< Back to Article

How to Make Epidemiological Training Infectious

Figure 3

Utility of stochastic simulation to study the effect of vaccination on future outbreaks.

(A) Five stochastic simulations of Muizenberg Mathematical Fever outbreaks using transmission parameters fit from the 2011 outbreak data but with only one infected individual initiating the outbreak (instead of four) but the same proportion initially immune (25%). In comparison to Figure 1A, the outbreak would appear less likely to take off (with four simulated outbreaks burning out by Wednesday) if only one infected individual initiated the outbreak. (B) shows the distribution of outbreak size (total number infected before burnout) among simulated outbreaks in populations with different immune proportions at the outbreak initiation. The black line shows the median outbreak size among 1,000 stochastic simulations for each immune proportion and the gray regions show 10% quantiles of outbreak size. Only small levels of immunity are necessary to make outbreaks rare (with a fifth of the population immune 50% of simulated outbreaks never exceed more than two secondary cases), but just by chance larger outbreaks still occur. The script for production of and further detail on this figure are given in Text S3.

Figure 3