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Abstract

The High Burden High Impact (HBHI) strategy for malaria encourages countries to use mul-

tiple sources of available data to define the sub-national vulnerabilities to malaria risk,

including parasite prevalence. Here, a modelled estimate of Plasmodium falciparum from an

updated assembly of community parasite survey data in Kenya, mainland Tanzania, and

Uganda is presented and used to provide a more contemporary understanding of the sub-

national malaria prevalence stratification across the sub-region for 2019. Malaria prevalence

data from surveys undertaken between January 2010 and June 2020 were assembled form

each of the three countries. Bayesian spatiotemporal model-based approaches were used

to interpolate space-time data at fine spatial resolution adjusting for population, environmen-

tal and ecological covariates across the three countries. A total of 18,940 time-space age-

standardised and microscopy-converted surveys were assembled of which 14,170 (74.8%)

were identified after 2017. The estimated national population-adjusted posterior mean para-

site prevalence was 4.7% (95% Bayesian Credible Interval 2.6–36.9) in Kenya, 10.6% (3.4–

39.2) in mainland Tanzania, and 9.5% (4.0–48.3) in Uganda. In 2019, more than 12.7 million

people resided in communities where parasite prevalence was predicted� 30%, including

6.4%, 12.1% and 6.3% of Kenya, mainland Tanzania and Uganda populations, respectively.

Conversely, areas that supported very low parasite prevalence (<1%) were inhabited by

approximately 46.2 million people across the sub-region, or 52.2%, 26.7% and 10.4% of

Kenya, mainland Tanzania and Uganda populations, respectively. In conclusion, parasite

prevalence represents one of several data metrics for disease stratification at national and

sub-national levels. To increase the use of this metric for decision making, there is a need to

integrate other data layers on mortality related to malaria, malaria vector composition,
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insecticide resistance and bionomic, malaria care-seeking behaviour and current levels of

unmet need of malaria interventions.

Introduction

The High Burden High Impact (HBHI) strategy of the World Health Organisations (WHO)

Global Malaria Programme (GMP) encourages countries to use multiple sources of available

data to provide a platform to understand the sub-national malaria risk. These national epide-

miological frameworks should be used to rationalise finite resources and maximise the impact

of malaria control [1, 2]. Ideally, data should be layered to provide meaningful stratifications

based on the epidemiology of malaria risk and burden, areas of poor intervention coverage,

vulnerability, and marginalisation to ensure health equity. Importantly, information must be

resolved to administrative areas used by National Malaria Control Programmes (NMCPs) to

guide sub-national stratification, policies, and resource allocation [2–4].

Varied data sources are increasingly used by countries across sub-Saharan Africa to mea-

sure the quantity of malaria risk at fine spatial resolution and decentralised health units. These

include routine health system data on malaria test-positivity, case incidence, and screening for

malaria infection among women attending ante-natal clinics [5]. Less common has been the

sub-national variability in the composition of dominant vectors, their sibling species and

respective Entomological Inoculation Rates (EIR) [6]. Historically, for over 100 years commu-

nity-based surveys of malaria parasite prevalence have formed an important measure of

malaria risk [7, 8]. Recently, these data have been collected from national household surveys

undertaken every 3–5 years such as the Demographic and Health Surveys (DHS) or Malaria

Indicator Surveys (MIS). However, because they lack adequate power for effective sub-national

stratification on their own [9], they have been used in combination with other more opportu-

nistic, assembled research survey data, sub-national monitoring data and school surveys,

increasing the power of national data to provide estimates of risk at fine spatial scale. These

data are often analysed using model-based geostatistical (MBG) methods [10] to predict risk in

areas without data augmented by environmental geospatial covariates of transmission [11].

MBG incorporates measures of uncertainty of disease predictions at the population level.

Modelled national parasite prevalence predictions have been used to inform sub-national

approaches to malaria control in Kenya [12, 13], Uganda [14], Somalia [15, 16], Namibia [17],

Senegal [18], Cote D’Ivoire [19, 20], Malawi [21–23], Angola [24], Madagascar [25], Ghana

[26], Rwanda [27, 28], Mozambique [29, 30], Burkina Faso [31], Sudan [32] and Tanzania

[33–35]. The use of routine health facility data sources to define malaria incidence has

increased in recent years, in combination with parasite prevalence or independently, in

Namibia [36], Zambia [37], Malawi [38], Tanzania [34, 35, 39], Madagascar [40–42], Zimba-

bwe [43], Ghana [44], Burkina Faso [45] and Uganda [46, 47].

Kenya has adopted a stratified, sub-national control response since 2010 [48], while Uganda

[49] and Tanzania [50] have begun to use epidemiological data for stratified control following

recommendations of the WHO’s HBHI [2]. However, there is no sub-regional epidemiological

stratification to tailor malaria control responses.

