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Abstract

Leptospirosis, a global zoonotic disease, is prevalent in tropical and subtropical regions,

including Fiji where it’s endemic with year-round cases and sporadic outbreaks coinciding

with heavy rainfall. However, the relationship between climate and leptospirosis has not yet

been well characterised in the South Pacific. In this study, we quantify the effects of different

climatic indicators on leptospirosis incidence in Fiji, using a time series of weekly case data

between 2006 and 2017. We used a Bayesian hierarchical mixed-model framework to

explore the impact of different precipitation, temperature, and El Niño Southern Oscillation

(ENSO) indicators on leptospirosis cases over a 12-year period. We found that total precipi-

tation from the previous six weeks (lagged by one week) was the best precipitation indicator,

with increased total precipitation leading to increased leptospirosis incidence (0.24 [95% CrI

0.15–0.33]). Negative values of the Niño 3.4 index (indicative of La Niña conditions) lagged

by four weeks were associated with increased leptospirosis risk (-0.2 [95% CrI -0.29

–-0.11]). Finally, minimum temperature (lagged by one week) when included with the other

variables was positively associated with leptospirosis risk (0.15 [95% CrI 0.01–0.30]). We

found that the final model was better able to capture the outbreak peaks compared with the

baseline model (which included seasonal and inter-annual random effects), particularly in

the Western and Northern division, with climate indicators improving predictions 58.1% of

the time. This study identified key climatic factors influencing leptospirosis risk in Fiji. Com-

bining these results with demographic and spatial factors can support a precision public

health framework allowing for more effective public health preparedness and response

which targets interventions to the right population, place, and time. This study further high-

lights the need for enhanced surveillance data and is a necessary first step towards the

development of a climate-based early warning system.
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Introduction

Leptospirosis is a zoonotic disease with an estimated 1.03 million cases, and 58,000 deaths

reported globally each year [1]. It is found in all regions of the world, but the burden of disease

is particularly high in Oceania and other resource-limited settings [2–4], and it is a major pub-

lic health concern in many countries. It is caused by pathogenic spirochaete bacteria, of the

genus leptospira [5]. Leptospirosis typically presents as an acute febrile illness and symptoms

can resemble other diseases, such as dengue and malaria, which often leads to misdiagnosis or

underdiagnosis [5–9]. In some patients, more severe disease can occur and the case fatality

rate of leptospirosis is estimated to be approximately 7% [1], although in settings with limited

access to treatment and diagnosis it can be higher. Surveillance of leptospirosis is often limited,

and many countries have limited capacity for diagnostic testing. Furthermore, the laboratory

diagnosis of leptospirosis is challenging, and there is a lack of adequate diagnostic tests avail-

able for accurate and early diagnosis of leptospirosis [10,11].

Leptospirosis transmission is driven by complex interactions between animals, humans and

their environment. Hundreds of animal species have been identified as hosts for leptospirosis,

including rodents, livestock, and domestic and wild animals [7,12,13]. Humans can become

infected, either directly through contact with infected animals or tissue, or indirectly through

water or soil contaminated by animal urine; but human-to-human transmission is extremely

rare [5,7,8,14]. Once in the environment, bacteria can survive for weeks or even months in

water or moist soil [5,15–17]. As such, there are many different risk factors for leptospirosis,

and these are context specific. Risk factors include occupational (such as agricultural workers

and abattoir workers), lack of sanitation, poor living conditions, animals in the community

and recreational exposures [4,18–20].

Climatic factors have also been shown to increase leptospirosis risk, with outbreaks of lepto-

spirosis often associated with extreme precipitation and flooding events [4,19,20]. Extreme

precipitation and flooding bring humans into increased contact with the bacteria and their

animal hosts, as well as disrupting public health infrastructure and sanitation networks. Fur-

thermore, Leptospira can survive for longer periods in water and moist soil, and flooding pre-

vents animal urine from being absorbed into the soil or evaporation. These outbreaks have

been reported worldwide in geographically diverse areas, although they appear to be more

common in tropical island nations and resource-poor settings [4,20]. Temperature may also

have a role in leptospirosis transmission since higher temperatures and humid environments

have been shown to prolong Leptospira environmental survival [5,15,16]. Human interaction

with the environment also increases with higher temperatures, leading to more exposure risk

[4]. However, there is evidence that this relationship may not be linear, as very high tempera-

tures (>42˚C) have been shown to reduce Leptospira survival [21,22].

Large-scale climate patterns, such as the El Niño-Southern Oscillation (ENSO), which is an

inter-annual cycle involving changes in sea-surface temperature (SST) in the central and east-

ern tropical Pacific Ocean, influences the timing and intensity of rainfall in the tropical Pacific

islands and elsewhere. El Niño and La Niña are opposite phases of the ENSO, and on average

ENSO events occur every four years. In Fiji, El Niño tends to be associated with drier and

cooler conditions than normal and can be associated with droughts in some parts of the coun-

try, whilst La Niña is associated with wetter than normal conditions. This leads to increased

incidence of flooding, particularly if the La Niña event coincides with the wet season [23].

However, since Fiji lies in the transition zone, the impacts of ENSO are not always uniform

and no two ENSO events are quite the same, although they tend to share typical characteristics.

ENSO has been shown to be associated with leptospirosis outbreaks in New Caledonia [24].

The authors found that La Niña phases (cool SST anomalies in the Pacific Ocean) were
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associated with leptospirosis outbreaks, and they demonstrated how Sea Surface Temperature

(SST) anomalies (a measure of ENSO) may be used as an early warning system in this setting.

Tropical cyclones regularly occur in Fiji, usually during the wet season (November to April),

and these can cause extensive damage and flooding [23,25]. On average, 1–2 cyclones affect

Fiji every season, and tropical cyclone activity has been shown to increase during El Niño

phases, compensated by a decrease during La Niña phases [23,25]. Due to climate change, Fiji

is expected to experience more extreme rainfall events and rising temperatures. Furthermore,

tropical cyclones are expected to be less frequent, but more intense in the future [26]. Since the

effects of ENSO vary globally, the relationship between leptospirosis incidence and ENSO is

likely to vary depending on setting. A study in New Caledonia found that La Niña phases (cool

SST anomalies in the Pacific Ocean) were associated with leptospirosis outbreaks [24]. By con-

trast, another study in Argentina showed the El Nino phase (warm SST anomalies in the

Pacific Ocean) were associated with leptospirosis incidence, and they demonstrated how the

Nino 3.4 index could form part of an early warning system in this setting [27].

