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Abstract

There are initiatives to promote the creation of predictive COVID-19 fatality models to assist

decision-makers. The study aimed to develop prediction models for COVID-19 fatality using

population data recorded in the national epidemiological surveillance system of Peru. A ret-

rospective cohort study was conducted (March to September of 2020). The study population

consisted of confirmed COVID-19 cases reported in the surveillance system of nine prov-

inces of Lima, Peru. A random sample of 80% of the study population was selected, and

four prediction models were constructed using four different strategies to select variables: 1)

previously analyzed variables in machine learning models; 2) based on the LASSO method;

3) based on significance; and 4) based on a post-hoc approach with variables consistently

included in the three previous strategies. The internal validation was performed with the

remaining 20% of the population. Four prediction models were successfully created and val-

idate using data from 22,098 cases. All models performed adequately and similarly; how-

ever, we selected models derived from strategy 1 (AUC 0.89, CI95% 0.87–0.91) and

strategy 4 (AUC 0.88, CI95% 0.86–0.90). The performance of both models was robust in

validation and sensitivity analyses. This study offers insights into estimating COVID-19 fatal-

ity within the Peruvian population. Our findings contribute to the advancement of prediction

models for COVID-19 fatality and may aid in identifying individuals at increased risk,

enabling targeted interventions to mitigate the disease. Future studies should confirm the

performance and validate the usefulness of the models described here under real-world

conditions and settings.
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Introduction

The COVID-19 pandemic has generated a global health, economic, and humanitarian crisis,

causing, until July 2021, more than 100 million cases and more than 3.9 million deaths [1].

Fatality from COVID-19 was estimated to be less than 3% during the first months of the pan-

demic [2]; however, later estimates reported rates between 10 and 48%, which varied between

locations (continents and countries) [3]. The characteristics of each location (environmental,

economic, structural, etc.) probably contribute to the changes in fatality. For instance, temper-

ature, concomitant epidemics of other respiratory infections (tuberculosis, etc.) [4], the type of

viral variant and changes in its prevalence and dispersion, as well as the availability of medical

resources mainly influence fatality rates.

In view of the high fatality rates due to COVID-19, the World Health Organization [5] pro-

posed multiple initiatives to promote the creation of predictive fatality models to assist deci-

sion-makers in the development of strategies, planning, and design of public policies for the

prioritization of the most vulnerable groups. Different studies have used population databases

to assess whether clinical, sociodemographic, and laboratory characteristics influence the

occurrence of negative outcomes among COVID-19 cases [6–8]. However, due to the differen-

tial distribution and representation of specific races/ethnicities [9], characteristics of healthcare

systems [10], social vulnerability (which entail higher tendencies of crowding and viral expo-

sure) [11], economic characteristics (which bring about inequalities in healthcare access) [12],

geographic factors (climatic factors and altitude levels) [13, 14], distribution of comorbidities

[15], and genetic factors that could modify the disease burden and its trends [16], conduct that

the usefulness of these prediction models may be limited in contexts other than those in which

they were developed [17].

Peru has had a variable and dynamic COVID-19 incidence [18]. The different presentations

of the disease, the interventions (pharmaceutical and non-pharmaceutical), the adopted treat-

ment protocols, and the spread and predominance of local viral variants have most likely influ-

enced the COVID-19 incidence. These factors differed significantly from those observed in the

United States and England [19], for example, and even amongst countries in the same region

[20, 21]. Globally, Peru had the highest number of deaths per 100,000 inhabitants during the

first and second COVID-19 waves [22] and, until July 2021, was the fifth country with the

highest case-fatality ratio from COVID-19 [1]. A number of studies have reported various fac-

tors associated with COVID-19 fatality in the Peruvian population [23–27]; however, their

results could be inaccurate and non-representative given multiple limitations such as; low sam-

ple size, lack of temporality, and selection bias. This study aimed to build multiple prediction

models of COVID-19 fatality using population data from the Peruvian surveillance system.

Methodology

Study design and population

A retrospective cohort was conducted using the database of the national epidemiological sur-

veillance system for COVID-19 (NotiWeb) of the "Centro Nacional de Epidemiologı́a, Preven-

ción y Control de enfermedades" (CDC) of Peru.

The national epidemiological surveillance system for COVID-19 includes information on

persons reported as suspected, probable, and confirmed symptomatic cases throughout Peru

[28]. However, for this study, only anonymized information from confirmed symptomatic

cases reported by the Dirección Regional de Salud de Lima Provincias (DIRESA-LIPRO) was

included. The cases included in the study were registered between March 1, 2020, and Septem-

ber 30, 2020 –a time in which vaccination against COVID-19 had not yet begun. The
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definition of a confirmed case used in this study was based on the guidelines issued by the

Peruvian Ministry of Health [28]. Cases with nationalities other than Peruvian and cases

under 18 years of age were excluded due to their vulnerability and the lower and different fatal-

ity rate compared to the adult population [29], respectively. (S1 Data)

Context

The Peruvian epidemiological surveillance system passively identifies COVID-19 cases and

monitors them until the disease is resolved or death. Case notification is mandatory for all

health institutions. Therefore, according to the policy of the Peruvian Ministry of Health, all

suspected or probable cases are monitored by medical personnel and then reported to the sur-

veillance system using the NotiWeb platform [28].

