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Progress in the fight against the HIV/AIDS epidemic is hindered by our failure to elucidate the precise reasons for the
onset of immunodeficiency in HIV-1 infection. Increasing evidence suggests that elevated immune activation is
associated with poor outcome in HIV-1 pathogenesis. However, the basis of this association remains unclear. Through
ex vivo analysis of virus-specific CD8" T-cells and the use of an in vitro model of naive CD8" T-cell priming, we show
that the activation level and the differentiation state of T-cells are closely related. Acute HIV-1 infection induces
massive activation of CD8" T-cells, affecting many cell populations, not only those specific for HIV-1, which results in
further differentiation of these cells. HIV disease progression correlates with increased proportions of highly
differentiated CD8" T-cells, which exhibit characteristics of replicative senescence and probably indicate a decline in T-
cell competence of the infected person. The differentiation of CD8" and CD4" T-cells towards a state of replicative
senescence is a natural process. It can be driven by excessive levels of immune stimulation. This may be part of the

mechanism through which HIV-1-mediated immune activation exhausts the capacity of the immune system.

Introduction

During primary human immunodeficiency virus 1 (HIV-1)
infection, the immune system appears to respond appropri-
ately in order to prevent viral spread, with the mounting of a
strong HIV-specific CD8" T-cell response and a correspond-
ing reduction in viraemia (Koup et al. 1994). In common with
the majority of persistent viruses, HIV has developed a
number of strategies to evade host immunity (Alcami and
Koszinowski 2000). Continuous adaptive mutation (Borrow et
al. 1997) and destruction or impairment of elements
necessary for an optimal immune response (e.g., CD4" T-
cells and antigen-presenting cells) (Kalams and Walker 1998)
may explain the failure of antiviral immunity to eradicate the
virus. However, unlike most other persistent viruses, HIV-1
progressively destroys the immune system, resulting in
acquired immunodeficiency syndrome (AIDS) and death.
The precise mechanisms by which immune function is lost
remain the subject of considerable controversy. In addition to
elevated T-cell turnover and an increase in the proportion of
highly differentiated antigen-experienced CD8" and CD4" T-
cells during HIV infection (Wolthers et al. 1996b; Appay et al.
2002c), HIV-infected individuals are characterised by de-
creased thymic output (Douek et al. 1998) and reduced naive
T-cell numbers (Roederer et al. 1995; Hellerstein et al. 1999,
2003), which reflect a diminished capacity to renew the pool
of T-cells.

Increasing evidence suggests an association between high
levels of immune activation and poor outcome in HIV-
infected individuals (Giorgi et al. 1993; Hazenberg et al.
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2000a, 2003; Grossman et al. 2002; Sousa et al. 2002), although
the underlying mechanism remains unclear. This is supported
by studies of sooty mangabeys and African green monkeys,
the natural hosts of simian immunodeficiency virus (SIV),
which survive SIV infection and are characterised by low
immune activation, in striking contrast to rhesus macaques,
for which SIV infection is fatal (Kaur et al. 1998; Broussard et
al. 2001; Silvestri et al. 2003). To gain further insights into the
mechanisms involved, we have studied the potential interplay
among immune activation, CD8" T-cell differentiation, and
outcome in the context of HIV-1 pathogenesis. We report
here that T-cell activation and differentiation are closely
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Figure 1. CD8" T-Cell Activation during Acute HIV-1 Infection

(A) Percentages of activated CD38" cells (gated on whole CD8" T-cells, HIV tetramer-positive CD8" T-cells, or whole CD4" T-cells) in donors
during acute HIV-1 infection and later postacute on ART (n = 12); healthy donors (n = 11) and untreated donors with nonprogressing chronic
infection (n = 12) are also shown.

(B and C) CD38 and Ki67 expression on CD8" T-cell subsets defined by CD45RA/CD62L (B) or CD28/CD27 (C) expression, shown in one single
donor from acute to postacute (on ART) HIV-1 infection. Percentages of positive cells are shown. Means (= SEM) of CD38" and Ki67" CD8" T-
cells for ten patients are also shown; statistics concern CD38 expression.

(D) Staining for the activation marker CD38 on CMV-, EBV-, or influenza A virus-specific CD8" T-cells during acute and postacute (on ART)
HIV-1 infection in a single donor. Percentages of CD38" tetramer-positive CD8" T-cells are shown. Data on all donors (see Table 1) are also
shown.

(E) Activation (CD38 and Ki67 staining) of CMV-specific CD8" T-cells or whole CD8" T-cell population during acute and postacute (on ART)
HIV-1 infection in a single donor. Percentages of cells present in quadrants are shown.

Statistics: * p < 0.002, ** p < 0.01, NS = nonsignificant, with the nonparametric Mann-Whitney test.

DOLI: 10.1371/journal.pbio.0020020.g001
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related, and that HIV-1 induces immune activation directly
and indirectly, which results in differentiation of CD8" T-
cells towards replicative senescence.

Results
HIV-Infected Subjects

Our study involved the analysis of two distinct groups of
HIV-1-infected individuals. On one hand, we performed a
longitudinal analysis of T-cell subsets during acute HIV-1
infection and its resolution. To examine the effect on T-cells
of elevated immune activation associated with an episode of
vigourous HIV replication (particularly evident at time of
high HIV-1 viraemia, such as the acute infection phase), T-
cells were studied in individuals during HIV acute infection
and later on—postacute—when viral replication was sup-
pressed following the start of antiretroviral therapy (ART)
(Table 1). These donors were diagnosed at an early stage of
primary infection: before or at the time of HIV-1 serocon-
version. On the other hand, we carried out a cross-sectional
study of HIV-infected untreated individuals at different
stages of infection, to draw a correlation between their T-
cell characteristics and clinical status. For this purpose,
untreated HIV-infected donors were classified into three
different groups: acute infection, chronic infection with no
sign of progression (infected for more than 10 y with a CD4”"
count above 500 per milliliter and mean viral load of 10*
copies/ml), and chronic infection with signs of disease
progression (with decreasing CD4" count, 500 < x < 130
per milliliter, and mean viral load of 7 X 10* copies/ml). In
addition to analysing whole CDS8" T-cell populations in these
individuals, we have used a panel of tetramers to study the
phenotypic evolution of CD8" T-cells specific for HIV,
cytomegalovirus (CMV), Epstein-Barr virus (EBV), and
influenza. Although this approach focuses on a limited
number of viral epitopes (restricted by the number of
tetramers available), it remains the only way to avoid
stimulation of the cells in order to detect them (e.g., by
interferon-y [IFN-y] secretion), which may alter cellular
phenotype and does not enable the detection of all cells.
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Direct and Indirect T-Cell Activation during Acute HIV-1
Infection

