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Abstract

In many low-income countries, over five percent of hospitalized children die following hospi-

tal discharge. The lack of available tools to identify those at risk of post-discharge mortality

has limited the ability to make progress towards improving outcomes. We aimed to develop

algorithms designed to predict post-discharge mortality among children admitted with sus-

pected sepsis. Four prospective cohort studies of children in two age groups (0–6 and 6–60

months) were conducted between 2012–2021 in six Ugandan hospitals. Prediction models

were derived for six-months post-discharge mortality, based on candidate predictors col-

lected at admission, each with a maximum of eight variables, and internally validated using

10-fold cross-validation. 8,810 children were enrolled: 470 (5.3%) died in hospital; 257

(7.7%) and 233 (4.8%) post-discharge deaths occurred in the 0-6-month and 6-60-month

age groups, respectively. The primary models had an area under the receiver operating

characteristic curve (AUROC) of 0.77 (95%CI 0.74–0.80) for 0-6-month-olds and 0.75 (95%

CI 0.72–0.79) for 6-60-month-olds; mean AUROCs among the 10 cross-validation folds

were 0.75 and 0.73, respectively. Calibration across risk strata was good: Brier scores were

0.07 and 0.04, respectively. The most important variables included anthropometry and
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oxygen saturation. Additional variables included: illness duration, jaundice-age interaction,

and a bulging fontanelle among 0-6-month-olds; and prior admissions, coma score, temper-

ature, age-respiratory rate interaction, and HIV status among 6-60-month-olds. Simple pre-

diction models at admission with suspected sepsis can identify children at risk of post-

discharge mortality. Further external validation is recommended for different contexts. Mod-

els can be digitally integrated into existing processes to improve peri-discharge care as chil-

dren transition from the hospital to the community.

Introduction

Morbidity and mortality secondary to sepsis disproportionately affect children in low- and

middle-income countries, where>85% of global cases and deaths occur [1]. Lower income

regions are plagued by poorly resilient health systems, widespread socio-economic depriva-

tion, and unique vulnerabilities, including malnutrition. Reducing the overall sepsis burden

requires a multi-pronged strategy that addresses three periods along the care continuum–pre-

facility, facility and post-facility [2]. Of these, post-facility issues have been largely neglected in

research, policy, and practice [3].

Robust epidemiological data for pediatric post-discharge mortality in the context of sepsis

and severe infection have been limited [4]. Growing evidence points to a significant burden of

post-discharge mortality, which accounts for as many deaths as the acute hospital phase of ill-

ness [5,6]. While comorbid conditions such as malnutrition and anemia have been linked to

risk, other factors such as illness severity (at admission and discharge), prior hospitalizations,

and underlying social vulnerability, are also independently associated with poor post-discharge

outcomes [7]. However, we lack simple data-driven methods to identify those at highest risk of

mortality.

Current epidemiological evidence has demonstrated critical gaps in care following dis-

charge [8]. Most post-discharge deaths occur at home, rather than during a subsequent read-

mission, indicating poor health utilization among the most vulnerable. Effective healthcare

utilization is often hampered by poverty, community and family social dynamics, and poorly

linked and unresponsive health facilities [9–11]. Providing quality care during and after dis-

charge is a significant challenge in many facilities, in part due to severely strained human and

material resources.

Effective solutions to improving the transition of care from hospital to home within poorly

resourced health systems must be child-centred and focused on identifying the most vulnera-

ble children [12]. In this study, we aim to update the development and validation of clinical

prediction models that identify children, admitted with suspected sepsis, who are at risk of

post-discharge mortality [13].

Materials and methods

Study design and approvals

Four independently funded, prospective observational cohort studies were conducted with a

primary objective of generating model-building data: two among children under six months

and two among children 6–60 months of age. These studies were approved by the Mbarara

University of Science and Technology Research Ethics Committee (No. 05/11-11, 10-Nov-

2011; and No. 15/10-16, 27-Jan-2017) and the University of British Columbia–Children’s and
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Women’s Health Centre of BC Research Ethics Board (H10-01927, 01-Dec-2011; and H16-

02679, 09-May-2017). Written informed consent was obtained from the parent or legal guard-

ian of all study participants. This manuscript adheres to the Transparent Reporting of a multi-

variable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement [14].

Study setting and population

Subjects were enrolled from six hospitals in Uganda (S1 Text). These facilities serve catch-

ments of 30 districts with a population of approximately 8.2 million individuals, including

approximately 1.4 million children under five years [15], in a mix of urban and rural areas,

reflecting a representative sampling of the Ugandan pediatric population.

All study cohorts had identical eligibility criteria. Any child admitted with suspected sepsis

was eligible. Suspected sepsis was defined as children admitted with a proven or suspected

infection (as determined by the treating medical team). We previously demonstrated that 90%

of children enrolled using these criteria meet the international pediatric sepsis consensus con-

ference (IPSCC) definition [16]. The IPSCC defines sepsis as the presence of the systemic

inflammatory response syndrome alongside a suspected or proven infection.