The DIRESA-LIPRO administers the information on COVID-19 cases reported by health

institutions located in 128 districts across the nine provinces of the Peruvian department of

Lima: Barranca, Cajatambo, Canta, Cañete, Huaral, Huarochirı́, Huaura, Oyón and Yauyos

(S1 Fig). According to the most recent national data published before 2020 [30], the nine prov-

inces of Lima account for 3.1% of the Peruvian population, which corresponds to approxi-

mately 9% of the entire population of the Lima department. Eighty-three percent of the

province’ population reside in urban areas.

Sampling

The cases registered in the surveillance system were enrolled through a non-probabilistic

method, including all those reported as suspected or probable cases of COVID-19. Biological

specimens were collected from the cases for SARS-CoV-2 testing. Suspected or probable cases

that tested positive were reclassified and reported as confirmed cases.

The power of the sample size was estimated using an interactive calculator (https://riskcalc.

org/pmsamplesize/) considering that this study performed a secondary analysis of an epidemio-

logical surveillance database and taking into account the Smeden and Riley’s four sample estima-

tion criteria [31]. It was assumed the inclusion of 35 potential parameters in the prediction model,

a fatality rate of 11.0% for Latin American countries [3], an expected value of R2 of 0.1, a shrink-

age level (a measure of overfitting) of 0.9, and a C-statistic of 0.94 reported in a previous predic-

tion modeling study [7]. The largest sample size obtained was 2,972 cases to reach a power of

80.0%. Considering that the sample size analyzed here exceeded the largest estimated sample size,

it is reasonable to consider that the statistical power is adequate to build prediction models.

Procedure

Data collection was carried out by personnel from healthcare institutions of the nine provinces

using a clinical-epidemiological survey. Suspected/probable cases of COVID-19 were identified,

mainly, by their care (emergency visits, etc.) in any of the healthcare institutions and, in less fre-

quency, by their communication through a call center (113 Infosalud, 107 EsSalud, etc.), web

page, or mobile app of a health institution. Suspected/probable cases that met the definitions

proposed by the Peruvian Ministry of Health were registered in the surveillance system [28].

The DIRESA-LIPRO supervised the correct and complete filling out of the clinical-epidemio-

logical surveys and performed daily quality control of the records in the surveillance system.

Outcome: COVID-19 fatality

The outcome was defined as the death of a confirmed COVID-19 case with the cause of death

registered as COVID-19 disease or a related complication (such as respiratory failure due to
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COVID, organic failure due to COVID, etc.). The information was obtained from the database

of the surveillance system until January 2022 and was corroborated with the database of the

National Death System of Peru (SINADEF) [32]. Finally, a dichotomous variable ("no" and

"yes") was generated.

Predictor variables

Age (years), sex (female or male), clinical characteristics at enrollment and registration in the

surveillance system (fever, cough, etc.), the severity of the disease based on symptoms (with or

without symptoms of severity; considering the classification of COVID-19 Treatment Guide-

lines Panel of the National Health Institute-NIH), comorbidities (hypertension, diabetes, etc.)

and the number of comorbidities (none, 1–2, and�3) were analyzed as predictors.

Statistical analysis

The data analysis was performed using Stata v.16 (StataCorp. 2019. Stata Statistical Software:

Release 16. College Station, TX: StataCorp LLC.) and Python v.3.4.3. The database was ran-

domly split into two separate datasets. The first dataset, corresponding to 80% of the total pop-

ulation, was used to build the prediction models, while the other dataset, corresponding to the

remaining 20%, were used to validate the models.

A descriptive analysis of participants characteristics was performed in the three databases

(global, dataset for model building, and dataset for model validation) using absolute and rela-

tive frequencies for the categorical variables, and central tendency and dispersion measures for

the numerical variables. Bivariate analyses were performed between the outcome and predic-

tors using logistic regressions since this approach is one of the most widespread for building

prediction models and one of the easiest for estimating predictive performance [33].

Considering the sample imbalance in the outcome, we considered adjusting the datasets to

construct and evaluate the performance of the prediction models [34]. This involved assigning a

higher weight to the minority category of death for COVID-19 to increase its value during train-

ing [35]. The weighting was incorporated into the regression model using the “svy” command.

Four prediction models were built considering different variable selection strategies: strategy

1) using variables reported as predictors in previously published machine learning models [7, 8,

36]; strategy 2) based on the least absolute shrinkage and selection operator (LASSO) method

(S2 Fig); strategy 3) based on the significance (p<0.05) observed in the bivariate logistic regression

analyses; and a strategy 4) based on a post-hoc approach which comprised variables consistently

included in the models created by the first three strategies. For each model, sensitivity (Se.), speci-

ficity (Sp.), predictive values (positive and negative), likelihoods (positive and negative), and areas

under the curve (AUC) were estimated. Both Se. and Sp. were estimated for a probability cut-off

point selected to yield the most balanced performance between the two parameters. The 95% con-

fidence intervals (95%CI) were estimated for all parameters, and the model selection was based on

performance (Se., Sp., and AUC) and parsimony (few variables included).

A sensitivity analysis was performed to assess the robustness and consistency of the models

under different scenarios, restricting only to cases with a confirmatory diagnosis by RT-PCR

and stratifying by pandemic periods (first period: from January to June 2020; second period:

from July 2020 to September 2020; and between peaks of incidence of COVID-19: from June

2020 to July 9th, 2020 [37]).

Ethical aspects

This study is a secondary analysis of a previously collected database, so the risks are minimal.

