced mating
discrimination corresponds to this picture, and specifically,
whether chromosomal inversions are fundamental to this
process. Comparing these genetic architectures will provide
the most comprehensive view yet on the genetics of mating
discrimination contributing to the formation of new species
in the face of interspecies gene flow.

Results

Female Discrimination Is Dominant and Reinforced in
Sympatry

Table 1 shows that D. pseudoobscura females derived from
sympatry (with D. persimilis) exhibited stronger mating
discrimination against D. persimilis males than did D.
pseudoobscura females derived from allopatry. This pattern
holds for both inbred and outbred lines. Also, our data show
that both sympatric-derived lines and allopatric-derived lines
vary considerably in their degree of discrimination (p < 0.001
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for sympatric inbred lines, and p = 0.0006 for allopatric
inbred lines), suggesting some within-population variation in
female mating discrimination, both basal and reinforced.

Apparent reinforced mating discrimination could result
from behavioral differences in D. persimilis males when
exposed to sympatric or allopatric D. pseudoobscura females.
To exclude this possibility, we measured the copulation
latency and number of attempted copulations by D. persimilis
males towards D. pseudoobscura females derived from sympatry
or allopatry, and found no significant differences between
groups (copulation latency, p = 0. 736, n = 138; attempted
copulations, p = 0. 937, n = 110). Finally, we investigated the
mode of inheritance of the phenotype and observed that F;
females from crosses between sympatric and allopatric flies
discriminated as strongly as their sympatric parent, suggest-
ing that reinforced female mating discrimination is inherited
as a dominant trait in both inbred and outbred lines (see
Table 1). This F, female mating discrimination is restricted to
pairings with D. persimilis males, as F; females mate readily
with conspecifics (data not shown). Taken together, these
results suggest that reinforced mating discrimination in D.
pseudoobscura is exclusive to females derived from areas of
sympatry with D. persimilis, is inherited as a dominant trait,
and is not markedly affected by inbreeding.

Within-Species Variation in Reinforced Female Mating
Discrimination

We investigated within-species variability in reinforced
discrimination by estimating the chromosomal contributions
to mating discrimination between two pairs of D. pseudoobs-
cura populations. In each case, we performed a male-parent
backcross in which a mixture of whole chromosomes from
sympatry and allopatry (F; genome) was substituted into an
allopatric background (Fy backcross genome) (see Figure 1,
left panel). Each male-parent backcross was also replicated
with the reciprocal F, cross between parental strains, thus
ruling out any maternal effects and providing insight into the
effect of the X chromosome on mating discrimination.

Our two backcrosses identified different chromosomes as
affecting reinforced mating discrimination (binomial test of
proportions for effects of all chromosomes, p < 0.01). For
example, sympatric X and fourth chromosomes derived from

Table 1. Matings of D. persimilis Males to D. pseudoobscura Females Derived Sympatry or Allopatry

Geography Female Total Mated Probability

Allopatric (O) Flagstaff 115 48

Sympatric (O) Mather 115 26 <0.002 (Allopatric vs. Sympatric)
F4 106 20 0.5136 (Sympatric vs. F1)
Allopatric (I) Flagstaff 100 78

Sympatric (1) Mather 100 48 <0.001 (Allopatric vs. Sympatric)
F4 96 44 0.5637 (Sympatric vs. F1)
Allopatric (I) Mesa Verde 105 34

Sympatric (1) Mt. St. Helena 104 9 <0.001 (Allopatric vs. Sympatric)
F4 105 8 0.8061 (Sympatric vs. F1)

Each comparison involves either a sympatric versus an allopatric line of D. pseudoobscura, or F, females (allopatric X sympatric) versus sympatric lines. Probability values
were derived from Fisher's exact tests using geography (allopatric versus sympatric) and copulation occurrence (yes versus no) as variables.
O, outbred lines; |, inbred lines; Fy, first generation offspring from crossing the D. pseudoobscura sympatric and allopatric line.

DOI: 10.1371/journal.pbio.0020416.t001
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Figure 1. Experimental Design to Substitute Chromosomes or Chromo-
somal Regions Derived from Sympatry into an Allopatric Background and
Measure Their Effect on Mating Discrimination

F; male-parent backcrosses (A) allow measurements of whole
chromosome effects, while F, female-parent backcrosses (B) measure
specific chromosomal region effects. Curved arrow represents the
reciprocal backcross of the one shown.