The first cohort (enrolment 13-Mar-2012 to 13-Jan-2014) was used previously to report a

predictive model for post-discharge mortality in 6-60-month-olds [13]. The second and third

cohorts were the primary enrolment for the present analysis, and were defined by age range: 0-

6-month-olds (enrolment 11-Jan-2018 to 30-Mar-2020) and 6-60-month-olds (enrolment

13-Jul-2017 to 02-Jul-2019); these data have been previously reported [6]. The fourth cohort

enrolled only 0-6-month-olds (enrolment 31-Mar-2020 to 05-Aug-2021) in order to under-

stand how the early COVID-19 period impacted post-discharge outcomes. Protocols and pro-

cedures were largely overlapping, and the same research staff were involved in data collection

during all four enrolment periods [17].

Data collection

Data collection tools are available through the Smart Discharges Dataverse [17]. Data collec-

tion procedures were previously described (also S1 Text) [6,13]. Briefly, trained study nurses

collected clinical, social, and demographic data from consented participants at hospital admis-

sion; largely overlapping between the two age groups, some variables were specific to 0-

6-month-olds. These variables were our candidate predictors and were selected based on clini-

cal and contextual knowledge of possible factors relating to post-discharge mortality, using a

modified Delphi process to identify promising variables in each age group [18,19].

Study nurses recorded discharge diagnosis and status (died, discharged, discharged against

medical advice, referred). A field officer contacted enrolled children by phone two and four

months after discharge, with an in-person visit at six months to determine mortality status

and, if applicable, date of death. All data were collected using encrypted study tablets and

uploaded to a Research Electronic Data Capture (REDCap) database hosted at the BC Chil-

dren’s Hospital Research Institute (Vancouver, Canada) [20,21].

Model development

Outcome definition and ascertainment. The primary outcome of the prediction model

was post-discharge mortality within six months of discharge, analyzed as a binary outcome.

While data were available to build a time-to-event prediction model, time of death was consid-

ered irrelevant for modelling mortality. Complete six-month follow-up data for vital status

was available for 98% of our cohort.
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Prediction model performance was evaluated primarily using area under the receiver oper-

ating characteristic curve (AUROC). We also reported the precision-recall curve and area

under the precision-recall curve (PR-AUC), which are more appropriate for imbalanced data-

sets [22].

Variable selection. Recognising the challenges of implementing large prediction models

in resource-constrained settings, we determined a priori to develop three models for each age

group and restricted each model to eight variables drawing from a different pool of available

predictors: one model focused solely on commonly-available clinical variables; one model

focused on commonly-available clinical and social variables; and one model used any candi-

date predictor variable (Fig 1). This approach aimed to reduce the impact of missingness in an

implementation scenario. A feature of our modelling approach (elastic net regression) was that

Fig 1. Variable selection for model development.

https://doi.org/10.1371/journal.pgph.0003050.g001
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final model size could not be pre-specified, often resulting in large models. Therefore, we con-

ducted two rounds of variable selection.

To prioritize parsimony, the first variable selection round reduced the list of possible pre-

dictors to two subsets: one including only the most relevant clinical variables; and a second

including only the most relevant clinical and social variables. Variables included in these sub-

sets were determined a priori, based on clinical significance and ease of measurement in low-

resource settings. These subsets were used to derive intermediary models that were either clin-

ically-focused or clinically- and socially-focused; the full candidate predictor list for each age

group was also used to derive intermediary models that used any available variable (Tables B

and C in S1 Text).

The second variable selection round involved ranking the importance of variables from

each intermediary model, which was calculated as the weighted sums of the absolute regression

coefficients [23]. The top eight unique variables (e.g., temperature and its quadratic term were

considered a single unique variable) were selected based on average ranking from 10-fold

cross-validation of the intermediary models. If an interaction term was ranked in the top eight

variables, both interaction terms were included. This second variable selection round pro-

duced a family of final models to predict mortality within six months post-discharge (M6PD)

that used only the eight top-ranked variables in each age group: models using only clinical var-

iables, denoted by M6PD-C0-6 for 0-6-month-olds and M6PD-C6-60 for 6-60-month-olds;

models using clinical and social variables, denoted by M6PD-CS0-6 and M6PD-CS6-60; and

models using any of available predictor variable, denoted by M6PD-A0-6 and M6PD-A6-60

(Fig 1).

Statistical analysis

The primary study sample size was determined to accomplish three aims: to explore the epide-

miology of post-discharge mortality, as previously reported [6]; to develop prediction models;

and as a control period for a later interventional phase. The estimated sample size was deter-

mined as 2,117 and 1,551 for the 0-6-month and 6-60-month cohorts, respectively (S2 Text).

All analyses were conducted using R version 4.2.2 (R Foundation for Statistical Computing,

Vienna, Austria) [24], reported in detail in S2 Text.

Results

Study population

During the four enrolment periods, a total of 22,166 consecutively admitted children were

screened and 8,810 enrolled (Fig 2). Among 0-6-month-olds (n = 3,665), 3,424 (93.4%) sur-

vived to discharge. Complete 6-month outcomes were available for 3,349 (97.8%) of these chil-

dren, forming the full dataset for model development in this age group. Among 6-60-month-

olds (n = 5,145), 4,916 (95.5%) survived to discharge. Complete 6-month outcomes were avail-

able for 4,830 (98.2%) of these children, forming the full dataset for model development in this

age group.