The database was obtained from the national epidemiological surveillance system of the
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Centers for Disease Control and Prevention (CDC) of Peru. The CDC collects information on

all patients with suspected and confirmed diagnoses of COVID-19 as part of their mandatory

data collection within the national epidemiological surveillance strategy. Permission to access

and use the database for scientific purposes was obtained from DIRESA-LIPRO. Although the

database contains personal information of the patients, this was only available for the DIRE-

SA-LIPRO. For the author and the secondary analysis, the data was deidentified. Before data

analysis, the study protocol was evaluated and approved by the institutional ethics committee

of the Universidad Peruana Cayetano Heredia (068-06-22). Finally, this study was registered

in the health research projects platform (PRISA: EI00002044).

Results

The database included a total of 23,742 confirmed cases of COVID-19 with a positive test and

symptom onset date up to September 30, 2020, of which 1,404 were excluded for being under

18 years of age, 169 for not having Peruvian nationality, and 71 because they came from a

department other than Lima (S3 Fig). After exclusions, the database included a total of 22,098

cases (mean age 45.96 ± 16.82; 53.41% female) eligible for the analysis. The dataset used for the

model building and the one used for validation included a sample of 17,678 (mean age

45.99 ± 16.86; 53.25% female) and 4,420 cases (mean age 45.85 ± 16.64; 54.05% female),

respectively. (Table 1).
The sociodemographic characteristics, the type of test used for diagnosis, the notifying

healthcare institution, clinical characteristics and fatality were comparable within datasets

(Table 1). Also, survival curves within datasets were comparable (S4 Fig).
Initially, three models were built using the following strategies; strategy 1 (includes variables

previously described as predictors elsewhere) with 13 variables, strategy 2 (based on the

LASSO method) with nine variables, and strategy 3 (based on significance in the bivariate

logistic regression) with 22 variables (Table 2). Interestingly, the three models consistently

included three variables: age, sex, and dyspnea (Table 2). In view of this, we defined a fourth

strategy to build a post-hoc model including only the previous three variables.

Upon observing this pattern, a post-hoc strategy was implemented. When evaluating the

performance of the constructed models, it was identified that for a death probability cutoff of

52%, similar estimates were obtained, with slightly higher sensitivity and specificity for strategy

3 (Sensitivity (S): 83.08%; Specificity (E): 82.30%), followed by strategy 1 (S: 82.58%; E:

82.07%), strategy 2 (S: 80.00%; E: 82.35%), and strategy 4 (S: 80.78%; E: 81.75%) (Table 3). Sim-

ilarly, similar areas under the curve were observed for the models obtained through the four

variable selection strategies (S5 Fig).
Although the four variable selection strategies resulted in models with similar performances,

models constructed with strategies 1 and 4 were selected for the following reasons. The model

from strategy 1 included a smaller number of variables compared to strategy 3 (13 vs. 22), and

in comparison, to strategy 2, the performance was slightly better (AUC 0.89 vs. 0.88). On the

other hand, the model from strategy 4 is a condensed model with performance comparable to

the other strategies. Interestingly, the area under the curve of the selected models in the valida-

tion and creation datasets was comparable for the selected model strategies (Strategy 1: 0.89 vs.

0.89 / Strategy 4: 0.89 vs. 0.88; Fig 1). Moreover, using the validation dataset, the performance of

the models from strategies 1 and 4 remained stable when conducting a sensitivity analysis

including only cases confirmed by RT-PCR (Strategy 1: 0.89 vs. 0.89 / Strategy 4: 0.86 vs. 0.88)

and according to pandemic periods (Strategy 1: first period = 0.89 vs. 0.89; second period = 0.89

vs. 0.89; peaks between incidence = 0.88 vs. 0.89 / Strategy 4: first period = 0.88 vs. 0.88; second

period = 0.90 vs. 0.88; peaks between incidence = 0.87 vs. 0.88) (S6 Fig).
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Table 1. Characteristics of the COVID-19 confirmed cases in nine provinces of the department of Lima, Peru.

Variables Full dataset (N = 22 098) Dataset for the model construction (N = 17 678) Dataset for the model validation (N = 4 420)

N (%) N (%) N (%)

Age* 45.96 ± 16.82 45.99 ± 16.86 45.85 ± 16.64

Sex

Female 11803 (53.41) 9414 (53.25) 2389 (54.05)

Male 10295 (46.59) 8264 (46.75) 2031 (45.95)

Fiscal address

Barranca 3525 (15.95) 2849 (16.12) 676 (15.29)

Cajatambo 29 (0.13) 23 (0.13) 6 (0.14)

Canta 259 (1.17) 195 (1.1) 64 (1.45)

Cañete 7215 (32.65) 5775 (32.67) 1440 (32.58)

Huaral 4279 (19.36) 3409 (19.28) 870 (19.68)

Huarochirı́ 583 (2.64) 464 (2.62) 119 (2.69)

Huara 5526 (25.01) 4427 (25.04) 1099 (24.86)

Oyón 143 (0.65) 111 (0.63) 32 (0.72)

Yauyos 183 (0.83) 142 (0.8) 41 (0.93)

Outside of the Lima provinces** 356 (1.61) 283 (1.60) 73 (1.65)

Diagnostic test

RT-PCR 4291 (19.44) 3454 (19.56) 837 (18.95)

Serological test 17756 (80.45) 14183 (80.33) 3573 (80.91)

Antigen test 25 (0.11) 19 (0.11) 6 (0.14)

Notifying institution

Ministry of Health (MINSA) 19754 (89.39) 15795 (89.35) 3959 (89.57)