DOL: 10.1371/journal.pbio.0020416.g001

Mather, California (male-parent backcross 1), contribute
significantly to reinforced mating discrimination (p <
0.0001 for X chromosome, p < 0.005 for fourth chromosome,
n of approximately 1,000 for all markers), while the same
chromosomes show no detectable effect on reinforced mating
discrimination when derived from Mt. St. Helena, California
(male-parent backcross 2, p = 0.2297, n = 600 for all markers)
(see Figure 2A and 2B). In contrast, the second chromosome
shows the opposite relationship between the two backcrosses.

a) c)
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The third chromosome shows marked effects on reinforced
mating discrimination in both backcrosses, although at this
level of resolution, it is impossible to tell whether this
chromosome carries the same alleles in both sympatric
populations. Figure 2C shows the genome composition of
backcross females between Flagstaff, Arizona (allopatric), and
Mather, California (sympatric), and their respective fre-
quency of matings with D. persimilis males. The strongest
effect is observed when both sympatric X and fourth
chromosomes are substituted in an allopatric background,
and no significant epistatic interactions were detected
between chromosomes.

These results suggest that different alleles for reinforced
mating discrimination are segregating within sympatric
populations of D. pseudoobscura despite extensive gene flow
within and between populations (Schaeffer and Miller 1992;
Noor et al. 2000).

Fine-Mapping the Genes Causing Reinforcement

We measured female mating discrimination against D.
persimilis males in 1,500 Fy individuals derived from a female-
parent backcross between a line derived from Mather,
California (sympatric line), and a line derived from Flagstaff,
Arizona (allopatric line), and genotyped 275 to 1,500
individuals for 70 markers dispersed along the four major
chromosomes in D. pseudoobscura. Our initial single-marker
analyses revealed significant associations between reinforced
mating discrimination and three regions defined by markers
located on the right and left arms of the X chromosome (XR
and XL, respectively) (XR marker X021, p < 0.0001, n=1,129;
XL marker X002, p = 0.02, n = 1,293) and the fourth
chromosome (4034 marker, p < 0.0001, n = 1,434). We were
not able to detect an effect of any single region on the third
chromosome even though nine markers were surveyed.
Effects identified on XR and Chromosome 4 reinforced
mating discrimination when the sympatric allele was present
(positive), while the effect from XL was negative. After our
initial scan, we used composite interval mapping (CIM) to
account for any inflated estimates in the absence of back-
ground correction. In addition, several markers were geno-

Figure 2. Mean Square Chromosomal
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typed around the X021 and 4034 regions with the goal of
refining the segments containing the quantitative trait loci
(QTLs). Figure 3 shows the major results from CIM, and
confirms our previous observations: one major QTL was
identified on XR around X021, and a suggestive one close to
the telomere of XL. In addition, one major QTL was found on
the fourth chromosome. These results validate our previous
findings using male-parent backcross females and provide a
high-resolution definition of regions contributing to rein-
forced mating discrimination.

X chromosome: Candidate genes Coy-1 and Coy-3. A more
careful examination of the X021 region showed that the QTL
location (CIM LOD score = 5. 16), hereafter referred to as Coy-
1, is estimated to lie between two additional markers, X021-
Al and X021-A4 (these markers are physically separated by
390 kb and by a recombination fraction of 4.5 centi-Morgans
[cM]). According to the recently obtained genome sequence
of D. pseudoobscura, there are seven genes between these two
markers, one of which, bru-3, accounts for one-third of the
sequence length of this region. In addition, CIM also
identified another QTL, hereafter referred to as Coy-3,
located between markers X021 and X021-B2, although with
a weaker effect (CIM LOD score = 2. 84). There are
approximately 200 kb and 30 genes between these markers
and a recombination fraction of 3.5 cM. Finally, a third QTL
was found near the XL telomere and, in contrast to the X021
region, showed a negative and weak additive effect (CIM LOD
score = 2. 45). We tested this model for the X chromosome
using multiple interval mapping and found that the strongest
support is for Coy-1, followed by Coy-3. We were unable to
recover any support for the QTL on XL. No epistatic
interactions were detected among any QTLs.