CD38 was used as a marker of activation; cells expressing
high levels of CD38 (Appay et al. 2002b) were considered as
being activated. During acute HIV-1 infection, HIV-specific
CD8" T-cells were strongly activated, and, intriguingly,
activation of the CD8" T-cell compartment as a whole was
particularly high, reaching to levels of 80%-90%, in contrast
to CD4" T-cells, which show much less activation (Figure 1A).
In order to shed light on the elevated level of activation
experienced by the CD8" T-cell population, we examined
which CD8" T-cell subsets were activated and whether all
activated cells were HIV-specific. Naive cells exhibited a slight
increase in Ki67 (proliferation marker) expression during
acute infection (p = 0.03), in keeping with activation-related
proliferation of this subset, as previously described (Hazen-
berg et al. 2000b). However, little or no difference in
activation levels CD38" between acute and postacute infec-
tion stages was observed within the naive CD8" T-cell subset
(CD62LYICD45RA™) and antigen-experienced CD45RA™ (qui-
escent [Dunne et al. 2002; van Leeuwen et al. 2002]) CD8" T-
cells, in contrast to the rest of antigen-experienced CD8" T-
cells (Figure 1B). This indicates that most activated CDS" T-
cells are or have become antigen-experienced. According to
the expression of the costimulatory receptors CD28 and
CD27, antigen-experienced CD8" T-cells can be positioned
along a putative linear model of differentiation or post-
thymic development: early (CD28"/CD27"), intermediate
(CD287ICD27"), and late (CD287/CD277) differentiated sub-
sets (Appay et al. 2002a). While both CD28"/CD27" and
CD287/CD27" T-cell subsets expressed high levels of CD38
and Ki67 during acute infection, CD287/CD27  T-cells
exhibited little activation and proliferation despite increased
proportions of these cells following acute infection (Figure
1C), suggesting the differentiation into this subset of earlier
differentiated cells following activation.

Surprisingly, from the analysis of CD8" T-cells specific for
non-HIV viral antigens in donors with suitable human
leukocyte antigen (HLA) type (HLA-A*0201 for CMV, EBV,
and influenza A virus; HLA-B*0701 for CMV; and HLA-
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Table 1. Clinical Characteristics and Percentages of Activated HIV-Nonspecific CD8" T-Cells in Donors Studied during Both Acute and

Postacute HIV-1 Infection Stages

Patient Date ART HIV Load CD4 Counts CDS8 Counts %CD38" CMV- %CD38" EBV- %CD38" Influenza-
Specific Specific Specific
CDS8'T-Cells CDS8'T-Cells CDS8'T-Cells

1409 8/3/00 - 2,400,000 498 1,752 66
11/3/00 + 900 912 1,622 52

G502 8/20/99 - 665,753 374 665 55 5
9/18/00  + <50 742 454 0 0

G282 7/22/99 - 481,799 593 1,274 66
12/29/99 + <50 856 792 18

1639 8/23/00 - 4,456,622 278 1,540 19 56 0
1/18/01  + 293 678 769 5 10 0

1416 7/6/00 - 156,852 510 1,053 23 50 0
1/17/01  + <50 538 542 12 5 0

G713 9/30/99 - 283,554 236 605 49
6/1/00 + <50 477 490 20

F073 11/18/98 - 238,200 301 1,014 27 38 4
11/30/00 + 474 417 594 7 3 1

H784 3/17/00 - 2,789,470 520 4,337 53 89 852
10/12/00 + <50 741 803 3 4 4

1917 10/9/00 - 559,834 560 1,769 97 50 0
5/29/01  + <50 1,047 1,514 18 8 0

1517 8/4/00 - 1,465,095 618 1,995 61 56 0
11/7/01  + 6,432 641 1,177 31 22 0

1549 8/15/00 - 279,857 533 933 22 37 1
3/6/01 + 2,683 525 803 20 28 0

@ Sampled during the influenza season and low-positive titers for complement fixation antibody assays to both influenza A and influenza B (although these titers did not

vary significantly after the first timepoint).
DOI: 10.1371/journal.pbio.0020020.t001

B*0801 for EBV), both CMV- and EBV-specific CD8" T-cells
displayed significant levels of activation exclusively during
acute HIV infection, compared to chronic infection (p <
0.002) (Figure 1D; see Table 1). Activated cells specific for
non-HIV viral antigens also participated in the expansion of
the CD8" T-cell population observed in HIV primary
infection, as shown by expression of the proliferation marker
Ki67 (Figure 1E). Plasma DNA levels of CMV and EBV in these
study subjects were below detection limits of the assays and
thus did not provide evidence of high levels (greater than 400
genomes per milliliter) of systemic reactivation (data not
shown). However, the observation of nonactivated influenza
A virus-specific CD8" T-cells (Figure 1D), in contrast to CMV-
or EBV-specific CD8" T-cells (p < 0.01), strongly suggests that
the stimulation of these cells associated with HIV-1 infection
is due to reactivation of pathogens such as CMV and EBV,
rather than as a result of bystander activation. Overall, these
data show that HIV-1 infection leads to activation of antigen-
experienced CD8" T-cells at early stages of differentiation,
both in direct (HIV-specific) and indirect (HIV-nonspecific)
manners.

Activation-Induced T-Cell Differentiation

The potential relationship between T-cell activation and
differentiation was first studied using a system of in vitro
priming of naive CD8" T-cells by dendritic cells (DCs), which
represents a useful model to analyse the generation of
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antigen-experienced CD8" T-cells. This system is based on
the existence in normal human donors of a significant
number of naive CD8" T-cells (reactive for the HLA-A2-
restricted melan-A antigen [Dutoit et al. 2002; Zippelius et al.
2002]), which can be primed by autologous matured DCs
loaded with specific peptides to become antigen-experienced
cells (Salio et al. 2001). Although we cannot with certainty
extend our interpretation of data from this assay system
beyond the in vitro conditions (i.e., signals involved in T-cell
differentiation, apoptosis, or both, as well as homeostatic
signals, may be absent or differ from the in vivo situation),
this system represents a unique opportunity to study the
priming of naive CD8' T-cells using human material. We used
arange of concentrations of the melan-A antigen loaded onto
professional antigen-presenting cells to generate different
levels of stimulation. Mature DCs do not persist very long in
culture (2-3 d); moreover, the half-life of class I MHC-
peptide complexes on mature DCs is rather short (Cella et al.
1999); therefore, the results reflect increasing antigen doses
from a single round of antigen exposure. We observed a close
relationship between the level of stimulation induced and the
size of the resulting antigen-specific CD8" T-cell population
(Figure 2A). This relationship was steady, as maintained over
time, following priming of naive cells and following a second
round of stimulation of the antigen-experienced cells with
antigen-loaded matured DCs (Figure 2B). The priming of
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Figure 2. In Vitro Priming of Antigen-Specific CD8" T-Cells

(A) Representative stainings for melan-A-specific CD8" T-cells following priming of naive cells from healthy donor PBMCs by autologous mature
DCs loaded with various concentrations of antigen. Cells are gated on lymphocytes 47 d after priming. Percentages of melan-A tetramer-positive
CD8" T-cells are shown.

(B) Percentages of melan-A-specific CD8" T-cells over time following priming at day 0 with mature DCs loaded with various concentrations of
antigen, with no restimulation or with restimulation using mature DCs at day 25. The legend indicates the concentration of melan-A-peptide
used in microgram per milliliter; populations generated with 0 or 107° ug/ml of antigen are plotted on the right-hand side Y axis.

(C) Percentages of melan-A tetramer-positive CD8" T-cells expressing granzyme A, Ki67, CD62L, or CD57 according to antigen concentration
used, at day 30 following priming. Ki67 and CD57 expressions are plotted on the right-hand side Y axis.

(D) CD28 and CD27 expression on melan-A tetramer-positive CD8" T-cells in PBMC (day 0), and over time following priming with 1 ug/ml of
antigen. Percentages of cells present in quadrants are shown. The model of CD8" T-cell differentiation based on CD28 and CD27 expression is
illustrated (top left panel).