Social Health Insurance (EsSalud) 1315 (5.95) 1061 (6) 254 (5.75)

Other (private clinics, etc.) 1029 (4.66) 822 (4.65) 207 (4.68)

Symptoms at the enrolment

Fever 9238 (41.8) 7368 (41.68) 1870 (42.31)

General discomfort 11356 (51.39) 9111 (51.54) 2245 (50.79)

Cough 14450 (65.39) 11588 (65.55) 2862 (64.75)

Sore throat 13012 (58.88) 10385 (58.75) 2627 (59.43)

Nasal congestion 5898 (26.69) 4714 (26.67) 1184 (26.79)

Dyspnea 5321 (24.08) 4305 (24.35) 1016 (22.99)

Diarrhea 2690 (12.17) 2146 (12.14) 544 (12.31)

Nausea and vomiting 1742 (7.88) 1401 (7.93) 341 (7.71)

Headache 8676 (39.26) 6884 (38.94) 1792 (40.54)

Confusion 239 (1.08) 182 (1.03) 57 (1.29)

Muscle pain 4952 (22.41) 3940 (22.29) 1012 (22.9)

Abdominal pain 591 (2.67) 455 (2.57) 136 (3.08)

Chest pain 2987 (13.52) 2356 (13.33) 631 (14.28)

Joint pain 648 (2.93) 522 (2.95) 126 (2.85)

Dysosmia and dysgeusia 982 (4.44) 786 (4.45) 196 (4.43)

Earache 12 (0.05) 9 (0.05) 3 (0.07)

Severity by symptoms

No symptoms of severity 18613 (85.56) 14935 (85.79) 3678 (84.61)

With severe symptoms 3142 (14.44) 2473 (14.21) 669 (15.39)

Comorbidities

Cardiovascular disease 1574 (7.12) 1278 (7.23) 296 (6.7)

Hypertension 396 (1.79) 321 (1.82) 75 (1.7)

(Continued)
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Discussion

Throughout the pandemic, Peru was one of the countries with the highest number of deaths

from COVID-19 per 100,000 inhabitants and with a case fatality rate of approximately 5%,

which was higher than countries such as Mexico and the United States [38]. Fatality has been

concentrated mainly in the city of Lima, the capital of Peru, because most the population were

concentrated there [1]. Lima is surrounded by nine provinces; unfortunately, to the best of our

knowledge, despite the great connectivity between the capital and the provinces, fatality and its

trends in these provinces have not been explored. The disparities between the city center of

Lima and its provinces can be substantial, primarily driven by cultural, ethnic, social, racial,

economic, and resource inequalities factors [39], that may contribute to the variations in

COVID-19 trends between these locations. In this regard, the results of this study provide an

initial characterization of this population. Specifically, our study explored various predictors of

death from COVID-19 in the nine provinces of the department of Lima and identified a fatal-

ity of 7.5%, corresponding to the first and second pandemic waves. Overall, the high fatality

can be attributed to the low preparedness of the Peruvian health system to prevent fatalities.

Notably, Peruvian provinces faced much greater challenges due to their limited number of

high-capacity hospitals and thus faced a pandemic not only with an unprepared system but

also with shortages of intensive care units, medical devices, and specialized personnel [22]. On

the other hand, it is necessary to consider that Peru also prioritized the use of serological or

rapid tests for the diagnosis of COVID-19, as reflected in our study. This approach resulted in

a missed opportunity to diagnosed early and, consequently, in a hindered containment of

Table 1. (Continued)

Variables Full dataset (N = 22 098) Dataset for the model construction (N = 17 678) Dataset for the model validation (N = 4 420)

N (%) N (%) N (%)

Dyslipidemia 77 (0.35) 68 (0.38) 9 (0.2)

Diabetes 1133 (5.13) 883 (4.99) 250 (5.66)

Thyroid disease 163 (0.74) 121 (0.68) 42 (0.95)

Liver disease 115 (0.52) 91 (0.51) 24 (0.54)

Neurological disease 124 (0.56) 100 (0.57) 24 (0.54)

Immunodeficiency 35 (0.16) 29 (0.16) 6 (0.14)

Kidney disease 104 (0.47) 91 (0.51) 13 (0.29)

Lung disease 242 (1.1) 189 (1.07) 53 (1.2)

Asthma 343 (1.55) 275 (1.56) 68 (1.54)

Cancer 111 (0.5) 89 (0.5) 22 (0.5)

Obesity 863 (3.91) 691 (3.91) 172 (3.89)

Tuberculosis 145 (0.66) 120 (0.68) 25 (0.57)

Number of comorbidities

None 17817 (80.63) 14254 (80.63) 3563 (80.61)

1–2 4129 (18.68) 3303 (18.68) 826 (18.69)

> 2 152 (0.69) 121 (0.68) 31 (0.7)

Death

No 20433 (92.47) 16346 (92.47) 4087 (92.47)

Yes 1665 (7.53) 1332 (7.53) 333 (7.53)

*Mean ± standard deviation

**The person resides in one of the nine provinces of Lima, but his/her fiscal address was outside of Lima

https://doi.org/10.1371/journal.pgph.0002854.t001
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Table 2. Predictive factors of fatality among COVID-19 confirmed cases using the model-building dataset (N = 17 678).