Chromosome 4: Candidate genes Coy-2 and Coy4. Dissection
of the 4034 region using CIM split the effect into two QTLs
for reinforced mating discrimination; we refer to them as Coy-
2 and Coy-4, respectively. These QTLs show the strongest
effects (CIM LOD scores of 7.7 and 7, respectively). As with
Coy-1 and Coy-3, these QTL are additive and contribute
positively to the degree of mating discrimination of Fo
females. Coy-2 is located next to marker 4034-A8. This marker
is within a 300-kb region homologous to a D. melanogaster
region containing a p-element insertion disrupting normal
olfactory behavior (see Discussion for details) (Anholt et al.
2001, 2003). The D. melanogaster region contains 30 genes of
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which at least ten have known or predicted olfactory
functions. The primary candidate gene for the disrupted
olfactory behavior in the p-element mutant is CGI3982.
Interestingly, the D. melanogaster p-element mutation up-
regulates expression of bru-3, suggesting a possible functional
link between the candidate genes Coy-I and Coy-2. The second
QTL in this region, Coy-4, is defined by two markers, 4003 and
4032, on each side of 4034. CIM places the QTL between 4003
and 4034, an approximately 200-kb region containing only
nine genes. Five of these nine genes are a conglomerate of
UDP-glycosyltransferases, genes preferentially expressed in
the Drosophila antenna and coding for biotransformation
enzymes involved in detoxification and olfaction (Wang et al.
2003). However, a more careful examination of the genes
shows that their sequence overlap results from the inability of
BLAST homology searches to distinguish the members of this
gene family, suggesting that there may be only one or few
UDP-glycosyltransferase genes here. Consequently, the num-
ber of candidate genes in the region may be reduced from
nine to five genes, at least one of which is involved in
olfaction. As before, we tested this model using multiple
interval mapping and recovered significant support for Coy-2
under stringent conditions and no evidence of significant
epistasis among previously identified QTLs.

Based on these results and those for the X chromosome, we
suggest that the strongest evidence for QTLs contributing to
reinforced discrimination in sympatry lies with Coy-1 and Coy-
2, and that Coy-3 and Coy-4 are suggestive QTLs.

Discussion

We have provided the first genetic dissection of an adaptive
female preference involved in speciation by developing a
QTL map for discrimination variation in Drosophila pseudoobs-
cura. The resolution of our approach is novel to genetic
studies of behavioral discrimination in that we have surveyed
the genome with 70 microsatellite markers for chromosomal
regions contributing to increased mating discrimination and
have narrowed some of these regions to intervals containing
as few as five genes. The role of these genes in reinforcing
mating discrimination is supported by indirect evidence from
D. melanogaster mutants: two of the major QTLs identified in
our mapping experiments bear genes identified in smell
impairment screenings of p-element mutants (Anholt et al.
2003). A gene in one of these intervals, CGI3982 (D.

Figure 3. QTLs and Candidate Genes for
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melanogaster Chromosome 2L), appears to up-regulate a
second gene located in the other interval, bru-3 (D. mela-
nogaster X chromosome). Furthermore, we have shown that
the chromosomal contributions to reinforced mating dis-
crimination vary among strains of D. pseudoobscura. Finally, the
chromosomal effects on mating discrimination are inherited
in a dominant fashion, consistent with general theories on the
evolution of adaptive characters (Haldane 1924). Below, we
discuss these results in the context of several evolutionary
hypotheses of reinforcement and speciation.

The Genetics of “Basal” Versus “Reinforced” Female
Mating Discrimination

Most genetic studies of female preference and sexual
isolation have utilized between-species genetic crosses or
non-hybridizing allopatric populations. Some of these studies
suggest that female preference is a polygenic character (e.g.,
Moehring et al. 2004; Ting et al. 2001), while other researchers
have found a very simple genetic basis for female discrim-
ination (Doi et al. 2001). A study of another behavioral trait,
response to odorants, showed that many genes contribute to
olfaction, and epistasis plays a fundamental role in determin-
ing the specificity of odor identification (Anholt et al. 2001,
2003). We expect the genetics of reinforced female mating
discrimination to bear some similarities to the genetics of
overall female species preferences and/or traits involved in
response to olfactory cues.

Available genetic data on “basal” female mating discrim-
ination in D. pseudoobscura (between-species crosses using a D.
pseudoobscura line derived from areas allopatric to D. persimilis)
show that all QTLs for this trait map unequivocally to two
inverted chromosomal regions separating it from D. persimilis
(Noor et al. 2001a), one on XL and one on Chromosome 2.
This result suggests that the regions we localized as

Genetics of Reinforcement

contributing to reinforced mating discrimination (on XR
and Chromosome 4) are distinct from those previously
identified as contributing to basal discrimination. Hence,
chromosomal inversions may have been crucial in allowing
these species to persist in sympatry (Noor et al. 2001a), but
the rearranged regions might not have contributed directly to
the subsequent reinforcement of mating discrimination. This
idea is consistent with data showing that a region (DPS4003)
just 400 kb away from the QTL identified on the fourth
chromosome seems to have introgressed recently between D.
pseudoobscura and D. persimilis (Machado et al. 2002).

