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A common assumption about malaria, dengue, and other mosquito-borne infections is that the two main components
of the risk of human infection—the rate at which people are bitten (human biting rate) and the proportion of
mosquitoes that are infectious—are positively correlated. In fact, these two risk factors are generated by different
processes and may be negatively correlated across space and time in heterogeneous environments. Uneven
distribution of blood-meal hosts and larval habitat creates a spatial mosaic of demographic sources and sinks.
Moreover, mosquito populations fluctuate temporally, forced by environmental variables such as rainfall, temperature,
and humidity. These sources of spatial and temporal heterogeneity in the distribution of mosquito populations
generate variability in the human biting rate, in the proportion of mosquitoes that are infectious, and in the risk of
human infection. To understand how heterogeneity affects the epidemiology of mosquito-borne infections, we
developed a set of simple models that incorporate heterogeneity in a stepwise fashion. These models predict that the
human biting rate is highest shortly after the mosquito densities peak, near breeding sites where adult mosquitoes
emerge, and around the edges of areas where humans are aggregated. In contrast, the proportion of mosquitoes that
are infectious reflects the age structure of mosquito populations; it peaks where old mosquitoes are found, far from
mosquito breeding habitat, and when mosquito population density is declining. Finally, we show that estimates for the
average risk of infection that are based on the average entomological inoculation rate are strongly biased in
heterogeneous environments.
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Introduction

Understanding the spatiotemporal distribution of risk for
mosquito-borne infections is an important step in planning
and implementing effective infection control measures
(Greenwood 1989; Charlwood et al. 1998; Chadee and Kitron
1999; Focks et al. 1999; Mendis et al. 2000; Carter 2002;
Killeen et al. 2003). Remote sensing, geographical informa-
tion systems, and predictive algorithms have made it possible
to develop coarse-grained maps of vector habitat (Pope et al.
1994; Beck et al. 1997; Kitron 1998; Rogers et al. 2002), and
epidemiological studies have identified statistical risk factors
for human infection or disease (Snow et al. 1998; Ghebreyesus
et al. 2000; Snow and Gilles 2002). Mathematical models can
bridge the gaps between landscape ecology, vector biology,
and human epidemiology, linking large-scale maps to
individual risk in local human populations at spatial scales
ranging from 10 m up to 10 km. At these spatial scales,
transmission dynamics for vector-borne infections are linked
to the seasonal dynamics, demography, and behavior of adult
female mosquitoes, as well as the spatial distribution of larval
habitat and blood hosts (Bidlingmyer 1985). Given a map of
potential or actual mosquito sources and human habitation,
what factors determine where and when the risk of a
mosquito-borne infection is highest?

The risk of a mosquito-borne infection is estimated by the
entomological inoculation rate (EIR): the number of bites by
infectious mosquitoes per person per day (Macdonald 1957).
EIR is the product of the human biting rate (HBR)—the
number of bites by vector mosquitoes per person per day—
and the proportion of mosquitoes that are infectious (PIM)
(e.g., for malaria transmission, the sporozoite rate) (Birley and

Charlwood 1987). We focus on the processes that generate
patterns in the two components of EIR in temporally and
spatially heterogeneous mosquito populations. We show that
HBR and PIM peak at different times and places. We also
show that estimates of average EIR in variable environments
generate biased estimates of the relationship between EIR
and the proportion of humans that are infected (Dye and
Hasibeder 1986).
We develop theory to illustrate simple patterns in the EIR

in heterogeneous environments, focusing on EIR’s separate
components. We follow the a priori approach of Ross,
developing simple mathematical models as tools for qual-
itative and quantitative reasoning (McKenzie 2000). We
develop a basis for micro-epidemiological models for
mosquito-borne infections that can be combined with surveys
of larval habitat to map the local risk of mosquito-borne
infections (Greenwood 1989). Effective use and refinement of
such maps depend on an understanding of the dynamics and
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behavior of specific mosquito populations and the trans-
mission of specific infectious agents (Focks et al. 1999).

Results

Temporal Heterogeneity
Fluctuating mosquito density affects EIR through changes

in HBR: transmission increases as mosquito density increases.
Following an increase in the rate at which adult mosquitoes
emerge, mosquito density and HBR peak (illustrated in Figure
1). The peak in EIR and the density of infected mosquitoes
follow the peak in total mosquito density because it takes
time for an infectious agent to spread through the human
and mosquito populations. Increased HBR leads to secondary
increases in the proportion of infected humans, and thus to
increases in PIM. As the density of infected mosquitoes
declines, decreasing transmission is followed by a decline in
the prevalence of infection in humans.

