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Abstract

Accurate predictive time series modelling is important in public health planning and

response during the emergence of a novel pandemic. Therefore, the aims of the study are

three-fold: (a) to model the overall trend of COVID-19 confirmed cases and deaths in Ban-

gladesh; (b) to generate a short-term forecast of 8 weeks of COVID-19 cases and deaths;

(c) to compare the predictive accuracy of the Autoregressive Integrated Moving Average

(ARIMA) and eXtreme Gradient Boosting (XGBoost) for precise modelling of non-linear fea-

tures and seasonal trends of the time series. The data were collected from the onset of the

epidemic in Bangladesh from the Directorate General of Health Service (DGHS) and Insti-

tute of Epidemiology, Disease Control and Research (IEDCR). The daily confirmed cases

and deaths of COVID-19 of 633 days in Bangladesh were divided into several training and

test sets. The ARIMA and XGBoost models were established using those training data, and

the test sets were used to evaluate each model’s ability to forecast and finally averaged all

the predictive performances to choose the best model. The predictive accuracy of the mod-

els was assessed using the mean absolute error (MAE), mean percentage error (MPE), root

mean square error (RMSE) and mean absolute percentage error (MAPE). The findings

reveal the existence of a nonlinear trend and weekly seasonality in the dataset. The average

error measures of the ARIMA model for both COVID-19 confirmed cases and deaths were

lower than XGBoost model. Hence, in our study, the ARIMA model performed better than

the XGBoost model in predicting COVID-19 confirmed cases and deaths in Bangladesh.

The suggested prediction model might play a critical role in estimating the spread of a novel

pandemic in Bangladesh and similar countries.

Introduction

The coronavirus disease 2019 (COVID-19) is a major global public health threat. A group of

pneumonia infections caused by a newly found β-coronavirus occurred in Wuhan, China in

December 2019 [1]. On January 12, 2020, the World Health Organization (WHO) labelled this

coronavirus the 2019-novel coronavirus (2019-nCoV) [2, 3]. More than 222 nations, including

Bangladesh, have reported more than 263.1 million confirmed COVID-19 cases as of
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November 30, 2021, resulting in 5.2 million fatalities worldwide [4]. On March 8, 2020,

IEDCR detected the first COVID-19 case in Bangladesh. On March 9, 2020, the number of

infected cases began to rise, and as of December 31, 2021, Bangladesh had 1.6 million infected

cases and 28,072 fatalities [5].

In South Asia, especially Bangladesh, COVID-19 has portrayed a significant gap in public

health preparedness and response to contagious disease risks and outbreaks [6]. The lack of a

dependable public health surveillance system is noticeable [7]. Of the 222 countries, Bangla-

desh globally ranks 4th on the daily increase of COVID-19 deaths [8] and 3rd in fatality rate in

South Asia [9]. Bangladesh is a densely populated country, with almost 161.4 million people

living in overcrowded cities and villages, with a population density of over 1115 persons per

square kilometre [10]. The healthcare system of Bangladesh is falling short of international

standards due to a scarcity of competent workers and inadequate healthcare services, despite

the Bangladesh government’s efforts to address these challenges in the health service [11]. Fur-

thermore, there are insufficient Intensive Care Unit (ICU) beds for the population. The gov-

ernment faces an uphill battle to control the COVID-19 spread. The Impact of COVID-19 in

Bangladesh on education is also noticeable. Due to the lengthy university shutdown and home

confinement caused by COVID-19, students’ learning was severely disrupted [12]. Students

had a higher psychological effect due to COVID-19 [13]. The spread of COVID-19 poses a tre-

mendous challenge for any administration in terms of public health system capacity and man-

agement in the event of a catastrophic emergency [14]. As a result, knowing the exact

prediction and usual pattern of this virus is crucial for Bangladesh. The prediction model can

assist hospitals, healthcare administration and related stakeholders in public health planning

and response during the emergence of the COVID-19 pandemic.

