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Abstract

Hospitalized patients with Coronavirus disease 2019 (COVID-19) are highly susceptible to

in-hospital mortality and cardiac complications such as atrial arrhythmias (AA). However,

the utilization of biomarkers such as potassium, B-type natriuretic peptide, albumin, and oth-

ers for diagnosis or the prediction of in-hospital mortality and cardiac complications has not

been well established. The study aims to investigate whether biomarkers can be utilized to

predict mortality and cardiac complications among hospitalized COVID-19 patients. Data

were collected from 6,927 hospitalized COVID-19 patients from March 1, 2020, to March

31, 2021 at one quaternary (Henry Ford Health) and five community hospital registries (Trin-

ity Health Systems). A multivariable logistic regression prediction model was derived using

a random sample of 70% for derivation and 30% for validation. Serum values, demographic

variables, and comorbidities were used as input predictors. The primary outcome was in-

hospital mortality, and the secondary outcome was onset of AA. The associations between

predictor variables and outcomes are presented as odds ratio (OR) with 95% confidence

intervals (CIs). Discrimination was assessed using area under ROC curve (AUC). Calibra-

tion was assessed using Brier score. The model predicted in-hospital mortality with an AUC

of 90% [95% CI: 88%, 92%]. In addition, potassium showed promise as an independent

prognostic biomarker that predicted both in-hospital mortality, with an AUC of 71.51% [95%

Cl: 69.51%, 73.50%], and AA with AUC of 63.6% [95% Cl: 58.86%, 68.34%]. Within the test

cohort, an increase of 1 mEq/L potassium was associated with an in-hospital mortality risk

of 1.40 [95% CI: 1.14, 1.73] and a risk of new onset of AA of 1.55 [95% CI: 1.25, 1.93]. This

cross-sectional study suggests that biomarkers can be used as prognostic variables for in-

hospital mortality and onset of AA among hospitalized COVID-19 patients.

1. Introduction

Coronavirus disease 2019 (COVID-19) pandemic is a significant global health crisis, with the

number of cumulative cases exceeding 500 million and the death toll surpassing 6 million [1,
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2]. Although acute symptoms of COVID-19 such as anosmia and respiratory complications

are well-established, the assessment of potential systemic or long-term complications requires

further investigation. Davis et al. showed that fatigue was the most common remaining symp-

tom after 7 months and 30% of prevalence of tachycardia among the 966 COVID-19 con-

firmed cases, known as Long COVID [3]. Early studies demonstrated that the presence of

atrial fibrillation and non-sustained ventricular arrhythmia was associated with 4.68 times and

8.92 times higher risk of Intensive Care Unit (ICU) admission, respectively [4].

Several studies have suggested possible underlying cardiac mechanisms during COVID-19

that cause cardiac complications. Cardiac injury was commonly found in COVID-19 hospital-

ized patients and correlated with elevated risk for in-hospital mortality [5–7]. Case report stud-

ies have shown that acute cardiac injury can lead to cardiac dysfunction, causing cardiogenic

shock and increasing the probability of malignant arrhythmias [8]. Additional studies have

reported that COVID-19 is associated with arrhythmia and myocarditis, heart failure, myocar-

dial injury, and vascular inflammation [9–11]. Previous research has underscored the impor-

tance of measuring and evaluating cardiac biomarkers in hospitalized COVID-19 patients [9].

However, little attention has been paid to cardiac complications among hospitalized COVID-

19 patients, and fewer studies have described employing biomarkers for examining these

patients.

Several studies revealed a connection between high potassium levels and myocyte ischemia

[12, 13], which triggers an imbalance of potassium levels, numerous inflammatory markers in

the arrhythmogenesis pathway, and damages the myocardium that results in myocarditis and

arrhythmias in COVID-19 [14]. Additional studies have shown that COVID-19 patients with

high troponin T levels are at elevated risk for the development of severe disease, mortality, and

require ICU admission [15, 16]. One study demonstrated that emerging arrhythmia and ele-

vated creatine kinase (CK), creatine kinase-myocardial band (CK-MB), lactate dehydrogenase

(LDH), and Interleukin-6 (IL-6) levels are associated with severe disease and ICU admission.