(E) Distribution of the melan-A-specific CD8" T-cells into the distinct differentiated subsets according to antigen concentration used, at day 47
following priming. Similar observations were made whether the cells were subjected to a second round of stimulation or not.

Data are representative of three independent experiments.

DOL: 10.1371/journal.pbio.0020020.g002
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Figure 3. Activation and Differentiation of Antigen-Specific CD8" T-Cells during HIV-1 Infection

(A) Representative staining for the differentiation marker CD27 on three HIV-specific (HLA-B8 nef, HLA-A2 p17, and HLA-B8 p24) populations
in a single HIV-1-infected donor. Numbers show percentages of tetramer-positive CDS8" T-cells (outside the quadrants) and percentages of
CD27 tetramer-positive cells (inside the quadrants).

(B) Correlation between size (percentage of tetramer-positive CD8" T-cells) and differentiation (percentages of CD27~ tetramer-positive cells) of
CD8" T-cells specific for HIV antigens (including HLA-A2 p17, pol, HLA-B7 nef, gp41, HLA-B8 nef, p24, and HLA-B57 p24) (open circles), CMV
antigens (including HLA-A2, B7, and B35 pp65) (filled circles), EBV (HLA-A2 BMLF1, HLA-B8 BZLF1, EBNA3A) (filled squares), and influenza
(HLA-A2 matrix) (open squares) antigens or all antigens together. These populations were studied in individuals with chronic infection for HIV,
CMV, or EBV (independently from clinical status). P values were obtained using the nonparametric Spearman rank correlation test.

(C) CD28 and CD27 expression on whole, HIV nef-, or p24-specific CD8" T-cells during acute and postacute (on ART) HIV-1 infection in a single
donor.

(D) CD28 and CD27 expression on CMV-, EBV-, or influenza-specific CD8" T-cells during acute and postacute (on ART) HIV-1 infection in a
single donor. Percentages of cells present in quadrants are shown.

DOI: 10.1371/journal.pbio.0020020.g003
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Figure 4. CD8" T-Cell Differentiation and HIV-1 Disease Progression

(A) Distribution of the CD8" T-cell population in differentiated
subsets (CD281/CD27" early, CD287/CD27" intermediate, and CD287/
CD27 late) through the course of HIV-1 infection. Abbreviations: H,
healthy (n = 15); A, acute HIV infection (n = 11); C, chronic HIV
infection nonprogressor (no ART; n = 14); P, chronic HIV infection
with signs of disease progression (no ART; n = 10). Statistics: * p <
0.0001 with the ANOVA test and p < 0.005 between each group.

(B) Percentages of CD27  CD8" T-cells that are specific for HLA-B8
HIV (nef) or HLA-A2 CMV in HIV-1-infected individuals at different
stages of infection. Statistics: ** p < 0.005 with the nonparametric
Mann-Whitney test.

(C) Inverse correlation between CD4" T-cell counts and percentage of
highly differentiated CD27" cells in the whole CD8" T-cell population
of HIV-1-infected donors during chronic infection (untreated non-
progressors and progressors). The p value was obtained using the
nonparametric Spearman rank correlation test.

DOI: 10.1371/journal.pbio.0020020.g004

naive cells (granzyme A-negative) was successfully initiated at
all antigen concentrations, as shown by the expression of the
cytotoxic factor granzyme A in all melan-A-specific CD8" T
cells (Figure 2C). Increasing concentrations of antigen were
associated with increasing activation levels and proliferation,
indicated by increased expression of Ki67 and declining
expression of CD62L (Figure 2C). The analysis of the
differentiation phenotype (based on CD28 and CD27
expression) throughout the priming of the cells provided in
vitro confirmation of the hypothetical model of CD8" T-cell
differentiation observed ex vivo (Hamann et al. 1999; Appay
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et al. 2002a): starting from a population with naive character-
istics (CD28+/CD27+ICD62L+/CD45RA+/granzyme A7) atday 0
(data not shown), antigen-primed cells lost sequentially
expression of CD28 and CD27 (Figure 2D). Following
priming, the differentiation phenotype of the melan-A-
specific CD8" T-cells varied according to the level of
stimulation induced, with high antigen load resulting in
further differentiation of the cells (Figure 2E). These data
show that there is a close correlation among the level of
activation, size, and differentiation of the antigen-specific
CD8" T-cells.

This relationship was confirmed by ex vivo analysis of
antigen-experienced CD8" T-cells. Despite that the majority
of HIV-specific CD8" T-cells are usually found at an
intermediate stage of differentiation (Appay et al. 2002a),
certain of these populations exhibit a significant percentage
of late-differentiated CD8" T-cells, as exemplified by the
analysis of three HIV-1-specific CDS8' T-cell populations in a
single individual (Figure 3A). The examination of the differ-
entiation state (percentage of CD27  in the tetramer-positive
cells) and the size (percentage of tetramer-positive cells in the
whole CD8 population) of a variety of HIV-specific CD8" T-
cell populations in several donors revealed a correlation
between these two parameters (Figure 3B). A similar
correlation was also found in the case of CMV-specific
populations (although these cells are usually more differ-
entiated, as previously described [Appay et al. 2002a]), as well
as in EBV- and influenza-specific CD8"' T-cells. The correla-
tion between differentiation and population size becomes
highly significant when data on all specificities are combined.
Following acute HIV infection and related strong activation,
HIV-specific CD8" T-cells displayed increased percentages of
CD287/CD27 cells (especially with larger populations)
(Figure 3C; Figure 4B). The differentiation phenotype of
non-HIV-specific CD8" T-cells could also vary from acute to
postacute HIV infection stages in relation to activation: while
the differentiation phenotype of influenza A virus-specific
cells remained unchanged, CMV- and (although less fre-
quently) EBV-specific CD8" T-cells became further differ-
entiated (Figure 3D; Figure 4B). This is in keeping with a
recent report, which shows increased differentiation of EBV-
specific CD8" T-cells during HIV-1 infection (van Baarle et al.
2002a). Taken together, these data indicate that the immune
activation induced in the context of HIV-1 infection can
result in the differentiation of T-cells specific for HIV-1 as
well as other pathogens such as CMV and EBV, which may
explain the increase in the proportions of highly differ-
entiated cells observed during HIV-1 infection.

Increased T-Cell Differentiation with Progression to AIDS

Persistent and continuous replication is a hallmark of HIV-
1 infection, along with chronic activation and constant
turnover of T-cells, and these factors are now thought of as
playing a critical role in HIV pathogenesis and disease
progression (Giorgi et al. 1993; Hazenberg et al. 2000a;
Grossman et al. 2002; Hellerstein et al. 2003). The detailed
distribution of the CD8" T-cell population along the pathway
of differentiation during HIV-1 infection was analysed in a
cross-sectional study of individuals at different stages of
infection. It revealed an increase in the proportion of highly
differentiated CD8" T-cells associated with HIV disease
progression (Figure 4A). Increased proportions of CD287/
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Figure 5. CD8" T-Cell Differentiation and A B
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CD27" CD8" T-cells during acute HIV-1 infection are likely to chronic infection (including nonprogressors and donors with
reflect expansion of HIV-specific CD8" T-cells. The enrich- evidence of disease progression, both untreated) revealed an
ment in highly differentiated CD8" T-cells from acute inverse correlation between the overall percentage of highly
infection onwards included virus-specific cells, as exemplified differentiated cells and CD4" T-cell count, as an indicator of
by the analysis of populations specific for one HIV epitope or disease progression (Figure 4C). No significant correlation
one CMV epitope (Figure 4B). The study of individuals during emerged between the differentiation state of virus-specific
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CDS8" T-cell populations and CD4" T-cell count; a larger
number of virus-specific CD8" T-cell populations studied
may be required. A problem with the interpretation of
increased numbers of highly differentiated T-cells relates to
the controversy around the significance of these cells. Some
investigators regard these cells as the effector-type popula-
tion, conferring optimum protective immunity (van Baarle et
al. 2002b; Zhang et al. 2003), but for others, these cells have
lost their capacity to proliferate and their incidence may
reflect ageing of the lymphocyte population (Effros et al.
1996; Globerson and Effros 2000; Appay and Rowland-Jones
2002b).

