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Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic hit almost

all cities in Brazil in early 2020 and lasted for several months. Despite the effort of local state

and municipal governments, an inhomogeneous nationwide response resulted in a death

toll amongst the highest recorded globally. To evaluate the impact of the nonpharmaceutical

governmental interventions applied by different cities—such as the closure of schools and

businesses in general—in the evolution and epidemic spread of SARS-CoV-2, we con-

structed a full-sized agent-based epidemiological model adjusted to the singularities of par-

ticular cities. The model incorporates detailed demographic information, mobility networks

segregated by economic segments, and restricting bills enacted during the pandemic

period. As a case study, we analyzed the early response of the City of Natal—a midsized

state capital—to the pandemic. Although our results indicate that the government response

could be improved, the restrictive mobility acts saved many lives. The simulations show that

a detailed analysis of alternative scenarios can inform policymakers about the most relevant

measures for similar pandemic surges and help develop future response protocols.
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Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic started in

Wuhan, China, in December 2019 [1–3] and quickly spread outside its borders, being

acknowledged as a worldwide event by the World Health Organization in March 2020 [4]. The

associated Covid-19 disease has a case fatality ratio of around 1.5% and is substantially more

deadly for the elderly [5–7], imposing significant pressure on public health systems. By the end

of 2021, the pandemic had claimed the lives of about 5.4 million people worldwide according

to the WHO or up to 18 million casualties when considering excess death estimates [8]. Effec-

tive vaccines were only widely deployed in 2021, with a delayed distribution in underdevel-

oped countries [9, 10]. The transmission of SARS-CoV-2 is mainly airborne, with a relatively

high estimated ratio of transmissions originating from asymptomatic or presymptomatic

infected people [11–14]. Since testing availability differs significantly across countries, and

because tests are only effective for a limited window of the infectious cycle, it is difficult to

identify the infectious vectors. It is, thus, considerably challenging for public health operators

to establish effective mitigation policies. Different countries applied a myriad of nonpharma-

ceutical interventions to reduce the impact of the pandemic, such as the closure of businesses

and public services, the obligation to wear face masks, and limitations in mobility (lockdown).

However, the inability to assess their effectiveness and the critical economic and social impact

of such measures imposes substantial political costs to policymakers, who, in turn, often opt to

drop them based on nonscientific arguments.

Establishing an optimal response strategy to the pandemic is especially problematic in Brazil

—the largest and most populated country in Latin America, with over 211 million inhabitants

[15]. The virus was introduced to Brazil from Europe between February and March 2020 [16].

After an early phase with locally constrained spread, the pandemic affected all regions of Brazil,

with the first peak of deaths in June 2020 followed by a slow decay that reverted in November

2020. By the end of 2021, over 600 thousand deaths were reported in Brazil, with a peak 7-day

average daily casualties rate above 3,000 deaths per day in April 2021 [17]. The pandemic in Bra-

zil had two preeminent waves marked by high contamination levels and mortality, with more

robust social mobilization in the first wave and higher impact rates in the second wave [8].

It is hard to evaluate the impact of the contention measures applied at a national level due to

the heterogeneity of local responses. Brazil is a federal republic divided into 27 federation units

(26 states and one federal district) and 5,568 cities. The Brazilian constitution assigns to the

state governors and mayors the obligation to define sanitary measures in events such as a pan-

demic, with coordination from the Federal government through the Ministry of Health. How-

ever, political differences between the federal and local governments resulted in each state and

city following an isolated agenda. Therefore, considering that the Federal Supreme Court rec-

ognised the right of each municipality to determine its own policies and given the extensive dif-

ferences within single states—the State of São Paulo has a similar population size to Spain [18]

—it is more beneficial to evaluate the impact of the contention measures at a municipal level.

Epidemiological models can help predict the impact of contention measures at a municipal

level, but there are limitations. A key factor is that different cities have different mobility and

hospital structures. In Brazil, most cities do not have a high-density mobility system, and there

are separate private and public health systems. Also, most Brazilian urban centres have fairly iso-

lated wealthy neighbourhoods contrasting with highly dense, poor districts with no sanitation.

Importantly, current modelling strategies highlight that such characteristics significantly impact

model performance. For instance, one of the first models focused on the Chinese city of Wuhan,

a city with more than 11 million people, large mass transportation systems, hot summers, and

cold winters [19]. A later modelling study focused on US temperate regions, with the authors
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stressing that epidemics in tropical areas can be much more complex [20]. Also, the landmark

model from Imperial College [21], used as a reference worldwide, emphasises that their results

relate to US and UK data, with possible extension to high-income countries. Therefore, epidemi-

ological models inspired by high levels of metropolitan transportation and more socially homo-

geneous societies might not reflect the epidemic dynamics of small and medium cities in

underdeveloped countries. Considering the exponential dynamics common to epidemiological

models, minor amendments to parameters or model architecture may incur a significant error

with a severe impact on the health system and economics. Moreover, for the reasons mentioned

above, nationwide epidemiological models present limited information for policymakers.

Here we use computational epidemiological modelling to assess the impact of governmental

nonpharmaceutical interventions in the City of Natal, Brazil. The City of Natal is the capital of

the State of Rio Grande do Norte, in the northeastern region of Brazil. With a total of 890 thou-

sand inhabitants estimated in 2020 [15], Natal is among the 20 most populated cities in Brazil,

located entirely in an urban area, with a territorial extension of 167.401 km2, and a demo-

graphic density of 5,325.8 inhabitants per km2 (6th largest among Brazilian capitals). The

municipality stands out as an important Brazilian tourist destination due to its beautiful

beaches, lagoons, and dunes, receiving around 2 million visitors annually from other parts of

Brazil and the world. In economic terms, the service sector stands out in the municipality,

with the Gross Domestic Product (GDP) being the 16th in the ranking of the capitals of the 27

federation units of the country [18]. In terms of well-being, Natal was, in 2010, among the 100

Brazilian municipalities with the highest Human Development Index (HDI) (0.763) [22].

However, the municipality has important social vulnerabilities that seem to have been ampli-

fied with the sanitary emergency, as the unemployment rate reached 13.8% in the first three

months of the pandemic [23] while the most rigid social distancing prevailed. We have chosen

the City of Natal due to the availability of well-documented epidemiological and geographical

data. It shares similarities with many other Brazilian cities, such as population size, urban orga-

nisation, and policies undertaken during the pandemic.

In contrast to the commonly used compartmental models [24–27], we built an agent-based

model that allows the inclusion of detailed demographic information that is commonly avail-

able, enabling easy replication of the analysis for other cities. Furthermore, agent-based models

are superior in capturing complex heterogeneous urban, and social interactions during an

infection outbreak [28, 29]. The model represents social interaction probabilities as graphs

that display similar properties to census data. Such a complex network approach allows seg-

menting the modelled interaction between age groups and social modalities, such as religion,

work, and school, to assess the impact of individual measures. Our strategy establishes a base-

line model that reproduces the observed case fatality curve. Next, we modified model parame-

ters to emulate alternative scenarios where the administration took different actions and

evaluated the attainable fatalities outcome. Through this strategy, we can quantify the impact

of lives saved or lost if the government had applied other policies.