Leptospirosis disease burden is particularly high in Oceania, and a systematic review found

that Oceania had the largest per capita leptospirosis morbidity (150.68 cases per 100,000 per

year) and mortality (9.61 deaths per 100,000 per year) globally [2]. Leptospirosis is endemic in

Fiji, with cases reported throughout the year. However, outbreaks of leptospirosis are reported

most frequently during the rainy season (between January and March) [28]. In recent years

the number of reported cases has been increasing, with large outbreaks occurring more fre-

quently. This could either be due to a real increase in the number of cases, or improvements in

testing capabilities and increased health awareness, particularly since the release of new lepto-

spirosis guidelines in 2016. A previous seroprevalence study conducted in 2013 identified risk

factors associated with leptospirosis cases in Fiji, including individual risk factors (working

outdoors, male sex and iTaukei ethnicity) and community risk factors (lack of treated water at

home, living in rural areas, high poverty rate, living less than 100m from a major river, pigs in

the community and high cattle density) [18]. The seroprevalence study was further analysed

and it was found that there was significant geographical variation in these sociodemographic

and environmental drivers [29].

Despite the substantial disease burden, there still is limited quantitative evidence about

the effects of precipitation, temperature and ENSO on leptospirosis cases in the Pacific

region. This study aims to identify the most relevant climatic indicators, including different

precipitation indicators (e.g. total precipitation), temperature and the Niño 3.4 index (based

on SST in the Pacific Ocean), and quantify the effect of these indicators at different spatial

and temporal scales on leptospirosis incidence in Fiji. Together with the knowledge of demo-

graphic and spatial factors, this can support a precision public health approach, efficiently

targeting interventions to the right populations at the most appropriate time and place. This

will become increasingly important in the future as extreme weather events are expected to

increase in frequency as a result of climate change, the effects of which are already being felt

in this region.

Methods

Ethics statement

This study is a secondary analysis of data collected as part of routine surveillance of leptospiro-

sis in Fiji. The research was approved by the London School of Hygiene and Tropical Medicine

Research Ethics Committee (reference number 16171) and by the Fiji National Health

Research and Ethics Review Committee (reference number 2019.72.NW).
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Study location and setting

Fiji is an island nation in the South Pacific Ocean and is made up of over 330 islands. It is clas-

sified by the United Nations as a small island developing state [30] with a per capita GDP of

US$6,143 in 2019 [31] (Fig 1A). The population size was 884 887 in 2017 [32], and it is esti-

mated that 90% of the population in Fiji are coastal dwellers [33]. Fiji is divided into four

administrative divisions (Central, Western, Northern and Eastern), which have population

sizes of 378 284, 337 041, 131 914 and 37 648, respectively (32). There are two main islands in

Fiji; Viti Levu is split between the Central and Western division and approximately 80% of the

population resides on this island, and Vanua Levu in the Northern division. The capital, Suva,

is located in the South East of the Central division, and has a population size of 94 088. The

percentage of the population living in urban areas has been increasing over time, with 55.9%

urban dwellers in 2017, an increase of 16.3% since 2007 [32]. The percentage of the population

living in urban areas is highest in the Central division (71.3%), followed by the Western divi-

sion (53.8%), Northern division (29.4%) and Eastern division (11.3%) [32]. The percentage of

people living in informal housing in urban areas is highest in the Central (17.0%) and Western

(15.0%) divisions, compared with the Northern division (4.3%) [32].

Leptospirosis surveillance data

Leptospirosis is a notifiable disease in Fiji, and cases are reported through the Notifiable Dis-

eases Surveillance System. Cases are defined as suspected, probable, and confirmed. Suspected

cases are based entirely on clinical assessment and epidemiological risk factors. Probable and

confirmed cases are based on a combination of clinical assessment, epidemiological risk factors

and the results from diagnostic testing. An outbreak of leptospirosis is defined in Fiji when the

incidence rate is >2 standard deviations above the average of the last five non-outbreak years

[34]. The two most common diagnostic tests performed in Fiji are the anti-Leptospira

Fig 1. A. Map of divisions within Fiji. The location of the three meteorological stations used are labelled (Laucala Bay,

Nadi Airport and Labasa Airfield). B. Monthly reported leptospirosis cases by division between 2006 and 2017 in Fiji.

Map created with Natural Earth (https://www.naturalearthdata.com/).

https://doi.org/10.1371/journal.pgph.0002400.g001
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immunoglobulin M (IgM) enzyme-linked immunosorbent assay (ELISA), which is only avail-

able from Mataika house in Suva, and rapid diagnostic tests, which are available in laboratories

across Fiji. Cases which are positive using these tests are considered probable cases. Very few

cases in Fiji are confirmed using confirmatory diagnostic tests. Further information can be

found in the clinical guidelines [35]. Once an outbreak has been declared, it recommended

that diagnosis is performed based on case definitions and clinical assessment to conserve test-

ing capabilities [34].

In this analysis, ELISA-positive cases of leptospirosis reported between 2006 and 2017 were

included. Where possible, date of sample collection was used. For 225 cases, the date of sample

collection was unavailable, and the date received or date tested were used instead. These dates

were then adjusted by the median number of days between date of sample collection and date

received (four days) and the date of sample collection and date tested (16 days). Cases were

aggregated into weekly (by ISO weeks) and monthly cases.

Fiji experiences coinciding outbreaks of leptospirosis and dengue, which share clinical

manifestations. To explore the possible impact of dengue on leptospirosis surveillance, we

looked at prolonged fever from the World Health Organization (WHO) Pacific Syndromic

Surveillance System [36] between 2013 to 2017 (which is any fever lasting three or more days,

which could be an indication of leptospirosis or dengue fever; Fig A in S1 Text). We find that

the syndromic surveillance generally aligns with the upticks in reported leptospirosis cases.

The two main discrepancies in the time series occur in early 2014, where the large peak in pro-

longed fever–but not leptospirosis cases–coincided with a large dengue-3 epidemic, and in

mid-2017, which coincided with a smaller dengue-2 outbreak. This suggests that the leptospi-

rosis case time series is not clearly influenced by occasional overlap with dengue epidemics,

unlike the prolonged fever data.

Demographic data

Population estimates for each division were obtained from the Fiji Bureau of Statistics from

the 2007 and 2017 Population and Housing Census [32]. Linear interpolation was used to esti-

mate the population size between these two time periods for each division.