In contrast, larger fluctuations in PIM are generated by the
shifting age distribution in fluctuating mosquito populations.
Adults emerge uninfected, but they become infected some
time after biting infectious humans. Growing populations are
dominated by young, uninfected mosquitoes, while shrinking
populations are dominated by older mosquitoes. Since the
proportion of mosquitoes that are infected and infectious
increases with the age of the mosquito, PIM is a proxy for the
age distribution of mosquito populations. As populations
decline, surviving mosquitoes continue to bite and oviposit
but few young mosquitoes emerge, so declining populations
have a larger fraction of old mosquitoes. Thus, PIM increases
during the dry season as mosquito populations, HBR, and EIR
decline.

Spatial Heterogeneity
The distribution of adults is determined by the distribution

of larval habitat, the distribution of blood hosts, and the
alternating activities of blood-meal-seeking and oviposition.
When mosquito emergence rates and human population
distributions are constant over time, the distribution of
mosquitoes reaches a static spatial distribution. We focus on
the patterns that form along a transect.

In Figure 2, we assume a single point source for mosquitoes

and a homogeneous distribution of humans. In Figure 3, the
same number of adult mosquitoes emerges, but the spatial
distribution of larval emergence is uniform along the transect
and the distribution of humans varies: human density is low
at one end, high at intermediate locations, and intermediate
at the opposite end, approximating a small town with fewer
dwellings on the edge nearest a swampy area. In Figure 4 we
combine the two kinds of spatial heterogeneity.

Gradients in EIR Away from Larval Habitat
When mosquitoes emerge from a point source, the density

of mosquitoes tends to decline with distance from larval
habitat, such as a gradient along a transect away from a
swamp or river (Figure 2A). The shape of the gradient is
determined by the emergence rate of adult mosquitoes, the
mortality of existing mosquitoes, and random drift away from
the source. In contrast, PIM increases monotonically away
from the source because of a shift in the age distribution and
parity of mosquitoes (Figure 2B). Young mosquitoes tend to
be close to their birthplace because they have moved less;
older mosquitoes have moved more and so are dispersed
further from the source, on average. The spatial distribution
of HBR and EIR reflect the gradients in mosquito density, not
the gradient in PIM (Figure 2A and 2B). The prevalence of
infection in humans declines monotonically with distance
from the mosquito source (Figure 2C).

Heterogeneous Distributions of Humans
When human populations are distributed heterogeneously,

but the larval habitat of mosquitoes is distributed uniformly,
adult mosquito distributions become heterogeneous because
mosquitoes tend to aggregate around humans. Whether this
leads to an increase in HBR depends on whether mosquito
distributions become more aggregated than the distribution
of their human hosts. HBR tends to increase when searching
mosquitoes move rapidly through sparse human populations
and linger in areas with dense human populations. Thus,
mosquito distributions tend to become more aggregated than
human distributions when the mosquito species is long-lived
with long daily flight distances (see below).
We illustrate this principle for one particular set of

parameters that leads to increased mosquito aggregation.

Figure 1. Dynamics with Temporal Heter-

ogeneity

The components of EIR follow different
trends when mosquito populations vary
temporally. Mosquito density (solid
black) forms the dominant component
of HBR. The density of infected mosqui-
toes (solid gray) peaks shortly after the
density of mosquitoes (dotted vertical
lines align the peaks). In contrast, the
proportion of infectious mosquitoes
(dashed) peaks while the mosquito pop-
ulation is declining. Seasonal mosquito
emergence was modeled to have an long-
term averageM=H’ 2 (K=2andH=1).
The ticks on the x-axis mark the peaks of
the wet and dry seasons.
DOI: 10.1371/journal.pbio.0020368.g001
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The human population is distributed heterogeneously in
blocks of low, high, and medium density, approximating a
town with a rural population on one side and an inter-
mediate-density population on the other. The distribution of
adult mosquitoes is influenced by the distribution of humans
(Figure 3A). Aggregations of mosquitoes form spontaneously
at the edges of human settlements simply because mosquitoes
tend to move until they find a host. We note that the major
peaks in HBR are away from town, where human population
density is lowest, and at the edge of town, where human
population density is highest (Figure 3B). EIR also peaks at
the edge of town, but it is lowest on the low-human-density
side of town. With these movement rules, the mosquitoes
found on the side of town with low human density tend to be
younger, hence PIM is low (Figure 3A). The prevalence of

infection in humans is lowest overall in the patches with low
human density (Figure 3C). This model also makes the
surprising prediction that the risk of infection is lowest just
outside the edge of town: the sharp difference in human
density at the edge leads to a strong tendency for mosquitoes
to be drawn into, rather than away from, town, decreasing
HBR and PIM (Figure 3B and 3C).