Our results indicate that the policies enforced by local government could be significantly

improved but nevertheless prevented a much more catastrophic scenario. While early deci-

sions to close schools and universities saved many lives, reopening commerce and religious

gatherings came with a substantial cost of lives.

Materials and methods

Epidemiological and demographic data

Epidemiological data of the pandemic in the State of Rio Grande do Norte (RN) has been

made available online by the State Secretary of Health (SESAP-RN). The daily bulletins report
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the anonymous data as age and gender of all confirmed cases, tests, hospitalisations, and

deaths. For this study, we considered only the first epidemiological wave, defined here as two

weeks before the first reported case on March 12th, 2020, to November 4th, 2020, when the

average 7-day death rate was below 1 per day for the first time. Data of hospitalisation and

ICU beds occupancy are also available from a different source of SESAP-RN (Regula-RN sys-

tem). No information was available about the place of residence of the ICU occupants.

The local agency for urbanism and environment provided the total number of residents

and age distribution for the City of Natal on the 2017 urban plan [30]. We collected demo-

graphic data from official governmental sources, which we used to describe the main social

activities affected by the social distancing decrees during the pandemic, such as home, work,

transport, religion, and primary and higher education. To describe the interactions within the

household, we used the total number of family members calculated from the Continuous

National Household Sample Survey—Continuous PNAD, a survey of national coverage and

representative for Brazilian capitals and states [23]. Considering the workplace as an important

space for disseminating the virus and directly affected by the decrees in social distancing, we

used data from the Annual List of Social Information—RAIS [31]. In Brazil, employers provide

the administrative records of workers in the formal sector to the Ministry of Economy. In this

work, we considered five economic sectors: agricultural, industrial, construction, commerce,

and service [31]. To describe the circulation activities, we took into account information from

the last demographic census to obtain the average time the municipality residents spent for

work [32].

Furthermore, information related to the carrying capacity of public transport in the City of

Natal, provided by the Municipal Department of Urban Mobility [30], was used. The 2010

Demographic Census was also used to obtain the proportion of people who declared them-

selves Catholics and Evangelicals. These two religious categories were considered because they

are, respectively, the most predominant in the Brazilian population [32]. Concerning educa-

tional establishments, Brazil has two sources of official census information: (1) the Brazilian

School Census, from which we obtained the total number of students enrolled from kindergar-

ten to professional education in public and private education in the City of Natal [33]; and (2)

the Higher Education Census, from which we obtained information on the total number of

students at the Federal University of Rio Grande do Norte on the Natal campus [34].

All demographic data is summarised on Table 1.

Ethics statement

According to Brazilian Law, the study does not require an Ethical Committee evaluation as all

data is anonymised and in the public domain.

Epidemic agent-based model

We developed an agent model that extends the classic SIR model [35] with a more specific list

of health states and with an agent-level individual interaction mechanism that implements

social layers as complex networks [36]. This algorithm has two simulation parts: (1) the infec-

tion model implements a state machine that tracks the health of each agent across the simula-

tion with respect to the expected disease course; and (2) a complex interaction network that

simulates the agent interactions within multiple social layers (e.g. contact at work, transport,

schools, etc.). In addition to that, we simulate the City of Natal population (a total of 873,383

agents) over 253 days (February 26th to November 4th of 2020), the first wave of the pan-

demic. This section summarises the simulation implementation. The simulation code, data,

and user documentation can be found at Github.
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Table 1. Demographic data used for the model and their source.

Religion Data [32] Home Data [23]

Age Catholic Evangelic Household size Occurance Relative Frequency

5 e 6 years 13730 5058 2 72945 31.25%

7 a 9 years 22572 8720 3 73586 31.52%

10 a 14 years 41256 17637 4 53080 22.74%

15 a 19 years 46389 15726 5 22838 9.78%

20 a 24 years 54405 16279 6 7688 3.29%

25 a 29 years 51899 15599 7 2593 1.11%

30 a 39 years 83347 26798 8 964 0.41%

40 a 49 years 76641 21769 9 407 0.17%

50 a 59 years 54299 13421 10 151 0.06%

60 a 69 years 33869 8228 11 58 0.02%

12 32 0.01%

13 51 0.02%

UFRN Data [34] Transport Data [32]

Undergrad Students Postgrad Students Teachers Admin Staff Average Time (min) Number of People

24680 6482 2344 2986 2.5 23080

12 135164

45 85013

90 21757

120 1613

Work Data—Number of Workers by Sector [31]

Age Agriculture Industry Construction Commerce Services

15 a 19 years) 209 1819 988 4810 7731

20 a 24 years 253 6121 2683 3112 23268

25 a 29 years 301 6300 3410 12602 29399

30 a 34 years 285 5442 3258 11626 28344

35 a 39 years 218 4922 3158 9204 24617

40 a 49 years 345 4352 2968 7368 21671

50 a 54 years 227 3180 2040 4684 16832

55 a 59 years 313 2205 1408 2892 10533

60 a 64 years 119 1131 781 2088 6368

65 a 69 years 130 470 428 835 2266

School Data—Students [33]

Public Kindergarden Private Kindergarden Public Elementary Private Elementary Public Professional Private Professional

Age/Number Age/Number Age/Number Age/Number Age/Number Age/Number

0/0 0/1 10/5574 10/4597 20/695 20/742

1/108 1/101 11/5914 11/4622 21/433 21/599

2/1020 2/715 12/5851 12/4072 22/307 22/508

3/2712 3/1872 13/6541 13/4157 23/216 23/443

4/3835 4/3303 14/7008 14/3953 24/207 24/427

5/4701 5/4276 15/7194 15/3463 25/153 25/368

6/3570 6/2984 16/6909 16/2979 26/153 26/350

7/0 7/45 17/6798 17/2673 27/135 27/298

8/5433 8/4596 18/5421 18/1173 28/139 28/237

9/5171 9/4648 19/958 19/590 29/106 29/215

https://doi.org/10.1371/journal.pgph.0000540.t001
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Agent dynamics. In order to better emulate the SARS-CoV-2 infection cycle, we extended

the classic SIR model with additional states:

• Susceptible—The agent is vulnerable to SARS-CoV-2 and may be infected at any time. Ini-

tially, all agents are in this state.

• Incubated—The agent has been exposed to the disease, but is not yet exhibiting symptoms.

• Asymptomatic—The agent has the disease past the incubation period but does not show any

symptoms.

• Immune—The agent was infected and recovered; in our model, we assume once an agent

has been infected, they develop immunity and cannot be re-infected. The agent may also

have a natural immunity to the disease.

• Symptomatic Mild—The agent was infected and has mild symptoms such as cough and sore

throat.

• Symptomatic Moderate—The agent was infected and has moderate symptoms. In addition

to cough and sore throat (but not exclusively), the agent has headache and fever. They do

not need hospitalisation at this stage.