Variables Bivariate analysis Models

Strategy 1 Strategy 2 Strategy 3 Strategy 4

OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI)

Age 1.09 (1.09–1.10) 1.08 (1.08–1.09) 1.08 (1.08–1.09) 1.08 (1.07–1.09) 1.08 (1.08–1.09)

Sex

Female Ref. Ref. Ref. Ref. Ref.

Male 2.23 (1.99–2.51) 1.82 (1.55–2.13) 1.71 (1.46–2.00) 1.80 (1.53–2.11) 1.78 (1.52–2.08)

Symptoms at the enrolment

Fever 1.43 (1.29–1.61) 1.11 (0.95–1.30) – 1.09 (0.92–1.28) –

General discomfort 1.71 (1.53–1.93) – 1.41 (1.20–1.66) 1.43 (1.22–1.68) –

Cough 2.31 (2.01–2.66) – 1.55 (1.29–1.88) 1.62 (1.34–1.96) –

Sore throat 0.78 (0.70–0.88) – – 0.96 (0.81–1.12) –

Nasal congestion 0.73 (0.63–0.83) – – 0.91 (0.76–1.09) –

Dyspnea 9.87 (8.71–11.18) 7.36 (6.32–8.57) 7.14 (6.12–8.33) 6.96 (5.96–8.14) 7.59 (6.53–8.81)

Diarrhea 0.93 (0.78–1.11) – – – –

Nausea and vomiting 1.20 (0.99–1.46) – – – –

Headache 0.57 (0.51–0.65) – 0.61 (0.51–0.72) 0.59 (0.50–0.70) –

Confusion 3.53 (2.48–5.04) – – 2.81 (1.36–5.83) –

Muscle pain 1.01 (0.88–1.15) – – – –

Abdominal pain 1.02 (0.72–1.45) – – – –

Chest pain 1.13 (0.96–1.32) – – – –

Joint pain 1.40 (1.05–1.87) – – 0.91 (0.63–1.31) –

Dysosmia and dysgeusia 0.09 (0.04–0.20) – 0.19 (0.79–0.45) – –

Earache 1.53 (0.19–12.28) – – – –

Severity by symptoms

No symptoms of severity Ref. Ref. Ref.

With severe symptoms 1.33 (1.15–1.54) – 1.14 (0.93–1.39) 1.14 (0.93–1.40) –

Comorbidities

Cardiovascular disease 3.63 (3.13–4.22) 1.25 (0.97–1.61) – 0.99 (0.70–1.39) –

Hypertension 2.72 (2.03–3.65) 0.89 (0.55–1.44) – 0.72 (0.43–1.20) –

Dyslipidemia 0.37 (0.09–1.52) – – – –

Diabetes 2.54 (2.10–3.06) 1.54 (1.17–2.02) – 1.15 (0.81–1.63) –

Thyroid disease 0.87 (0.42–1.78) – – – –

Liver disease 2.64 (1.53–4.54) – – 0.90 (0.37–2.24) –

Neurological disease 2.91 (1.76–4.80) – – 1.21 (0.42–3.51) –

Immunodeficiency 0.91 (0.22–3.83) 4.45 (0.74–26.75) – – –

Kidney disease 4.99 (3.15–7.89) 3.10 (1.48–6.52) – 2.93 (1.42–6.06) –

Lung disease 2.94 (2.04–4.25) 1.37 (0.78–2.39) – 0.97 (0.53–1.78) –

Asthma 0.91 (0.57–1.45) 1.14 (0.57–2.28) – – –

Cancer 2.30 (1.30–4.09) 1.16 (0.52–2.57) – 0.79 (0.35–1.81) –

Obesity 1.29 (0.99–1.67) 1.93 (1.36–2.74) 1.88 (1.32–2.68) – –

Tuberculosis 0.99 (0.50–1.97) – – – –

Number of comorbidities

None Ref. Ref.

1–2 2.60 (2.31–2.94) – – 1.51 (1.12–2.03) –

(Continued)
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future infections and prevention of fatalities, especially in provinces–such as those described

here–with no available laboratories to perform molecular testing.

Considering that the COVID-19 pandemic was characterized by the disproportionate use

of health resources, it is still necessary to structure and articulate prioritization systems to pre-

vent the occurrence of negative outcomes in vulnerable populations. Here, we describe the

development of four models to predict death by COVID-19 considering different variable

selection strategies. Globally, all models performed adequately; however, based on the criteria

described above, we choose the models derived from strategies 1 and 4. Nevertheless, the use

of the other two models remains possible and therefore, we recommend further evaluation.

The model constructed with strategy 1 included clinical predictors reported in previous

studies [7, 8, 36]. These studies used population-based data from the United States and

described models that performed well (AUC = 0.8) [7, 8, 36]. Although we hypothesized that

using previously described models in populations other than those for which they were con-

structed might not be appropriate because of potential different characteristics between popu-

lations, health systems, or the epidemiology of COVID-19; we observed that the use of the

variables previously described generates a model that performs well for the prediction of

COVID-19 fatality in the Peruvian population studied. We even reported an AUC greater than

0.8, which was robust in the validation and sensitivity analysis. Also, the performance

described here is comparable to that reported in other studies that use national databases [7, 8,

36] and clinical [7, 36] and laboratory [8] information. However, although the clinical variables

of our model were obtained at patient enrollment, is likely that other symptoms prior to care

or symptoms that appeared during the clinical course play an important role in the prediction.