Heterogeneous Larval Habitat and Human Population
When mosquitoes and humans are distributed unevenly,

the distribution of mosquitoes and risk may be dominated
either by proximity to larval habitats and gradients away from

Figure 2. Statics with Homogeneous Humans and Heterogeneous

Mosquitoes

The components of EIR follow different trends when larval habitat is
distributed at a single point and humans are uniformly distributed
(the gray background illustrates the human distribution).
(A) Mosquito density (solid) declines monotonically, but PIM (dashed)
increases monotonically. The density of infected mosquitoes (Z,
dotted) also declines monotonically.
(B) HBR (solid) and EIR (dashed) both decline monotonically away
from the source, reflecting the steep gradient in mosquito density.
(C) The density of infected humans (dashed) and prevalence of
infection in humans (solid) also decline monotonically (the curves
coincide).
DOI: 10.1371/journal.pbio.0020368.g002

Figure 3. Statics with Heterogeneous Humans and Homogeneous

Mosquitoes

HBR and EIR reflect mosquito movement and human distribution
patterns when larval habitat is evenly distributed but humans have a
low–high–medium distribution, such as a town with rural and
suburban populations on either side (the gray background illustrates
the human distribution).
(A) Mosquito density (solid) is highest in town, peaks at the edges of
town, and dips just outside of town. PIM (dashed) and the density of
infected mosquitoes (Z, dotted) follow similar patterns.
(B) HBR (solid) and EIR (dashed) are both high on the low-density
side of town and lowest on the medium-density side of town, with
peaks just inside town and troughs just outside of town.
(C) The density of infected humans (dashed) and the prevalence of
infection in humans (solid) peak at the edge of town, but prevalence
of infection in humans is less variable than HBR or EIR.
DOI: 10.1371/journal.pbio.0020368.g003
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them or by the tendency of mosquitoes to aggregate around
humans. The realized pattern depends on the relative
distribution of larval habitat and humans, and whether
mosquito aggregation around humans increases HBR. We
illustrate one kind of pattern for parameters that lead to
increased HBR. In this case, human density increases away
from larval habitat. The density of mosquitoes peaks a short
distance from the source, and the density of infected
mosquitoes peaks slightly further away (Figure 4A). HBR
declines monotonically away from the source, but EIR peaks
at an intermediate distance (Figure 4B). The density of
infected humans peaks well away from the source, but the

fraction of infected humans remains relatively constant near
the source, declining abruptly at distances beyond the peak in
infected humans (Figure 4C). Despite the sharp peaks in risk,
PIM displays a robust monotonic increase with distance away
from the source (Figure 4A). If the gradient is reversed, so
that human density decreases with the distance away from
larval habitat, mosquitoes remain close to the source and
mosquito aggregation is exaggerated, compared with Figure 2
(data not shown).

Measuring EIR in Heterogeneous Environments
Variability in EIR across a landscape can lead to systematic

bias in the estimation of risk. In Figure 5, we plot local EIR
and its components against the local prevalence of infection
in humans for the individual patches in Figures 2–4. We also
plot the average EIR for each transect. In addition, we overlay
the temporal patterns from Figure 1 as a phase diagram. We
note that local EIR and local prevalence of infection in
humans at equilibrium, �xx, have a clear nonlinear relationship
given by the following formula:

�xx ¼ b EIR
r þ b EIR

: ð1Þ

In contrast, the relationship between average EIR and average
prevalence of infection in humans is biased, such that average
prevalence always falls below the true relationship (Figure
5A). The bias is due to an inherent mathematical property of
nonlinear relationships known as Jensen’s inequality (Krantz
1999). Since the relationship between EIR and the prevalence
of infection in humans is concave down, aggregating
estimates of EIR in variable habitat will always underestimate
the true relationship, sometimes spectacularly (Ruel and
Ayres 1999).
The local density of infectious mosquitoes (Figure 5B) and

the local HBR (Figure 5C) provide reasonably good estimates
of risk. In both cases, spatial heterogeneity in human density
or PIM is a substantial source of variability in measures of
average risk. In contrast, PIM displays no clear pattern along
the transect (Figure 5C). The patches in which PIM is high but
the prevalence of infection in humans is low are all far from
larval habitat.

Sensitivity Analysis
The patterns illustrated in Figures 2–4 are based on a single

set of entomological parameters in order to facilitate
comparisons among situations in which only the distributions
of mosquitoes and hosts vary. The distribution of risk will
change for different values of the parameters. We explored
the effects of mosquito movement and the duration of the
incubation period on the distribution of risk (below and
Protocol S1).
The tendency of mosquitoes to aggregate at the edges of a

town or away from larval habitat depends on mosquito
searching behavior and demography. Three important
parameters that affect these patterns are the maximum daily
flight distance of a mosquito, mosquito longevity, and
mosquito searching efficiency. The distribution of a mosquito
cohort initially reflects the distribution of larval habitat. As
mosquitoes search for hosts, the distribution of the cohort
shifts to reflect the distribution of human hosts. These
tendencies are also reflected in the static spatial distributions
of mosquitoes. The distribution of long-lived mosquitoes with