• Hospital—The agent was infected, the symptoms continued to develop and they must be

hospitalised.

• ICU—The agent is already hospitalised in critical condition and needs ICU and ventilation

support.

• Dead—The agent developed severe symptoms and did not survive.

Initially, all agents are in a Susceptible health state. Agents get infected by close contact with

another infectious agent by following the interaction rules of the complex networks (see

below). Once infected, the health state of the agent turns into Incubated, starting a sequence of

transitions through the different health states which will ultimately end as an Immune individ-

ual or a new Death (Fig 1A). For each infected agent, the model randomly assigns the most

serious health state the agent will reach—and therefore also whether the agent will eventually

die or not—following the probabilities that are presented in Table 2. The outcome likelihood is

modulated by the age of the agent as reported by the State Secretary of Public Health

(SESAP-RN) and were computed as the proportion of the number of confirmed cases by

health state (Symptomatic Mild, Symptomatic Moderate, Hospital, ICU and Dead) for each age

range. The probabilities for Asymptomatic cases were based on the proportion proposed by

[37], resulting in a value of 18.8% that was applied to all confirmed cases.

The time an agent remains in the Incubated state is stochastic and follows a log-normal dis-

tribution of the agents’ average disease incubation time [38]. The length of all other transitions

is deterministic as they do not affect transmission dynamics but are defined based on the indi-

vidual incubation time. As a result, a different proportion of health states develop in the popu-

lation following the initial day of infection (Fig 1). On average, the agents spent four days in

the Incubated state before evolving to Asymptomatic, where they remain for three days. Once

at Asymptomatic health state, the agent may be able to become Immune or develop symptoms

and reach the Symptomatic Mild health state, wherein it has to pass four days before becoming

Immune [39]. However, already on the first day at this health state, the symptoms could

develop and the health state changes to Symptomatic Moderate, in which the agent has to

spend four days [40] before becoming Immune. If the symptoms become serious, the agent

pursues Hospital health assistance. After one day at the hospital, the agent may be in critical
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condition and requires ICU support or ventilation; these require five days of intensive care.

The time duration in hospitalisation and ICU was based on the State Secretary of Public Health

(SESAP-RN). Importantly, the number of hospital or ICU admissions in the model is unlim-

ited, i.e., all agents can be admitted at once if necessary.

Each agent is contagious in a specific infectious period that starts four days after the con-

tamination (on average already at the Incubated health state) and finishes two days before the

final incubation time in the Asymptomatic health state. If the agent progresses to Symptomatic
Mild, it remains infectious up to two days before the end of this health state. These three health

states are the only ones in which the agent can transmit the disease, which is an optimistic

Fig 1. Timeline of agent’s health state progression through a SARS-CoV-2 infection. (A) Possible daily transitions

of one agent starting from Susceptible up to Dead or Immune. Sequences of the same state represent average time

without change. (B) The evolution of the state of 10,000 agents, with age and sex distribution suited to the City of

Natal, turned into Incubated at day zero. The simulation assumes illimited ICU bed availability.

https://doi.org/10.1371/journal.pgph.0000540.g001

Table 2. Health state probability disease by age range. Each health state is related to an age range, showing the outcome state that an agent reaches in case of infection.

Age range

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+

Final stage of Health Asymptomatic 0.1579 0.1587 0.158 0.1583 0.1582 0.1584 0.1583 0.1583 0.1583

Symptomatic Mild 0.4269 0.5904 0.6226 0.6088 0.5647 0.4421 0.3442 0.1883 0.106

Symptomatic Moderate 0.0819 0.1513 0.1682 0.1348 0.1041 0.0854 0.0536 0.0215 0.0102

hospital 0.3333 0.0996 0.0512 0.981 0.173 0.3142 0.4439 0.6319 0.7255

ICU 0.0643 0.0185 0.0096 0.18 0.0412 0.0961 0.1603 0.2847 0.3355

Dead 0.0234 0.111 0.0084 0.0135 0.0292 0.0742 0.1147 0.2221 0.2752

https://doi.org/10.1371/journal.pgph.0000540.t002
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assumption because it considers that 1) once the agent reaches the Symptomatic Moderate it

will be isolated, and 2) that the agents that progress toHospital will not infect the health staff.

Complex networks of social interactions. At each cycle of the simulation (day), the sys-

tem computes the possible social interactions between agents of the population to emulate the

contagious aspect of the pandemic. As a result of this interaction, one agent in the infectious

period can infect another susceptible agent and change its health state into incubated. The

probabilities of interaction are determined by multiple complex networks of social interactions

(layers and sub-layers) that include an agglomerate of agents. Initially, when the agents are cre-

ated, they are distributed to the layers/sub-layers according to the age range (Table 3, third col-

umn) and the probability of belongingness (Table 3, fourth column). The time per week

during which social interactions happen in each layer/sub-layer is displayed in the fifth col-

umn. Once allocated, they are separated into sub-groups to represent the many activity clus-

ters. The average direct contact among agents and the group size is presented in columns six

and seven, respectively. Each network has its specificities and is further detailed in Table 3.

The probability of agents interacting among themselves (referred throughout the text as Pinter-
action) within layers/sub-layers is calculated over time as follows. Consider two agents A1 and

A2 belonging to the same sub-layer, its interaction value is calculated by:

PinteractionðA1;A2Þ ¼
Tw
168
�
Ki
Gs

� �

� Pcontamination ð1Þ

Where Tw is the time per week spent by the agents in the sub-layer, Ki is the average of direct

contacts with other agents, 168 is the total hours in one week (24 hours � 7 days = 168 hours)

and Gs is the group size inside the sub-layer. The Pcontamination value represents the probability

of infection upon contact, i.e., the probability of virus spread. Initially, this value is 1.7 and was

Table 3. Social interaction layers information. The first column (Layer) shows the layers (total of 7) implemented on the system, and sub-layers (schools, work and reli-

gion), that further describe some of the activities (second column). The third column (Agents age) represents the age range distribution for each layer/sub-layer. The fourth

column represents the probability of agents belonging to the layer. In some sub-layers (schools and work), the sum of this probability is 100%, which means that all agents

within an age range must belong to only one of these sub-layers. The fifth column (Time per week) is the average time the agents spend interacting with other agents on

this layer/sub-layer. The sixth column (Nearest) shows the agent’s average number of contacts per layer/sub-layer. The last column (Group size) represents the average

group size and the agent’s distribution; per layer/sub-layer.