Replicative Senescence and Increased T-Cell
Differentiation

As CD8" T-cells differentiate further, they express increas-
ing levels of CD57 (Figure 5A), a marker that has recently
been associated with a state of replicative senescence
(Brenchley et al. 2003). This is in line with the observation
of increased CD57 expression on CDS8' T cells following acute
HIV infection, including cells specific for HIV, as well as
other specificities, such as CMV- and EBV-specific cells
(Figure 5B). Increased CD57 expression in association with
further T-cell differentiation was also seen following priming
of T-cells in vitro (see Figure 2C), although this remained
relatively modest (below 10%), possibly due to the high
susceptibility to activation induced cells death of CD57" T-
cells (Brenchley et al. 2003; unpublished data) in the
interleukin-2 (IL-2)-supplemented assay conditions. In keep-
ing with the finding by Brenchley et al. (2003), we observed
that highly differentiated CD27 /CD57" CD8" T-cells ex-
hibited a reduced capacity to proliferate despite being
activated following stimulation with anti-CD3 antibodies (—/
+ addition of IL-2) (Figure 5C). In addition, we measured
telomere length in CDS8" T-cell subsets at different stages of
differentiation. The telomere length reflects the mitotic
history of cells: in lymphocytes, every cell division shortens
the telomeres by approximately 30-60 basespairs (Rufer et al.
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1998), until the cells lose their capacity to proliferate any
longer. The induction of human telomerase expression
(necessary for the maintenance of telomere length) has
recently been shown to decrease in T-cells that have
expanded in vivo upon antigen encounter (Roth et al
2003). Shortening of the telomeres appears to occur
progressively along T-cell differentiation (Figure 5D) so that
highly differentiated CD277ICD57Y cells display the shortest
telomeres, with lengths (4-5 kb) equivalent to those observed
in antigen-experienced CD8" T-cells from the elderly (Rufer
et al. 1999). All together, these data support the view that T-
cells exhibit increasing characteristics of replicative senes-
cence as they differentiate further. The assumption that
CD287/CD27 T-cells are protective effector cells is mainly
based on the fact that these cells possess strong cytotoxic
potential, expressing high levels of perforin, as seen ex vivo
(Hamann et al. 1997). However, a recent report suggests that
ex vivo Crb1 release assay, and therefore perforin levels, may
not be a true reflection of in vivo cytotoxic capacities and,
accordingly, this could be misleading in the interpretation of
what constitutes a protective “effector cell” (Barber et al.
2003).

It was previously reported that antigen-specific CD27"
CD8" T-cells do proliferate (van Leeuwen et al. 2002). We
show here that only a proportion of highly differentiated
CD27" CD8" T-cells express CD57, therefore exhibiting
reduced proliferative capacities, while the rest of the CD27~
CD8" T-cells should indeed be able to expand. Nonetheless,
the vast majority of highly differentiated cells with high levels
of perforin are CD57F (Figure 5E). The association between
high levels of perforin and characteristics of replicative
senescence is not a particular characteristic of HIV infection,
but holds true in both HIV-infected and HIV-noninfected
individuals (Figure 5F). Increase in the intracellular perforin
content seems to be the normal consequence of the process
of post-thymic development, and it is also valid in the case of
CD4" T-cell differentiation, since cytotoxic CD4" T-cells,
whose proportions are increased during HIV-1 infection
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(Appay et al. 2002c), are CD57" (Figure 5G). Overall, as HIV-
1-infected individuals are progressing, they display increasing
proportions of late-differentiated T-cells with characteristics
of replicative senescence, with an average of 40% of CD57+
CD8*' T-cells in progressor/AIDS individuals (data not shown).
Overall, the accumulation of highly differentiated CD8' T-
cells in HIV infection goes along with reports of reduced
proliferative capacities and shorter telomere length charac-
terising the T-cells of the HIV-infected individual (Wolthers
et al. 1996a; Bestilny et al. 2000; Effros 2000).

Discussion

Here we have studied the interplay between CDS8" T-cell
activation and differentiation and its implications for HIV
pathogenesis. HIV-1 induces a strong immune activation,
which is particularly evident within the CD8" T-cell compart-
ment. Our data indicate that HIV-1 infection results in
immune activation not only directly, but also indirectly, with
the activation of cells specific for non-HIV antigens. In recent
years, the role of potential bystander activation has been
reevaluated and is now considered less important (Murali-
Krishna et al. 1998), suggesting that most of the stimulation
observed may be antigen-driven. During acute HIV-1
infection, immunosuppression may develop that favours the
replication of host flora like CMV and EBV, as occurs in other
immunocompromised individuals (Yao et al. 1996; Gerna et
al. 1998). Recently, the help provided by CD4" T-cells to
control viral replication has been emphasised in the context
of CMV infection (Gamadia et al. 2002). The drop in the CD4"
T-cell counts during HIV acute infection may result in
suboptimal immune control of CMV and EBV and thus
permits the replication of these viruses. Data have indicated
that frequent reactivation of CMV likely occurs in the human
host, as evidenced by the presence of a large population of
CD69" CMV-specific cells, indicative of recent in vivo
activation (Dunn et al. 2002). Hence, HIV infection may
serve to increase both the frequency and magnitude of CMV
reactivation. In addition, inflammatory conditions occurring
during HIV acute infection (e.g., release of proinflammatory
cytokines) may participate in the reactivation of latent forms
of CMV and EBV.

We have shown here that T-cell activation and increasing
differentiation are closely related. One could speculate that
the association between different stages of CDS8" T-cell
differentiation and viral specificity of these cells, as pre-
viously described (Appay et al. 2002a; Tussey et al. 2003), may
be related to the stimulation intensity received by the cells
from priming onwards. CMV may therefore be a particularly
potent stimulus for CD8" T-cells, thus promoting a strong
differentiation of these cells. Interestingly, a similar phenom-
enon seems to happen in the context of CD4" T-cells, as
CMV-specific CD4" T-cells show further differentiation, in
comparison with EBV-specific CD4" T-cells (Amyes et al.
2003).