Meteorological data

The analysis was performed at both the weekly and monthly time scale, therefore daily climatic

data was aggregated to both time scales. Daily precipitation, minimum daily temperature and

maximum daily temperature were obtained from the Fiji meteorological services. Exploratory

analysis was performed to select one meteorological station in each division, based on data

completeness for the study period. These were Laucala Bay (Central division; latitude: -18.13,

longitude: 178.45), Nadi Airport (Western division; latitude: -17.75, longitude: 177.43) and

Labasa Airfield (Northern division; latitude: -16.47, longitude: 179.33; Fig 1B). We also

explored using averages over all meteorological stations in a division and found that there was

little impact on the results obtained, therefore for simplicity we selected one station per divi-

sion. Weekly and monthly Optimum Interpolation Sea Surface temperature (SST) version 2.1

(OISSTV2.1) anomalies in region 3.4 (Niño 3.4 index) and region 4 (Niño 4 index) were

obtained from the National Oceanic and Atmospheric Administration (NOAA) [37].

To capture extreme precipitation, five precipitation indicators were chosen based on

descriptive indices defined by the World Meteorological Organisation Expert Team on Cli-

mate Change Detection and Indices [38]. These five indicators are described in Table 1. Differ-

ent durations of the time period (j) were tested, (two, four, six and eight weeks for the weekly

surveillance data, and one, two and three months for the monthly surveillance data).
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Long-term periods of abnormal wetness can also be captured using the Standardised Pre-

cipitation Index (SPI) and the Standardised Precipitation Evapotranspiration Index (SPEI)

[39,40]. Positive values of SPI and SPEI correspond to wet periods, whilst negative values cor-

respond to dry periods. SPI and SPEI were calculated using the SPEI package in R [41]. SPI

was calculated for each division using daily precipitation from 1990 to 2018 from three meteo-

rological stations in Fiji (Laucala Bay, Nadi Airport and Labasa Airfield). To calculate SPEI,

first minimum and maximum daily temperature, as well as latitude coordinates of the meteo-

rological stations, were used to calculate monthly reference evapotranspiration (ETO) accord-

ing to Hargreaves equation. Then the climatic water balance (di,j), which provides a measure

of the water surplus or deficit for a specific month ‘i’ in the year ‘j’, was calculated as precipita-

tion minus reference evapotranspiration:

di;j ¼ Pi;j � ETOi;j

SPI and SPEI were calculated for different time scales, one, three and six months.

To account for the time between infection to symptom onset, as well as the delayed effects

of climate indicators on disease, different time lags for temperature, precipitation indicators,

SPI and SPEI were tested, from 1–12 weeks (weekly surveillance data) and 1–3 months

(monthly surveillance data). Changes in SST anomalies can take longer to impact the local cli-

mate; therefore, longer time lags were used to assess the effect of Niño 3.4 and Niño 4 indices

on leptospirosis transmission, from 1–20 weeks (and 1–4 months).

Meteorological events

In Fiji, between 2007 and 2017 (the study period) there were six tropical cyclones and five

major flooding events (with an additional five flooding events triggered by the tropical

cyclones) recorded by the Emergency Events Database (EM-DAT [42]; Table A in S1 Text).

Data on disasters were obtained from the EM-DAT database, which includes events if either

there have been 10 or more deaths; more than 100 people affected, injured or homeless; or a

declaration by the country of a state of emergency and/or an appeal for international assis-

tance. The primary disaster may trigger another event (i.e., a tropical cyclone may trigger a

Table 1. Definition of precipitation indicators defined and adapted from the Expert Team on Climate Change

Detection and Indices [38].

Precipitation indicator Definition

Total precipitation (TP) Total precipitation (TP) on wet days (� 1mm).

Let Pwj be the daily precipitation amount on a wet day w (P� 1 mm) in period j.
Then,

Total precipitationj = sum (Pwj)
Heavy precipitation days

(P10)

Count of days where daily precipitation amount (P)� 10 mm

Let Pij be the daily precipitation amount on day i in period j. Count the number of

days where Pij � 10 mm.

Very heavy precipitation

days (P20)

Count of days where daily precipitation amount (P)� 20 mm

Let Pij be the daily precipitation amount on day i in period j. Count the number of

days where Pij � 20 mm.

Number of wet days (WD) Count of days where daily precipitation amount (P)� 1 mm

Let Pij be the daily precipitation amount on day i in period j. Count the number of

days where Pij � 1 mm.

Mean consecutive wet days

(CWD)

Mean number of CWD (consecutive wet days) (�1mm) in period j.
Let Pij be the daily precipitation amount on day i in period j. Count the largest

number of consecutive days where Pij� 1 mm. Then,

Mean consecutive wet daysj = mean (CWDj)

https://doi.org/10.1371/journal.pgph.0002400.t001
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flooding event), and this is recorded in Table A in S1 Text. The timing of the tropical cyclones

and flooding events is displayed in Fig B in S1 Text, along with weekly precipitation data.

Statistical analysis

First, we formulated a hierarchical mixed-effects model using counts of leptospirosis cases per

week over 12 years (January 2006 to December 2017) in Fiji. Counts of leptospirosis cases, yst,

(where s is division and t is time), were assumed to follow a negative binomial distribution to

account for the overdispersion within the data, with mean μ and overdispersion parameter κ,

ystjmst � NegBinðmst; kÞ

which we modelled using the linear predictor,

logðmstÞ ¼ logðPstÞ þ aþ Sbixist þ dsaðtÞ þ gwðtÞ

where α is the model intercept and log(Pst) is the population size per 100,000 per year per divi-

sion, which we inputted as an offset. Sβixist is a vector of covariate climatic coefficients. To

account for the seasonality of leptospirosis cases, a weekly random effect, γw(t), where w(t) =

1,. . .,52. This was modelled using a first-order random walk, which allows leptospirosis inci-

dence rates in one week to depend on the previous week. Independent random effects for each

year (δs a(t)), 2006–2017 replicated by division were included to allow for additional sources of

variation due to unobserved confounding factors such as variations in healthcare access, case

reporting and changes in diagnostic capacity over time and between divisions.

Model parameters were estimated using Integrated Nested Laplace Approximation (INLA).

Model selection was performed using the widely applicable information criterion (WAIC),

which balances model fit with model complexity, and therefore aims to balance the risks of

overfitting and underfitting. Models with a lower WAIC indicate a more parsimonious model

[43]. The cross-validated logarithmic score (CV log score) was also used to assess model fit.

This is based on the conditional predictive ordinate (CPO) leave-one-out cross-validation

score, where smaller values indicate greater predictive power of the model [44]. An R2
LR statis-

tic was also calculated based on a likelihood ratio test of the deviance between the candidate

model and the baseline model (seasonal and interannual random effects). R2
LR is useful as a

measure of goodness-of-fit and provides an intuitive measure of the ability of the model to

account for the variation in the dependent variable.

