@article{10.1371/journal.pbio.0040001, doi = {10.1371/journal.pbio.0040001}, author = {Fontaine, Colin AND Dajoz, Isabelle AND Meriguet, Jacques AND Loreau, Michel}, journal = {PLOS Biology}, publisher = {Public Library of Science}, title = {Functional Diversity of Plant–Pollinator Interaction Webs Enhances the Persistence of Plant Communities}, year = {2005}, month = {12}, volume = {4}, url = {https://doi.org/10.1371/journal.pbio.0040001}, pages = {null}, abstract = {Pollination is exclusively or mainly animal mediated for 70% to 90% of angiosperm species. Thus, pollinators provide an essential ecosystem service to humankind. However, the impact of human-induced biodiversity loss on the functioning of plant–pollinator interactions has not been tested experimentally. To understand how plant communities respond to diversity changes in their pollinating fauna, we manipulated the functional diversity of both plants and pollinators under natural conditions. Increasing the functional diversity of both plants and pollinators led to the recruitment of more diverse plant communities. After two years the plant communities pollinated by the most functionally diverse pollinator assemblage contained about 50% more plant species than did plant communities pollinated by less-diverse pollinator assemblages. Moreover, the positive effect of functional diversity was explained by a complementarity between functional groups of pollinators and plants. Thus, the functional diversity of pollination networks may be critical to ecosystem sustainability.}, number = {1}, }