Figure 4. Statics with Heterogeneous Humans and Mosquitoes

When human density increases smoothly away from a larval habitat
(the gray background illustrates the human distribution), the patterns
of EIR components reflect heterogeneity in the distribution of larval
habitat and human populations.
(A) Mosquito density (solid) peaks an intermediate distance away
from the source. The peak density of infected mosquitoes (Z, dotted)
is further from the source because PIM (dashed) increases monotoni-
cally away from the source.
(B) HBR (solid) decreases monotonically away from the source,
reflecting mosquito density, but EIR (dashed) has a minor peak away
from the source.
(C) The density of infected humans (dashed) peaks away from the
source, but the prevalence of infection in humans (solid) remains
relatively constant near the source, dropping off sharply further
away.
DOI: 10.1371/journal.pbio.0020368.g004
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long daily flight distances will tend to reflect the underlying
distribution of humans, while the distribution of short-lived
mosquitoes with short flight distances will tend to reflect the
distribution of larval habitat. Mosquito searching efficiency
determines the relative rates of movement through habitats
that vary in human density. A strong tendency for mosquitoes
to aggregate at the edges of dense human populations occurs
when mosquitoes move quickly through areas that are
sparsely populated by humans and linger in areas that are
heavily populated. In other words, mosquitoes tend to
become more aggregated than their hosts, increasing HBR,
when mosquito searching is relatively inefficient at low
human densities.

The distribution of relative risk also changes with the time
required for incubation of the infectious agent, with
mechanically transmitted agents at one extreme. When all
else is equal, HBR is higher in areas in which human density is
low, since human population density is in the denominator of
HBR. On the other hand, HBR may decline in low-human-
density areas because mosquitoes tend to move up a gradient
of human population density in search of a blood-meal host.
Such migration will tend to lower the average age of
mosquitoes in low-human-density patches, especially near
the edge of a town. This will tend to lower PIM for infectious
agents with a long incubation period. In contrast, PIM for
mechanically transmitted infectious agents will not be as
strongly affected, so in comparison, the relative risk may be
higher at that same edge of town.

Discussion

EIR is generally considered to be the best estimate of the
risk of mosquito-borne infections, but EIR varies over space
and time. EIR varies spatially because larval habitat and blood-
meal hosts are heterogeneously distributed across a landscape.
Temporal variability is generally driven by weather, especially

rainfall, temperature, and humidity. To compound the
problem, heterogeneity in human feeding over short distances
can be caused by vector preferences for individual humans
based on odor or other cues (Takken and Knols 1999; Kelly
2001). Heterogeneous biting has important implications for
the dynamics and control of mosquito-borne infections (Dietz
1980; Dye and Hasibeder 1986; Woolhouse et al. 1997).
Heterogeneous biting also has important implications for

the measurement of EIR. Estimates of EIR may vary
substantially over short distances depending on the place
and time at which the measurement is made. Depending on
the method used, EIR may also vary with the relative
attractiveness of the human bait. Our mathematical models
have shown that average EIR in heterogeneous environments
gives a strongly biased estimate of average risk, even when
local estimates of EIR provide a perfect measure of local risk.
The bias is unavoidable because the relationship between EIR
and the proportion of humans who are infected is nonlinear,
which leads to a bias due to Jensen’s inequality (Krantz 1999).
A similar bias is likely to arise when estimating risk for other
infectious diseases, a problem that is pervasive and generally
underappreciated in epidemiology and public health (Ruel
and Ayres 1999). Therefore, mathematical models are an
indispensable tool for the design and interpretation of field
studies (Becker 1989).
Mathematical models provide a sound approach to under-

standing risk and planning for control in heterogeneous
environments, especially when the models are based on the
ecology of the local vector populations and a sound under-
standing of the entomological parameters relevant for trans-
mission (Killeen et al. 2000a, 2000b). Creating micro-
epidemiological maps for the distribution of risk would
involve mapping larval habitat and humans, and combining
these maps with an understanding of the temporal dynamics,
blood-meal-seeking behavior, and oviposition habits of
mosquitoes. A critical assumption of the models described

Figure 5. The Relationship between EIR

and Human Prevalence, with Heterogene-

ity

(A) EIR and the prevalence of infection
in humans have a tidy relationship
among patches; each small symbol is
from a single patch in Figures 2–4. The
relationship, given by equation 1, is
plotted in gray. The phase plane of the
dynamic relationship over time from
Figure 1 is plotted with dashed lines.
Average EIR is plotted against the
average prevalence (large symbols). Pre-
dicting the average prevalence of human
infection from average EIR leads to
underestimates.
(B–D) The density of infectious mosqui-
toes (Z) (B), HBR (HBR = aM/H) (C), and
PIM (PIM = Z/M) (D) are plotted against
the proportion of humans who are
infected and infectious. PIM is a partic-
ularly bad measure of the risk of in-
fection; in heterogeneous habitats, it
peaks far from larval habitat, where
mosquito density and prevalence of
infection in humans is lowest. This
accounts for the large number of points
where PIM is high, but the proportion of
infectious humans is low.
DOI: 10.1371/journal.pbio.0020368.g005
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here is that mosquitoes are able to oviposit everywhere.
Vector species may be very selective about where they
oviposit, forcing a return to larval habitat to oviposit between
successive bites. Thus, the heterogeneous distribution of
oviposition sites may also affect the distribution of risk.