A baseline model was first developed, which included weekly and yearly random effects.

Exploratory analysis and selection criteria were used to select the most appropriate time lags

for the climate covariates, and a subset of covariates were chosen for further analysis. We then

explored combining the different precipitation indicators with different temperature and

ENSO measures. The final model was selected using the model selection criteria described

above and comparing models of increasing complexity (with regard to input variables and

model structure) to the baseline model. We were also interested in the differences between the

divisions; therefore, the final model was fitted separately for each division.

To check for correlation and collinearity between variables, we calculated Pearson’s rank

correlation index using the “corrplot” package in R [45]. A Pearson’s correlation r> 0.6 was

considered to be high correlation. We also calculate the variance inflation factor (VIF) using

the “car” package in R [46]. A VIF> 5 was considered to be indicative of high variance

inflation.

Given the potential for heterogeneity in weekly data, we performed a sensitivity analysis to

test how the model results changed at different spatial and temporal scales. We repeated the

model formulation and selection, using counts of leptospirosis cases per month. Instead of
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using a weekly random effect, a monthly random effect was used, again using first order ran-

dom walk. Independent random effects for each year (δa(t)s), 2006–2017 replicated by division

were included as before. Finally, we repeated the analysis for the whole country, instead of by

division. As before we repeated the model formulation and selection, using counts of leptospi-

rosis cases per month. Again, a monthly random effect was used, using first order random

walk. This time, independent random effects for each year (δt), 2006–2017 were included, not

replicated by division.

We performed all analysis using R programming language version 4.1.1. Code and data are

available on GitHub (https://github.com/erees/leptospirosis_Fiji_2023).

Results

Leptospirosis incidence in Fiji

Between 2006 and 2017, a total of 3,485 ELISA-positive cases of leptospirosis were reported in

Fiji (979 in the Central division, 1,481 cases in the Western division, 1,019 cases in the North-

ern division and six in the Eastern division; Fig 1A and 1B). Since only six cases were reported

in the Eastern division over the study period, the Eastern division was excluded from the anal-

ysis. Over this time period, the Northern division reported the highest case rates (759.9 cases

per 100,000) followed by the Western division (452.0 cases per 100,000) and the Central divi-

sion (272.8 per 100,000). The majority of leptospirosis cases were reported between February

and May.

Weekly leptospirosis model

Using the weekly cases data, a final model was selected (Model 6, Table 2), comprising of

weekly random effects and yearly random effects replicated by division (to account for season-

ality and unmeasured inter-annual variability by division), minimum temperature lagged by

one week (Tmint-1), Niño 3.4 lagged by four weeks (Niño34t-4) and total precipitation from

the previous six weeks lagged by one week (TotPrcp6t-1). Table 2 shows the model goodness of

fit results for a series of models with increasing complexity. When minimum temperature was

included alone in the model it did not improve model fit (Model 3), however, when included

Table 2. Model goodness of fit results for models of ELISA-positive leptospirosis cases per week reported in Fiji

from 2007 to 2017. The widely applicable information criterion (WAIC), the cross-validated (CV) mean logarithmic

score and the likelihood ratio RLR
2 statistic are shown for models of increasing complexity.

Model

WAIC CV log score RLR
2 (%) RE

1 aþ dsaðtÞ þ gwðtÞ
Baseline model (seasonal and inte-rannual random effects)

5328 1.426 0

2 aþ dsaðtÞ þ gwðtÞ þ b1xst

Baseline + Tmin (t-1)

5325 1.425 0.1

3 aþ dsaðtÞ þ gwðtÞ þ b2xst

Baseline + Niño34 (t-4)

5302 1.419 1.8

4 aþ dsaðtÞ þ gwðtÞ þ b3xst

Baseline + TotPrcp6 (t-1)

5298 1.418 1.4

5 aþ dsaðtÞ þ gwðtÞ þ b2xst þ b3xst

Baseline + Niño34 (t-4) + TotPrcp6 (t-1)

5279 1.413 2.8

6 aþ dsaðtÞ þ gwðtÞ þ b1xst þ b2xst þ b3xst
Baseline + Tmin (t-1) + Niño34 (t-4) + TotPrcp6 (t-1)

5276 1.412 2.9

Tmin: Minimum temperature (lagged by one week); Niño34: Niño 3.4 (lagged by four weeks); TotPrcp6: Total

precipitation from the previous six weeks (lagged by one week).

https://doi.org/10.1371/journal.pgph.0002400.t002
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in combination with Niño 3.4 index and total precipitation it did improve model fit (Model 6).

Increased levels of precipitation (TotPrcp6t-1) was associated with increased leptospirosis risk

(0.24 [95% CrI 0.15–0.33]; Fig 2). In addition, we found negative values of the Niño 3.4 index

(Niño34t-4) to be associated with increased leptospirosis incidence rates (-0.2 [95% CrI -0.29

–-0.11]; Fig 2). Finally, we identified minimum temperature (Tmint-1) to be slightly associated

with increases in leptospirosis incidence rates (0.15 [95% CrI 0.01–0.30]; Fig 2).

We explored several different precipitation indicators (e.g. total precipitation and number

of heavy rainfall days), and identified total precipitation from the previous six weeks (with a

one-week lag) as the best precipitation indicator to explain the variation in leptospirosis cases

in Fiji (S1 Table). However, there was only a small improvement compared with other precipi-

tation indicators such as the number of very heavy rainfall days (P20). The mean consecutive

wet days was found not to be a good indicator of leptospirosis cases in this model. In addition,

SPI and SPEI did not offer any improvements in model fit compared with total precipitation

and very heavy rainfall days (S1 Table). We also explored different measures of ENSO and

found that Niño 3.4 index was a better predictor than the Niño 4 index. Finally, comparing

minimum temperature and maximum temperature we found that minimum temperature

showed improved model fit.