In the context of HIV infection, elevated and chronic
immune activation is the most plausible cause for the general
shift of the CDS8" T-cell population towards the highly
differentiated cells that accompanies progression towards
AIDS, as we have shown that elevated cellular activation
drives further differentiation of CD8" T-cells (including HIV-,
CMV-, or EBV-specific cells). Converging evidence suggests
that a reduction of replicative potential occurs with extensive
T-cell division and differentiation. Differentiation towards
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late stages (CD287/CD27 /CD57") is strongly associated with
the display of characteristics of replicative senescence, which
may have an impact on viral control. The relevance of
perforin™s® late-differentiated T-cells in conferring protec-
tive immunity is controversial. For instance, van Baarle et al.
(2002a) reported a correlation between high numbers of late-
differentiated HIV-specific CD8" T-cells and years of AIDS-
free survival. However, it remains to be determined whether
late-differentiated CD8" T-cells would simply accumulate in
these individuals with chronic infection over time, whilst
playing no role in delaying disease progression. Overall, there
is confusion regarding the ideal functional and phenotypic
profile of a “protective effector cell.” Protective immunity
has recently been associated with the proliferative capacity of
virus-specific CD8 T-cells in the mouse model (Wherry et al.
2003). This is supported by Migueles et al. (2002), who showed
that HIV-1-infected long-term nonprogressors are charac-
terised by HIV-1-specific CD8" T-cells that maintain a strong
proliferative capacity following in vitro stimulation (cells
defined mainly as CD45RO'CD28'ICD27" early-differenti-
ated cells). In this study, the proliferative potential of these
cells was coupled to strong perforin expression, suggesting
that early-differentiated cells (which express low perforin
levels in a resting state [Appay et al. 2002a]) are able to
express high perforin levels after certain conditions of
stimulation. In contrast, the high perforin levels observed in
resting late-differentiated T-cells seem to correlate with
characteristics of replicative senescence. These findings
challenge the view that highly differentiated T-cells are
beneficial effector cells that should be the goal of vaccine
or immunotherapeutic strategies (Speiser et al. 2002). In
keeping with this position, the fraction of perforinhigh HIV-
specific CD8" T-cells has been proposed to be a marker for
disease progression (Heintel et al. 2002). One may speculate
that this high perforin expression may reflect an alteration of
gene expression related to replicative senescence. This may
not be dissimilar to the changes in gene expression that occur
during replicative senescence in fibroblasts (Smith and
Pereira-Smith 1996). More investigations on this matter will
be necessary to clarify the cause and consequence of high
perforin levels in late-differentiated T-cells.

The elevated and chronic stimulation induced by HIV-1
may result in the exhaustion of the capacity to generate new
T-cells (Hazenberg et al. 2003), while the pool of antigen-
experienced cells is driven to differentiate into aged
oligoclonal populations. Interestingly, these characteristics
are not unique to HIV infection, but they are also common to
other conditions that result in some degree of immunodefi-
ciency, like ataxia telangiectasia (Giovannetti et al. 2002), and
normal human ageing (Nociari et al. 1999; Rufer et al. 1999).
They may reflect a premature decline of the immune
resources necessary for viral control and therefore contribute
to the onset of disease progression (Effros 2000; Hazenberg et
al. 2000a; Appay and Rowland-Jones 2002b; Grossman et al.
2002). This hypothesis is also strongly supported by a recent
study performed in a mouse model in which persistent
immune activation was shown to exhaust the T-cell pool and
be sufficient to induce lethal immunodeficiency (Tesselaar et
al. 2003). In addition to a direct effect of HIV on the thymus,
decreased thymic output and T-cell renewal may originate
from thymus involution (Kalayjian et al. 2003) as well as the
failure of the bone marrow and the reduction of primitive
hemaopoietic stem cell subsets (Marandin et al. 1996; Moses
et al. 1998), as observed in HIV-1-infected individuals.
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Increased proportions of highly differentiated T-cells may
relate to the maintenance of homeostasis and “immunolog-
ical space” in the absence of T-cell renewal.

Our study also emphasises the importance of considering
the influence of HIV-1 infection on other pathogens as well as
the influence of these pathogens on HIV pathogenesis. For
instance, CMV is known to drive substantial differentiation of
T-cells towards CD57" cells (Wang et al. 1995). CMV may
therefore play an important role in the decline of the
immune resources, as recently proposed in the HIV-non-
infected elderly (Khan et al. 2002; Wikby et al. 2002). CMV
infection was recently associated with a higher rate of disease
progression in HIV-1-infected infants (Kovacs et al. 1999) and
with reduced survival in patients with advanced HIV disease
(Erice et al. 2003); it has also been shown to be a cofactor for
HIV disease progression and death in some longitudinal
studies of HIV-infected haemophiliacs (Webster et al. 1989).
The impact of elevated activation and differentiation on
immune function appears to have considerable importance
in the onset of immunodeficiency and needs to be addressed
in the development of current and future anti-HIV strategies.

Materials and Methods

Study subjects. Samples were taken from HIV-1-infected patients
attending clinics in London or Oxford (United Kingdom) and San
Diego (United States) who were known to have either acute or
chronic HIV-1 infection. The relevant local Institutional Review
Boards and Ethics Committees approved the study. Subject ages
ranged from 23 to 65 y old. Eleven patients with HIV-1 acute
infection were selected from a well-characterised cohort in San Diego
on the basis of their having an HLA type (HLA-A*0201, HLA-B*0701,
or HLA-B*0801) for which we could detect virus-specific CD8" T-cell
populations using tetramers. The donors were diagnosed before or at
the time of HIV-1 seroconversion, defined by symptomatic disease,
recent high-risk exposure, high-plasma HIV-1 RNA (ranging from 3 X
10° to 3 X 10° copies/ml [mean, 8.3 X 10° copies/ml]), and either a
negative HIV-1 ELISA or a negative/indeterminate HIV-1 Western
blot. A second sample was analysed at a later timepoint after the start
of successful ART (see Table 1). The study also involved untreated
HIV chronically infected individuals: either with indications of viral
control (n = 14, drug naive, infected for more than 10 y with a CD4"
count above 500 per milliliter and viral load ranging from
undetectable to 2 X 10* copies/ml) or with evidence of progressive
HIV disease (n = 10, with decreasing CD4" count, 500 < x < 130 per
milliliter, and viral load ranging from 5 X 10% to 8 X 10° copies/ml).
Blood samples were also obtained from healthy adult volunteers.
Peripheral blood mononuclear cells (PBMCs) were separated from
heparinised blood and cryopreserved for subsequent studies. HLA
typing was carried out by amplification refractory mutation system-—
polymerase chain reaction (ARMS-PCR) using sequence-specific
primers as previously described (Bunce et al. 1995). HLA-typed
patients were generally screened first for virus-specific CD8" T-cell
responses by means of Elispot assays using known HLA class I-
restricted viral epitope peptides.

Reagents and flow cytometry. HLA-peptide tetrameric complexes
(“tetramers”) were produced as previously described (Altman et al.
1996) and included the following specificity: A2 HIV p17-SLYNT-
VATL and pol-ILKEPVHGV, A2 CMV pp65-NLVPMVATV, A2 EBV
BMLFI1-GLCTLVAML, A2 influenza matrix-GILGFVFTL, A2 melan-
A-ELAGIGILTV, B7 HIV nef-TPGPGVRYPL and gp41-IPRRIRQGL,
B7 CMV pp65-TPRVTGGGAM, B8 HIV nef-FLKEKGGL and p24-
DIYKRWII, B8 EBV BZLF1-RAKFKQLL, B35 CMV pp65-
VFPTKDVAL and B57 HIV p24-KAFSPEVIPMF. Anti-CD8-PerCP
(peridinin chlorophyll protein) or APC CY7 (allophycocyanin cyanine
7), anti-CD27-PE (phycoerythrin) or APC, anti-CD28-FITC (fluores-
cein isothiocyanate), anti-CD38-APC, anti-CD45RA-FITC or ECD
(PE-Texas red), anti-CD62L-APC, anti-Ki67-FITC, anti-CD69-FITC,
anti-CCR7-purified, anti-granzyme A-FITC, and anti-perforin-PE
antibodies were purchased from Becton-Dickinson PharMingen (San
Diego, California, United States); anti-CD57-FITC or PE antibodies
were from Beckman Coulter (San Diego, California, United States).