Moreover, elevated levels of LDH hold prognostic value for mortality [16]. As a result, the

study recommended that cardiac injury-related biomarkers be closely monitored in patients

with COVID-19, especially in the acute phase of the disease.

Thus, it is of utmost importance to prioritize the surveillance of cardiac complications in

COVID-19 patients during hospitalization, to facilitate earlier diagnosis of potential diseases,

lower in-hospital mortality rates, and decrease the risk of cardiac complications. Quick, mini-

mally invasive, real-time, and precise methods are warranted to monitor patients’ health con-

tinuously to provide accurate and early diagnosis of their condition.

This study selected specific biomarkers that could potentially aid in the creation of

advanced technologies, like wearable sensor-based tools, to develop clinical support models

for predicting mortality and cardiac complications among COVID-19 hospitalized patients

[17–27]. The chosen biomarkers include serum potassium, serum magnesium, lactate, LDH,

serum albumin, and troponin, which were hypothesized to have a significant impact on mor-

tality and the onset of arrhythmias.

2. Methods

2.1 Study population

Data were collected from a total of 6,927 hospitalized patients with COVID-19 from March 1,

2020, to March 31, 2021, at one quaternary (Henry Ford Health) and five community hospital

registries (Trinity Health Systems) [18]. Informed consent was waived because deidentified

medical records were used. Assuming 24 candidate predictor parameters, an in-hospital mor-

tality rate of 0.145, and a conservative 15% of the maximal Cox-Snell R2, we estimated that the
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minimum sample size for fitting the regression models was 4,199 with 609 events [28]. 4,881

patients (70%), the training set, were used to build a predictive model and the outcome was

analyzed in a holdout validation set of 2,046 patients (30%). All diagnoses including atrial

arrhythmias (AA) (atrial fibrillation (AF) and atrial flutter), co-morbid conditions, and in-hos-

pital mortality were defined with 10th revision of International Classification of Diseases (ICD-

10) codes from deidentified electronic health records [17, 18]. This study adhered to the Trans-

parent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis

(TRIPOD) reporting guideline [29].

2.2 Prognostic biomarkers

The primary outcome of interest was in-hospital mortality, and the secondary outcome of

interest was new-onset AA. New onset was defined as having no previous ICD-10 code diag-

nosis [18]. Age, gender, race, BMI, diabetes mellitus (DM), congestive heart failure (CHF), pul-

monary embolism (PE), solid cancer, hematological malignancy (HEMA), and 16 biomarkers

were chosen based on their established clinical relevance and physiological significance, due to

their suitability and applicability in development of online monitoring tools and wearable

devices [5, 14, 16, 30]. LDH (U/L), ferritin(ng/ml), troponin I (ng/ml), creatine phosphokinase

(CPK) (U/L), c-reactive protein (CRP) (mg/dl), B-type natriuretic peptide (BNP) (pg/ml),

serum creatine (Cr) (mg/dl), lactate (mmol/L), serum potassium (pK and lK) (mEq/L), serum

magnesium (pMg and lMg) (mg/dl), serum albumin (Albu) (g/dl), hemoglobin (Hb) (gm/dl),

diastolic and systolic blood pressure (DBP and SBP) (mmHg) (p = peak, l = lowest)) were

included as predictor variables to build the model. In the original data set, all parameters

except for Albu and Hb were recorded at their highest value. Potassium was investigated in

greater depth due to its statistical significance during exploratory data analysis and potential

clinical relevance. The missing data were handled by multiple imputations by chained equa-

tions under the missing at random assumption and performed using the “mice” package in R

[31, 32].

2.3 Statistical analysis

Age, BMI, demographics, hospital events, and 16 biomarkers were treated as continuous vari-

ables and summarized using mean, standard deviation (SD), median, and interquartile range

(IQR) in Table 1. Meanwhile, gender, race, and comorbidities were considered categorical var-

iables and expressed as frequency and percentage. The Mann-Whitney U test was employed to

identify median differences in peak serum potassium for each outcome. Initially, a univariate

logistic regression was conducted to analyze the primary outcome (in-hospital mortality) and

secondary outcome (new onset of AA). A randomly selected 70% sample was used to derive

the multivariable logistic regression model, with the remaining 30% used for validation. All

predictors described above were included in the final model. The associations between the pre-

dictor variables and outcome are presented as odds ratio (OR) with 95% confidence intervals

(CIs) in Table 2. Multicollinearity was assessed using a correlation plot (S1 Fig). Nagelkerke

R2 was used as a measure of pseudo-R2 to assess the goodness of fit. Discrimination was

assessed using area under ROC curve (AUC). Calibration was assessed using the Brier score.