On the other hand, we considered some variables as a proxy of unmeasured variables. For

instance, fever and hypertension were considered as proxies for temperature and arterial pres-

sure at enrollment [7, 8, 36]. Despite this, we consider that this constraint does not signifi-

cantly affect the performance of the model, due to the close relationship of the proxies used

Table 2. (Continued)

Variables Bivariate analysis Models

Strategy 1 Strategy 2 Strategy 3 Strategy 4

OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI)

>2 5.03 (3.30–7.69) – – 2.09 (0.84–5.20) –

*Strategy 1: variables included since they were previously reported as predictors of death in other studies (References 7, 8, 27); Strategy 2: variables included by the

LASSO method; Strategy 3: variables included according to their statistical significance in bivariate analysis; Strategy 4: model created post-hoc with variables that were

consistently included in the three previously constructed models.

https://doi.org/10.1371/journal.pgph.0002854.t002

Table 3. Performance of the four prediction models for death in COVID-19 confirmed cases (N = 4 420).

Performance Strategy 1 Strategy 2 Strategy 3 Strategy 4

Estimate (95%CI) Estimate (95%CI) Estimate (95%CI) Estimate (95%CI)

Sensitivity* 82.58% 80.06% 83.08% 80.78%

Specificity* 82.07% 82.35% 82.30% 81.75%

Area under the curve (AUC) 0.89 (0.87–0.91) 0.88 (0.87–0.90) 0.89 (0.87–0.91) 0.88 (0.86–0.90)

Positive likelihood 4.60 4.54 4.69 4.43

Negative likelihood 0.21 0.24 0.21 0.24

*Cut-off point of the probability of the outcome: 52%

https://doi.org/10.1371/journal.pgph.0002854.t003
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with the unmeasured variables. On the other hand, since the comorbidities were obtained

through self-reports, and given that it is conceivable that there may be an underlying under-

diagnosis of comorbidities, it is therefore likely that their effect and contribution to the model

are underestimated, and consequently, the model performance is underestimated.

The model built based on strategy 4 only comprised three variables that were consistently

included in the other three models. Although this model was the most parsimonious and per-

formed similarly to the model constructed with strategy 1, it is important to note that it was

built post-hoc and was based on findings from the other models. Therefore, the model 4 could

be affected by multiple limitations described elsewhere [40]. It is important to note that the

model was robust in sensitivity analyses, and its performance was comparable with other non-

complex [10, 41, 42] and complex models described elsewhere [7, 8, 36]. Therefore, based on

these observations, we consider that the model derived from strategy 4 could be used with

caution.

In order to opt for one of the selected models, we propose a prior assessment of the quality

of the data. As an example, if there is no confidence in how the information on comorbidities

was measured or collected, the model 4 could be used to predict COVID-19 death. On the

other hand, if the quality of the data related to comorbidities is reliable, model 1 could be the

most suitable for predicting death, considering that the better marginal performance over

model 4 would translate into better predictive power.

The selected models included some variables that were significantly associated with the out-

come, such as dyspnea, age, male gender, diabetes, kidney disease, and obesity. These observa-

tions are discussed below.

Dyspnea was one of the characteristics that most increased the possibility of death, approxi-

mately 7-fold. Artificial intelligence modeling identified dyspnea as one of the most predictive

factors of COVID-19 fatality [7]. This is because severe stages of COVID-19 are characterized

by hypoxia, which often leads to respiratory failure and causes dyspnea. Previous studies have

reported a higher incidence of death as oxygen saturation decreases [43, 44], which has also

been corroborated in the Peruvian population [23, 24, 26].

Fig 1. Validation of the selected models for the prediction of death in confirmed cases of COVID-19. (A) Performance of the model derived from strategy 1

and 4 in the dataset used for the model construction (N = 17 678) and (B) performance of the model derived from strategy 1 and 4 in the dataset for validation

(N = 4 420).

https://doi.org/10.1371/journal.pgph.0002854.g001
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In this study we identified that the higher the age, the greater the possibility of death. This

relationship has been previously described [45–47], specifically indicating that fatality of

COVID-19 increases by almost 50% in older age groups [47]. This is likely due to the fact that

the burden of disease increases in older population, given that increased probability of comor-

bidities, polypharmacy, and frailty, and consequently a greater risk of negative health out-

comes develop. It is important to consider that the relationship between age and death may be

different in settings where vaccination coverage is high in the elderly and infection rates are

higher in the young adult population [47]. Therefore, the extrapolation of this finding must be

carried out with caution.

The chance of death from COVID-19 was approximately doubled in males. Previous stud-

ies have suggested that females have a better understanding of their health and potentially

quicker access to healthcare compared to males, reducing the probability of death [48]. How-

ever, recent studies conducted in the context of COVID-19 have identified that females experi-

ence a higher delay in accessing healthcare [49, 50]. Thus, the association may not be related to

delayed access, which is understandable given the fear surrounding the disease at the begin-

ning of the pandemic. On the other hand, some studies hypothesized that sex hormones influ-

ence the response against COVID-19, suggesting that there is a higher expression of immune-

related genes in women, which leads to a higher antibody response and protection against

infections [51]. Recently, it has been reported that women maintain a high immune reactivity

after viral infections and generate higher humoral responses to vaccines compared with men

[52]. For this reason, if we consider the extrapolation of this observation in scenarios with vari-

able COVID-19 vaccine coverage or infection, it would be expected that this association would

remain.