This result supports either a one-allele mechanism, perhaps
controlling the genetics of variation within species for female
mating discrimination if there was not strong assortative
mating before sympatry, or possibly a two-allele mechanism,
if reinforcement took place after sympatry and strong
assortment had already evolved. The definitive test will be
to determine whether introgressing the different D. pseudoobs-
cura alleles into D. persimilis affects female discrimination in
the same manner.

Female Mating Discrimination Is a Composite Trait

These “layers” of female discrimination (see Figure 4) are
intimately related to the genetic differences being evaluated.
Genes localized within fixed chromosomal regions inverted
between D. pseudoobscura and D. persimilis are responsible for
the first layer, basal discrimination. In contrast, the second
layer, reinforced mating discrimination, is caused by genes
localized outside those inverted regions. Basal discrimination
appears to stem mostly from female responses to acoustic
“courtship song” signal differences between D. pseudoobscura
and D. persimilis. This is suggested by both a strong correlation
in mating success of backcross hybrids with song parameters
(Williams et al. 2001) and in playback experiments with
wingless flies (M. Lineham, M. A. F. Noor, and M. Ritchie,

Figure 4. Genomic Distribution of Genetic
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unpublished data). Even though we cannot discard fine-
tuning of the acoustic receiver signaling system in sympatric
females, the nature of the candidate genes we identified
suggests that olfactory responses might play a major role in
the second layer of female preference. Non-auditory cues
conferring reinforced discrimination are also suggested by
behavioral data collected by Mark Lineham and Michael
Ritchie (personal communication) showing that the rejection
exercised by D. pseudoobscura females towards D. persimilis male
song is the same in lines derived from sympatry and allopatry,
even though females from the two regions clearly show
differences in mating discrimination (Noor 1995; this study).
Finding different genetic architectures for traits involved in
speciation is expected under models based on selection on
many traits (Rice and Hostert 1993). These traits may be a
composite response of behavioral traits, as exemplified in this
study, or ecology and behavior, as evidenced by Timema
walking sticks, in which traits conferring ecological adapta-
tion and traits contributing to mating discrimination act in
conjunction to increase the overall level of sexual isolation
between hybridizing populations (Nosil et al. 2003).

Our results suggest, albeit not conclusively, that reinforced
mating discrimination is related to differences in response to
olfactory cues. We have shown here that candidate regions on
the fourth chromosome bear an unusual excess of olfactory
genes, and some of these have been associated with specific
olfactory responses in other Drosophila. Further, the fact that
we mapped reinforced discrimination to two interacting gene
regions involved in olfaction (bearing bru-3 and CG13982) was
striking in this regard, supporting a potential role of
olfactory response in reinforcement in these species.

We also observed differences among strains in the genetic
architecture of reinforced mating discrimination. Such
variation in genetic control may be common when popula-
tions exchanging genes differ in phenotype because of
selection. Multiple alleles from different loci may have
increased in frequency because of selection for discrimina-
tion, and these alleles sometimes spread into allopatry or are
replaced by the allopatric alleles in sympatry. When sampling
from single lines, we capture only a fraction of the genetic
variation in mating discrimination, and sometimes a high-
discrimination allele is even sampled from allopatry (as we
observed in the QTL on XL). This observation should be
typical in many QTL mapping studies that utilize strains
within species with extensive gene flow among populations, as
in the many studies of D. melanogaster variation.

In brief, these results show that basal and reinforced
discrimination are different, species discrimination in D.
pseudoobscura is a composite trait, and there is genetic
variation within species in reinforced mating discrimination.

Reinforced Mating Discrimination Is Inherited As a
Dominant Trait

Recessive adaptive mutations are often lost before selection
can screen their effects on the phenotype. Conversely,
adaptive mutations that are visible to selection in a
heterozygous state will be available for selection even at very
low frequencies. Therefore, we expect that most adaptive
mutations reaching high frequencies in a population are
dominant (Haldane 1924, but see Orr and Betancourt 2001).
This process is commonly referred to as Haldane’s sieve and
predicts that alleles for mating discrimination that increase
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in frequency in response to selection should be dominant
(Orr and Betancourt 2001). Our study shows that F; female
offspring of crosses between allopatric and sympatric
populations of D. pseudoobscura are as reluctant to mate with
D. persimilis males as are D. pseudoobscura females from
sympatric populations. This result implies that high discrim-
ination can be expressed in heterozygous individuals,
suggesting a dominant basis for the phenotype. In contrast,
“basal” female mating discrimination seems to be a recessive
trait (F; female hybrids from crosses between allopatric D.
pseudoobscura individuals and D. persimilis do not discriminate
against D. persimilis males [Noor et al. 2001a]). Taken together,
these results are consistent with genetic differences between
basal and reinforced female mating discrimination and with
general predictions from Haldane’s sieve theory.