The time series of observed cases and model fit is shown in Fig 3. The final model is better

able to capture the outbreak peaks (e.g., in 2012 and 2013 in the Western division, in 2016 in

the Central, Northern and Western division, and in 2017 in the Western and Northern divi-

sion) compared with the baseline model (Model 1; which includes only random effects). This

is highlighted in Fig C in S1 Text, which shows the relative difference between the baseline and

final model. In 58.1% (362 out of 623) of weeks the full model performed better than the ran-

dom effects model (256 out of 623; 41.1%). However, the model does not appear to capture the

peaks in the Central division as well as in the Northern and Western division. The posterior

marginal contribution of the seasonal random effects decreased with the inclusion of the

Fig 2. Parameter estimates for explanatory variables for models of ELISA-positive leptospirosis cases per week

reported in Fiji from 2007 to 2017 for all divisions (black) and separately by division. Posterior mean and 95%

credible intervals are shown for minimum temperature (lagged by one week), total precipitation from the previous six

weeks (lagged by one week), and Niño 3.4 (lagged by four weeks).

https://doi.org/10.1371/journal.pgph.0002400.g002
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climatic indicators (Fig D in S1 Text), demonstrating that climate is accounting for some of

the seasonal variation that is observed. However, overall, the posterior marginal contribution

of the inter-annual random effects did not appear to shrink towards zero with the inclusion of

climatic indicators, indicating that there are other non-climatic factors influencing interannual

variability in leptospirosis incidence (Fig E in S1 Text), including, but not limited to, limita-

tions with data quality. Using the parameter estimates associated with the climate variables

from the best performing model, we extracted the variation in leptospirosis incidence

accounted for by the combined impact of total precipitation, minimum temperature, and the

Niño 3.4 index (Fig F in S1 Text). This plot suggests that before 2012, the climatic conditions

may have been suitable for a leptospirosis outbreak, particularly in the Western and Northern

division in 2008 and 2009, but this is not reflected in the case data. It also shows that in the

Central division the role of climate appears to be more consistent compared with the other

two divisions.

Weekly leptospirosis model by division

To understand differences in parameter estimates between the divisions, we explored three

separate models for each division. When broken down by division we observed similar trends

in the parameter estimates (Fig 2). We found that minimum temperature was still weakly posi-

tively associated with leptospirosis cases, but not significant in each division. In addition, we

found that negative values of the Niño 3.4 index were still associated with increased cases in all

divisions (although not significant in the Northern division). Total precipitation was found to

be more strongly associated with leptospirosis cases in the Western division, compared with

the Northern and Central divisions, and not statistically significant in the Central division.

The R2
LR for each division model indicates that the climate covariates better account for lepto-

spirosis variation in the Western division compared with the Northern and Central divisions.

In the Western division the R2
LR explained an additional 6.7% of the variation compared with

the baseline model, whilst for the Central and Northern division the R2
LR was 1.6% and -1.2%,

Fig 3. Model posterior estimates for models of ELISA-positive leptospirosis cases per week reported in Fiji from

2007 to 2017 by division. Observed ELISA-positive cases (grey line), posterior model mean (green line) and 95%

credible intervals (green shading) are shown for the best performing model which included total precipitation,

minimum temperature and Niño 3.4. The random effect only model is shown as an orange dashed line.

https://doi.org/10.1371/journal.pgph.0002400.g003
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respectively (Table B in S1 Text). The negative values indicate that for the Northern division,

the baseline model explained more of the variation than the full model.

Monthly leptospirosis model

As a sensitivity analysis we explored how the model estimates differed by changing temporal

scale. We aggregated cases to the monthly scale and performed model selection and evaluation

for climate covariates. At the monthly scale, we found that the best performing model included

total precipitation from the previous two months (no lag), and Niño 3.4 index (two-month lag;

Table C in S1 Text; Fig G in S1 Text). These are similar to the climate covariates identified at

the weekly scale. However, minimum temperature was no longer found to increase model fit,

and there was no positive association between minimum temperature and leptospirosis cases

at the monthly scale. The time series for observed and modelled cases is shown in Fig H in S1

Text. Once again, the final model is better able to capture the outbreak peaks compared to the

baseline model (random effects only). However, it does not appear to capture the variability as

well in the Central division. The monthly model is better able to capture the variability in the

data compared with the weekly data (R2
LR for the final weekly model was 2.9%, compared with

7.4% for the monthly model; Table B in S1 Text), which may be due to the increased heteroge-

neity in the data at the weekly scale. Again, looking at the model goodness of fit results, the dif-

ference in R2
LR for each division model shows that climate information in the Western

division better explains the variability compared with the Northern and Central division. In

the Western division the R2
LR explained an additional 19.8% of the variation compared with

the baseline model, whilst for the Central and Northern division this was 5.8% and -3.0%

respectively (Table B in S1 Text). Finally, we also explored how the modelling results changed

if we moved from a division level to the whole country. We identified that the same climate

covariates at the country level as the division level and saw very little difference in the parame-

ter estimates (Fig G in S1 Text).

Discussion

Climate is known to influence the timing and size of leptospirosis outbreaks. However, the

role of specific climate factors has not been well quantified in Fiji. In the present study, we

explored the role of different climatic indicators, including precipitation, temperature, and

ENSO, on leptospirosis risk. The results from this study further our understanding of the effect

of climatic variables on leptospirosis outbreaks in Fiji, which may allow for a more targeted

public health approach in the future.

In this study we found total precipitation in the preceding six weeks, lagged by one week,

was the best precipitation indicator, and was positively associated with leptospirosis cases. This

supports previous studies that showed precipitation was an important driver of leptospirosis

outbreaks, in Fiji and elsewhere [4,19,20,28]. Precipitation, particularly periods of heavy pre-

cipitation, is a risk factor for leptospirosis as it can lead to increased environmental exposure

to bacteria. We identified six weeks as the best time period, suggesting that cumulative precipi-

tation is important—rather than a few days of sudden heavy rain, and that this cumulative

rainfall impacts leptospirosis cases in the following week. In addition to total precipitation, we

also found that the number of very heavy rainfall days (number of days in a period where rain-

fall exceeded 20mm), also over six weeks, was strongly associated with leptospirosis cases, indi-

cating the importance of exploring different climatic indicators in different settings. Minimum

temperature, lagged by one week, was also found to be positively associated with leptospirosis

risk. Several studies have previously identified that temperature may have a role in leptospiro-

sis outbreaks [47–51], although this appears to be context specific, as other studies have not
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found this association in different settings [24,52,53]. Laboratory-based studies have identified

that increased temperature is associated with increased Leptospira survival. However, at very

high temperatures (>42˚C) survival has been shown to be reduced [21,22], and one study also

found some evidence of reduced survival at>30˚C [54]. Further studies are required to under-

stand these temperature-dependent relationships as climate change is leading to an increase in

frequency of extreme temperatures. The short lag time observed in the present study suggests

that temperature may play a role by changing human behaviour and how humans interact

with the environment (i.e., in warmer conditions there is more recreational water activity and

changes in agricultural activity), rather than increased Leptospira survival. In addition, we

found that negative values of the Niño 3.4 index (lagged by four weeks) were associated with

leptospirosis outbreaks. This suggests that La Niña phases are associated with increased lepto-

spirosis risk in Fiji, and a similar result was observed in New Caledonia [24]. In Fiji, La Niña is

associated with increased rainfall and flooding events, which the model suggests may impacts

leptospirosis risk the following month. However, given ENSO events occur on average every

four years, a longer time series is required to be able to fully understand the relationship

between ENSO and leptospirosis risk.