All performance statistics reported were calculated using the holdout validation set. We com-

pared the models for the clinical utility using decision curve analysis [33]. This analysis assesses

the trade-off between the potential harms and the benefits of true positives and that may arise

from false positives across a range of threshold probabilities. Each model was compared using

the two default scenarios of treat all or treat none, with the mean model prediction used for

each individual. This approach implicitly considers both discrimination and calibration and
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Table 1. Baseline demographic, biomarker, and hospital event characteristics.

Overall

(N = 6927)

Demographics

Age

Mean (SD) 65.2 (16.7)

Median [Min, Max] 67.0 [21.0, 90.0]

BMI (kg/m2)

Mean (SD) 31.2 (8.47)

Median [Min, Max] 29.7 [2.34, 80.7]

Gender

Female 3514 (50.7%)

Male 3413 (49.3%)

Race

Black 2404 (34.7%)

Other 448 (6.5%)

White 3839 (55.4%)

Missing 236 (3.4%)

Comorbidities

Diabetes Mellitus

No 4447 (64.2%)

Yes 2480 (35.8%)

Hypertension

No 2323 (33.5%)

Yes 4604 (66.5%)

Congestive Heart Failure

No 5671 (81.9%)

Yes 1256 (18.1%)

History of Coronary Artery Disease

No 3798 (54.8%)

Yes 531 (7.7%)

History of Stroke/Transient Ischemic Attack

No 6236 (90.0%)

Yes 691 (10.0%)

History of Deep Vein Thrombosis

No 6550 (94.6%)

Yes 377 (5.4%)

History of Pulmonary Embolism

No 6669 (96.3%)

Yes 258 (3.7%)

History of Pulmonary Diseasea

No 5345 (77.2%)

Yes 1582 (22.8%)

History of Liver Diseaseb

No 6754 (97.5%)

Yes 173 (2.5%)

History of Chronic Kidney Disease

No 6025 (87.0%)

Yes 902 (13.0%)

History of End-Stage Renal Disease

No 6717 (97.0%)

(Continued)
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Table 1. (Continued)

Overall

(N = 6927)

Yes 210 (3.0%)

History of Malignanciesc

No 5837 (84.3%)

Yes 1090 (15.7%)

Biomarkers

Peak Lactate dehydrogenase (U/L)

Mean (SD) 381 (402)

Median [Min, Max] 318 [69.0, 9750]

Peak Ferritin (ng/mL)

Mean (SD) 848 (2140)

Median [Min, Max] 495 [5.00, 78700]

Peak Troponin-I (ng/mL)

Mean (SD) 0.198 (1.02)

Median [Min, Max] 0.0280 [0.00400, 18.9]

Peak Creatine phosphokinase (U/L)

Mean (SD) 452 (10200)

Median [Min, Max] 87.0 [10.0, 694000]

Peak C-reactive protein (mg/dL)

Mean (SD) 7.88 (6.42)

Median [Min, Max] 7.30 [0.100, 48.6]

Peak B-type natriuretic peptide (pg/ml)

Mean (SD) 221 (433)

Median [Min, Max] 72.0 [5.00, 3990]

Peak Serum Creatinine (mg/dL)

Mean (SD) 1.84 (2.02)

Median [Min, Max] 1.14 [0.230, 26.3]

Peak Serum Lactate (mmol/L)

Mean (SD) 2.19 (1.97)

Median [Min, Max] 1.60 [0.300, 29.1]

Peak Serum Potassium (mEq/L)

Mean (SD) 4.67 (0.780)

Median [Min, Max] 4.50 [2.50, 9.70]

Lowest Serum Potassium (mEq/L)