Comorbidities such as diabetes, kidney disease, and obesity increased the chance of death

from COVID-19. Although, it is known that COVID-19 causes myelopoiesis, T cells and natu-

ral killers dysregulation, and uncontrolled production of cytokines; the extent to which under-

lying comorbidity influences the immune response in the SARS-CoV-2 infection remains

unknown [53]. However, previous studies have reported that obesity and diabetes lead to dys-

regulation of immune cells and hormones, generating decreased immunity and a higher prob-

ability of hyperinflammation [53–55], which consequently translates into a boosting of

infection and the development of multiple adverse health events. On the other hand, regarding

chronic kidney disease, it is known that normal renal function contributes to immune homeo-

stasis given the filtration of circulating cytokines and immunogenic pathogenic components

and, thus, inflammation is limited [56]. In this instance, decreased renal function leads to

increased activation of innate immune cells and increased cytokine production [57], and the

subsequent cytokine storm, thereby generating an exponentiation of the disease severity [53].

Although previous studies have described the relationship between other comorbidities and

death [53, 58–60], the uncertainty in the measurement of comorbidities may play an important

role in the non-association found.

Implications for clinical practice

Currently, various clinical practice guidelines for COVID-19, especially those in low and mid-

dle-income countries, incorporate prediction models for assessing fatality risk and disease

prognosis. These models help prioritize vulnerable groups for treatments, hospitalization, etc.,

considering their limited resources [61]. However, these guidelines often include laboratory

variables and are primarily based on data from high-income countries. In contrast, our model

relies solely on clinical and sociodemographic variables. This makes it suitable for use in clini-

cal practices where laboratory tests are limited or unavailable, presenting a feasible tool, for
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example, in primary care services. By doing so, we can aid in the identification of prioritized

groups for transfer to more complex centers or for continuous disease monitoring. Further-

more, our model’s validation in a Peruvian population enhances the certainty of evidence,

facilitating its extrapolation for decision-making in other countries with similar healthcare

characteristics.

Limitation and strengths

This study is subject to various limitations. First, due to the fact that only the information

recorded in the surveillance system was analyzed, the fatality of COVID-19 may be underesti-

mated since it did not include information on: unreported cases, cases that did not seek health-

care, cases identified but not registered in the system by notifiers, or cases that were not

confirmed due to a lack of diagnostic tests. Therefore, the extrapolation of the models only

applies to symptomatic individuals with confirmatory tests for COVID-19. Secondly, given

that in Peru serological tests detecting antibodies were implemented as diagnostic for COVID-

19, our results could be affected by misclassification associated with the use of a diagnostically

limited test. However, to address this limitation, a sensitivity analysis was conducted that

included only cases diagnosed by RT-PCR. This evaluation suggested that, despite the exis-

tence of misclassification, the models’ performance was robust in the analyzed population sub-

group. Thirdly, the models constructed in this study only take into account individuals’ first

infection to avoid multiple measurements of the infection, excluding the possibility of analyz-

ing the number of reinfections as a predictive variable. Future studies should verify whether

this variable would substantially influence in the prediction models performance. Four,

because the surveillance system lacked other sociodemographic (i.e socioeconomic status) and

laboratory information such as leukocytes, blood group, platelets, D-dimer, among others,

their evaluation within the prediction models was not possible. However, even if previous pre-

diction models incorporated these variables, they have not significantly contributed to improv-

ing performance, yielding estimates comparable to models that include only clinical variables

[62]. Therefore, their contribution in a context of limited healthcare resources may not be ben-

eficial due to feasibility issues. Similarly, variables related to healthcare resources (e.g., the

number of available hospital beds, etc.) were not considered within the models, even though

they could be related to the outcome. While this data might have been accessible during the

period when this population was enrolled, considering that data on available healthcare

resources during the pandemic were freely accessible, currently, this report is not updated, and

obtaining it might not be feasible. Therefore, its inclusion would complicate a model intended

to be applied in different clinical practice contexts. Also, considering that the performance of

the models built in this study reports areas under the curve ranging between 80%, we believe

that the contribution of this variable would not be substantially important. Fifth, the search for

a better healthcare system, such as in the capital of the Lima department, could have led to the

displacement of cases to other locations not analyzed. Therefore, these cases may not have

been reported to the DIRESA-LIPRO, nor included in the analyses. Nevertheless, given the

mobility restrictions implemented, particularly during the first pandemic wave, it is possible

that if there were any movements, they were minimal and did not significantly affect our

results.

Finally, considering that the data were collected during the early periods of the COVID-19

pandemic, the extrapolation of results to the current context (different viral variants and vacci-

nation) should be cautious. However, while we would expect the model’s performance to be

affected in these contexts, we would not expect a difference in the variables included in this

study. Moreover, even in previous studies in contexts with a predominance of other viral
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variants, current evidence indicates a change in fatality trends depending on the type of variant

[63], but not a change in the known predictive factors since the beginning of the pandemic

[64, 65].

Despite the described limitations, to our knowledge, this study is one of the few that has

explored multiple variable selection strategies for creating predictive models for a Latin Ameri-

can population. It is also one of the few that has validated models previously created in other

contexts at a population level. Additionally, this study analyzes data derived from a specific

system that includes a population from provinces surrounding the capital of the country, pos-

sessing characteristics different from the capital but similar to rural areas. Overall, the study

contributes to current knowledge, increasing the certainty of evidence, primarily in terms of

precision and direct evidence, to be applied in decision-making in similar contexts. Finally, we

present an exercise that can be used for other scenarios similar to the COVID-19 pandemic,

allowing for the creation of locally validated models.