FACS stainings were performed as previously described (Appay

PLoS Biology | http://biology.plosjournals.org

T-Cell Differentiation in HIV Infection

and Rowland-Jones 2002a). In brief, titrated tetramers (PE-conju-
gated) were added to 150 pl of heparinised blood or PBMCs, followed
by addition of a panel of titrated antibodies (FITC-, PerCP-, or APC-
conjugated). The lymphocytes were then fixed and the red blood cells
lysed using FACS™ lysis solution (Becton-Dickinson). Cells were
washed, fixed, and permeabilised in FACS™ permeabilisation buffer
(Becton-Dickinson). After washing, intracellular perforin staining was
performed using titrated antibodies. Cells were then washed and
stored in Cell Fix '™ buffer (Becton-Dickinson) at 4°C until analysis.
Samples were analysed on a Becton-Dickinson FACSCalibur after
compensation was checked using freshly stained PBMCs. Carboxy-
fluorescein diacetate succinimidyl ester (CFSE) labeling was per-
formed by incubating PBMCs with 5 pM CFSE (Molecular Probes,
Leiden, The Netherlands) in RPMI 1640 for 10 min at 37°C, before
quenching with ice-cold RPMI 1640-10% foetal calf serum (FCS) and
washing. The cells were then incubated with immobilised OKT3 (10
pg/ml) for 6 d (with or without 20U/ml of IL-2) before staining.

Flow fluorescence in situ hybridisation. Naive and antigen-
experienced CD8" T-cell subsets were sorted ex vivo from freshly
isolated PBMCs, on the basis of CD27, CD57, CCR7, and CD45RA
expression using a five-color FACS vantage SE (with 98%- 99%
purity). For each subset, 0.5 X 10° to 2 X 10° cells were used to
measure the average length of telomere repeats at chromosome ends
in individual cells by quantitative flow fluorescence in situ hybrid-
isation (FISH), as previously described (Rufer et al. 1998, 1999). FITC-
labeled fluorescent calibration beads (Quantum TM-24 Premixed;
Bangs Laboratories Inc., Fishers, Indiana, United States) were used to
convert telomere fluorescence data to molecules of equivalent soluble
fluorescence (MESF) units. The following equation was performed to
estimate the telomere length in basepairs from telomere fluorescence
in MESF units: basepair = MESF X 0.495 (Rufer et al. 1998).

In vitro priming of CD8" T-cells with DCs. DCs were generated as
previously described (Salio et al. 2001). Monocytes were purified from
healthy donors’ PBMCs (screened for HLA-A2 expression) by positive
sorting using anti-CD14-conjugated magnetic microbeads (Miltenyi
Biotec, Bergisch-Gladbach, Germany). The recovered cells were
greater than 99% CD14". DCs were generated by culturing mono-
cytes in RPMI 1640-10% FCS supplemented with 50 ng/ml GM-CSF
(Leucomax, Basel, Switzerland) and 500 U/ml IL-4 (Peprotech,
London, United Kingdom) for 5 d. Cells (3 X 10°/ml) were stimulated
by addition of 1 pug/ml LPS (Sigma, St. Louis, Missouri, United States).
Antigen-presenting cells were pulsed for 3 h with various concen-
trations of melan-A-peptide in serum-free medium before incuba-
tion with autologous PBMCs at a 1:5 ratio in RPMI 1640-10% FCS.
Human rIL-2 (R&D Systems, Minneapolis, Minnesota, United States)
was added from day 4 at 10 U/ml, then at 500 U/ml IL-2 when cells
expanded. Melan-A-specific CD8" T-cells were then analysed by flow
cytometry over time for up to 50 d.

Statistics. Group medians and distributions were compared by the
nonparametric Mann-Whitney test. Associations between variables
were determined by the nonparametric Spearman rank correlation
test. Associations between variables in different patient groups were
determined by simple linear regression or ANOVA test. P values
above 0.05 were considered not significant.

Acknowledgments

We are very grateful to Linda Terry for technical assistance and to
the staff and patients of the clinics that provided blood samples,
particularly the Caldecot Centre at King’s College Hospital, London;
the clinic of Infectious and Tropical Diseases, L. Sacco Hospital,
Milano; and the Veterans Administration San Diego Research Center
for AIDS and HIV Infection, the National Institutes of Health (NIH)
Acute and Early Infectious Disease Research Program, the University
of California, San Diego, Center for AIDS Research (NIH drug-
resistance grant Al 29164). This work was supported by the Medical
Research Council of the United Kingdom, the Wellcome Trust, the
European Union (QLK2-CT-1999-00356), the Elizabeth Glaser
Paediatric AIDS Foundation, the Cancer Research UK, and the NIH.

Conflicts of interest. The authors have declared that no conflicts of
interest exist.

Author contributions. LP, CAS, MS, NR, PRD, AJM, SLR-], and VA
conceived and designed the experiments. LP, AM, NR, GC, VE, and
VA performed the experiments. LP, NR, and VA analysed the data.
CAS, AM, MS, NR, SL, TD, AW, PE, DS, VC, PG, CC, and DDR
contributed reagents/materials/analysis tools. SLR-] and VA wrote the
paper. n

February 2004 | Volume 2 | Issue 2 | Page 0183



References

Alcami A, Koszinowski UH (2000) Viral mechanisms of immune evasion.
Immunol Today 21: 447-455.

Altman JD, Moss PAH, Goulder PJR, Barouch DH, McHeyzer-Williams MG, et
al. (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science
274: 94-96.

Amyes E, Hatton C, Montamat-Sicotte D, Gudgeon N, Rickinson AB, et al.
(2003) Characterization of the CD4" T cell response to Epstein-Barr virus
during primary and persistent infection. J Exp Med 198: 903-911.

Appay V, Rowland-Jones SL (2002a) The assessment of antigen-specific CD8" T
cells through the combination of MHC class I tetramer and intracellular
staining. J Immunol Methods 268: 9-19.

Appay V, Rowland-Jones SL (2002b) Premature ageing of the immune system:
The cause of AIDS? Trends Immunol 23: 580-585.

Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, et al. (2002a)
Memory CD8" T cells vary in differentiation phenotype in different
persistent virus infections. Nat Med 8: 379-385.

Appay V, Papagno L, Spina CA, Hansasuta P, King A, et al. (2002b) Dynamics of
T cell responses in HIV infection. ] Immunol 168: 3660-3666.

Appay V, Zaunders JJ, Papagno L, Sutton ], Jaramillo A, et al. (2002c)
Characterization of CD4(+) CTLs ex vivo. ] Immunol 168: 5954-5958.

Barber DL, Wherry EJ, Ahmed R (2003) Cutting edge: Rapid in vivo killing by
memory CD8 T cells. J Immunol 171: 27-31.