Mortality within 6 months of discharge occurred in 257 (7.7%) 0-6-month-olds, with

median (interquartile range [IQR]) time to death of 31 (9–80) days, and in 233 (4.8%) 6-

60-month-olds, with time to death of 36 (11–105) days (Fig A in S1 Text). Missing data were

minimal (Table 1).

These cohorts’ clinical and demographic details have been previously described (Table 1)

[6,13]. The mean ±standard deviation [SD] age was 2.1 ±1.8 months with 1,884 (56.3%) male

in the 0-6-month group, and 21.7 ±13.7 months with 2,670 (55.3%) male in the 6-60-month

group. Poor growth/malnutrition was common, with 463 (13.8%) 0-6-month-olds and 668
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(13.8%) 6-60-month-olds classified as severely underweight (weight-for-age z-score <-3) and

similar weight-for-age z-score distributions in both age groups. Discharge diagnoses recorded

by the clinical team could be overlapping in the case of multiple diagnoses (Table D in

S1 Text). Most predictor variables considered were associated with post-discharge mortality

(Table 1).

Prediction models

The intermediary variable models were large (coefficients, performance metrics, and variable

importance reported in S3–S5 Texts). The models derived using all candidate predictors

(intermediary any variable model) included 41 unique variables in the 0-6-month model and

19 unique variables in the 6-60-month model. Applied to the entire dataset for each age group,

Fig 2. Study enrolment flow diagram.

https://doi.org/10.1371/journal.pgph.0003050.g002
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Table 1. Demographics and univariable odds ratios for the risk of post-discharge infant mortality.

0–6 month (n = 3349) 6–60 month (n = 4830)

Variable n (%)/Mean

(SD)

n Missing

(%)

OR (95%

CI)

P-

value

n (%)/Mean

(SD)

n Missing

(%)

OR (95%

CI)

P-

value

A) Demographics

Sex, male 1884 (56.3%) 0 (0%) 1.18 (0.91,

1.53)

0.218 2670 (55.3%) 0 (0%) 0.9 (0.69,

1.17)

0.433

Age, months 2.1 (1.8) 0 (0%) 1.05 (0.98,

1.12)

0.188 21.7 (13.7) 1 (0.02%) 1 (0.99,

1.01)

0.471

B) Admission Anthropometry

BMI Z-scores -1 (2.2) 5 (0.15%) 0.78 (0.74,

0.82)

<0.001 -1 (9.8) 32 (0.66%) 0.86 (0.81,

0.91)

<0.001

< -3 565 (16.9%) 4.31 (3.24,

5.75)

<0.001 775 (16%) 2.31 (1.68,

3.16)

<0.001

-3 to -2 399 (11.9%) 2.36 (1.61,

3.40)

<0.001 684 (14.2%) 1.84 (1.28,

2.60)

0.001

> -2 2380 (71.1%) ref. <0.001 3339 (69.1%) ref. <0.001

MUAC, mm a 113.7 (17.7) 3 (0.09%) 0.96 (0.96,

0.97)

<0.001 139.2 (16.1) 18 (0.37%) 0.96 (0.95,

0.97)

<0.001

<110 /<115 1304 (38.9%) 3.81 (2.7,

5.51)

<0.001 321 (6.6%) 6.66 (4.76,

9.25)

<0.001

110–120 / 115–125 942 (28.1%) 1.58 (1.04,

2.42)

0.033 514 (10.6%) 2.77 (1.92,

3.92)

<0.001

>120 />125 1100 (32.8%) ref. <0.001 3977 (82.3%) ref. <0.001

Weight for age Z-scores -1.1 (2) 2 (0.06%) 0.71 (0.67,

0.75)

<0.001 -1.3 (1.7) 12 (0.25%) 0.71 (0.66,

0.76)

<0.001

< -3 463 (13.8%) 6.15 (4.58,

8.26)

<0.001 668 (13.8%) 4.58 (3.40,

6.17)

<0.001

-3 to -2 356 (10.6%) 3.61 (2.51,

5.14)

<0.001 723 (15%) 1.77 (1.20,

2.55)

0.003

> -2 2528 (75.5%) ref. <0.001 3427 (71%) ref. <0.001

Weight for length Z-scores -1 (2.6) 5 (0.15%) 0.87 (0.84,

0.91)

<0.001 -1.2 (2) 30 (0.62%) 0.83 (0.78,

0.89)

<0.001

< -3 627 (18.7%) 2.52 (1.88,

3.35)

<0.001 725 (15%) 2.52 (1.83,

3.45)

<0.001

-3 to -2 365 (10.9%) 1.73 (1.16,

2.52)

0.006 718 (14.9%) 1.86 (1.30,

2.61)

<0.001

> -2 2352 (70.2%) ref. <0.001 3357 (69.5%) ref. <0.001

C) Admission Clinical Assessment

How long ago since last admission 20 (0.6%) 20 (0.41%)

Never 2848 (85%) ref. <0.001 2647 (54.8%) ref. <0.001

< 7days 122 (3.6%) 2.04 (1.12,

3.47)

0.013 191 (4%) 2.37 (1.34,

3.94)

0.002

7 days to<1 month 180 (5.4%) 2.68 (1.71,

4.06)