Mean (SD) 3.60 (0.542)

Median [Min, Max] 3.60 [1.20, 22.0]

Peak Serum Magnesium (mg/dL)

Mean (SD) 2.29 (0.419)

Median [Min, Max] 2.20 [1.00, 9.50]

Lowest Serum Magnesium (mg/dL)

Mean (SD) 1.84 (0.284)

Median [Min, Max] 1.80 [0.500, 5.90]

Lowest Serum Albumin (g/dL)

Mean (SD) 2.92 (0.613)

Median [Min, Max] 2.90 [1.00, 5.70]

Lowest Hemoglobin (g/dL)

Mean (SD) 11.5 (1.88)

(Continued)
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Table 1. (Continued)

Overall

(N = 6927)

Median [Min, Max] 11.5 [1.90, 19.4]

Presenting Systolic Blood Pressure (mmHg)

Mean (SD) 134 (25.4)

Median [Min, Max] 132 [0, 266]

Presenting Diastolic Blood Pressure (mmHg)

Mean (SD) 74.9 (15.9)

Median [Min, Max] 74.0 [0, 235]

Hospital Events

In-Patient Mortality

No 5842 (84.3%)

Yes 1085 (15.7%)

ICU Admission

No 5350 (77.2%)

Yes 1577 (22.8%)

Hospital Readmission

No 6312 (91.1%)

Yes 615 (8.9%)

Hospital Readmission within 90 days

No 6341 (91.5%)

Yes 586 (8.5%)

Respiratory Failure Requiring Mechanical Ventilation

No 6081 (87.8%)

Yes 846 (12.2%)

New Onset Heart Failure

No 6636 (95.8%)

Yes 291 (4.2%)

Transient Ischemic Attack/Ischemic Stroke

No 6768 (97.7%)

Yes 159 (2.3%)

Acute Renal Failure

No 4594 (66.3%)

Yes 2333 (33.7%)

Ventricular Fibrillation

No 6905 (99.7%)

Yes 22 (0.3%)

Ventricular Tachycardia

No 6750 (97.4%)

Yes 177 (2.6%)

Type of Atrial Arrhythmia

History of Atrial Arrhythmias 779 (11.2%)

New-onset Atrial Arrhythmias 626 (9.0%)

Normal Sinus Rhythm 5522 (79.7%)

aHistory of COPD, asthma, bronchiectasis, and interstitial lung disease
bHistory of alcoholic liver disease, non-alcoholic steatohepatitis, hepatitis B, and hepatitis C
cHistory of cancer, leukemia, and hepatocellular carcinoma

https://doi.org/10.1371/journal.pgph.0002836.t001
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extends model evaluation to consider the ramifications on clinical decision-making [34]. A

2-sided p-value less than 0.05 was considered statistically significant. All statistical analysis

were conducted using SAS 9.4 software (SAS Institute, USA) and GraphPad Prism 9 (Graph-

Pad Software, USA).

2.4 Ethical statement

This study used publicly available data in Mendeley (DOI:10.17632/rm6rjpft8j.5) from a pub-

lished study.[18] The original study was approved “The study was approved as a retrospective

study by institutional review boards at Henry Ford Health System (protocol # 13785) and

Trinity Health System (protocol # 2021–009). The need for informed consent was waived for

the use of deidentified medical records”.

3. Results

3.1 Clinical characteristics

A total of 6,927 hospitalized patients with COVID-19 were evaluated. The mean age was

65.2 ± 16.7 years, 50.7% were women and 55.4% were white. 35.8% of patients had diabetes,

18.1% were with congestive heart failure, 3.7% had a history of pulmonary embolism, and

15.7% had a history of malignancies. Summary statistics (mean, SD, and proportion) of vari-

ables used in the model are summarized in Table 1.

Table 2. Univariate associations between variables and in-hospital mortality.