Layers Sub-layers Agents age Belongingness probability [%] Time per week (Tw) Nearest (Ki) Group size (Gs)

Schools Kindergarten public 0-9 years 54.53 20 hours 8 [10-55] Norm

Kindergarten private 0-9 years 45.47 20 hours 2 [3-24] Norm

Elementary public 10-19 years 62.36 20 hours 7 [8-32] Norm

Elementary private 10-19 years 37.64 20 hours 4 [11-19] Norm

Professional public 20-29 years 56.43 25 hours 5 [6-64] Log-norm

Professional private 20-29 years 43.57 25 hours 4 [6-39] Norm

Work Agriculture 20-69 years 0.87 40 hours 5 [6-41] Norm

Industry 20-69 years 11.96 40 hours 5 [6-37] Norm

Construction 20-69 years 7.12 40 hours 5 [6-38] Norm

Commerce 20-69 years 22.91 40 hours 4 [5-35] Norm

Services 20-69 years 57.13 40 hours 5 [6-37] Norm

Home Home Everyone Everyone 21 hours Everyone [2-13]

Transport Transport 10–80+ years 31 1h44min 2 [3-70] Uniform

Region Catholic 0-69 years 54.77 2 hours 8 [17-100] Norm

Evangelic 0-69 years 17.08 2 hours 9 [18-100] Norm

UFRN UFRN 10-69 years 4.1 40 hours 5 [12-180] Norm

Random Random Everyone 5 per person 1 hour 1 1-to-1

https://doi.org/10.1371/journal.pgph.0000540.t003
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obtained from (SESAP-RN) as the average of R0 value for the first wave. Each layer/sub-layer

has its own Pcontamination and this value is modified over the days as a consequence of the

decrees (more details are presented in the Decrees sub-section).

These complex networks of social interactions were built based on demographic data

detailed in Table 3. The structural differences among the different layers and sub-layers

become evident by plotting the agents and their social interactions (Fig 2). To better represent

the social interaction of the City of Natal population, we divided some activities into sub-lay-

ers, such as Work, School and Religion (Table 3, second column). The first six layers (Agricul-

ture, Industry, Construction, Commerce and Services) belong to the “Work layers” group. The

following six layers (Kindergarten, Elementary and Professional Education; public and private)

correspond to “Schools layers”. The last five layers (Home, Random, Transport, UFRN, Catho-

lic and Evangelic) belong to the “Other layers” group.

The School layer was split into six sub-layers to represent the educational system in Natal.

This layer is composed of: public and private kindergarten, elementary, and professional edu-

cation. Each agent may only be a part of one sub-layer according to their age range (Table 3,

the third column). The fourth column shows the probability of an agent belonging to each

sub-layer. These probabilities add to 100% in each educational age range for public and pri-

vate. All groups follow a normal distribution, except the Professional public education layer,

where the individuals in this layer have a log-normal distribution. The data used in this layer

comes from 2019 Brazilian School Census [33].

To represent the Work layer, we considered formal employment in five economic sectors:

agricultural, industrial, construction, commerce, and service. The work activities were imple-

mented as a sub-layer where participation is exclusive, i.e., an agent can belong to only one

sub-layer (Table 3, the third column). Agents in these sub-layers are aged between 19 and 69

Fig 2. High diversity of contact networks. Layers and sub-layers are complex networks composed of agents (blue dots) and social

interactions (lines). Representative layers (Home and Transportation) and sub-layers (Catholic churches, Public Elementary Schools

and Services) display different characteristics as high connectivity, coverage and a small world topology. All the information about

connections is available in Table 3.

https://doi.org/10.1371/journal.pgph.0000540.g002
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years old and are assigned using a normal distribution. The data used to create this layer are

from the 2018 edition of the RAIS [31].

For the creation of the Home layer, the distribution of the Brazilian family size was calcu-

lated based on data from PNAD for the fourth quarter of 2019 and the first quarter of 2020

[23], followed by the estimation of the household size probability (Table 1). The distribution

was then used to assign each agent to a household of 2 to 13 people.

To model the transport layer, we considered only public transportation, since it is one of

the most populated environments, in which each vehicle has a passenger capacity of 70 people

[30]. To create this layer, we used data from the 2010 Brazilian Demographic Census [32],

which presents data on the time spent on the journey from home to work or school. Here we

used the same methodology as [41, 42].

Churches are another high-risk environment for the spread of viruses. Here we used two

layers for Natal’s most common religions: Catholic and Evangelical. We consider a maximum

capacity of 100 people between 0 and 69 years old with a single 2 hours gathering per week.

We assigned both layers using a normal distribution. The data for this layer was obtained from

the 2010 Brazilian Demographic Census [32].

A separate layer regarding higher education refers to the Federal University of Rio Grande

do Norte (UFRN) because it has the largest number of students and workers in the City of

Natal (groups of individuals from 12-180). This layer has agents from almost every age range

(10-69 years old) and approximately 4.1% of Natal’s population has some connection with

UFRN. We used a normal distribution to assign agents to this layer, and the data used comes

from the Higher Education Census [34].

The Random layer was implemented to represent any other direct contact between agents,

such as drug stores, markets, public parks, etc; or indirect contact, such as through objects, sur-

faces, etc. In this layer, agents are randomly connected regardless of the age range.

Decrees. The government’s decrees were the primary tool of local government action to

modulate the pandemic course. Decrees included the closure of specific economic and social

parts of the society and the obligatory use of masks. Within the model, we implemented the

decrees as a change in the probability of contamination (Pcontamination) and the level of agent

interactions (Pinteraction) that are specific to layers and sub-layers over a particular period.

Although all government decrees have their epidemiologic importance, we implemented only

the most impactful model adjustments (Table 4). For example, the decree on day March 25th

named “Alecrim closure” was an important factor because this neighbourhood is the central

Table 4. Decrees affect simulation dynamics with variable impact on the different layers and sub-layers over the

first wave pandemic. The first column represents the decree’s name. The second column is the implementation day.

The third column displays the layers and sub-layers affected by the decree. The baseline simulation scenario defines the

Pcontamination value relative to each decree.

Decree Day Affected layers

Close schools March

17th

UFRN, Professional (public and private), Elementary (Public and Private),

and Kindergarten (Public and Private)

Partial quarantine March

20th

Agriculture, Industry, Construction, Services, Commerce, Catholic,

Evangelic, Home, Transport, and Random

Alecrim closure March

25th

Agriculture, Industry, Construction, Services, Commerce, Transport, and

Random

Reopening commerce and

transport

April 9th Agriculture, Industry, Construction, Services, Commerce, Transport, and

Random

Mandatory face masks May 5th Agriculture, Industry, Construction, Services, Commerce, Catholic,

Evangelic, Home, Transport, and Random

https://doi.org/10.1371/journal.pgph.0000540.t004
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commercial area of Natal city. We did not set the Pcontamination value to zero because some

establishments continued to work.

Estimation of external Covid-19 cases and ICU beds. The pandemic starts with initial

infections of local individuals by external agents. To estimate the number of daily new infec-

tions during the first wave pandemic in Natal city due to external interactions, we used daily

information about flights and buses, estimated highway traffic and daily reports of confirmed

cases.

Natal has only one bus station with an estimated daily number of passengers of around

2500 [43]. The pandemic and the March 20, 2020 decree impacted the bus flow with a decrease

by 50% [44]. Until the end of December of 2020, the number of passengers slowly increased to

around 90% of the regular flow [45]. Thus, we estimated the total number of bus station pas-

sengers during the first wave was 367,875.