<0.001 400 (8.3%) 2.39 (1.60,

3.52)

<0.001

1 month to<1 year 179 (5.3%) 2.47 (1.56,

3.79)

<0.001 1175 (24.3%) 1.42 (1.03,

1.94)

0.031

�1 year 0 (0%) 397 (8.2%) 0.50 (0.22,

0.97)

0.06

SpO2 93.8 (6.8) 9 (0.27%) 0.96 (0.95,

0.98)

<0.001 94.2 (6.5) 22 (0.46%) 0.95 (0.94,

0.97)

<0.001

< 90% 598 (17.9%) 1.78 (1.31,

2.41)

<0.001 774 (16%) 2.07 (1.49,

2.84)

<0.001

(Continued)
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Table 1. (Continued)

0–6 month (n = 3349) 6–60 month (n = 4830)

90% to 95% 891 (26.6%) 0.87 (0.62,

1.20)

0.406 1236 (25.6%) 1.15 (0.82,

1.58)

0.404

> 95% 1851 (55.3%) ref. <0.001 2798 (57.9%) ref. <0.001

Heart rate, beats per minute 149.2 (23.6) 3 (0.09%) 1.00 (0.99,

1.00)

0.276 144.8 (25.5) 3 (0.06%) 1.00 (0.99,

1.00)

0.599

Respiratory rate, breaths per minute 57.4 (17) 5 (0.15%) 1 (0.99,

1.01)

0.875 48.1 (15.7) 7 (0.14%) 1.01 (1.00,

1.02)

0.003

Systolic blood pressure, mmHg 85.1 (16.5) 10 (0.3%) 0.99 (0.99,

1.00)

0.08 95.2 (13.4) 8 (0.17%) 0.99 (0.98,

1.00)

0.028

Diastolic blood pressure, mmHg 46.3 (12.8) 10 (0.3%) 0.99 (0.98,

1.00)

0.213 54.4 (11.6) 8 (0.17%) 0.99 (0.98,

1.00)

0.079

Temperature, ˚C 37.4 (0.9) 1 (0.03%) 0.90 (0.78,

1.04)

0.167 37.7 (1.2) 3 (0.06%) 0.81 (0.72,

0.91)

<0.001

< 36.5 386 (11.5%) 0.96 (0.62,

1.43)

0.835 505 (10.5%) 1.28 (0.84,

1.89)

0.234

36.5 to 37.5 1699 (50.7%) ref. 0.581 1868 (38.7%) ref. 0.014

37.6 to 39 1072 (32%) 1.01 (0.76,

1.34)

0.923 1638 (33.9%) 0.82 (0.6,

1.12)

0.222

> 39 191 (5.7%) 0.65 (0.32,

1.20)

0.202 816 (16.9%) 0.58 (0.37,

0.89)

0.016

Abnormal BCS score 285 (8.5%) 0 (0%) 2.37 (1.64,

3.34)

<0.001 408 (8.4%) 0 (0%) 1.93 (1.30,

2.78)

0.001

Malaria test positive 324 (9.7%) 1 (0.03%) 0.56 (0.31,

0.92)

0.032 1480 (30.6%) 11 (0.23%) 0.76 (0.56,

1.02)

0.075

HIV+ 119 (3.6%) 2 (0.06%) 1.37 (0.70,

2.42)

0.317 144 (3%) 22 (0.46%) 3.81 (2.31,

6.00)

<0.001

Haemoglobin, g/dL 13 (3.3) 4 (0.12%) 0.96 (0.92,

1.00)

0.036 10.4 (3.2) 608

(12.59%) b
0.88 (0.85,

0.92)

<0.001

No anaemia 2435 (72.7%) ref. 0.003 1983 (41.1%) ref. <0.001

Mild anaemia 788 (23.5%) 1.29 (0.96,

1.72)

0.091 1535 (31.8%) 1.59 (1.15,

2.21)

0.006

Severe anaemia 122 (3.6%) 2.47 (1.44,

4.04)

0.001 704 (14.6%) 2.67 (1.87,

3.82)

<0.001

D) Maternal and Social Characteristics

Time it took to reach hospital 0 (0%) 1 (0.02%)

<30 minutes 806 (24.1%) ref. <0.001 1015 (21%) ref. <0.001

30 minutes to<1 hour 1224 (36.5%) 1.15 (0.77,

1.75)

0.498 1519 (31.4%) 1.67 (1.04,

2.75)

0.037

�1 hour 1319 (39.4%) 2.65 (1.86,

3.88)

<0.001 2295 (47.5%) 2.89 (1.90,

4.58)

<0.001

Maternal age, years 26.3 (5.7) 50 (1.49%) 1.00 (0.98,

1.02)

0.871 27.9 (6.4) 167 (3.46%) 1.00 (0.98,

1.02)

0.899

Number of children 2.8 (1.8) 1 (0.03%) 1.01 (0.94,

1.08)

0.87 3.2 (2.1) 3 (0.06%) 1.04 (0.98,

1.10)

0.228

Had a child who died previously 577 (17.2%) 1 (0.03%) 1.21 (0.87,

1.65)

0.249 1066 (22.1%) 3 (0.06%) 1.27 (0.93,

1.70)