Variable OR (95% CI)b

Age 1.07 (1.06, 1.07)

Female (Ref: Male) 0.65 (0.56, 0.76)

Black race (Ref: White) 0.71 (0.60, 0.84)

Other race (Ref: White) 0.46 (0.31, 0.66)

Diabetes Mellitus 1.10 (0.94, 1.33)

Congestive heart failure 2.30 (1.93, 2.73)

History of Pulmonary Embolism 1.20 (0.82, 1.76)

History of Malignanciesa 1.89 (1.57, 2.28)

BMI 0.95 (0.94, 0.96)

Presenting Systolic blood pressure 0.99 (0.99, 1.00)

Peak Lactate dehydrogenase (U/L) 1.00 (1.00, 1.00)

Peak Ferritin (ng/mL) 1.00 (1.00, 1.00)

Peak Troponin-I (ng/mL) 1.18 (1.11, 1.25)

Peak Creatine phosphokinase (U/L) 1.00 (1.00, 1.00)

Peak C-reactive protein (mg/dL) 1.09 (1.08, 1.11)

Peak B-type natriuretic peptide (pg/ml) 1.00 (1.00, 1.00)

Peak Serum creatinine (mg/dL) 1.31 (1.26, 1.35)

Peak Lactate (mmol/L) 1.54 (1.46, 1.62)

Peak Serum potassium (mEq/L) 2.53 (2.30, 2.79)

Peak Serum magnesium (mg/dL) 5.51 (4.56, 6.67)

Lowest Albumin (g/dL) 0.12 (0.11, 0.15)

Lowest Hemoglobin (g/dL) 0.77 (0.74, 0.80)

aHistory of cancer, leukemia, and hepatocellular carcinoma
bOdds ratio (OR) with 95% confidence intervals (CIs)

https://doi.org/10.1371/journal.pgph.0002836.t002
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3.2 Potassium as a potential biomarker

To evaluate the prognostic capacity of potassium as a biomarker of in-hospital mortality and

onset of AA, we initially conducted a screening analysis (n = 5,110) using our full sample with

available information on potassium, comparing potassium levels between patients who died

and those who survived. Serum peak potassium (pK) showed significant differences in relation

to both primary (in-hospital mortality) and secondary (new onset of AA) outcomes, [event of

death (n = 740, 14.5%); new onset of AA (n = 528, 10.3%)]. Potassium was also significantly

different in other hospital severe events including event of pulseless ventricular tachycardia/

ventricular fibrillation (VT/VF) (n = 103, 2%); new onset of heart failure (HF) (n = 196, 3.8%);

new onset of renal failure (RF) (n = 1704, 33.3%); and ICU admission (n = 1159, 22.7%; 5.1

mEq/L] (p<0.0001, Mann-Whitney U test) (Fig 1). An unadjusted increase of 1 mEq/L of

potassium was associated with an in-hospital mortality risk of 2.53 [95% CI: 2.30, 2.79] and a

risk of new onset of AA of 1.70 [95% CI: 1.53, 1.89]. Serum potassium levels predicted in-hos-

pital mortality with an AUC of 70.91% [95% Cl: 68.81%, 73.01%] and new onset of AA with an

AUC of 64.54% [95% Cl: 61.89%, 67.19%]. (S1 Table).

3.3 Performance of prediction model for in-hospital mortality

In order to build a model for predicting in-hospital mortality, three components were consid-

ered based on their clinical importance for predicting in-hospital mortality. Demographics

(age, gender, and race), comorbidities (diabetes, congestive heart failure, history of pulmonary

embolism, and malignancies), and measurable biomarkers (BMI, LDH, ferritin, troponin,

CPK, CRP, BNP, Cr, lactate, pK, pMg, lAlbu, lHb, and SBP (*p = peak, l = lowest)) were

included in the multivariable logistic regression (Fig 2).

The final mortality model (modelmortality) predicted in-hospital mortality with a validation

AUC of 0.90 [95% CI: 0.88, 0.92] (Table 3). The modelmortality had a specificity of 0.96, PPV of

0.63, and an NPV of 0.90 at a threshold of 0.5. The modelmortality had a Brier score of 0.08. Full

model coefficients with 95% confidence intervals are summarized in S2 Table. Age

[OR = 1.07, 95% CI: 1.05, 1.08], CRP [OR = 1.06, 95% CI: 1.03, 1.08], creatinine [OR 1.13, 95%