The number of flights in Natal airport followed the Brazilian pattern. After the restriction

measures were established in March 2020, an agreement was reached between the aviation

companies and ANAC (National Civil Aviation Agency) [46], with a minimum number of

flights between the capitals being defined due to the economic infeasibility of maintaining

flights with a reduced number of passengers. With the sanitary and financial measures adopted

by the government, the number of flights has been slowly returning to normal, reaching 70%

of the usual number of flights in December 2020 [47]. Therefore, the number of estimated pas-

sengers during the pandemic’s first wave was around 452,233.

Natal is the capital of the state and a metropolitan city. Although we do not have access to

the highway flow during the first wave, this number was estimated at 50% of the total cases pre-

viously calculated. According to (SESAP-RN), the sum of Covid-19 confirmed cases in the first

wave was 26,371 (Fig 3A, red line). We used the data to mould the estimated daily external

infections (Fig 3A, blue line). First, the daily percentage of infection was obtained by dividing

the daily confirmed infection cases by the number of the Natal city population. After that, this

percentage was applied to the daily sum of passengers from the bus station and flights, as

shown in Eq 2.

EI½day� ¼ CC½day� �
TP½day� þ AP½day�

N
ð2Þ

Where EI[day] is the daily external infections, CC[day] is the confirmed cases by day, N is the

total population of Natal, TP[day] is the daily terrestrial passengers and AP[day] is the daily air

passengers. Thus, the Eq 3 calculated the total external new cases into the model (TEI) by add-

ing the estimated number of external infected through highway flow (HF) and the sum of

EI[day] calculated in Eq 2. In summary, among all agents of the Natal population (total of

873,383), a total of 3,957 (the amount of new external cases) are randomly chosen. These

picked agents have their health state changed to Incubated. These cases were modelled as a

Gaussian distribution, following the first real infected confirmed case date on March 12th

2020 (Fig 3A, blue line). We opted to not use the real number of confirmed cases due to the

large absence of tests capable of detecting the Covid-19 pathology in Natal city.

TEI ¼ EI½day� þ HF ð3Þ

To estimate the ICU bed availability and occupancy for the City of Natal during the first

wave of the pandemic, we considered the population size ratio between the metropolitan

region and the Rio Grande do Norte state (RN). This metropolitan region is composed of 14

cities, such as Arês, Ceará-Mirim, Extremoz, Goianinha, Ielmo Marinho, Macaı́ba,
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Maxaranguape, Monte Alegre, Natal, Nı́sia Floresta, Parnamirim, São Gonçalo do

Amarante, São José de Mipibu and Vera Cruz. The entire RN state has a population of approx-

imately 3,419,010 people, and the metropolitan region has around 1596103 inhabitants accord-

ing to [30]; thus, the metropolitan population proportion is 46.68%. This proportion was

applied to the actual data acquired from the website (RegulaRN system), which monitors the

number of ICU beds available and occupied over the days; for the RN state. The real data were

decreased proportionally (46.68%) with respect to the metropolitan region population

(Fig 3B).

Estimation of baseline scenario

Estimating the baseline scenario consists of defining the values for the open variables that pro-

duce a simulation that best reproduces the actual report of deaths. The open variables are (1)

the initial Pcontamination value of each layer/sub-layer and (2) the change in Pcontamination value

implemented by each government decrees. Each decree increases or decreases the Pcontamination
value of different layers/sub-layers, on the day of the decree implementation, thus changing

the course of the pandemic simulation. To evaluate the quality of a baseline candidate parame-

ter set, we used the R-squared [48] difference between the simulated and the reported curve of

accumulated deaths and the absolute difference between the mean cumulative deaths of the

model outcome and the real data.

We implemented a multiphase search algorithm to find the most appropriate parameter set

for the baseline scenario. First, we computed the R-squared value and the absolute difference

to the accumulated number of deaths for a set of 10,000 randomly assigned parameter sets for

a single run. The 100 best candidates (sorted by R-squared above 0.95 and accumulated death

value with<10% difference to actual reports, 11 deaths) continued for a 30-run average. Next,

we performed a local search for the best candidate by varying each parameter on nine other

values in its vicinity (parametric steps of +/- 0.8, 0.5, 0.2, and 0.1). We selected the parameter

set with the lowest difference in death counts from the actual data considering the sets with an

R-squared value above 0.99. We then simulated the baseline model for 500 runs to set the ref-

erence for the other scenarios.

Fig 3. Epidemiological data on the first wave of the Covid-19 pandemic in the City of Natal, Brazil. (A) The daily number of confirmed cases with a total of 26,371

cases and a peak of 552 new cases in one day (red line), and the estimated daily number of external cases with a total of 3,957 cases with a peak of 76 new cases (blue line

and area). (B) Estimated ICU beds available (silver dashed line) and utilized (black dashed line) during the first wave. Numbers for Natal are estimated as 46.68% of the

metropolitan region data.

https://doi.org/10.1371/journal.pgph.0000540.g003
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Results

Analysis of sensitivity of the model to individual transmission layers

We built an agent-based model to simulate the pandemic evolution through the entire City of

Natal with a total of 873,383 agents and multiple contact networks connecting agents. The con-

tact networks emulate different layers of social interaction, including schools, work, religious

gatherings, transport, commerce, and households. We modelled each contact network based

on available urban data as a complex network with specific parameters (see Methods). Based

on these networks, the simulation computes the contacts that drive the transmission of the dis-

ease. The model’s only set of free parameters, Pcontamination (see Methods), determines each net-

work’s relative “temperature” with an impact on the total number of contacts in each epoch. I.

e., higher Pcontamination values will lead to a higher number of connections following the

dynamics of the specific complex network.

As we built all networks based on data gathered from public repositories and requests from

local governments, we first produced a sensitivity analysis to assess the baseline impact of each

network in the primary simulation outcome: the accumulated number of deaths (Fig 4). For

this analysis, we simulated the model with all networks set with homogeneous Pcontamination val-

ues (1.7), which led to a median of 29,023 deaths (28,736, 28,907, 29,121, 29,298, as the percen-

tiles 5%, 25%, 75% and 95%, for n = 500). Next, we globally reduced the Pcontamination values to

a lower standard (1.5) to set a reduction reference. We observed a median paired reduction of

1,613 deaths (1,586, 1,597, 1,623, 1,634), considering the same random seeds. Next, we run the

high-value simulation, reducing each layer’s specific Pcontamination value to a lower value (1.5),

Fig 4. Sensitivity analysis indicates an inhomogeneous impact of different transmission networks in the outbreak progression. The difference in the total number

of deaths with a reduction of Pcontamination from 1.7 to 1.5 in all layers, in each layer or sub-layer. Graphics represent median (bar), quartiles (line), absolute median

difference to high-value simulation and relative difference to a reduction of Pcontamination value in all layers.

https://doi.org/10.1371/journal.pgph.0000540.g004
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which led to a drop in the accumulated number of deaths that is a proxy for how sensitive the

model is to each specific network. We found that the layers alone could respond from about

40% to less than 1% of the simulation outcome, indicating a very heterogeneous influence of

different networks in the transmission dynamics.