Conclusions

This is the first study to provide a detailed description of
the genetic basis of speciation by reinforcement. We
conclude that, in D. pseudoobscura, (1) high discrimination in
sympatry is inherited in a dominant fashion, (2) there is
within-species variability for high female mating discrimi-
nation as evidenced by the different genetic architectures
recovered in the male-parent backcross experiments, (3)
there are multiple genes, possibly involved in olfaction,
contributing to enhanced female mating discrimination, (4)
some candidate genes for reinforcement identified here have
been previously identified in p-element mutant screenings
for smell impairment in D. melanogaster, (5) the genetic
architecture of basal female mating discrimination is differ-
ent from that of reinforced mating discrimination, and (6)
inversions seem to play no direct role in creating or
maintaining the genetic differences directly responsible for
increased female mating discrimination in sympatry. How-
ever, these inversions seem to play a crucial role, as evidenced
by previous studies (Noor et al. 2001a), in maintaining the
identity of hybridizing species and thus providing time for
selection to reinforce their sexual isolation. These results
have broad evolutionary implications, as discussed above, and
open exciting new avenues of research to understand the
genetics of an adaptive behavioral trait involved in speci-
ation.

Materials and Methods

Our approach is based on measuring in one species the effects of
substituting chromosomal segments from a highly discriminant
genome into a less discriminant genome. In particular, we (1) test
for within-species variation in the genetic architecture of female
mating discrimination (F; male-parent backcrosses), (2) identify
chromosomal regions contributing to reinforced mating discrim-
ination (F; female-parent backcross) and compare them to regions
conferring basal mating discrimination, and (3) provide a set of
candidate genes for increased mating discrimination.

Fly rearing and lines. D. persimilis flies were collected in 1993 from
Mt. St. Helena, California. D. pseudoobscura flies were collected from
Mather, California (1997), Mt. St. Helena, California (1997), Flagstaff,
Arizona (1993 and 1997), and Mesa Verde National Park, Colorado
(2001). Isofemale lines were established by rearing the offspring of
individual females previously mated in the wild. All lines were
maintained under a constant regime of temperature (20 °C) and
humidity (85%) in diurnalmocturnal cycles of 12 h and reared on a
mixture of agar, dextrose, and yeast.

Reinforced mating discrimination in sympatry. Pairs of D.
pseudoobscura isofemale lines from each of two populations were
crossed: Mather (1997) 52 X 10 (California, sympatric with D.
persimilis) and Flagstaff (1997) 16 X 17 (Arizona, allopatric to D.
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persimilis), respectively. Virgin F; females from these crosses as well as
D. persimilis males were routinely collected during afternoons and
confined for 8 d. On the morning of the eighth day, individual
females were confined with individual D. persimilis males. The
rationale of this no-choice design is based on behavioral observations
suggesting that females tend to copulate more often in the presence
of single males than when multiple males approach them (Noor,
unpublished data). Therefore, no-choice experiments should provide
a more conducive setting for mating. The flies were observed for 10
min. If the male attempted fewer than three copulations, the pair was
not scored, and the data were discarded. Otherwise, the pair was
scored for successful copulation versus not (the male must have been
on the back of the female for at least 1 min—the average copulation
duration in D. pseudoobscura is 3 min). These protocols are the same
used in Noor et al. (2001a). We performed Fisher exact tests to
evaluate differences among D. pseudoobscura lines sympatric versus
allopatric to D. persimilis. Comparisons between allopatric and
sympatric populations were performed both for outbred lines and
inbred lines and only between lines that were tested for the
phenotype at the same time, thus controlling for environmental
error. Our comparisons between the two allopatric lines and between
the two sympatric lines were not temporally controlled, and therefore
may have been subject to some environmental heterogeneity. We
used pairs of D. pseudoobscura inbred lines that significantly differed in
their degree of female mating discrimination against D. persimilis in
our mapping experiments (see below).