CI: 1.03, 1.24], lactate [OR = 1.33, 95% CI: 1.20, 1.47], magnesium [OR = 3.35, 95% CI: 2.33,

4.82] were significant predictors of mortality. Albumin [OR = 0.37, 95% CI: 0.27, 0.52] was sig-

nificantly associated with decreased odds of mortality. The biomarker-only model predicted

mortality with an AUC of 0.87 [95% CI: 0.85, 0.89]. Biomarker-only model coefficients are

summarized in S3 Table. Improvement of model discrimination is shown in Fig 2A, compar-

ing the modelmortality vs. the biomarkers-only model. The ROC of each independently signifi-

cant biomarker is shown in Fig 2B and S4 Table. Decision curve analysis showed that net

benefit using the predictive model was better than treating all or none across a range of reason-

able threshold probabilities (S2 Fig).

3.4 Performance of prediction models for secondary outcomes

The final model for new onset of AA (modelAA) had an AUC of 0.77 [95% CI: 0.74, 0.81] (Fig

2C and S5 Table). The modelAA had a specificity of 0.99, PPV of 0.60, and NPV of 0.92 at a

cutoff threshold of 0.5. Individual biomarkers were also used to predict onset AA as presented

in Fig 2D. The ROC curve for the modelAA adjusting for type of AA which included history of

AA and new onset of AA was also presented in S3 Fig. Age [OR = 1.04, 95% CI: 1.02, 1.06], lac-

tate [OR = 1.13, 95% CI: 1.02, 1.25], potassium [OR = 1.55, 95% CI: 1.25, 1.93] were significant

predictors of mortality. Albumin [OR = 0.66, 0.47, 0.93] was significantly associated with

decreased odds of onset AA. ModelAA and biomarker-only model coefficients with 95% confi-

dence intervals are summarized in S6 and S7 Tables. Additionally, increased serum Mg level
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was strongly associated with both ICU admission (OR = 4.48 [95% CI: 3.52, 5.71]) and new

onset of RF (OR = 2.40 [95% CI: 1.78, 3.25]), which was not significantly associated with mor-

tality nor new onset of AA (S8 and S9 Tables). Additional models developed using the same

set of predictor variables could predict ICU admission (AUC of 0.86 [95% CI: 0.84, 0.88]) and

the new onset of RF (AUC of 0.78 [95% CI: 0.75, 0.80]) (S4 and S5 Figs).

4. Discussion

In this cross-sectional study of 6,927 hospitalized patients due to COVID-19, we developed a

model including biomarkers and baseline demographic variables to predict the in-hospital

Fig 1. Differences in median potassium values across different outcomes. (A) No event (n = 4802) vs death (n = 897); median 4.5 mEq/L vs 5.1 mEq/L

(p<0.0001, Mann-Whitney U test). (B) No event (Normal sinus rhythm and History of AA) (n = 5171) vs New-onset of AA (AA) (n = 528); median 4.5 mEq/L

vs 4.85 mEq/L (p<0.0001, Mann-Whitney U test). (C) No event (n = 4387) vs ICU admission (n = 1312); median 4.4 mEq/L vs 5.1 mEq/L (p<0.0001, Mann-

Whitney U test). (D) No event (n = 3726) vs New-onset of RF (n = 1973); median 4.4 mEq/L vs 4.9 mEq/L (p<0.0001, Mann-Whitney U test). (E) No event

(n = 5477) vs New-onset of HF (n = 222); median 4.5 mEq/L vs 4.8 mEq/L (p<0.0001, Mann-Whitney U test). (F) No event (n = 5563) vs New-onset of VT/VF

(n = 136); median 4.5 mEq/L vs 5.1 mEq/L (p<0.0001, Mann-Whitney U test).

https://doi.org/10.1371/journal.pgph.0002836.g001
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mortality and incidence of cardiac complications. Among the tested measurable biomarkers,

potassium also predicted the outcomes independently, showing a robust association with in-

hospital death rate and the presence of AA.

COVID-19 has been the cause of numerous hospitalizations and fatalities across the world

[1]. Although it is widely thought that cardiac arrhythmias are sequelae of COVID-19, new

studies suggest there may be underlying causes in the heart that lead to such issues [10, 15].