0.123

Maternal education 16 (0.48%) 49 (1.01%)

No school 105 (3.1%) ref. 0.001 334 (6.9%) ref. <0.001

�P3 207 (6.2%) 1.16 (0.57,

2.48)

0.684 345 (7.1%) 1.30 (0.70,

2.43)

0.411

P4-P7 1327 (39.6%) 0.71 (0.39,

1.41)

0.297 2088 (43.2%) 0.98 (0.61,

1.65)

0.922

(Continued)
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Table 1. (Continued)

0–6 month (n = 3349) 6–60 month (n = 4830)

S1-S6 1175 (35.1%) 0.58 (0.32,

1.16)

0.098 1517 (31.4%) 0.61 (0.36,

1.07)

0.073

Post-Secondary 519 (15.5%) 0.36 (0.18,

0.77)

0.006 497 (10.3%) 0.41 (0.19,

0.85)

0.018

Maternal HIV 1 (0.03%) 6 (0.12%)

No 3052 (91.1%) ref. 0.125 3915 (81.1%) ref. 0.012

Yes 246 (7.3%) 1.48 (0.95,

2.24)

0.071 432 (8.9%) 1.63 (1.07,

2.40)

0.016

Unknown 50 (1.5%) 1.71 (0.65,

3.77)

0.222 477 (9.9%) 1.57 (1.05,

2.29)

0.023

Bed net use 1 (0.03%) 3 (0.06%)

Never 2809 (83.9%) 0.85 (0.44,

1.57)

0.611 3630 (75.2%) 1.05 (0.64,

1.73)

0.841

Sometimes 337 (10.1%) ref. 0.544 631 (13.1%) ref. 0.443

Always 202 (6%) 0.80 (0.55,

1.20)

0.262 566 (11.7%) 0.85 (0.59,

1.26)

0.389

Water source 0 (0%) 3 (0.06%)

Bore hole 655 (19.6%) 1.72 (1.22,

2.4)

0.002 1042 (21.6%) 2.61 (1.84,

3.72)

<0.001

Fast running water 21 (0.6%) 0.84 (0.05,

4.08)

0.862 515 (10.7%) 1.76 (1.08,

2.80)

0.019

Municipal water 1630 (48.7%) ref. <0.001 1981 (41%) ref. <0.001

Open source 541 (16.2%) 2.12 (1.51,

2.98)

<0.001 558 (11.6%) 1.88 (1.19,

2.93)

0.006

Protected spring 392 (11.7%) 1.49 (0.97,

2.23)

0.063 590 (12.2%) 2.03 (1.30,

3.11)

0.001

Slow running water 110 (3.3%) 1.67 (0.80,

3.16)

0.14 141 (2.9%) 1.99 (0.86,

4.03)

0.075

Boil/disinfect/filter water 2526 (75.4%) 0 (0%) 0.84 (0.64,

1.13)

0.237 3402 (70.4%) 2 (0.04%) 0.51 (0.39,

0.67)

<0.001

E) Discharge Characteristics

Length of stay, days 5.6 (4.4) 0 (0%) 5.1 (8.2) 0 (0%)

Discharge status 2 (0.06%) 0 (0%)

Referred to higher level of care 164 (4.9%) 101 (2.1%)

Routine discharge 2810 (83.9%) 4143 (85.8%)

Unplanned discharge 373 (11.1%) 586 (12.1%)

F) Variables collected only for 0-6-month

Abdominal distension 217 (6.5%) 2 (0.06%) 1.79 (1.15,

2.70)

0.007

Antenatal visits 4.9 (1) 48 (1.43%) 0.89 (0.78,

1.01)

0.066

Dehydration, WHO categories 11 (0.33%)

No dehydration 2844 (84.9%) ref. <0.001

Some dehydration 399 (11.9%) 1.64 (1.15,

2.30)

0.005

Severe dehydration 95 (2.8%) 3.40 (1.96,

5.62)

<0.001

Delivery method, caesarean 497 (14.8%) 4 (0.12%) 0.74 (0.49,

1.08)

0.136

Duration of present illness 4 (0.12%)

<48 hours 957 (28.6%) ref. <0.001

(Continued)
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Table 1. (Continued)

0–6 month (n = 3349) 6–60 month (n = 4830)

48 hours to 7 days 60 (1.8%) 1.46 (1.05,

2.06)

0.026

8 days to 1 month 1985 (59.3%) 3.16 (2.09,

4.80)

<0.001

>1 month 343 (10.2%) 5.13 (2.52,

9.87)

<0.001

Fontanelle 132 (3.9%) 6 (0.18%) 2.4 (1.44,

3.81)

<0.001

Glucose, mmol/L 5.7 (2.5) 2 (0.06%) 1.03 (0.98,

1.08)

0.188

Not previously tested for HIV 2968 (88.6%) 0 (0%) 0.93 (0.64,

1.40)

0.719

Referral visit 1056 (31.5%) 1 (0.03%) 1.70 (1.31,

2.20)

<0.001

Neonatal jaundice 261 (7.8%) 34 (1.02%) 1.31 (0.83,

1.99)

0.219

Lactate level, mmol/L 2.5 (1.6) 9 (0.27%) 1.10 (1.03,

1.18)