Search for a baseline model of the pandemic’s first wave in the City of Natal

The first confirmed case of SARS-CoV-2 in the City of Natal was on March 12th 2020 [49].

The number of cases increased and peaked on June 1st 2020, with a 7-day average of 552 new

cases per day. The first death was reported on March 31st 2020 [50]. Fatalities follow the

growth of new cases to a peak on June 1st 2020, with a 7-day average of 16 deaths per day. The

death rate reduced to a 7-day average of new deaths below one event per day in September

2020, returning to an increasing trend in early November 2020. From then on, the first day

with no reported deaths by SARS-CoV-2 was October 2021. This analysis only considers the

first wave (starting on February 26th, two weeks before the first confirmed case, and ending on

November 4th). During this wave, the Natal city Secretary for Public Health reported 1072

deaths and 26,371 confirmed cases. We focused on the first wave as governmental action was

consistently lower during the second wave that took effect in early 2021, as indicated by the

lack of new specific regulatory actions. Moreover, it is impossible to draw a straight compari-

son between the waves as the second wave was caused by a different virus variant (P1/Gamma)

[51], and the vaccine roll-out was concurrent with the second surge [52].

With the model in place, we searched for the set of free variable values (Pcontamination, see

Methods) that allowed the best replication of the reported accumulated deaths curve in the

first pandemic wave in the City of Natal (Fig 5). We modelled the governmental decrees as a

temporal change in the Pcontamination value, which was also subject to the search. Notably, as the

population’s adherence to the orders is unknown, we only zeroed the Pcontamination of the school

layer, which is the only social layer where we could not find reported violations. Infections due

to external agents were estimated from air, road traffic and confirmed infections curve (see

Methods). The output baseline parameters set from the search algorithm was: Prior to decrees:

1.70; Partial quarantine = 0.86; Alecrim closure = 0.71; Reopening commerce and trans-

port = 0.74; and Mandatory face masks = 0.63. After 500 simulations, the death cumulative dif-

ference value decreased to only 1, and the R-square was 0.9927.

The baseline model could adequately reproduce the daily and accumulated curve of deaths

in the first wave (Fig 5A and 5B, respectively). In the initial months (Feb to early Jun), the sim-

ulation outcome followed the curve of actual death data. After June, the model results follow

closely below the actual data until the start of October, finishing the simulation period with a

median of five deaths above the actual data. In total, the observed accumulated number of con-

firmed deaths was 1072, while the median number of deaths in the simulation was 1,077 (quar-

tiles = [982, 1, 040, 1, 109, 1, 152]) (Fig 5B). The simulations indicate 23,475 citizens were

infected during the first wave, suggesting a sub-notification of about 10.98%. With the baseline

model in place, we could inquire about the importance of the different layers for disease propa-

gation by evaluating the amount of new infectious agents in each social network.

We also used the model to quantify the number of infections that originated in one specific

layer and sub-layer (Fig 5C and 5D). Notably, there is a strong resemblance between the origi-

nal layers of the infections and the impact measured in the sensitivity analysis, such as the high

impact of home and services and the low incidence of transport-originated infections.

Schools-based transmission is not observed because of the March 17th, 2020, decree that

closed all schools (vertical black dashed line). It is also possible to estimate the use of ICU beds

by the simulation (Fig 5E, purple line). In comparison to the estimated number of ICU beds
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available for Natal (silver dashed line) and the estimated number of ICU beds used (black line)

during the first wave (actual data start on May 4th), one can observe some differences. The

simulated ICU bed demand was above availability, with 7,119 non-available bed requests,

whereas the real ICU bed demand had a peak of 142 people in line on June 19th. One possible

interpretation for the observed discrepancy is that real ICU demand might have been higher

than availability during this period, which might explain the brief difference between the simu-

lated and real death toll in late July. Importantly, the number of ICU beds is unlimited in the

simulation, and all critical cases, which needed ICU, were treated.

Evaluation of the impact of individual decrees

To evaluate the impact of individual decrees, we explored different hypothetical scenarios,

including (a) absent interventions, where some decrees have not been applied; (b) effective

implementation of the decrees, where the affected layers/sub-layers were fully locked down;

and (c) delayed interventions, where there was a delay in the implementation of the decrees.

We considered three main classes of interventions focused on (1) school layers, (2) workplace

layers and (3) religious layers. We computed the expected number of deaths for each scenario

and compared it with the observed number of deaths in the baseline scenario. For the baseline,

absent and effective scenarios, a total of 500 simulations were run. For the delayed intervention

scenario, a total of 250 simulations were run for each delay step. We also considered a non-

intervention scenario where all decrees were absent, with a total of 500 runs.

Fig 5. Baseline simulation from the agent model provides a good fit for epidemiological data on the first wave of the SARS-CoV-2 epidemic in the City of Natal,

Brazil. (A) Daily and (B) accumulated deaths during the first wave of the SARS-CoV-2 outbreak in the City of Natal (from the end of February to the beginning of

October) from simulation (blue) and actual reports (black). Vertical lines indicate the dates of publication of governmental decrees. (C and D) The accumulated number

of infections originated in each layer or sub-layer. Simulation data from (A to D) were reported as median and quartiles (5%, 25%, 75%, 95%) from 500 runs. (E) Model-

predicted ICU requirement (solid purple line, median) and excess (purple area) from estimated daily availability (silver dashed line) and the actual estimated occupation

(black line) of ICU beds for the City of Natal.

https://doi.org/10.1371/journal.pgph.0000540.g005
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Evaluation of school-related decrees

We investigated the impact of the education-related decrees in the containment of the pan-

demic (Fig 6). Two decrees enacted on March 17th, 2020, closed all the City of Natal educa-

tional institutions. We considered three hypothetical scenarios in which: no school was ever

closed (Fig 6A); all schools closed after the ongoing term (Fig 6B); and there was a delay of a

variable number of weeks in the date of decrees’ publication (Fig 6C). We found a considerable

increase in deaths in all scenarios compared to the baseline simulations. In the most impactful

scenario without schools’ closure, although the initial months (February, March and early

April) had a death toll almost invariant to the baseline scenario, the following months pro-

duced a remarkable increase in mortality (Fig 6a.1 and 6a.2). Natal would have a median of

6342 cumulative deaths (6,023, 6,208, 6,467, 6,642, n = 500), an increase of 5,270 (490%) deaths

compared with the actual reports (black line). Natal City reached the highest daily death value

on July 1st, with 26 deaths reported. In such a disastrous scenario, the simulated daily deaths

peak between August 13th and 18th, with a median of 51 daily deaths. An inspection of the ori-

gin of the infections in the simulation scenario without an educational decree revealed that the

different educational institutions had a variable impact on the transmission of the disease

(Fig 6a.3–6a.5). Moreover, the increase in infections would provide a demand for ICU units

well above the available offer (Fig 6a.5). In a similar scenario, in which only the local federal

university (UFRN)—which required a separate decree—would continue its activities regularly,

we found a median increase of 44 deaths (40, 44, 54, 56) compared to the baseline scenario.