The autoregressive integrated moving average (ARIMA) model is commonly used in the

modelling of contagious diseases [15], such as influenza viruses [16], malaria [17], and hemor-

rhagic fever [18]. Several studies regarding COVID-19 forecasting used ARIMA model for pre-

dicting the confirmed cases and examined it as the best model [19–22]. On the other hand, the

eXtreme Gradient Boosting, a new approach, is an uptrend machine learning technique in

time series modelling [23, 24]. The XGBoost model has performed admirably in many medical

research sectors [25–28], but the application of XGBoost model in predicting COVID-19 inci-

dence is scanty [29–32]. Time series forecasting methods play a critical role in estimating the

spread of an epidemic. Therefore, this study aimed to (a) model the overall trend of COVID-

19 confirmed cases and deaths in Bangladesh; (b) generate a short-term forecast of 8 weeks of

confirmed COVID-19 cases and deaths; (c) compare the predictive accuracy of the Autore-

gressive Integrated Moving Average (ARIMA) and eXtreme Gradient Boosting (XGBoost) for

precise modelling of non-linear features and seasonal trends of the time series (Fig 1). The

findings of this study will help policymakers and government officials with effective public

health interventions to control the spread of an epidemic.

Methods

Data source

Daily confirmed cases and deaths of COVID-19 in Bangladesh from March 08, 2020, to

November 30, 2021 were collected from the Directorate General of Health Service (DGHS)

and Institute of Epidemiology, Disease Control and Research (IEDCR) [33, 34]. The daily con-

firmed cases and deaths of COVID-19 of 633 days in Bangladesh were divided into several

training and test sets. The ARIMA and XGBoost models were established using those training

data, and the test sets were used to evaluate each model’s ability to forecast and finally averaged

all the predictive performances to choose the best model.
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ARIMA model

The ARIMA model is frequently used for time series modelling of contagious diseases [35]. It

is one of the most often used time-series models in a variety of sectors of data analysis because

it accounts for changing trends, periodic variations, and random disturbances in the data. It’s

utilized for forecasting and better interpreting the data [36]. ARIMA(p, d, q) is a combination

of the Autoregressive (AR) and Moving Average (MA) models, with the ’I’ standing for inte-

gration; where p denotes the autoregressive order, d for differencing order, and q for moving

average order [37]. Stationary is a discardable property for a time series analysis. The differ-

ence order d is used to make a nonstationary time series to stationary. It is estimated by the

Augmented Dickey-Fuller (ADF) test. An ARMA (p, q) model combines AR(p) and MA(q)

models, which is best suited to univariate time series analysis. The AR(p) model assumes that a

variable’s future value is determined by a linear combination of p previous observations plus a

random error term. The AR(p) model is represented mathematically as follows:

Yt ¼ C þ ;1Yt� 1 þ ;2Yt� 2 þ ;3Yt� 3 þ ;4Yt� 4 . . . ::;pYt� p þ εt ð1Þ

Yt and εt denote the actual value and error terms at time t, ;i (i = 1,2,3,4. . ..) denotes model

parameters, and c denotes a constant. The order of the model is a positive integer p. Unlike the

AR(p) model, the MA(q) model includes a dependent variable for previous errors. Following

is the MA(q) model:

Yt ¼ mþ y1εt� 1 þ y2εt� 2 þ y3εt� 3 þ y4εt� 4 þ � � � þ yqεt� q þ εt ð2Þ

Here, μ denotes the series’ mean, θj (j = 1, 2, 3. . . q) denotes model parameters, and q is the

model’s order. A mathematical representation of an ARMA (p, q) model is as follows:

Yt ¼ C þ mþ ;1Yt� 1 þ ;2Yt� 2 þ ;3Yt� 3 þ ;4Yt� 4 . . . ::þ ;pYt� p þ y1εt� 1 þ y2εt� 2 þ y3εt� 3

þ y4εt� 4 þ � � � þ yqεt� q þ εt ð3Þ

Fig 1. Proposed methodology.

https://doi.org/10.1371/journal.pgph.0000495.g001
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Seasonal ARIMA model

A seasonal ARIMA model collects information from seasonal components that the conven-

tional ARIMA model cannot comprehend. The seasonal model may be split into two types

based on its complexity: an additive model (simple seasonal model) and a product seasonal

model. The mathematical expression of the simple seasonal model’s is:

Xt ¼ St þ Tt þ It ð4Þ

Where, St, Tt, and It denote seasonal information, trend information, and random fluctua-

tion information in the data, respectively. To build a seasonal ARIMA model, the components

of the nonseasonal part is identified first. After that, the seasonal part is identified. For the sea-

sonal information, the time series data were plotted to see the seasonality pattern. Then the

Box-Cox transformation was performed to reduce the variance of the original COVID-19 time

series. At the same time, the long term trend and seasonal variations were fixed by performing

first-order differencing and seasonal differencing. An Augmented Dickey-Fuller (ADF) test

can be used to determine if the time series is stable. The potential values of the autoregressive

order p, moving average order q, seasonal autoregressive order P, and the seasonal moving

average order Q may be calculated using the graphs of the autocorrelation function (ACF) and

partial ACF (PACF) determined by the Box- Jenkins order determination method [38]. The

corrected Akaike information criterion (AICc) value was used to evaluate the benefits and

drawbacks of the model fit, and the model with its least AICc value was deemed the best. The

Ljung-Box test is thus used to determine the white noise of the residuals [18, 38].

XGBoost model

Extreme Gradient boosting (XGBoost) technique is an optimized distributed Gradient boost-

ing library that can rapidly assess the importance of all input features and is a scalable machine

learning system for tree boosting. It has proven to be a qualified and competent problem solver

for machine learning [39, 40]. Gradient boosting is a popular method for building a forecasting

model and a quantifiable boosting algorithm [38]. It was initially developed by Chen Tianqi

and Carlos Gestrin in 2011 and has since been improved and polished by numerous scientists

in the follow-up study [41]. The core concept of boosting (enhancing machine learning mod-

els) is to merge hundreds of low-accuracy prediction models into a single high-accuracy

model. Several models must frequently be integrated to obtain good prediction accuracy

under tolerable parameter values. The model may need to be iterated or repeated multiple

times or more to attain sufficient accuracy if the data collection is vast or complicated; the

XGBoost model could better handle this problem [18]. XGBoost is a robust and effective gradi-

ent boosting machine algorithm [42, 43]. The objective function can be written as follows:

ObjðtÞ ¼
Pn

i¼1
lðyi; ŷ

ðt� 1Þ

i þ ftðxiÞÞ þ OðftÞ þ constant ð5Þ

Where yi is the observed values, ŷðt� 1Þ

i is the predicted value of the last iteration, xi is the fea-

ture vector, n is the sample size, ft is a new function which model learns, O(ft) is the regulariza-

tion term which saves the model from complexity. l denotes the loss function, which calculates

the difference between the label and the prediction in the previous phase, the new tree’s output

[38, 44].

Evaluation parameter of models

A model’s real accuracy can be measured by comparing predicted and actual values. A variety

of performance metrics can be performed to calculate accuracy [45]. We used four prominent
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forecasting parameters to assess the predictive efficacy of our model: Mean Absolute Error

(MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE),

Mean Percentage Error (MPE), as follows:

MAE ¼
1

n
Pn

i¼1
jŷi � yij ð6Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
Pn

i¼1
ðŷi � yiÞ

2

r

ð7Þ

MAPE ¼
1

n
Pn

i¼1
j
ŷi � yi
yi
j � 100% ð8Þ

MPE ¼
1

n
Pn

i¼1

ŷi � yi
yi

� �

� 100% ð9Þ

Where n denotes the number of observations, ŷi � yi denotes the error between the fore-

casted and actual value. The mean of the actual forecasting error is calculated by taking the

arithmetic average of the absolute errors between the prediction and the actual value. The root

mean square error (RMSE) is a commonly used metric for comparing the values forecasted by

a model or estimate to the values observed, and it’s the average squared error squared. The

MAPE measure calculates accuracy as a percentage, computed as the actual values minus the

forecasted values divided by the actual values for each time period [46].