0.003

Mother currently acutely ill 132 (3.9%) 13 (0.39%) 0.56 (0.22,

1.18)

0.171

Mother has chronic illness 251 (7.5%) 19 (0.57%) 1.29 (0.81,

1.97)

0.256

Child less than 30 days old 1353 (40.4%) 2 (0.06%) 0.68 (0.52,

0.89)

0.006

Pallor 307 (9.2%) 2 (0.06%) 2.15 (1.50,

3.03)

<0.001

Premature birth 210 (6.3%) 6 (0.18%) 2.05 (1.33,

3.06)

0.001

Prior care sought for current illness 1995 (59.6%) 0 (0%) 1.82 (1.38,

2.42)

<0.001

Sucking well when breastfeeding, or feeding well if not

breastfed

1956 (58.4%) 8 (0.24%) 0.47 (0.36,

0.61)

<0.001

Sucking well when breastfeeding, or feeding well if not

breastfed, prior to illness

2589 (77.3%) 392 (11.7%) 0.59 (0.42,

0.85)

0.004

When did the baby cry after birth 97 (2.9%)

Immediately 2805 (83.8%) ref. 0.041

<5 minutes 138 (4.1%) 1.83 (1.04,

3.02)

0.025

5 to 10 minutes 141 (4.2%) 1.32 (0.70,

2.30)

0.351

11 to 30 minutes 68 (2%) 1.26 (0.48,

2.72)

0.594

>30 minutes 100 (3%) 2.12 (1.14,

3.68)

0.011

Abnormal tone 285 (8.5%) 2 (0.06%) 3.11 (2.21,

4.31)

<0.001

Decreased urine production 677 (20.2%) 99 (2.96%) 1.91 (1.43,

2.52)

<0.001

For non-binary categorical variables, the p-value for the reference group (labelled ref.) indicates the global p-value. Odds ratios and p-values were not calculated for

discharge variables.
a MUAC thresholds given for 0-6-month / 6-60-month cohorts.
b High prevalence of missing data for hemoglobin due to faulty capillary tubes during data collection.

Abbreviations: BCS = Blantyre coma scale; BMI = body mass index; HIV+ = human immunodeficiency virus positive; MUAC = mid-upper arm circumference;

OR = odds ratio; SpO2 = oxygen saturation; WHO = World Health Organization.

https://doi.org/10.1371/journal.pgph.0003050.t001
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the AUROC was 0.81 (95%CI 0.79 to 0.84) for the 0-6-month model and 0.79 (95%CI 0.77 to

0.82) for the 6-60-month model, with average AUROCs of 0.77 (range 0.69–0.87) and 0.76

(range 0.71–0.81) across the 10 cross-validations, respectively; the PR-AUC was 0.27 for the 0-

6-month model and 0.18 for the 6-60-month model, with average PR-AUCs of 0.22 (range

0.13–0.31) and 0.16 (range 0.11–0.21) across the 10 cross-validations, respectively. Calibration

was good at low predicted probabilities, with a Brier scores of 0.07 (range 0.06–0.07) for the 0-

6-month model and 0.04 (range 0.04–0.05) for the 6-60-month model. Calibration decreased

at higher predicted probabilities, although there were almost no individuals with probabilities

>40%. In both age groups, mid-upper arm circumference (MUAC) was identified as the vari-

able with the highest importance.

The final models are summarized in Table 2, and detailed in S6–S8 Texts, including all

model terms, their coefficients, and plots outlining the relative importance of coefficients in

each model.

Final 0-6-month models

The M6PD-C0-6 model, using only simple clinical variables, included weight-for-age z-score

(mean rank [rm] = 1.4, selection frequency [sf] = 10), MUAC (rm = 1.6, sf = 10), feeding status

(rm = 3.4, sf = 10), SpO2 (rm = 5.8, sf = 9), duration of illness (rm = 6.2, sf = 9), age × jaundice

(rm = 7.8, sf = 7), and bulging fontanelle (rm = 8.3, sf = 8) (Table A in S3 Text). The AUROC

was 0.77 (95%CI 0.74 to 0.80) and PR-AUC was 0.23 when applied to the entire 0-6-month

dataset (Fig 3), while the average AUROC and PR-AUC across the internal 10 cross-valida-

tions were 0.75 (range 0.63–0.85) and 0.23 (range 0.11–0.33), respectively (Table 2A and S6

Text). Setting the sensitivity to 80%, the corresponding probability threshold was 0.058; at this

threshold, positive and negative predictive values were 14% and 97%, respectively. Calibration

at low predicted probabilities was good, with a Brier score of 0.07 (Fig 3 and Fig C in S6

Text). Calibration at probabilities beyond 30–40% was poor, but sample sizes were very small

in this range.

The M6PD-CS0-6 model, using social and clinical variables, was nearly identical in perfor-

mance to M6PD-C0-6; the variables were largely overlapping with only fontanelle status

replaced by travel time required to reach hospital (Table 2A and S7 Text). M6PD-A0-6 that

used any available variable, was identical to M6PD-CS0-6 (Table 2A and S8 Text).