We explored the weekly model separately by division and we found similar trends observed

in the parameter estimates, which lends support to the overall weekly model. However, we did

find some variation by division, with the model better able to capture cases in the Western

division compared with the Northern and Central divisions. Flooding events and tropical

cyclones appear to be correlated with increased rainfall in the Western and Northern divisions,

however, in the Central division rainfall appeared to be more consistent and less correlated

with these events. This suggests that the role of climate on leptospirosis risk may differ by divi-

sion, or that tropical cyclones and flooding events are not well captured with the precipitation

data in the Central division. In the present study, we only had case information by division. By

aggregating by division we assume that risk is homogenous across this region, however, these

are large areas which encompass many different environmental, and socio-demographic set-

tings. There are likely large differences in the transmission pathways, risk factors and environ-

ment between the divisions, therefore, climate may be acting differently in each division, and

within each division. For example, risk factors are known to differ in urban, peri-urban, and

rural settings, and this was not known for cases [18,29,55]. Additionally, natural environmen-

tal factors, such as the proximity of rivers and floodplains, influence the likelihood of

experiencing a leptospirosis outbreak in a community. Inadequate sanitation and waste dis-

posal are also risk factors for leptospirosis, and these are linked to poverty. Poverty, particularly

in urban areas in Fiji, is known to be associated with a high seroprevalence of leptospirosis

[56]. In addition to environmental and socio-economic differences between divisions, the

importance of different animal hosts, and therefore transmission pathways and risk factors,

has been shown to vary geographically and by ethnic group [29,55]. For example, in urban set-

tings, exposure to livestock was associated with a high risk of infection, which is hypothesised

to be a result of closer contact between animals and humans. Furthermore, as many as 19 dif-

ferent serovars and 11 different animal hosts have been identified in Fiji [12,57]. Certain sero-

vars are more commonly associated with certain animal hosts, and serovars also have different

pathogenicity associated with them, and disease severity may also vary as a result. Finally, it is

known that control practices, for example, rodent control, have taken place in Fiji, although

the timing and exact location are not known, and so these are not accounted for in the model.

Therefore, due to the complex process driving the transmission of leptospirosis in Fiji, it is

likely that the importance and influence of the climatic factors vary depending on geographic

and environmental settings. To untangle these differences, enhanced spatial resolution of sur-

veillance data, along with detailed case and serovar information, would be required. Despite
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this, we were still able to identify climatic drivers likely to be important in explaining leptospi-

rosis variation in Fiji.

As is common for studies of leptospirosis using routine data streams, the results from our

analysis are limited by the surveillance data available. In this study, we used surveillance data

for leptospirosis over 12 years and only included ELISA-positive cases. This requires individu-

als to be unwell, report to healthcare, and for samples to be sent for diagnostic testing. It is

known that the majority of leptospirosis infections result in mild or asymptomatic infection.

In addition, Fiji experiences coinciding outbreaks of leptospirosis and dengue, which share

similar clinical manifestations. This is further compounded, as, to conserve testing capability,

once a leptospirosis outbreak has been declared, it is recommended that diagnosis is done

based on case definitions and clinical judgement [34]. Therefore, the cases and the outbreaks

reported by the ELISA-positive data are likely to be a small fraction of the true cases occurring

in Fiji [58]. Furthermore, changes in case detection, case reporting and diagnostic capabilities

have occurred over time. The number of cases has been increasing in recent years, with several

large outbreaks occurring. This may be due to real increases in the number of cases, or due to

enhanced surveillance and testing capabilities over time or enhanced clinical suspicion follow-

ing the release of new leptospirosis guidelines in 2016. Finally, case detection and reporting are

likely to vary by division, due to differences in healthcare access, health-seeking behaviours,

access to laboratory diagnosis, and clinical and public health capacity. This may have contrib-

uted to the differences observed between divisions on the importance of the different climate

factors.

We found that the inclusion of climate covariates within the model better captured the out-

break peaks than the random effects only model (e.g., in 2012 and 2013 in the Western divi-

sion, in 2016 in the Central, Northern and Western division, and in 2017 in the Western and

Northern division). We also found that the full model performed better overall than the ran-

dom effects only model. This suggests that climate information explains some of the seasonal

and inter-annual variation in leptospirosis cases and demonstrates the potential use of climate

information within an early warning system for leptospirosis. However, looking at the overall

yearly random effects, the interannual variation changed very little with the inclusion of cli-

mate covariates. This suggests other non-climatic or unknown factors were important in driv-

ing interannual variation in cases, and this may also include limitations with the data quality.

To help understand both seasonal and interannual drivers of leptospirosis transmission,

improved surveillance and spatially explicit case data is needed, along with spatially resolved

climatic, environmental and socio-economic variables. While climate may be a significant

environmental driver of transmission, the model’s current capacity for prediction is limited.

This poses a challenge for the development of any climate-based early warning system for lep-

tospirosis in Fiji and highlights the need for enhanced surveillance. The development of a cli-

mate-based early warning system would allow for enhanced knowledge of the timing and the

severity of outbreaks which would enable public health responses to mitigate outbreaks.

The results from the present study can be interpreted together with the results from previ-

ous studies which have explored socio-demographic and environmental risk factors, to form a

more complete view of leptospirosis risk in Fiji. In 2013, a seroprevalence study was conducted

in Fiji which identified individual demographic risk factors for leptospirosis [18]. This data

was further analysed to understand how these risk factors varied geographically [29,56]. Sero-

prevalence studies have the advantage that they can capture the prevalence of previous infec-

tions, including asymptomatic and mildly symptomatic cases. However, they are a snapshot at

one point in time, and are unable to explore how these risk factors vary over time or at differ-

ent times of the year. Despite the limitations associated with surveillance data, it is longitudinal

data which allows for the effect of climate on leptospirosis risk to be explored over time, as was
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done in the present study. Together, these studies can be thought of as moving towards a preci-

sion public health approach, providing more specific insights into differences in incidence

between “populations”, “place” and “time”, and a more complete picture of leptospirosis risk

in Fiji. Precision public health can be defined as using the best available data to target interven-

tions more efficiently and effectively [59]. This is particularly important in resource-limited

settings such as Fiji, as being able to accurately target interventions can provide a cost-effective

strategy. In this study, we show how quantifying the effect of climate on weekly surveillance

data, combined with the knowledge of those individuals who are most at risk [18], and those

“hotspot” locations where prevalence is particularly high [29], can be used to target interven-

tions to those most vulnerable and at risk. These measures could include targeted health pro-

motion and awareness (i.e., encouraging the use of personal protective equipment and

covering cuts and abrasions), raising awareness and clinical suspicion, hospital preparedness

and ensuring diagnostic capabilities.