Data analysis

Statistical analyses were performed using RStudio (Version 4.1.0) [47]. The ’tseries’, ’TSstudio’

and stats packages were used to process the time series. ARIMA models were built with the

’forecast’ package using auto.arima function for choosing the best model based on the AICc

values [48]. The ’forecastxgb’ package was used for fitting XGBoost model. The necessary

codes are available at https://github.com/ [49].

Results

In Bangladesh, 1.6 million cases and 27,983 deaths of COVID-19 of 633 days (91 weeks) were

recorded from March 08, 2020 to November 30, 2021. The highest COVID-19 confirmed

cases were recorded 16,230 and deaths 264 in Bangladesh (Table 1). The data vary considerably

and show weekly seasonality and nonlinearity pattern in both cases and deaths. Although the

number of confirmed cases and deaths fluctuated in different weeks, there was a highly upward

trend between 70 and 80 weeks. After that, it began to alleviate (Fig 2). The ADF test confirms

that the data are not smooth. The entire data set (COVID-19 confirmed cases and deaths) was

split into several training and test sets (S1 Text).

Table 1. Summary of COVID-19 confirmed cases and deaths count during March 08- November 30, 2021.

Variables Minimum Maximum Mean±SD Total

Confirmed cases 0 16,230 2490±2938.7 1,576,284

Deaths 0 264 45.2±54.5 27,981

SD: Standard deviation.

https://doi.org/10.1371/journal.pgph.0000495.t001
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To decrease anomalies such as non-normality and heteroscedasticity that the variances are

not constant, Box & Cox (1964) presented a parametric power transformation technique [50].

The Box-Cox transformation was applied to each training data set to remove the non-normal-

ity and exhibit less variation [51]. The decomposed data shows a weekly seasonal pattern in

both cases and deaths [52]. Table 2 illustrates the predictive performance of different ARIMA

models built from seven different training sets and their average values for COVID-19 con-

firmed cases.

The XGBoost model for COVID-19 confirmed cases were built by adjusting different

parameters like seas_method= ‘dummies’, trend_method= ‘none’, power transformation

parameter ‘lambda’ for each training set. Table 3 illustrates the predictive performances of dif-

ferent training and test sets of the XGBoost model and their average values for confirmed

cases.

For COVID-19 death data, we built five different ARIMA models for five different training

and test sets. The appropriate model for each training data set was selected based on the AICc

value. The predictive performances of ARIMA models of five different training and test data

sets and their average values were shown in Table 4.

We also built the XGBoost model for COVID-19 deaths by adjusting the parameters seas_-

method= ‘dummies’, trend_method= ‘none’, power transformation parameter ‘lambda’ for

Fig 2. A 633 day (91 weeks) time series plot for confirmed COVID-19 cases and deaths in Bangladesh from March 08, 2020 to November 30, 2021.

https://doi.org/10.1371/journal.pgph.0000495.g002
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each training set. The predictive measures of different training and test set for XGBoost model

and their average values for COVID-19 deaths were shown in Table 5.

The average MAPE values of the ARIMA model for COVID-19 confirmed cases is compar-

atively lower than the XGBoost model indicating that ARIMA performs better than XGBoost

in predicting COVID-19 confirmed cases in Bangladesh. On the other hand, the average

MAPE value of the ARIMA model for COVID-19 deaths is smaller than XGBoost which also

indicates that ARIMA performs better than XGBoost in predicting COVID-19 deaths in

Bangladesh.

In our study, it was found that ARIMA model performs better than XGBoost in predicting

COVID-19 confirmed cases and deaths in Bangladesh. The detailed procedure of ARIMA and

XGBoost model fitting for COVID-19 confirmed cases and deaths were shown in S1 Text.

Discussion

In our study, we found a weekly seasonality for daily COVID-19 confirmed cases and deaths

in Bangladesh. Because of the weekend, fewer health care staffs were available to report new

cases or fewer people are tested, which causes weekly seasonality [11, 53]. It was simpler to

assess the seasonality and pattern of this disease using seasonal decomposition, which offered a

reference for us to analyze, process, and stabilize data, laying the groundwork for building a

Table 3. Evaluation of parameters for the XGBoost model of different training and test sets for COVID-19 confirmed cases.