Final 6-60-month models

The M6PD-C6-60 model, using only clinical predictors, included nine variables (the 8th best-

performing variable included an interaction with a new variable; Table B in S3 Text): MUAC

(rm = 1, sf = 10), SpO2 (rm = 2.7, sf = 10), weight-for-age z-score (rm = 2.8, sf = 10), time since

prior admission (rm = 4.7, sf = 10), abnormal coma score (rm = 5.8, sf = 9), temperature (rm =

6.4, sf = 9), HIV status (rm = 6.5, sf = 9) and age × respiratory rate (rm = 9.1, sf = 2). The

AUROC was 0.74 (95%CI 0.72 to 0.79) and PR-AUC was 0.17 when applied to the entire 6-

60-month dataset (Fig 4), with an average AUROC of 0.73 (range 0.67–0.77) and average

PR-AUC of 0.16 (range 0.10–0.19) across the 10 cross-validations (Table 2B and S6 Text). Set-

ting sensitivity to 80%, the corresponding probability threshold was 0.036; at this threshold,

positive and negative predictive values were 0.08 and 0.98, respectively. Calibration across risk

strata was good with a Brier score of 0.04 (Fig 4 and Fig D in S6 Text).

The M6PD-CS6-60 model, which used clinical and social variables, was almost identical to

M6PD-C6-60, with only home water source and water disinfection practices replacing coma

score (Table 2B and S7 Text). M6PD-A6-60 was similar to M6PD-CS6-60, with water
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Table 2. Summary of performance and variables included in the set of final models with reduced number of variables using the probability threshold that gave a

sensitivity of 0.8.

A) 0-6-month models M6PD-C0-6 M6PD-CS0-6 * M6PD-A0-6 *
Average Cross-Validation Performance

Specificity 0.60 0.61 0.61

AUROC 0.75 0.76 0.76

PPV 0.15 0.16 0.16

NPV 0.97 0.97 0.97

PRAUC 0.23 0.23 0.23

Brier Score 0.07 0.07 0.07

Full Dataset Performance

Specificity 0.58 0.62 0.62

AUROC 0.77 0.77 0.77

PPV 0.14 0.15 0.15

NPV 0.97 0.97 0.97

PRAUC 0.23 0.22 0.22

Brier Score 0.07 0.07 0.07

Variables

Age, months ✓ ✓ ✓

Duration of present illness, categorical ✓ ✓ ✓

MUAC, mm ✓ ✓ ✓

Neonatal jaundice, binary ✓ ✓ ✓

Sucking well when breastfeeding, binary ✓ ✓ ✓

SpO2, % ✓ ✓ ✓

Time to reach hospital, categorical ✓ ✓

Weight for age z-score ✓ ✓ ✓

Fontanelle, binary ✓

B) 6-60-month models M6PD-C6-60 M6PD-CS6-60 M6PD-A6-60

Average Cross-Validation Performance

Specificity 0.57 0.59 0.54

AUROC 0.73 0.74 0.75

PPV 0.09 0.09 0.08

NPV 0.98 0.98 0.98

PRAUC 0.16 0.15 0.15

Brier Score 0.04 0.04 0.04

Full Dataset Performance

Specificity 0.53 0.58 0.55

AUROC 0.75 0.76 0.77

PPV 0.08 0.09 0.08

NPV 0.98 0.98 0.98

PRAUC 0.17 0.16 0.17

Brier Score 0.04 0.04 0.04

Variables

Age, months ✓ ✓ ✓

Haemoglobin, g/dl ✓

HIV, binary ✓ ✓

How long since last admission, categorical ✓ ✓ ✓

MUAC, mm ✓ ✓ ✓

SpO2, % ✓ ✓ ✓

(Continued)
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disinfection practices replaced by hemoglobin; performance metrics were nearly identical

(Table 2B and S8 Text).

Discussion

Using four large, objective-driven, prospective cohorts of under-5 children admitted with sus-

pected sepsis, we derived and internally-validated prediction models for post-discharge mor-

tality using only admission data. Their performance to predict mortality up to six months

post-discharge was good, suggesting potential utility to improve post-discharge outcomes by

linking individual risk to interventional intensity [25]. Data-driven, child-centred approaches

to post-discharge care have been strongly advocated for [5,26,27]. Our robust, cross-validated

models utilized data from multiple sites, captured over eight years, and should spur focus on

external validation outside Uganda.

Several recent studies have shown that post-discharge mortality can be closely linked to a

variety of key risk factors, such as malnutrition and disease severity [4–6]. Our results affirm

this through formal model development using varied sets of few, objective, and easy-to-collect

variables typically available in most settings where such models would be used. In a model

deployment context, however, the general approach of developing a single model may not

always be sufficient since missingness at the point-of-care may be common. Having multiple

simplified models with similar performance, as we saw in our models, may help alleviate these

kinds of logistical barriers to implementation [28,29].

Without an effective intervention, risk prediction has limited utility. Understanding dis-

charge as a dynamic process encompassing the time between admission and re-integration

into community care is integral to our focus on admission factors [30]. Early identification

allows post-discharge risk to be incorporated into discharge planning from the outset. Signifi-

cant challenges in preparing caregivers for discharge and the transition home have been identi-

fied, suggesting that early planning is an essential component of effective peri-discharge care

[30].