In the following scenario, we considered the closure of all educational institutions on the

last day of the ongoing term, on June 29th, 2020 (Fig 6B, vertical black dashed line). This

decree results in a considerable decrease in cumulative deaths compared with the previous sce-

nario (Fig 6b.1 and 6b.2, indicating that even a late government intervention would still save

lives. Still, the total number of deaths is above 50% of the observed in the baseline scenario. We

found no considerable changes in the origin of the transmission (Fig 6b.3–6b.5). ICU demand

would still be well above the offer (Fig 6b.5). We also investigated what would be the impact of

shorter delays on the promulgation of the decree that closed all schools Fig 6c.1 and 6c.2). We

found little impact in the number of casualties if the government delayed the closure of schools

by four weeks with a 3% increase in deaths, but a fast increasing number of deaths if the deci-

sion-makes waited more than six weeks with a two-fold increase with a ten weeks delay

(Fig 6c.2 insert).

Evaluation of work-related decrees

Three decrees regulated work-related activities: one enacted on March 20th partially closed

high-density businesses, another on March 25th closed all businesses and the last partially

reopened the commerce on April 9th. Despite strong governmental efforts to oversee the

implementation of the decrees, the local press reported many breaches. Thus, contrary to the

school layers that the orders effectively shut down, the government could only weaken the

work-related transmission networks. We modelled this aspect of partial adherence of the pop-

ulation to the decrees by setting the reduction o Pcontamination as an open variable for the work-

related layers. For this analysis, we considered three scenarios (Fig 7): one without the second

and most restrictive decree, which would let unaltered the routine of the most popular neigh-

bourhood (Alecrim), another scenario in which the regulation effectively shuts all businesses,

and the last scenario in which the government delayed the effective shut of business.

In the first scenario, without the March 25th decree that forced the closure of the Alecrim

neighbourhood [53], the simulations indicated a moderate increase in the lethality of the first

epidemic wave (Fig 7A). The accumulated number of deaths has a median of 1,240 (1,148,
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Fig 6. Simulation of different scenarios reveals a significant impact of the school closure decree on March 17th, 2020. Results for a

baseline scenario altered for the condition that schools were never closed (#1, A), closed at the end of the semester (#2, B) and closed

with a delay from the original decree’s publication date (#3, C). The total number of additional deaths in each scenario is the difference

between the simulation outcome and the reported number. For scenario #3, the delay in weeks is colour-coded, and the additional

number of deaths is shown in an insert. See Fig 5 for panel description.

https://doi.org/10.1371/journal.pgph.0000540.g006
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Fig 7. Simulation of different scenarios reveals a moderate and sub-optimal impact of the business closure decree on March 25th,

2020. Results for a baseline scenario altered for the condition that workplaces were never closed (#4, A), closed effectively (#5, B) and

closed effectively with a delay from the original decree’s publication date (#6, C). The total number of lives saved in each scenario is the

difference between the reported number of deaths and the simulation outcome. For scenario #6, the delay in weeks is colour-coded, and

the additional number of lives saved is shown in an insert. See Fig 5 for panel description.

https://doi.org/10.1371/journal.pgph.0000540.g007
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1,193, 1,281, 1,349, Fig 7a.1 and 7a.2), which is an increase of around 15% in regards to the

baseline scenario. The impact on the distribution of transmission origins (Fig 7a.3 and 7a.4)

and the ICU demand (Fig 7a.5) is not exceptional. In the second scenario, we considered the

situation where the decrees could effectively close all businesses (Fig 7B). We found a 3-fold

reduction in the number of casualties (median 317, (288, 306, 329, 347), Fig 7b.1 and 7b.2).

Even with the Pcontamination value set to zero in the work layers, the activity blockade could not

avoid all the infections (Fig 7b.3 and 7b.4). The reason is that the enaction of the decree

occurred only 16 days after the first confirmed case in Natal city. The substantial reduction of

infections was an important factor in reducing the occupancy of ICU beds by the simulations.

In this scenario, the ICUs peak was on June 5th (median total of 64) and did not reach the esti-

mated Natal city ICU availability (Fig 7b.5). In the last scenario, we asked whether a delayed

effective closure of work-related layers would still impact the number of lives saved (Fig 7C).

We found that a delay of up to 3 months would still produce a positive value for lives saved.

Therefore, it would be best to have a delayed but more strict implementation of the decrees

than the early but not so stringent ones.

Evaluation of worship-related decrees

Closing worship institutions was one of the most controversial governmental acts during the

first wave, as religion is a relevant component of Brazilian culture. The local administration

implemented it along with the decrees that closed other businesses. Importantly, just as in

other businesses, there were reports of irregularly open churches. Therefore, we analysed the

impact of closing churches and other worship venues in terms of lives saved following the

same analysis methodology of the work-related decrees (Fig 8).

We analysed three scenarios: one in which the churches never closed (Fig 8A), another in

which churches effectively closed (Fig 8B) and one in which churches closed effectively but

with a delay (Fig 8C). The results are very similar to those found with work-related businesses

but at a smaller scale. Our results indicate that the attempted closure of worship venues had a

marginal effect on the number of deaths (Fig 8a.1 and 8a.2), transmission (Fig 8a.3 and 8a.4)

and ICU use (Fig 8a.5). Yet, in the scenario where all churches would be effectively closed, we

found a reduction of around 10% in the number of deaths (median of 954, (885, 925, 980,

1,030, Fig 8b.1 and 8b.2) and increased number of transmissions (Fig 8b.3 and 8b.4) and ICU

demand (Fig 8b.5). As in the work-related analysis, we found that a delayed but effective

decree would have been a better option than the strategy that was actually used. As our simula-

tion suggests, we can estimate that implementing the laws effectively, even with a delay, would

spare nearly 100 lives (Fig 8c.1 and 8c.2).

What if no intervention was ever applied?

In the last scenario, we asked what would be the outcome if there was no intervention from the

government but the regulation of the use of face masks. The simulations show that this sce-

nario would lead to high levels of daily deaths with a rapid increase from April to July, reaching

the peak on July 4th (median of 73 daily deaths) (Fig 9A). After this month, there is a slow

decrease in the following months. The accumulated deaths (median 7,966 (7,443, 7,729, 8,248,

8,647), Fig 9B) show an enormous increase of 6,894 deaths when compared with the baseline

scenario (Fig 5). A similar effect is observed in the number of infections (Fig 9C, 9D and 9F)

and in the ICU demand (Fig 9F).
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Fig 8. Simulation of different scenarios reveals a moderate and sub-optimal impact of the worship venues closure decree on March

25th, 2020. Results for a baseline scenario altered for the condition that worship venues were never closed (#7, A), closed effectively (#8,

B) and closed effectively with a delay from the original decree’s publication date (#9, C). The total number of lives saved in each scenario is

the difference between the reported number of deaths and the simulation outcome. For scenario #9, the delay in weeks is colour-coded,

and the additional number of lives saved is shown in an insert. See Fig 5 for panel description.

https://doi.org/10.1371/journal.pgph.0000540.g008
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Discussion

This study presented an agent-based epidemiological model designed to investigate the impact

of governmental non-pharmaceutical interventions in the first SARS-CoV-2 wave in the City

of Natal (February 26th to November 4th of 2020). The model could support simulations with

a 1:1 agents/citizens ratio and used detailed data on (1) health data from daily epidemiological

reports, (2) demographic data of Natal city, (3) estimates of external cases arising from airport,

bus station and highway flows; and (4) government decrees to confront the pandemic. The

model health states extended the SIR model with additional states implemented to represent

the complexity of the Covid-19 pathology. We implemented a complex network to emulate the

contact among agents. The networks subdivide into layers and sub-layers to better characterise

the social interactions such as schools, workplaces, churches, transport, and others, resulting

in each network having its own specificities. The simulations successfully reproduced the

observed curve of deaths and allowed an estimation of the number of infections and hospitali-

sations (Fig 5).