Cardiac injury has been observed frequently in hospitalized COVID-19 patients and is

Fig 2. ROC for predictive models. (A) In-hospital mortality: all biomarkers and measurable biomarkers; demographics (age, gender, race), medical history

(diabetes mellitus, congestive heart failure, pulmonary Embolism, Malignancies), measurable biomarkers (BMI, LDH, Ferritin, Troponin, CPK, CRP, BNP, Cr,

Lactate, K, Mg, Hb, SBP were used to predict the outcome In-hospital mortality. (B) Individual biomarkers; measurable biomarkers AUC�0.7 was reported (C)

New-onset AA: All biomarkers and measurable biomarkers; demographics (age, gender, race), medical history (diabetes mellitus, congestive heart failure,

pulmonary Embolism, Malignancies), measurable biomarkers (BMI, LDH, Ferritin, Troponin, CPK, CRP, BNP, Cr, Lactate, K, Mg, Hb, SBP were used to

predict the outcome new-onset AA. (D) Individual Biomarkers; measurable biomarkers AUC�0.6 was reported.

https://doi.org/10.1371/journal.pgph.0002836.g002

Table 3. Performance for biomarkers-only model and full model for in-hospital mortality.

Model AUC (95% CI) Brier Score Nagelkerke’s R2 Sensitivity Specificity

Biomarkers Only 0.874 (0.8555, 0.893) 0.090 0.38 0.33 0.97

Full 0.902 (0.885, 0.919) 0.08 0.46 0.37 0.96

https://doi.org/10.1371/journal.pgph.0002836.t003
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associated with higher risk of in-hospital mortality [5]. Despite the significance of cardiac com-

plications in hospitalized COVID-19 patients, there has been limited research on identifying

potential biomarkers to predict these outcomes. Additionally, few studies have investigated the

use of health indicators to examine these patients, despite the potential for these indicators to

predict both severe clinical courses and cardiac complications in hospitalized COVID-19

patients [9]. Herein, our full model mainly included co-morbidities and measurable biomark-

ers (LDH, ferritin, troponin I, CPK, CRP, BNP, Cr, lactate, potassium, Mg, Albu, Hb, and

SBP). Measurable biomarkers were utilized to develop a biomarkers-only model due to their

established clinical and physiological relevance. These biomarkers, known for their predict-

ability and accuracy, can often outperform binary medical parameters and can be incorporated

into monitoring tools, such as wearables [5, 14, 16, 30, 35]. Based on our findings, our model

exhibited excellent discrimination in predicting in-hospital mortality, with an AUC of 0.902

and a specificity of 0.96. It relies on a predictive model similar to the modern concept of deep

learning-based models that use electronic health records [36], outperforming conventional

clinical tools such as the ’traditional risk scores’. These conventional approaches incorporate

variables that are usually assessed in clinical settings, such as lipid profile, blood pressure, glu-

cose levels and history of smoking [37–39]. Some of these risk scores include the augmented

Early Warning Score (aEWS) [36], QRISK3 [40], American College of Cardiology/American

Heart Association (ACC/AHA) risk scores [41], Framingham risk score (FRS) [42], SCORE

[43], and the United Kingdom Prospective Diabetes Study 60 (UKPDS60) [44]. In addition,

several previous models for predicting COVID-19 in-hospital mortality have been developed.

For example, a risk score system has been developed based on complete blood count and age

[45]. Another model was developed using data from 452 COVID-19 patients at the age of 60

and included lymphopenia, D-dimer, coronary heart disease and procalcitonin [46]. Previous

studies have emphasized the significance of monitoring mortality rates among COVID-19

patients to prioritize hospitalization and provide timely medical care, ultimately reducing the

number of deaths [47, 48].

Using the same set of predictor variables, we also developed a model that predicted the new

onset of AA in hospitalized COVID-19 patients. This model predicted the onset of AA with

AUC of 0.77 and a specificity of 0.99. Previous literature pointed out the significance of pre-

dicting cardiac issues in COVID-19 patients. Early studies in the first China patient cohorts

reported 17% of patients suffering from cardiac arrhythmia, with rates up to 44% in ICU

patients [49]. Another study found similar rates of arrhythmia events in COVID-19 patients

hospitalized in ICU, with the most common arrhythmic event of AF [4]. One study found that

cardiac arrhythmia was the most common cardiac event associated with COVID-19 hospitali-

zation, and concluded that the high incidence of arrhythmias, as well as their potential prog-

nostic implications, make it necessary to screen patients with risk factors [50].