Choosing risk probability thresholds to classify post-discharge mortality as a binary out-

come depends on many factors, including availability of human resources, baseline risk, risk

tolerance, and impact on patients/caregivers. Though the thresholds chosen may prove useful

in some settings, choice of both the threshold and number of thresholds must be informed by

local context and constitutes a critically important consideration for deployment of this, or

any, risk model [31].

Table 2. (Continued)

A) 0-6-month models M6PD-C0-6 M6PD-CS0-6 * M6PD-A0-6 *
Water source, categorical ✓ ✓

Weight for age z-score ✓ ✓ ✓

Abnormal BCS, binary ✓

Respiratory rate, bpm ✓

Temperature, ˚C ✓

Boil/disinfect/filter water ✓

* Note, the 0-6-month final reduced (M6PD-A0-6) and final clinical and social model (M6PD-CS0-6) are identical since the same variables were selected.

Abbreviations: AUROC = area under the receiver operating curve; BCS = Blantyre coma scale; bpm = breaths per minute; HIV, human immunodeficiency virus;

MUAC = mid-upper arm circumference; NPV = negative predictive value; PPV = positive predictive value; PRAUC = area under the precision-recall curve; SpO2 =

oxygen saturation.

https://doi.org/10.1371/journal.pgph.0003050.t002
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Fig 3. Performance of the final clinical model for 0–6 months (M6PD-C0-6) on the full dataset. The points on the receiver operating characteristic

(ROC), precision recall (PR), and gain curve plots indicate co-ordinates for the probability threshold at sensitivity = 80%, with positive predictive value

(PPV) and negative predictive value (NPV) also reported at this threshold.

https://doi.org/10.1371/journal.pgph.0003050.g003
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Fig 4. Performance of the final clinical model for 6–60 months (M6PD-C6-60) on the full dataset. The points on the receiver operating characteristic

(ROC), precision recall (PR), and gain curve plots indicate co-ordinates for the probability threshold at sensitivity = 80%, with positive predictive value

(PPV) and negative predictive value (NPV) also reported at this threshold.

https://doi.org/10.1371/journal.pgph.0003050.g004
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Although internal validation can justify using models within the region in which they are

derived, external validation using different data sources (ideally several) from different regions

is essential [32], using both existing and future data [5]. Consequently, we have several pro-

spective studies underway, and will establish data sharing agreements with other collaborators

to enable use of their collected data. However, not every conceivable implementation region

for any given model can be subjected to external validation. A more pragmatic approach is

developing a region-specific model-updating process, integrated over the life-course of the

model. Calibration drift due to secular trends, the measured impact of the model itself, and

peculiarities of each individual site are key considerations in model deployment [33]. Digitiza-

tion of the healthcare system will help establishing these processes [34].

As health systems in low-income countries increasingly adopt electronic health records,

incorporating algorithms to augment care decisions has tremendous potential to improve out-

comes and facilitate adoption of these digital systems [35,36]. Using routinely-collected vari-

ables can allow models to run without additional user input and automatically prompt follow-

up guidance to the medical team and patient, encouraging adoption and linkage to interven-

tional programs. Furthermore, such systems can report baseline risk data and, when linked to

follow-up programs, data on readmission and mortality to national-level health management

information systems, such as DHIS2 [37]. These data can be used in model calibration and

updating, ensuring site-specific validity. Contextually-validated digital clinical decision sup-

port systems utilizing risk algorithms are increasingly recognized as essential to achieving uni-

versal health coverage, especially in low- and middle-income countries [38,39].

Limitations

This study has several limitations. While our models performed well with internal cross-vali-

dation, demonstrating good performance in planned external validation is essential to encour-

age adoption. Second, our models do not accommodate missing data for predictor variables.

While missing data rates were very low, this is unlikely to represent true rates of missingness

in real-world practice. We developed a family of models, varying in number and type of pre-

dictors, which produced similar performance, to partially address this limitation. Future

research will explore more robust methods for addressing missing data, including building

sub-models to allow for every possible combination of missing variable [29]. Third, these mod-

els were developed in the absence of a proven program to utilize a risk-based approach to care,

limiting their current utility. While merely knowledge of individual risk can change behaviour

and may influence provision of peri-discharge care, risk-informed approaches to follow-up

care are also currently under investigation [40]. Fourth, calibration was good at most observed

risk levels, but there were very few patients with predicted risk greater than 40–50%, so calibra-

tion beyond these probabilities could not be assessed. Regardless, our models should perform

adequately for implementation purposes using the optimal threshold cut-offs identified.

Finally, the added value of these models may be questioned in the light of previously published

models [40–42]. Our models were based on purposively built cohorts, with a priori stakeholder

engagement regarding relevant variables and their measurement timing, and were uniquely

developed within the clinical rubric of suspected sepsis, which is increasingly recognized as a

global health priority.

Conclusion

Post-discharge mortality in the context of suspected sepsis occurs frequently in children under

five years old, but those at highest risk can be identified using simple clinical criteria, measured

at admission. Being able to select from a range of prediction models, with similar performance
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parameters, may support wider implementation of digital risk-stratification tools in different

clinical settings. Future work must focus on both external validation as well evaluation of how

risk-stratified care can improve post-discharge outcomes.
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