A dominant component of EIR is the density of mosquito
vectors relative to human density. Our models show that
mosquito densities and the proportion of humans who carry
a mosquito-borne infection decline with distance away from
larval habitat because of random movement and mosquito
mortality. Such patterns have been documented by numerous
field studies (Trape et al. 1992; Hii et al. 1997; Charlwood et
al. 1998; Clarke et al. 2002; Minakawa et al. 2002; Keating et al.
2003; Staedke et al. 2003; Konradsen et al. 2003; van der Hoek
et al. 2003). The steepness of the gradient in EIR varies,
depending on the ecology of the vector (Hii et al. 1997).

Unlike the patterns in human biting, the proportion of
mosquitoes that are infectious depends on the age structure of
the mosquito population. The likelihood of infection in
mosquitoes shows a strong association with the age or parity
of mosquitoes (Lines et al. 1991). The average age differs in
growing, stable, and declining populations (Aron and May
1982). Our models also predict that the proportion of
infectious mosquitoes increases monotonically with the dis-
tance away from sources of emerging adults; young, pre-gravid
mosquitoes are found more frequently near larval habitat,
while older mosquitoes are found further away. Such patterns
have also been observed in the field (Charlwood et al. 1998).

Mosquito aggregation around dense human populations
depends on the details of mosquito searching behavior. Long-
lived mosquitoes with long flight distances tend to become
more aggregated than their human hosts over intermediate
distances. For example, EIR may peak at the edges of a village,
as has been documented by one field study (Ribeiro et al.
1996). At larger spatial scales, increasing human density may
decrease EIR; one field study concluded that human density
was protective against disease (Snow et al. 1998). We have
emphasized heterogeneous biting that arises from proximity
to larval habitat and from mosquito aggregation due to
blood-meal-seeking behavior. In our models, aggregation is
generated by the tendency of mosquitoes to migrate more
slowly when blood-meal hosts are readily available. Aggrega-
tion in human biting may be enhanced if mosquitoes fly
toward humans that are more attractive at medium and long
distances (Ansell et al. 2002; Mukabana et al. 2002). It remains
to be seen how these factors interact; for instance, at what
distances are preferred hosts more attractive to mosquitoes
(Ansell et al. 2002)?

The use of remote sensing and GIS provides a potentially
powerful tool for understanding the distribution of mosqui-
to-borne infections at large spatial scales, but dynamics and
control of mosquitoes and mosquito-borne infections occur
locally. These technologies will be most effective if they are
coupled with micro-epidemiological models of malaria,
dengue, and other mosquito-borne infections (Greenwood
1989). Such models can predict variability in local risk based
on the distribution of larval habitat, the distribution of
humans, and the demography and behavior of the local
vectors. To generate realistic predictions for the distribution
of risk, it is necessary to understand where and when adult
mosquitoes will emerge, and how blood-meal-seeking and the
distribution of humans will affect the distribution of HBR. It

follows that a knowledge of mosquito demography and
behavior should play a central role in the surveillance and
control of mosquito-borne infections.

Materials and Methods

We use mathematical models strategically, to illustrate general
principles that may apply to many mosquito-borne infections, not to
make predictions about the distribution of a particular infectious
agent or the incidence of disease. The models we present and analyze
are based on the models for malaria infection developed by Ross
(1911). We generate a suite of complex models by elaboration, adding
a realistic incubation period, temporal heterogeneity, mosquito
movement, patchy space, and spatial heterogeneity (Black and Singer
1987). By comparing models, we associate an effect with a factor.
First, we allow mosquito birth rates to vary temporally, and focus on
the temporal changes in the components of EIR (Aron and May 1982).
Next, we illustrate how spatial variability in the distribution of larval
habitat generates source–sink relationships in landscapes and leads to
variability in the spatial distribution of HBR and PIM. Then, we
explore the consequences of heterogeneous human distributions.
Host-seeking behavior by mosquitoes can produce mosquito distri-
butions that are more (or less) aggregated than the distribution of
humans, generating an uneven distribution in risk. Thus, we develop
conceptual models to illustrate which components of the vector
biology determine the distribution of risk.

The model. Let x denote the proportion of humans who are
infected and infectious and H denote the population density of
humans. We assume that the human infectious period is exponen-
tially distributed with average duration of infection 1/r. Thus, we are
following Ross in developing a model for infection ignoring super-
infection, immunity, and clinical disease (Fine 1975; Aron and May
1982; Cohen 1988; Dietz 1988).