Weekly case data is more sensitive to collection processes and reporting delays, and we

observed a lot of heterogeneity in the reported weekly cases. Therefore, as a sensitivity analysis,

we aggregated the weekly case data into monthly case data and explored how the temporal

scale affected our results. We found very similar results, suggesting that there was good agree-

ment between the models. However, minimum temperature was no longer found to be associ-

ated with leptospirosis cases at the monthly scale. In the weekly model, we identified that

minimum temperature was associated with a one-week lag, suggesting that the effect of tem-

perature occurred on a short time scale, and therefore, it may no longer be observed at a

monthly time scale. This suggests that using weekly case data may allow the detection of cli-

matic drivers within short timeframes. However, the choice of temporal scale depends on the

research question and the data available. Using weekly case data is more computationally

intensive, and many climate covariates are not readily available at the weekly scale. Using a

monthly time scale may reduce the heterogeneity in the data as it will be less sensitive to small

fluctuations in sample collection and reporting delays. This may allow long-term trends to be

more easily identified, and a monthly time scale may be better suited for the development of

an early warning system, particularly for neglected zoonotic diseases where surveillance is lim-

ited. A summary of the advantages and disadvantages is shown in Table 3.

In summary, we were able to quantify the association between different climate variables

and leptospirosis incidence in Fiji. This study furthers our understanding of how climate

Table 3. Summary of the advantages and disadvantages of fitting a climate-driven statistical model to weekly and monthly surveillance data.

Advantages Disadvantages

Weekly case

data

• Finer temporal resolution, which allows for the effects of climate on

disease to be detected at finer time scales, which may be more reflective of

disease transmission processes.

• Often not available.

• Climatic indicators are often available at monthly scales.

• More computationally intensive.

• More heterogeneity and uncertainty in the data (“noise”). For diseases

and settings where surveillance is very thorough and complete, weekly case

data is preferable. However, for diseases such as leptospirosis, where there

are varying reporting delays, changes in reporting over time and space,

trends may be more apparent at monthly time scales.

• Shorter time scales are not always useful, one week does not enable

enough time to react and anticipate outbreaks

• Monthly

case data

• More readily available

• Aggregated data may allow for trends to be more apparent and stronger

and therefore may be easier to identify long-term trends

• More computationally efficient–particularly important if you have high

spatial resolution

• May be more useful for early warning systems, as the associations may

be more robust

• May hide real patterns and trends

• Short term effects of climate on infection may not be apparent in the data

https://doi.org/10.1371/journal.pgph.0002400.t003
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affects leptospirosis outbreaks and combined with previous studies exploring the geographical

distribution and sociodemographic risk factors, allows us to move towards a precision public

health framework. This contributes to our understanding of the climatic risk factors and may

allow for more targeted public health interventions in the future. This study also highlights

that enhanced surveillance in the future may allow for further studies which untangle the spa-

tial effects of climate on leptospirosis risk, and this is a necessary first step to allow for the

development of an early warning system in the future. This will be increasingly important

given that climate change in Fiji is predicted to lead to increased rainfall and extreme weather

events, and leptospirosis will likely continue to pose a significant burden in this region.

Supporting information

S1 Table. Model goodness of fit results from the climatic indicators and lags included

within the study.

(XLSX)

S1 Text. Fig A in S1 Text. Comparison between leptospirosis cases in Fiji (shown in red) and

reported prolonged fever in Fiji from the WHO Pacific Syndromic Surveillance System

(shown in blue; [36]) between 2013 and 2017. Table A in S1 Text. Flooding and Tropical

Cyclones recorded in Fiji (Central, Western and Northern Division) by the Emergency Events

Database (EM-DAT). Fig B in S1 Text. Weekly rainfall from Laucala Bay (Central division),

Nadi Airport (Western Division) and Labasa Airfield (Northern Division) between 2006–

2017. Red arrows indicate flooding and tropical cyclones recorded in Fiji by the Emergency

Events Database (EM-DAT). Fig C in S1 Text. Relative improvement in model fit between the

random effect only model and full model. Blue bars represent weeks when the model fit of the

full model was better than the random effects only model (i.e., the difference between the

observed versus model fitted cases was smaller for the full model compared with the random

effects model; n = 362). Red bars represent weeks when the model fit of the random effects

only model was better than the full model (n = 256). At zero there is no difference between the

two models, and they performed equivalently (n = 5). Fig D in S1 Text. Weekly random effects

for the random effect (RE) only model, shown in orange, and the final model which included

precipitation, Niño 3.4 and minimum temperature shown in blue. Fig E in S1 Text. Yearly ran-

dom effects for the random effect (RE) only model (dashed lines) and the final model which

included precipitation, Niño 3.4 and minimum temperature (solid lines), for the Central

(green), Northern (yellow) and Western (grey) divisions. Fig F in S1 Text. Comparison of (A)

the climate variables and model parameter estimates, (B) the full model including seasonal and

interannual random effects, and (C) weekly leptospirosis cases reported in Fiji between 2006

and 2017 by division. For (A), the three climate coefficients were extracted from the best per-

forming model and then using the timeseries of total precipitation, minimum temperature

and Niño 3.4 indicator, we multiplied the climate coefficients to extract the contribution of the

climate covariates to the overall leptospirosis incidence rate estimates. Table B in S1 Text. Like-

lihood ratio RLR2 statistics are shown for weekly and monthly division models. Table C in S1

Text. Model goodness of fit results for models of ELISA-positive leptospirosis cases per month

reported in Fiji from 2007 to 2017. The widely applicable information criterion (WAIC), the

cross-validated (CV) mean logarithmic score, and the likelihood ratio RLR2 statistic are

shown for models of increasing complexity. Fig G in S1 Text. Parameter estimates for explana-

tory variables for monthly cases of leptospirosis in Fiji from 2006 to 2017 for the overall coun-

try model (black; which included monthly and yearly random effects) and for the division-

level model (grey; which included monthly random effects replicated by division, and yearly

random effects). Posterior mean and 95% credible intervals are shown for minimum
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temperature (lagged by one month), total precipitation from the previous two months, and

Niño 3.4 lagged by two months. Fig H in S1 Text. Model posterior distributions for monthly

leptospirosis cases in Fiji between 2006 and 2017 by division. Observed cases (grey line), poste-

rior mean (green line) and 95% credible intervals (green shading) are shown for the best per-

forming model which included total precipitation and Niño 3.4. The random effect only

model is shown as an orange dashed line.
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rina, Brazil. Ciênc saúde coletiva. 2022; 27: 849–860. https://doi.org/10.1590/1413-81232022273.