XGBoost model Train Test

RMSE MAE MPE MAPE RMSE MAE MPE MAPE

Sample 1 47.19 31.66 -0.11 2.30 520.76 436.20 11.44 23.97

Sample 2 31.39 22.05 -0.16 1.72 925.60 865.12 -190.79 190.81

Sample 3 64.91 42.74 0.36 3.10 3727.73 2874.31 71.05 71.12

Sample 4 76.87 51.28 -0.11 3.64 1989.87 1814.20 -156.36 156.56

Sample 5 53.71 35.71 -0.24 2.53 7374.24 6413.23 59.46 59.46

Sample 6 130.08 80.66 -0.17 4.06 9683.20 9183.94 -561.51 561.55

Sample 7 168.82 105.89 -0.14 4.64 196.60 185.76 -76.20 76.20

Average error measures 81.85 52.86 -0.08 3.14 3488.29 3110.39 -120.42 162.81

XGBoost: eXtreme Gradient Boosting; RMSE: Root Mean Square Error; MAE: Mean Absolute Error; MPE: Mean Percentage Error; MAPE: Mean Absolute Percentage

Error.

https://doi.org/10.1371/journal.pgph.0000495.t003

Table 2. Evaluation of parameters for the ARIMA model of different training and test sets for COVID-19 confirmed cases.

ARIMA model Train Test

RMSE MAE MPE MAPE RMSE MAE MPE MAPE

Sample 1 258.50 166.16 -2.53 15.00 421.92 359.07 -2.63 22.46

Sample 2 241.82 154.73 -2.72 13.39 244.33 216.94 -47.26 48.85

Sample 3 224.11 139.44 -2.67 12.80 3844.89 2988.57 75.95 75.95

Sample 4 280.81 165.97 -1.72 12.50 2160.95 2031.37 -163.43 163.44

Sample 5 275.28 173.14 -1.96 12.82 6325.54 5481.82 49.68 50.74

Sample 6 560.19 276.18 -2.15 13.11 8984.24 8217.15 -549.35 549.35

Sample 7 558.91 280.01 -2.47 12.82 67.31 55.24 1.02 21.36

Average error measures 342.80 193.66 -2.32 13.21 3149.88 2764.31 -90.86 133.16

ARIMA: Autoregressive Integrated Moving Average; RMSE: Root Mean Square Error; MAE: Mean Absolute Error; MPE: Mean Percentage Error; MAPE: Mean

Absolute Percentage Error.

https://doi.org/10.1371/journal.pgph.0000495.t002
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mathematical model. The ARIMA models for cases and deaths were created using a linear

regression model to expose the data’s dynamic rules and forecast future data values. The

ARIMA model combines the trend components, cyclical factors, and random errors originally

included in the time series. This model combines the benefits of autoregressive and moving

average models, is unconstrained by data sources, has high adaptability, and has good short-

term predictions [18]. Instead of requiring particular influencing elements, the ARIMA model

uses merely historical data to comprehend the illness pattern and achieve a more accurate fore-

cast impact. As a result, the ARIMA approach is simple to learn and frequently employed [38].

In this study, the ARIMA method is compared to the XGBoost model for its fairly mature time

series prediction approach and widespread application. The ARIMA model performs well on

the nonstationary time series after applying Box-Cox transformation and differencing adjust-

ments, demonstrating the model’s capacity to forecast diseases. In general, the greater the

number of differences utilized, the more data is lost. We built different ARIMA models for dif-

ferent training sets and selected the best for each training set based on the AICc value for both

confirmed cases and deaths [53, 54]. Finally, we averaged all the error measures from all mod-

els. The average MAPE value of the training data sets for confirmed cases was 13.21%, whereas

it was 133.16% for the test data sets. On the other hand, the average MAPE value of the training

sets for death data was 22.92%, whereas the test sets was 235.95%. On the other hand, we used

the most popular machine learning model to fit the nonlinear data [55]. The XGBoost model,

a relatively new approach, is a gradient boosting-based ensemble machine learning technique

that utilizes decision trees. The XGBoost technique offers several benefits in terms of model

prediction, including the lack of data preprocessing, a quick operation speed, complete feature

Table 4. Evaluation of parameters for the ARIMA models of different training and test sets for COVID-19 deaths.