We extend the Ross model by adding temporal variability in
mosquito density. Let e(t) denote the rate adult female mosquitoes
emerge from larval habitat; we do not assume that the emergence of
adults is explicitly linked to the density of adult mosquitoes. Let M
denote the population density of mosquitoes, Z the density of
infectious mosquitoes, and z¼Z/M the proportion of mosquitoes that
are infectious. We assume that the mosquito lifespan is exponentially
distributed with a mean lifetime of 1/g d.

We incorporate a realistic incubation period by subdividing the
incubation period into n stages of equal duration; the proportion of
mosquitoes that are infected and incubating in stage k is denoted yk,
and the density of mosquitoes in that stage is Yk. We assume the
incubation period has mean of 1/q d. The probability of surviving
the incubation period is (qn/(qnþ g))n (approximately e�g/q for large n),
and the duration of the incubation period (for surviving mosquitoes)
has a Gamma distribution with mean 1/q and variance 1/(q2n); for the
numerical simulations, we use n ¼ 64 (Protocol S1). The larger n is,
the smaller the variance is. In the limit as n approaches infinity, the
dynamics approach a fixed time delay.

Let a denote the human feeding rate, the number of human bites
per mosquito per day, b denote the probability an uninfected human
becomes infected from a single bite from an infectious mosquito, and
c denote the probability that a mosquito becomes infected from
biting an infectious human host.

The transmission dynamics of mosquito-borne infections are
complex, and it is easy to lose sight of what terms such as EIR and
HBR actually mean. HBR is the number of bites received by a human
each day. Thus, it is the product of the human feeding rate, a—the
number of human blood meals per mosquito per day—and the
number of mosquitoes per human (i.e., HBR ¼ aM/H). Therefore,
when mosquito density changes, HBR changes proportionally. In
contrast, EIR is the number of infectious bites per human per day.
Thus, it is the product of PIM and HBR (i.e., EIR ¼ zHBR ¼ azM/H).
Table 1 lists variable and parameter names and other important
terms for the models.

The dynamic process is embedded into a spatial context by
subdividing a landscape into a set of patches linked by the movement
of mosquitoes. The subscript i is added to variable names to denote
the value in the ith patch. Thus, Hi denotes local human population
density and xi the local prevalence of infection in humans. Similarly,
Mi denotes local mosquito population density, and Zi denotes the
density of infectious mosquitoes. The density of infected mosquitoes
in patch i and incubation stage k is denoted Yi,k. This deterministic
approach to incorporating space has some limitations (Mollison 1984,
1986; Durrett and Levin 1994a, 1994b).
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Larval habitat and human distributions form a template that
determines mosquito distributions and the distribution of risk. The
emergence rate of adults in the ith patch is ei(t); the emergence of
adult female mosquitoes depends predictably on time and location.
Following emergence, female mosquitoes spread into surrounding
areas seeking blood hosts; they feed, oviposit, and then repeat the
cycle. We assume that heterogeneity in larval habitat takes the form
of differences in quality of larval development rather than availability
of places to oviposit. In other words, we assume that suitable sites for
oviposition are distributed homogeneously throughout the habitat,
but that patches may vary in the successful development of adults.
Some patches may produce no adults. Heterogeneity in the
availability of oviposition habitat would affect the distribution of
risk because mosquitoes would alternate between finding a place to
oviposit and finding a blood meal. If oviposition were not possible in
most patches, those that allowed oviposition would become focal
points for mosquito aggregation. Thus, these results apply mainly to
mosquito species for which heterogeneous availability of oviposition
sites is relatively unimportant for the distribution of risk.

We assume that humans do not move among patches. The density
of humans and the productivity of the larval habitat may vary over
space. As we change the distribution of humans and larval habitat to
explore the effects of spatial heterogeneity, we hold the total
emergence rate of adult mosquitoes per human constant; only the
distribution of humans and adult mosquito emergence changes.

We assume that mosquitoes are more likely to stay in a patch if
they encounter a human, and that they are more likely to find
humans where humans are more abundant. Let /(Hi) denote the per
capita emigration rate of mosquitoes away from patch i regardless of
infection status. We assume that /(H) is a decreasing function of H;
the more humans, the less likely mosquitoes are to leave a patch in
search of another blood-meal host. Thus, mosquitoes move more
rapidly through patches with low human densities. A parameter, ji,j,
describes the fraction of mosquitoes leaving patch i that fly to patch j,
and Rjji,j ¼ 1. Thus, the rate that mosquitoes move from patch i to
patch j is /(Hi)ji,jMi.