45982020 PMID: 35293463

51. Ehelepola NDB, Ariyaratne K, Dissanayake WP. The correlation between local weather and leptospiro-

sis incidence in Kandy district, Sri Lanka from 2006 to 2015. Glob Health Action. 2019; 12: 1553283.

https://doi.org/10.1080/16549716.2018.1553283 PMID: 31154987

52. Coelho MSZS, Massad E. The impact of climate on Leptospirosis in São Paulo, Brazil. Int J Biome-

teorol. 2012; 56: 233–241. https://doi.org/10.1007/s00484-011-0419-4 PMID: 21369729

PLOS GLOBAL PUBLIC HEALTH Quantifying the relationship between climatic indicators and leptospirosis in Fiji

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0002400 October 11, 2023 18 / 19

https://www.imf.org/en/Publications/CR/Issues/2021/12/03/Republic-of-Fiji-2021-Article-IV-Consultation-Press-Release-Staff-Report-and-Statement-by-510770
https://www.imf.org/en/Publications/CR/Issues/2021/12/03/Republic-of-Fiji-2021-Article-IV-Consultation-Press-Release-Staff-Report-and-Statement-by-510770
https://fiji.gov.fj
https://unfccc.int/resource/docs/natc/fjinc2.pdf
https://unfccc.int/resource/docs/natc/fjinc2.pdf
https://www.who.int/westernpacific/emergencies/surveillance/pacific-islands-surveillance
https://www.cpc.ncep.noaa.gov/data/indices/
https://community.wmo.int/climate-change-detection-and-indices
https://doi.org/10.1016/S0140-6736%2821%2901787-6
http://www.ncbi.nlm.nih.gov/pubmed/34687662
https://doi.org/10.1002/joc.3887
https://www.emdat.be/
https://www.emdat.be/
https://doi.org/10.1007/s11222-013-9416-2
https://doi.org/10.1198/016214506000001437
https://CRAN.R-project.org/package=corrplot
https://CRAN.R-project.org/package=car
https://doi.org/10.1371/journal.pone.0020377
http://www.ncbi.nlm.nih.gov/pubmed/21655257
https://doi.org/10.1016/S1995-7645%2812%2960095-9
https://doi.org/10.1016/S1995-7645%2812%2960095-9
http://www.ncbi.nlm.nih.gov/pubmed/22647816
https://doi.org/10.1186/s12879-017-2506-6
http://www.ncbi.nlm.nih.gov/pubmed/28592316
https://doi.org/10.1590/1413-81232022273.45982020
https://doi.org/10.1590/1413-81232022273.45982020
http://www.ncbi.nlm.nih.gov/pubmed/35293463
https://doi.org/10.1080/16549716.2018.1553283
http://www.ncbi.nlm.nih.gov/pubmed/31154987
https://doi.org/10.1007/s00484-011-0419-4
http://www.ncbi.nlm.nih.gov/pubmed/21369729
https://doi.org/10.1371/journal.pgph.0002400


53. Deshmukh P, Narang R, Jain J, Jain M, Pote K, Narang P, et al. Leptospirosis in Wardha District, Cen-

tral India—Analysis of hospital based surveillance data. Clinical Epidemiology and Global Health. 2019;

7: 102–106. https://doi.org/10.1016/j.cegh.2018.02.005

54. Chang SL, Buckingham M, Taylor MP. Studies on Leptospira Icterohaemorrhagiae: IV. Survival in

water and sewage: destruction in water by halogen compounds, synthetic detergents, and heat. The

Journal of Infectious Diseases. 1948; 256–266.

55. Lau CL, Mayfield HJ, Lowry JH, Watson CH, Kama M, Nilles EJ, et al. Unravelling infectious disease

eco-epidemiology using Bayesian networks and scenario analysis: A case study of leptospirosis in Fiji.

Environmental Modelling & Software. 2017; 97: 271–286. https://doi.org/10.1016/j.envsoft.2017.08.004

56. Mayfield HJ, Smith CS, Lowry JH, Watson CH, Baker MG, Kama M, et al. Predictive risk mapping of an

environmentally-driven infectious disease using spatial Bayesian networks: A case study of leptospiro-

sis in Fiji. Carvalho MS, editor. PLOS Neglected Tropical Diseases. 2018; 12: e0006857. https://doi.

org/10.1371/journal.pntd.0006857 PMID: 30307936

57. Togami E. Animal & Human Leptospirosis In A High Transmission Setting In Fiji. Public Health Theses,

Yale University. 2016; 28.

58. Rees EM, Lau CL, Kama M, Reid S, Lowe R, Kucharski AJ. Estimating the duration of antibody positivity

and likely time of Leptospira infection using data from a cross-sectional serological study in Fiji. PLOS

Neglected Tropical Diseases. 2022; 16: e0010506. https://doi.org/10.1371/journal.pntd.0010506 PMID:

35696427

59. Horton R. Offline: In defence of precision public health. The Lancet. 2018; 392: 1504. https://doi.org/10.

1016/S0140-6736(18)32741-7 PMID: 30496048

PLOS GLOBAL PUBLIC HEALTH Quantifying the relationship between climatic indicators and leptospirosis in Fiji

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0002400 October 11, 2023 19 / 19

https://doi.org/10.1016/j.cegh.2018.02.005
https://doi.org/10.1016/j.envsoft.2017.08.004
https://doi.org/10.1371/journal.pntd.0006857
https://doi.org/10.1371/journal.pntd.0006857
http://www.ncbi.nlm.nih.gov/pubmed/30307936
https://doi.org/10.1371/journal.pntd.0010506
http://www.ncbi.nlm.nih.gov/pubmed/35696427
https://doi.org/10.1016/S0140-6736%2818%2932741-7
https://doi.org/10.1016/S0140-6736%2818%2932741-7
http://www.ncbi.nlm.nih.gov/pubmed/30496048
https://doi.org/10.1371/journal.pgph.0002400