ARIMA model Train Test

RMSE MAE MPE MAPE RMSE MAE MPE MAPE

Sample 1 5.84 4.35 -6.69 23.46 46.32 33.48 49.72 69.15

Sample 2 6.14 4.59 -4.71 23.09 110.31 101.42 -287.79 286.79

Sample 3 7.23 5.37 -4.64 24.34 100.32 90.70 47.81 47.81

Sample 4 9.98 6.67 -4.35 22.51 246.09 228.36 -620.60 620.60

Sample 5 9.64 6.60 -4.98 21.22 6.00 5.40 -152.45 154.40

Average error measures 7.77 5.52 -5.07 22.92 101.81 91.87 -192.66 235.75

ARIMA: Autoregressive Integrated Moving Average; RMSE: Root Mean Square Error; MAE: Mean Absolute Error; MPE: Mean Percentage Error; MAPE: Mean

Absolute Percentage Error.

https://doi.org/10.1371/journal.pgph.0000495.t004

Table 5. Evaluation of parameters for the XGBoost models of different training and test sets for COVID-19 deaths.

XGBoost model Train Test

RMSE MAE MPE MAPE RMSE MAE MPE MAPE

Sample 1 2.19 1.45 0.32 6.34 40.32 28.11 20.68 63.18

Sample 2 1.95 1.39 -1.03 6.65 49.17 45.01 -131.30 132.18

Sample 3 3.80 2.66 1.69 10.05 150.98 136.59 71.82 72.82

Sample 4 2.70 1.92 -1.49 7.37 179.88 169.85 -444.68 445.68

Sample 5 3.20 2.27 -1.18 7.50 16.27 15.47 -470.79 471.27

Average error measures 2.77 1.94 -0.34 7.58 87.32 79.01 -190.85 237.03

XGBoost: eXtreme Gradient Boosting; RMSE: Root Mean Square Error; MAE: Mean Absolute Error; MPE: Mean Percentage Error; MAPE: Mean Absolute Percentage

Error.

https://doi.org/10.1371/journal.pgph.0000495.t005
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extraction, a strong fitting effect, and high prediction accuracy. This study applied this new

technique to predict COVID-19 confirmed cases and deaths in Bangladesh. We selected the

most often used ARIMA time series model as the baseline of this study. But the XGBoost

model did not perform well on the nonlinear data. The XGBoost model has a considerably

worse influence on forecasting than the ARIMA model in this COVID-19 research in Bangla-

desh because the number of confirmed cases and deaths has increased significantly between 70

and 80 weeks. The number of confirmed cases in the country has also altered dramatically due

to changes in government policies. In addition, there might have other climatic and environ-

mental factors that impact the COVID-19 incidence observed from some previous studies

which didn’t incorporate in our study [46, 56–58]. As a result, the proposed model was no lon-

ger produced accurate predictions for this change. In this study, we compared the models’ pre-

dictive performances to provide a reference for the country’s policymakers to take effective

steps and strategies to control the outbreak of the deadly disease. The study findings are useful

to all other endemic countries similar to Bangladesh.

Conclusion

For controlling the spread of the COVID-19 pandemic in Bangladesh and similar settings else-

where, we developed a seasonal ARIMA model and XGBoost model. These models were used

to create short-term forecasts in this study. The ARIMA model performed better than the

XGBoost model in predicting COVID-19 confirmed cases and deaths in Bangladesh.

Limitations

We compared the predictive performance of XGBoost and ARIMA models in this study, and

the results help choose the best model for COVID-19 prediction in Bangladesh. There are

many different prediction models, and we need to keep experimenting with them to find the

best one for predicting confirmed COVID-19 cases and deaths. We focused on the impact of

time on both cases and deaths in our research, which allows our model easier to build and fore-

cast. Therefore, a limitation of our study is that, for example, meteorological data such as tem-

perature, humidity, and wind speed variables were not incorporated but which are known to

impact COVID-19. As mentioned above, this will be explored progressively with increasing

data.
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