Bestilny L], Gill MJ, Mody CH, Riabowol KT (2000) Accelerated replicative
senescence of the peripheral immune system induced by HIV infection.
AIDS 14: 771-780.

Borrow P, Lewicki H, Wei X, Horwitz MS, Peffer N, et al. (1997) Antiviral
pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during
primary infection demonstrated by rapid selection of CTL escape virus. Nat
Med 3: 205-211.

Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, et al. (2003)
Expression of CD57 defines replicative senescence and antigen-induced
apoptotic death of CD8" T cells. Blood 101: 2711-2720.

Broussard SR, Staprans SI, White R, Whitehead EM, Feinberg MB, et al. (2001)
Simian immunodeficiency virus replicates to high levels in naturally infected
African green monkeys without inducing immunologic or neurologic
disease. ] Virol 75: 2262-2275.

Bunce M, O’Neill CM, Barnardo MC, Krausa P, Browning M], et al. (1995)
Phototyping: Comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3,
DRB4, DRB5 and DQB1 by PCR with 144 primer mixes utilizing sequence-
specific primers (PCR-SSP). Tissue Antigens 46: 355-367.

Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, et al. (1999) Maturation,
activation, and protection of dendritic cells induced by double-stranded
RNA. J Exp Med 189: 821-829.

Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, et al. (1998)
Changes in thymic function with age and during the treatment of HIV
infection. Nature 396: 690-695.

Dunn HS, Haney DJ, Ghanekar SA, Stepick-Biek P, Lewis DB, et al. (2002)
Dynamics of CD4 and CD8 T cell responses to cytomegalovirus in healthy
human donors. J Infect Dis 186: 15-22.

Dunne PJ, Faint JM, Gudgeon NH, Fletcher JM, Plunkett FJ, et al. (2002)
Epstein-Barr virus-specific CD8(+) T cells that reexpress CD45RA are
apoptosis-resistant memory cells that retain replicative potential. Blood 100:
933-940.

Dutoit V, Rubio-Godoy V, Pittet MJ, Zippelius A, Dietrich PY, et al. (2002)
Degeneracy of antigen recognition as the molecular basis for the high
frequency of naive A2/Melan-A peptide multimer(+) CD8(H) T cells in
humans. ] Exp Med 196: 207-216.

Effros RB (2000) Telomeres and HIV disease. Microbes Infect 2: 69-76.

Effros RB, Allsopp R, Chiu CP, Hausner MA, Hirji K, et al. (1996) Shortened
telomeres in the expanded CD28 CD8" cell subset in HIV disease implicate
replicative senescence in HIV pathogenesis. AIDS 10: F17-F22.

Erice A, Tierney C, Hirsch M, Caliendo AM, Weinberg A, et al. (2003)
Cytomegalovirus (CMV) and human immunodeficiency virus (HIV) burden,
CMV end-organ disease, and survival in subjects with advanced HIV
infection (AIDS Clinical Trials Group Protocol 360). Clin Infect Dis 37:
567-578.

Gamadia LE, Remmerswaal EB, Weel JF, Bemelman F, Van Lier RA, et al. (2002)
Primary immune responses to human cytomegalovirus: A critical role for
IFN-y-producing CD4" T cells in protection against CMV-disease. Blood
101: 2686-2692.

Gerna G, Percivalle E, Baldanti F, Sarasini A, Zavattoni M, et al. (1998)
Diagnostic significance and clinical impact of quantitative assays for
diagnosis of human cytomegalovirus infection/disease in immunocompro-
mised patients. New Microbiol 21: 293-308.

Giorgi JV, Liu Z, Hultin LE, Cumberland WG, Hennessey K, et al. (1993)
Elevated levels of CD38" CD8" T cells in HIV infection add to the prognostic
value of low CD4" T cell levels: Results of 6 years of follow-up—The Los
Angeles Center Multicenter AIDS Cohort Study. J Acquir Immune Defic
Syndr 6: 904-912.

Giovannetti A, Mazzetta F, Caprini E, Aiuti A, Marziali M, et al. (2002) Skewed
T-cell receptor repertoire, decreased thymic output, and predominance of
terminally differentiated T cells in ataxia telangiectasia. Blood 100: 4082-
4089.

T-Cell Differentiation in HIV Infection

Globerson A, Effros RB (2000) Ageing of lymphocytes and lymphocytes in the
aged. Immunol Today 21: 515-521.

Grossman Z, Meier-Schellersheim M, Sousa AE, Victorino RM, Paul WE (2002)
CD4" T-cell depletion in HIV infection: Are we closer to understanding the
cause? Nat Med 8: 319-323.

Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, et al. (1997)
Phenotypic and functional separation of memory and effector human CD8*"
T cells. ] Exp Med 186: 1407-1418.

Hamann D, Roos MT, van Lier RA (1999) Faces and phases of human CD8 T-
cell development. Immunol Today 20: 177-180.

Hazenberg MD, Otto SA, Cohen Stuart JW, Verschuren MC, Borleffs JC, et al.
(2000a) Increased cell division but not thymic dysfunction rapidly affects the
T-cell receptor excision circle content of the naive T cell population in HIV-
1 infection. Nat Med 6: 1036-1042.

Hazenberg MD, Stuart JW, Otto SA, Borleffs JC, Boucher CA, et al. (2000b) T-
cell division in human immunodeficiency virus (HIV)-1 infection is mainly
due to immune activation: A longitudinal analysis in patients before and
during highly active antiretroviral therapy (HAART). Blood 95: 249-255.

Hazenberg MD, Otto SA, van Benthem BH, Roos MT, Coutinho RA, et al. (2003)
Persistent immune activation in HIV-1 infection is associated with
progression to AIDS. AIDS 17: 1881-1888.

Heintel T, Sester M, Rodriguez MM, Krieg C, Sester U, et al. (2002) The fraction
of perforin-expressing HIV-specific CD8 T cells is a marker for disease
progression in HIV infection. AIDS 16: 1497-1501.

Hellerstein M, Hanley MB, Cesar D, Siler S, Papageorgopoulos C, et al. (1999)
Directly measured kinetics of circulating T lymphocytes in normal and HIV-
1-infected humans. Nat Med 5: 83-89.

Hellerstein MK, Hoh RA, Hanley MB, Cesar D, Lee D, et al. (2003)
Subpopulations of long-lived and short-lived T cells in advanced HIV-1
infection. J Clin Invest 112: 956-966.

Kalams SA, Walker BD (1998) The critical need for CD4 help in maintaining
effective cytotoxic T lymphocyte responses. J Exp Med 188: 2199-2204.
Kalayjian RC, Landay A, Pollard RB, Taub DD, Gross BH, et al. (2003) Age-
related immune dysfunction in health and in human immunodeficiency
virus (HIV) disease: Association of age and HIV infection with naive CDS"
cell depletion, reduced expression of CD28 on CD8"' cells, and reduced

thymic volumes. ] Infect Dis 187: 1924-1933.

Kaur A, Grant RM, Means RE, McClure H, Feinberg M, et al. (1998) Diverse host
responses and outcomes following simian immunodeficiency virus SIV-
mac239 infection in sooty mangabeys and rhesus macaques. J Virol 72: 9597-
9611.

Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, et al. (2002)
Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward
greater clonality in healthy elderly individuals. J Immunol 169: 1984-1992.

Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G, et al. (1994) Temporal
association of cellular immune responses with the initial control of viremia
in primary human immunodeficiency virus type 1 syndrome. J Virol 68:
4650-4655.