The transmission dynamics are described by the following set of
equations:

_xxi ¼ ab
Zi
Hi

ð1� xiÞ � rxi ð2Þ

_MMi ¼ eiðtÞ � gMi � /ðHiÞMi þ
X

j

jj;i/ðHjÞMj ð3Þ

_YY i;1 ¼ acxiðMi �
X

k

Yi;k � ZiÞ � ðg þ qnÞYi;1

� /ðHiÞYi;1 þ
X

j

jj;i/ðHjÞYj;1 ð4Þ

_YY i;k ¼ qnYi;k�1 � ðg þ qnÞYi;k � /ðHiÞYi;k þ
X

j

jj;i/ðHjÞYj;k ð5Þ

_ZZi ¼ qnYn � gZi � /ðHiÞZi þ
X

j

jj;i/ðHjÞZj ð6Þ

This patch-based modeling framework is suitable for modeling an
array or grid of contiguous habitat or an arbitrary network of
patches.

Numerical solutions. Our intent is to focus on the effects of
temporal and spatial heterogeneity. Consequently, we have used a
single set of mosquito life-history parameters and a single duration of
infection in humans. The parameters are roughly consistent with
Anopheles gambiae and the infectious period for malaria (a¼ 0.3; b¼ c¼
0.5; 1/g¼ 1/q¼ 10 d). The human infectious period for this case is 100
d (r¼ 0.01), roughly consistent with malaria.

Constant mosquito populations were modeled using a constant
birthrate, ei(t)¼Kig, while temporal heterogeneity was modeled using
the seasonal forcing function ei(t) ¼ Kig(1 sin(2pt/365)). In a
homogeneous landscape, Ki is the long-term average density per
patch, often called the carrying capacity. Throughout, K was chosen
such that the average number of mosquitoes per human across all
patches was 2, i.e., RiMi /RiHi ¼ 2. Figure 1 was generated using a
single patch. Initial conditions were x ¼ 0.01 and Yi,k ¼ Zi ¼ 0. We
generated numerical solutions for 4 y and plotted the last three.

For Figures 2–4, we focused on the relatively simple patterns that
form along a spatial transect, a linear array of seventeen patches that
can be thought of as a long, rectangular island. We have assumed that
ji,j ¼ 0 unless two patches are adjacent, and we plot the values at
equilibrium. We assume that no humans live in the patches at the
extreme ends of the transect, and that all of the mosquitoes leaving
one of these edges return to the adjacent patch; thus j1,2¼j17,16¼1, a
reflective boundary. Otherwise, we assume that mosquitoes move in
either direction at random; thus, ji,j¼ 0.5 for i¼ 2. . .16 and j¼ i 6 1.
Mosquito migration was described by the function /ðHiÞ ¼ fe�hHi . In
Figures 2–4, we used n ¼ 10 and h ¼ 4. These correspond to a
maximum daily flight distance (i.e., without humans) of about ten
patches per day.

Adult mosquito emergence for Figures 2 and 4 was gK(P � 2) in
patch 1 (K¼ 2 and P ¼ 17); no adults emerged within other patches.
The adult emergence rate for Figure 3 was gK in each patch with
humans (K ¼ 2 in patches 2–16).

For Figure 2, human density was 1.0 in patches 2–16. For Figure 3,
human density was 0.2 in patches 2–6, 1.8 in patches 7–11, and 1.0 in
patches 12–16. For Figure 4 human density was (0,1,2,3,. . .,15,0)/120.
Otherwise, the parameters were the same as in Figure 1.

Supporting Information

Protocol S1. Additional Methods

Found at DOI: 10.1371/journal.pbio.0020368.sd001 (285 KB PDF).
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Table 1. Variables and Parameters Used in the Model

Variable or
Parameter

Description

x Proportion of infected and infectious
humans

M Density of mosquitoes
Z Density of infectious mosquitoes
Yk Density of infected mosquitoes, in

incubation state k
H Human density
a Human feeding rate
b,c Transmission efficiencies
1/g Mosquito life expectancy
1/q Mean extrinsic incubation period
n Number of incubating states
1/r Human infectious period
e(t) Mosquito birth rate
/(h) Emigration rate, per mosquito
/(h)ji,j Emigration rate from patch i to j,

per mosquito
aZ/H Entomological inoculation rate (EIR)
aM/H Human biting rate (HBR)
z = Z/M Proportion of infectious mosquitoes (PIM)

DOI: 10.1371/journal.pbio.0020368.t001

PLoS Biology | www.plosbiology.org November 2004 | Volume 2 | Issue 11 | e3681963

Mosquito-Born Disease in Space



References
Ansell J, Hamilton KA, Pinder M, Walraven GE, Lindsay SW (2002) Short-range

attractiveness of pregnant women to Anopheles gambiae mosquitoes. Trans R
Soc Trop Med Hyg 96: 113–116.

Aron JL, May RM (1982) The population dynamics of malaria. In: Anderson
RM, editor. Population dynamics and infectious disease. London: Chapman
and Hall. pp. 139–179.

Beck LR, Rodriguez MH, Dister SW, Rodriguez AD, Washino RK, et al. (1997)
Assessment of a remote sensing-based model for predicting malaria
transmission risk in villages of Chiapas, Mexico. Am J Trop Med Hyg 56:
99–106.