Conclusion

Herein, we describe four models with different variable selection strategies for the prediction

of COVID-19 fatality. Our findings suggest that, regardless of the strategy, the models dis-

played comparable performances. However, two prediction models, whose performances were

optimal in the validation and sensitivity analyses, exhibited slight outperformance due to their

plausibility with the outcome and/or their parsimony. Future studies should corroborate the

performance and validate the usefulness of the models described under both actual and real-

world conditions.

Supporting information

S1 Data. Database of the study.

(DTA)

S1 Fig. Distribution of the total population in the nine provinces of Lima-Peru. Map

source: Instituto Geográfico Nacional of Peru–Year 2018. *The map corresponds to the

department of Lima-Peru. **The data regarding the distribution of the population in the prov-

inces of Lima were obtained from the latest information reported by the National Center for

Epidemiology, Prevention, and Control of Diseases of Peru in 2016. ***The percentage corre-

sponds to the distribution with respect to the total population of Peru.

(TIF)

S2 Fig. Results of the selection of variables using the LASSO method. *Glossary: Age (x0);

Fever (x1); general discomfort (x2); cough (x3); sore throat (x4); nasal congestion (x5); respira-

tory distress (x6); diarrhea (x7); vomiting (x8); headache (x9); confusion (x10); muscle pain

(x11); abdominal pain (x12); chest pain (x13); joint pain (x14); dyssomnia or dysgeusia (x15);

ear pain (x16); pregnancy (x17); abortion (x18); cardiovascular disease (x19); hypertension

(x20); dyslipidemia (x21); diabetes (x22); thyroid disease (x23); liver disease (x24); neurological

disease (x25); immunodeficiency (x26); kidney disease (x27); lung disease (x28); asthma (x29);

cancer (x30); obesity (x31); tuberculosis (x32); sex (x33); severity according to symptoms

(x34); number of comorbidities (x35).

(TIF)

S3 Fig. COVID-19 case selection flowchart.

(TIF)
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S4 Fig. Survival curves of confirmed cases of COVID-19 in nine provinces of Lima, Peru.

Overall survival of cases in the full dataset (A), in the dataset used for model building (B), and

in the dataset used for the validation (C).

(TIF)

S5 Fig. ROC curves of the prediction models. *The specified values of areas under the curve

correspond to the following models: 1) "p ROC area": Strategy 1; 2) "p2 ROC area": Strategy 2;

3) "p3 ROC area": Strategy 3; 4) "p4 ROC area": Strategy 4.

(TIF)

S6 Fig. Sensitivity analysis of the performance of the selected models in the dataset for vali-

dation. 1. Validation of the model for Strategy 1 (A) in cases confirmed by RT-PCR and in

confirmed cases reported during (B) the first period and (C) the second period of the pan-

demic; 2. Validation of the model for Strategy 4 (D) in cases confirmed by RT-PCR and in con-

firmed cases reported during (E) the first period and (F) the second period of the pandemic; 3.

Validation of the model for Strategy 1 in the period between peaks of COVID-19 incidence

(G) and (H) validation of the model for Strategy 4 in the period between peaks of COVID-19

incidence.

(TIF)
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Peruano [Internet]. Perú: El Peruano 2021. Available from: https://elperuano.pe/noticia/123504-covid-

19-cuantas-variantes-hay-en-peru-y-donde-estan.

20. da Silva JC, Félix VB, Leão SABF, Trindade-Filho EM, Scorza FA. New Brazilian variant of the SARS-

CoV-2 (P1/Gamma) of COVID-19 in Alagoas state. The Brazilian Journal of Infectious Diseases, 2021.

25(3). https://doi.org/10.1016/j.bjid.2021.101588 PMID: 34102147

21. Hernandez-Ortiz J, Cardona A, Ciuoderis K, Averhoff F, Maya M-A, Cloherty G, et al. Assessment of

SARS-CoV-2 Mu Variant Emergence and Spread in Colombia. JAMA Network Open, 2022. 5(3): p.

e224754–e224754. https://doi.org/10.1001/jamanetworkopen.2022.4754 PMID: 35353169
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The Effect of Age on Mortality in Patients With COVID-19: A Meta-Analysis With 611,583 Subjects. J

Am Med Dir Assoc, 2020. 21(7): p. 915–918. https://doi.org/10.1016/j.jamda.2020.05.045 PMID:

32674819

43. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients

with coronavirus disease 2019: retrospective study. BMJ, 2020. 368: p. m1091. https://doi.org/10.

1136/bmj.m1091 PMID: 32217556

44. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline Characteristics and

Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region,

Italy. JAMA, 2020. 323(16): p. 1574–1581. https://doi.org/10.1001/jama.2020.5394 PMID: 32250385

45. Wu Z. and McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease

2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center

for Disease Control and Prevention. Jama, 2020. 323(13): p. 1239–1242.

46. Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Cardiovascular Disease, Drug Therapy, and Mortal-

ity in Covid-19. New England Journal of Medicine, 2020. 382(25): p. e102. https://doi.org/10.1056/

NEJMoa2007621 PMID: 32356626

47. Elo IT, Luck A, Stokes AC, Hempstead K, Xie W, Preston SH. Evaluation of Age Patterns of COVID-19

Mortality by Race and Ethnicity From March 2020 to October 2021 in the US. JAMA Network Open,

2022. 5(5): p. e2212686–e2212686. https://doi.org/10.1001/jamanetworkopen.2022.12686 PMID:

35579900
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