The heritable basis of increased mating discrimination in
sympatry. We measured the frequency of matings with D. persimilis
males of F; females resulting from crosses between sympatric and
allopatric D. pseudoobscura lines. If F; females discriminated as strongly
as the parent derived from sympatry, then we concluded that higher
(reinforced) mating discrimination was inherited as a dominant trait.
Fisher exact tests where performed to evaluate this hypothesis (see
Table 1).

Testing for male discrimination. D. persimilis males were tested
against D. pseudoobscura females from the Mather 17 and Flagstaff 1993
strains. We measured the time to first attempted copulation, the
number of attempted copulations, and the time between the first
attempt to copulate and copulation itself. Analysis of variance was
conducted to test for a difference between treatments.

Mapping approach. Microsatellite markers include those reported
previously (Noor et al. 2000) and 100 more that were developed by
scanning contig sequences produced by the D. pseudoobscura genome
project (Richards et al. 2004). Microsatellites were tested for fixed
allelic differences between D. pseudoobscura lines Mather 17 and
Flagstaff 1993. All primer information, both for informative and non-
informative markers, will be published elsewhere and is available
upon request. A recombinational map with an average distance of 15
cM between markers was produced using the female-parent backcross
(see below) and the multipoint-linkage approach implemented in
MapMaker version 3.0 (Lander et al. 1987).

Male-parent backcross. Two male-parent backcrosses (n; = 900 and
ne = 600 flies) were used to determine the chromosomal basis of
reinforced mating discrimination and its natural within-species
variation. Crossing over does not occur in male Drosophila, and they
thus transfer whole chromosomes to their offspring (see Figure 1).
Each F; backcross female was scored for mating (as above), and its
DNA was subsequently extracted. Lines used in each backcross were:
for backcross 1, Mather (California) 17 and Flagstaff (Arizona) 1993,
and for backcross 2, Mt. St. Helena (California) 7 and Mesa Verde
(Colorado) 17. We consider strains derived from California as
sympatric and strains derived from Arizona or Colorado as allopatric
to D. persimilis.

We used microsatellite markers to score the origin of each

References

Anholt RR, Fanara JJ, Fedorowicz GM, Ganguly I, Kulkarni NH, et al. (2001)
Functional genomics of odor-guided behavior in Drosophila melanogaster.
Chem Senses 26: 215-221.

Anholt RR, Dilda CL, Chang S, Fanara JJ, Kulkarni NH, et al. (2003) The genetic
architecture of odor-guided behavior in Drosophila:Epistasis and the tran-
scriptome. Nat Genet 35: 180-184.

Basten CJ, Weir BS, Zeng ZB (1999) QTL Cartographer, version 1.13. Raleigh
(North Carolina): Department of Statistics, North Carolina State University.

Butlin R (1989) Reinforcement of premating isolation. In: Otte D, Endler JA,
editors. Speciation and its consequences. Sunderland (Massachusetts):
Sinauer Associates. pp. 158-179.

Dobzhansky T (1940) Speciation as a stage in evolutionary divergence. Am Nat
74: 312-321.

iS). PLosS Biology | www.plosbiology.org

Genetics of Reinforcement

chromosomal segment in backcross hybrid females. To determine
the chromosomal contributions from each chromosome, we per-
formed analyses of variance in which the dependent variable was
mating discrimination and the independent variables the origin of
each chromosome.

Female-parent backcross. Once we determined the chromosomal
effects and their variation for mating discrimination, we scored an
additional 1,500 females derived by backcrossing Mather 17 X
Flagstaff 1993 F, females to Flagstaff 1993 males (see Figure 1) for
mating discrimination against D. persimilis. A total of 288 females were
genotyped for all markers, and both single-marker analyses and CIM
(Zeng et al. 1999) were used to identify QTLs contributing to
reinforced mating discrimination. Both approaches consistently
identified the same regions. An additional 1,200 females were
genotyped for markers showing significant effects on mating
discrimination. When implementing CIM, forward-backward stepwise
regressions were used to search for target QTLs over 2-cM intervals
while simultaneously fitting partial regression coefficients for back-
ground markers with a window size of 15 cM. We tested for epistatic
interactions between significant QTLs using multiple interval
mapping (Zeng et al. 1999). In all cases, procedures were carried
out as implemented in QTL Cartographer (Basten et al. 1999).
Significance threshold values were obtained by permutation analysis
as described by Doerge and Churchill (Basten et al. 1996).
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