Among the chosen biomarkers, we picked potassium for screening analysis, considering

the inherent importance of electrolytes in diagnostics and the clinical role of potassium as a

health indicator [12, 13, 51–56]. Furthermore, several studies have been performed using next-

generation platforms, showing the differential expression of biomarkers, including omic bio-

markers or protein and gene expression of these biomarkers and others related to potassium,

in the context of mortality or cardiac complications [57–65]. While biomarkers such as tropo-

nin and albumin have established correlations with cardiac function, predicting mortality and

AA, we opted to focus on potassium as a singular biomarker to test its predictability for differ-

ent outcomes. Based on our findings, potassium showed promise as an independent biomarker

that predicted both hospital mortality and the onset of AA. These findings support the fact that

potassium is a significant prognostic biomarker for in-hospital mortality and the onset of AA

following the previous literature that described the relationship between elevated levels of

PLOS GLOBAL PUBLIC HEALTH Real-time prognostic biomarkers for COVID-19:In-hospital mortality & cardiac complications

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0002836 March 6, 2024 11 / 17

https://doi.org/10.1371/journal.pgph.0002836


potassium and health deterioration and increased mortality [55]. In previous studies, potas-

sium showed a strong correlation with arrhythmia and mortality especially since abnormalities

in electrolytes are considered common among COVID-19 patients [51, 66–68]. In addition,

abnormal levels of potassium were associated with in-hospital mortality and arrhythmia

among patients admitted with suspected ACS [56]. Generally, electrolyte biomarkers have gar-

nered interest for the development of wearable devices designed to estimate risk of cardiac

complications and in-hospital death. Accordingly, it’s important to monitor these biomarkers

and employ them in health diagnosis, to predict diseases severity and mortality [51–54].

By monitoring prognostic biomarkers in real-time for in-hospital mortality and the onset

of AA in hospitalized COVID-19 patients, it is possible to gain rapid and precise estimations

of health status which can be used to avert complications and mortality. In addition, utilizing

wearable devices sent home with discharged patients would offer a cost-efficient method for

independent, long-term health surveillance [69–73]. Our constructed prediction model using

prognostic biomarkers was able to predict in-hospital mortality and cardiac problems for

COVID-19 patients. Following on our study, these prognostic biomarkers may prove valuable

for building a prediction model not only in the case of COVID-19 patients but also in other

patient cohorts; thus further investigations are warranted.

The current study has several limitations; First, our models were validated only with an

internal validation set, which limits external generalization. Second, model development

depended on peak-measured biomarkers since we did not have access to serial measurements,

but the inclusion of serial measurements may be more powerful [74]. Third, given the retro-

spective nature of our dataset, no coefficient within the model has a causal interpretation.

Fourth, we used a multiple imputation approach to impute missing data, which relies on miss-

ing data at random assumptions. Fifth, the model relies on predictors that are measured inva-

sively, in contrast to other non-invasive methods such as breath analysis, which comes with

constrains and limits the usage of the model in routine settings. Sixth, there’s a lack of compar-

ison between the developed model and existing models designed for the same usage. For

robustness, a bootstrapping approach could be considered to minimize bias; however, this was

not considered for the current study due to computational overhead. In general, multiple

imputation is more statistically powerful for model development than throwing out data in a

complete case approach [31].

5. Conclusions

Our current research outlines a prognostic biomarker-based predictive model for in-hospital

mortality and atrial arrhythmia. Among the measurable biomarkers tested, potassium proved

to be a valuable independent indicator in forecasting both mortality and AA. Going forward,

further investigations should continue to assess the predictive capacity of biomarkers in other

patient populations. Moreover, future research endeavors may involve utilizing these predic-

tion models to construct wearable, real-time monitoring devices that can assist in more

informed clinical decision-making and online health tracking for patients.
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