Becker NG (1989) Analysis of infectious disease data. Monographs on statistics
and probability. London: Chapman and Hall. 224 p.

Bidlingmyer WL (1985) The measurement of adult mosquito population
changes—Some considerations. J Am Mosq Control Assoc 1: 328–348.

Birley MH, Charlewood JD (1987) Sporozoite rate and malaria prevalence.
Parasitol Today 3: 231–232.

Black FL, Singer B (1987) Elaboration versus simplification in refining
mathematical models of infectious disease. Annu Rev Microbiol 41: 677–701.

Carter R (2002) Spatial simulation of malaria transmission and its control by
malaria transmission blocking vaccination. Int J Parasitol 32: 1617–1624.

Chadee DD, Kitron U (1999) Spatial and temporal patterns of imported
malaria cases and local transmission in Trinidad. Am J Trop Med Hyg 61:
513–517.

Charlwood JD, Mendis C, Thompson R, Begtrup K, Cuamba N, et al. (1998)
Cordon sanitaire or laissez faire: Differential dispersal of young and old
females of the malaria vector Anopheles funestus files (Diptera: Culicidae) in
southern Mozambique. Afr Entomol 6: 1–6.

Clarke SE, Bogh C, Brown RC, Walraven GE, Thomas CJ, et al. (2002) Risk of
malaria attacks in Gambian children is greater away from malaria vector
breeding sites. Trans R Soc Trop Med Hyg 96: 499–506.

Cohen JE (1988) Esitmating the effects of successful malaria control
programmes on mortality. Popul Bull U N 25: 6–26.

Dietz K (1980) Models for vector-borne parasitic diseases. Lect Notes Biomath
39: 264–277.

Dietz K (1988) Mathematical models for transmission and control of malaria.
In: Wernsdorfer W, McGregor I, editors. Principles and practice of
malariology. Edinburgh: Churchill Livingston. pp. 1091–1133.

Durrett R, Levin SA (1994a) The importance of being discrete (and spatial).
Theor Popul Biol 46: 363–394.

Durrett R, Levin SA (1994b) Stochastic spatial models: A user’s guide to
ecological applications. Philos Trans R Soc Lond B Biol Sci 343: 329–350.

Dye C, Hasibeder G (1986) Population dynamics of mosquito-borne disease:
Effects of flies which bite some people more frequently than others. Trans R
Soc Trop Med Hyg 80: 69–77.

Fine PEM (1975) Superinfection—A problem in formulating a problem. Bureau
Hyg Trop Dis 72: 475–488.

Focks DA, Brenner RJ, Chadee DD, Trosper JH (1999) The use of spatial
analysis in the control and risk assessment of vector-borne diseases. Am
Entomol 45: 173–183.

Ghebreyesus TA, Haile M, Witten KH, Getachew A, Yohannes M, et al. (2000)
Household risk factors for malaria among children in the Ethiopian
highlands. Trans R Soc Trop Med Hyg 94: 17–21.

Greenwood B (1989) The microepidemiology of malaria and its importance to
malaria control. Trans R Soc Trop Med Hyg 83: S25–S29.

Hii JL, Smith T, Mai A, Mellor S, Lewis D, et al. (1997) Spatial and temporal
variation in abundance of Anopheles (Diptera:Culicidae) in a malaria endemic
area in Papua New Guinea. J Med Entomol 34: 139–205.

Keating J, MacIntyre K, Mbogo C, Githeko A, Regens JL, et al. (2003) A
geographic sampling strategy for studying relationships between human
activity and malaria vectors in urban Africa. Am J Trop Med Hyg 68: 357–
365.

Kelly DW (2001) Why are some people bitten more than others? Trends
Parasitol 17: 578–581.

Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, et al. (2000a) A
simplified model for predicting malaria entomologic inoculation rates based

on entomologic and parasitologic parameters relevant to control. Am J
Trop Med Hyg 62: 535–544.

Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF et al. (2000b) The
potential impact of integrated malaria transmission control on entomologic
inoculation rate in highly endemic areas. Am J Trop Med Hyg 62: 545–551.

Killeen GF, Knols BG, Gu W (2003) Taking malaria transmission out of the
bottle: Implications of mosquito dispersal for vector-control interventions.
Lancet Infect Dis 3: 297–303.

Kitron U (1998) Landscape ecology and epidemiology of vector-borne diseases:
Tools for spatial analysis. J Med Entomol 35: 435–445.

Konradsen F, Amerasinghe P, van der Hoek W, Amerasinghe F, Perera D et al.
(2003) Strong association between house characteristics and malaria vectors
in Sri Lanka. Am J Trop Med Hyg 68: 177–181.

Krantz SG (1999) Handbook of complex analysis. Boston: Birkhäuser. 290 p.
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