Kovacs A, Schluchter M, Easley K, Demmler G, Shearer W, et al. (1999)
Cytomegalovirus infection and HIV-1 disease progression in infants born to
HIV-1-infected women: Pediatric Pulmonary and Cardiovascular Compli-
cations of Vertically Transmitted HIV Infection Study Group. N Engl ] Med
341: 77-84.

Marandin A, Katz A, Oksenhendler E, Tulliez M, Picard F, et al. (1996) Loss of
primitive hematopoietic progenitors in patients with human immunodefi-
ciency virus infection. Blood 88: 4568-4578.

Migueles SA, Laborico AC, Shupert WL, Sabbaghian MS, Rabin R, et al. (2002)
HIV-specific CD8" T cell proliferation is coupled to perforin expression and
is maintained in nonprogressors. Nat Immunol 3: 1061-1068.

Moses A, Nelson ], Bagby GC Jr (1998) The influence of human immunode-
ficiency virus-1 on hematopoiesis. Blood 91: 1479-1495.

Murali-Krishna K, Altman JD, Suresh M, Sourdive D], Zajac AJ, et al. (1998)
Counting antigen-specific CD8 T cells: A reevaluation of bystander
activation during viral infection. Immunity 8: 177-187.

Nociari MM, Telford W, Russo C (1999) Postthymic development of
CD28 CDS8' T cell subset: Age-associated expansion and shift from memory
to naive phenotype. ] Immunol 162: 3327-3335.

Roederer M, Dubs JG, Anderson MT, Raju PA, Herzenberg LA (1995) CD8 naive
T cell counts decrease progressively in HIV-infected adults. J Clin Invest 95:
2061-2066.

Roth A, Yssel H, Pene ], Chavez EA, Schertzer M, et al. (2003) Telomerase levels
control the lifespan of human T lymphocytes. Blood 102: 849-857.

Rufer N, Dragowska W, Thornbury G, Roosnek E, Lansdorp PM (1998)
Telomere length dynamics in human lymphocyte subpopulations measured
by flow cytometry. Nat Biotechnol 16: 743-747.

Rufer N, Brummendorf TH, Kolvraa S, Bischoff C, Christensen K, et al. (1999)
Telomere fluorescence measurements in granulocytes and T lymphocyte
subsets point to a high turnover of hematopoietic stem cells and memory T
cells in early childhood. ] Exp Med 190: 157-167.

Salio M, Shepherd D, Dunbar PR, Palmowski M, Murphy K, et al. (2001) Mature
dendritic cells prime functionally superior melan-A-specific CD8" lympho-
cytes as compared with nonprofessional APC. ] Immunol 167: 1188-1197.

Silvestri G, Sodora DL, Koup RA, Paiardini M, O’Neil SP, et al. (2003)
Nonpathogenic SIV infection of sooty mangabeys is characterized by limited

PLoS Biology | http://biology.plosjournals.org @

February 2004 | Volume 2 | Issue 2 | Page 0184



bystander immunopathology despite chronic high-level viremia. Immunity
18: 441-452.

Smith JR, Pereira-Smith OM (1996) Replicative senescence: Implications for in
vivo aging and tumor suppression. Science 273: 63-67.

Sousa AE, Carneiro ], Meier-Schellersheim M, Grossman Z, Victorino RM
(2002) CD4 T cell depletion is linked directly to immune activation in the
pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. ]
Immunol 169: 3400-3406.

Speiser DE, Lienard D, Pittet MJ, Batard P, Rimoldi D, et al. (2002) In vivo
activation of melanoma-specific CD8(+) T cells by endogenous tumor
antigen and peptide vaccines: A comparison to virus-specific T cells. Eur J
Immunol 32: 731-741.

Tesselaar K, Arens R, van Schijndel GM, Baars PA, van der Valk MA, et al.
(2003) Lethal T cell immunodeficiency induced by chronic costimulation via
CD27-CD70 interactions. Nat Immunol 4: 49-54.

Tussey LG, Nair US, Bachinsky M, Edwards BH, Bakari ], et al. (2003) Antigen
burden is major determinant of human immunodeficiency virus-specific
CD8+ T cell maturation state: Potential implications for therapeutic
immunization. J Infect Dis 187: 364-374.

van Baarle D, Kostense S, Hovenkamp E, Ogg G, Nanlohy N, et al. (2002a) Lack
of Epstein-Barr virus- and HIV-specific CD27~ CD8" T cells is associated
with progression to viral disease in HIV-infection. AIDS 16: 2001-2011.

van Baarle D, Kostense S, van Oers MH, Hamann D, Miedema F (2002b) Failing
immune control as a result of impaired CD8() T-cell maturation: CD27
might provide a clue. Trends Immunol 23: 586-591.

van Leeuwen EM, Gamadia LE, Baars PA, Remmerswaal EB, ten Berge IJ, et al.
(2002) Proliferation requirements of cytomegalovirus-specific, effector-type
human CD8(#) T cells. J Immunol 169: 5838-5843. ‘

Wang EC, Moss PA, Frodsham P, Lehner PJ, Bell J1, et al. (1995) cps"MshCDp57H T

PLoS Biology | http://biology.plosjournals.org

T-Cell Differentiation in HIV Infection

lymphocytes in normal, healthy individuals are oligoclonal and respond to
human cytomegalovirus. J Immunol 155: 5046-5056.

Webster A, Lee CA, Cook DG, Grundy JE, Emery VC, et al. (1989)
Cytomegalovirus infection and progression towards AIDS in haemophiliacs
with human immunodeficiency virus infection. Lancet 2: 63-66.

Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, et al. (2003)
Lineage relationship and protective immunity of memory CD8 T cell
subsets. Nat Immunol 4: 225-234.

Wikby A, Johansson B, Olsson J, Lofgren S, Nilsson BO, et al. (2002) Expansions
of peripheral blood CD8 T-lymphocyte subpopulations and an association
with cytomegalovirus seropositivity in the elderly: The Swedish NONA
immune study. Exp Gerontol 37: 445-453.

Wolthers KC, Bea G, Wisman A, Otto SA, de Roda Husman AM, et al. (1996a) T
cell telomere length in HIV-1 infection: No evidence for increased CD4" T
cell turnover. Science 274: 1543-1547.

Wolthers KC, Otto SA, Lens SM, Kolbach DN, van Lier RA, et al. (1996b)
Increased expression of CD80, CD86 and CD70 on T cells from HIV-infected
individuals upon activation in vitro: Regulation by CD4" T cells. Eur J
Immunol 26: 1700-1706.

Yao QY, Tierney RJ, Croom-Carter D, Dukers D, Cooper GM, et al. (1996)
Frequency of multiple Epstein-Barr virus infections in T-cell-immunocom-
promised individuals. J Virol 70: 4884-4894.

Zhang D, Shankar P, Xu Z, Harnisch B, Chen G, et al. (2003) Most antiviral CD8
T cells during chronic viral infection do not express high levels of perforin
and are not directly cytotoxic. Blood 101: 226-235.

Zippelius A, Pittet MJ, Batard P, Rufer N, de Smedt M, et al. (2002) Thymic
selection generates a large T cell pool recognizing a self-peptide in humans.
J Exp Med 195: 485-494.

February 2004 | Volume 2 | Issue 2 | Page 0185