Altogether, the results of the simulations support that the actions of state and local govern-

ments effectively reduced the loss of citizen lives in the first SARS-CoV-2 wave in the City of

Natal. Although the outcome was not optimal—as more rigid interventions could have saved

more lives—all interventions seem to have had a positive impact. The model can support the

conjecture of hypothetical scenarios with different government interventions. We simulated

three main scenarios focused on: (1) school layers, (2) workplace layers, and (3) religious lay-

ers. Table 5 summarises the impact of the interactions among the three main layer groups

(schools, workplaces and religions) within each simulated scenario. We identified that the

work layers operate as a hub of infections. Although the scenario without a decree for closing

Fig 9. Simulation of a scenario without any decree implies a catastrophic scenario. Results for a baseline scenario altered for the condition that no decree was ever

published. Panels from A to F, as in Fig 5.

https://doi.org/10.1371/journal.pgph.0000540.g009
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workspaces (scenario Fig 7A) resulted in a low increase of deaths, the workspace layers can

support a highly infectious dynamic when operating combined with another group of layers,

even when the strength of the interaction is low. This effect surges in scenarios without the

decrees to close schools (Fig 6A) or churches (Fig 8A). When there is no interaction in these

layers, the number of deaths decreases (Fig 7B—Close workplaces effective decree). As the

main finding of the simulations with the absence of a Schools closing decree, the model shows

a high increase of deaths, around 591.6% (Fig 6A). Nevertheless, the principal finding for

workplaces and religious layers was the effective implementation of the decrees. With the

absence of activities in the work layers, the number of death decreased by 70.43% (Fig 7B). The

closure of religious layers would reduce the ratio of death by 11.01% (Fig 8B). The absence of

intervention would result in a catastrophic scenario of 7966 deaths, which corresponds to

around 0.912% of the entire Natal city population (Fig 9). We can use the model to quantify

the number of infected by layers/sub-layers, showing that, typically, the agents get infected pri-

marily in the Home layer. Public education was the most contagious among the School layers’

simulated scenarios. The Service sub-layer is the most infectious work activity. The most

affected religion was Catholicism. These observations strongly support the need for active gov-

ernmental action in the face of a pandemic such as SARS-CoV-2 ranging from a wide diversity

of activities and economic areas.

The modelling approach used in this study—based on agents—allows insights into internal

aspects of the pandemic evolution that would be difficult—but not impossible—in a compart-

ment-based paradigm. One could model the multiple transmission networks as variable chan-

nels between compartments and separate the compartments based on multiple social and

health criteria. However, the rapid explosion of the number of compartments and networks

would preclude the main advantage of compartment-based models: simplicity. Agent-based

models allow a simple inclusion of many aspects of the phenomena with much simpler steps.

Still, it is essential to remember that the simplicity of including variables could also result in

models that are hard to associate with reality and possibly misleading. For instance, we do not

explicitly model the adherence levels to the government policies or whether they vary with the

agent’s attributes, such as sex, age, region, occupation, and stratum. There is evidence that

adherence levels varied according to various circumstances, including political views [54]. But,

also, there are significant indications of widespread commitment to the policies, as indicated

by the overall reduction of mobility reported by local telecommunication companies [55] and

the result of online inquiries [56]. Still, we did not find a reliable dataset that allowed us to

assess the population’s adherence to the guidelines quantitatively; thus, we did not explicitly

Table 5. Summary of simulation results.

Layers Outcomes

Scenarios Schools Work Religion Impact Deaths Difference of deaths

Fig 5 Baseline X - - 1073

Fig 6A #1 Schools never closed + - - >> 6332 5259

Fig 7A #4 Businesses never closed X + - > 1240 167

Fig 7B #5 Effective closure of businesses X X - << 317 -756

Fig 8A #7 No closure of religious buildings X - + > 1081 8

Fig 8B #8 Effective closure of religious buildings X - X < 954 -119

Fig 9 #10 No governmental intervention + + + >>> 7966 6893

Labels: − Low interaction; + High interaction; X No interaction; > Increase;< Decrease; >> High increase; << High decrease;>>> Higher increase.

https://doi.org/10.1371/journal.pgph.0000540.t005
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model this aspect of the implementation of government policies. Nevertheless, the methodol-

ogy would be relatively simple to adapt if such data is available in a different city.

Also, due to the lack of data and some level of abstraction necessary for computation, we

advise the reader to interpret the results considering its methodological limitations. For exam-

ple, the baseline scenario considered in this study slightly underestimated the cumulative

death curve for a short period after the peak death rate (Fig 5). Although the high R-squared

value suggests that we came across a representative fit, the short underestimation could also

indicate that our search methodology found a local maximum or that the current level of

abstraction of the model is insufficient for a perfect fit to baseline. Still, an alternative scenario

with a potentially better fit would probably render similar results considering the relative

impact of the different transmission layers (Fig 4).

This study did not analyse the second SARS-CoV-2 wave in the City of Natal. The second

wave was longer, deadlier, and more complex, resulting in over 2700 deaths by December

2021. We did not consider the second wave because most of the governmental decrees—all but

the closure of public schools—became ineffective as the population showed a decreased respect

for the measures. As an illustrative example, the Brazilian government decided to proceed with

the city elections on November 15th. Traditionally, politicians organise public events for their

supporters before election day, and although the authorities tried to limit them, these events

still occurred [57]. Also, travelling resumed at the end of the year for the two major holidays

for the Brazilian population: Christmas and Reveillon [58].

Additionally, there were local reports of several clandestine Carnaval events that occurred

on February 2021 [59]. Further, vaccines became progressively widely available in Brazil dur-

ing the second wave, and, likely, the impact of delayed distribution in the development of the

epidemy was more determinant than mobility restrictions. The vaccination in Brazil started in

January 2021, prioritising health professionals, older people (60+ years), and indigenous [60].

Although Brazil has a comprehensive and free health system that supports everyone, the popu-

lation immunisation rhythm was slow due to mismanagement in acquiring and distributing

vaccines [61]. The model can be adapted to study the effect of vaccination in the pandemic,

but we leave it as a possible follow-up.
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