While community-based parasite prevalence data represent one layer in the sub-national

stratification process, they are only as valuable as the quantity of data available spatiotempo-

rally to compute contemporary predictions. Without updated empirical data, predictions are

based largely on the relationship between geospatial covariates and historical data. The process
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malaria.org/) to support sub-regional National

Malaria Control Programs, the final geo-coded

prevalence databases have been provided to the

respective Ministries of Health to be integrated into

national malaria data repositories. Data sharing and

access is the responsibility of national

governments and data requests can be directed to

NMCPs. Kenya (EO – eloyugi@gmail.com and

http://www.nmcp.or.ke/index.php/contact-us);

Tanzania (FC – chackyfa@gmail.com and https://

www.moh.go.tz/en/contact-us); and Uganda (DR –

damianamanya@gmail.com and https://www.

health.go.ug/contact-us). Kenya (http://www.

nmcp.or.ke/index.php/contact-us); Tanzania

(https://www.moh.go.tz/en/contact-us); and

Uganda (https://www.health.go.ug/contact-us/). In

2017, data assembled since 1900 across Africa

was released in the public domain and an updated

data release of all additional data will be released in

2025.
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of stratification is dynamic, requiring constant revision, and integration into policy. As new

data become available, sub-national stratification should be updated. This paper presents an

updated assembly of community parasite survey data in Kenya, mainland Tanzania and

Uganda using MBG inference to provide a more contemporary predictions of the sub-national

malaria prevalence stratification across the sub-region for 2019.

Methods

Geographic scope and context

Kenya, mainland Tanzania and Uganda share national borders and since the launch of the

Roll Back Malaria initiative in 2000, implemented simultaneously national malaria policies

changes on case management and vector control. During the 1990s national parasite preva-

lence mapping efforts began in Kenya [51] and was repeated several times [12, 13]. Similar

approaches were undertaken in Tanzania [34, 35] and Uganda [52]. In addition, the Informa-

tion for Malaria (INFORM) project provided support to NMCPs in each country since 2015 in

malaria risk mapping for decision making, feeding into National Malaria Strategic Plans

(NMSPs) and applications for Global Fund support [53]. Each modelled product of parasite

prevalence used community parasite prevalence data from different periods, different methods

of spatiotemporal modelling and different spatial resolutions of prediction. The most recent

parasite survey data used in developing prevalence maps in Kenya [12, 54, 55], Tanzania [34,

35, 50, 56] and Uganda [49, 57] were assembled between the 1990s and 2017. Each country rec-

ognises the changing heterogeneity of malaria transmission within its national borders and

with time NMSPs have used the varying epidemiology to encompass a stratified, sub-national

control response in Kenya [48, 55] and Tanzania [50].

Parasite survey data assembly

Malaria parasite rate (PR) data from each of the three countries were assembled from existing

data resources published in 2017 starting from January 2010 [58] and updated using published

and survey data from 2017–2020. Data that precede 2010 are important historical information

but are less valuable when informing the contemporary intensity of malaria transmission

under the current levels of vector and parasite control. The processes of identifying, geo-cod-

ing, and standardizing community and school-based parasite survey data were described in

detail elsewhere [8]. In brief, data search strategies included traditional peer-reviewed publica-

tion using PubMed, Google Scholar and Scopus using the free text keywords "malaria" and

"country-name" and routine malaria publication alerts from Malaria World (http://www.

malaria-world.com/). Importantly, the presence of the almost 30-year presence of the KEM-

RI-Wellcome Trust Programme in the sub-region has fostered a network of malaria scientists

and ministry of health collaborators across the sub-region. These personal and institutional

connections formed a significant part of the data search to identify higher spatial resolution of

information in published and unpublished reports. All those who have contributed to this

exercise are acknowledged for data provision for surveys undertaken between 2010 and 2020

in the (S1 Text).

Data comprised of the national survey of malaria infection in school children which started

in Kenya in 2009 [59] and Tanzania in 2014 [60], subsequently repeated in Tanzania in 2017

and 2019 and Western Kenya in 2014 and 2019; the national household sample surveys of

malaria indicators undertaken as part of DHS or MIS, where malaria infection was docu-

mented in children under 5 years (mainland Tanzania and Uganda) or under 15 years

(Kenya); the multi-district mini-MIS to evaluate the impact of insecticide-treated nets in

Uganda (2017–2019) [61] or baseline RTSS vaccine impact implementation studies (2019)
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(CDC Kenya); and the continuous annual repeat surveys undertaken in specific sentinel demo-

graphic and epidemiological surveillance sites at Kilifi, Kakamega and Siaya (Kenya), Muheza

(Tanzania) and Tororo, Jinja and Kanungu (Uganda). Data were reconciled to the smallest

possible spatial extent covering a village or community, census enumeration area (EA) or

school. Most data were within a 5 km2 radius but were excluded if the spatial coverage

exceeded>10 km2.

The first phase of data assembled between 2010 and 2017 comprised of 4,771 space-time

surveys in Kenya, Tanzania and Uganda and were published as open access in 2017 [8, 58].

This analysis includes new data assembled post-2017 to June 2020, resulting in the identifica-

tion of new national household, school and research survey data. Furthermore, since the Open

Access data release in 2017, the spatial and temporal consistency has been improved. Geo-

graphic coordinates of the individual-level survey and national household survey data were

revised using village coordinates from the national statistical agency geo-coded village or EA

databases, updated school databases, population settlement shapefiles from the Ministries of

Lands, Google Maps and research surveys geolocated using Global Positioning Systems (GPS).

For example, where information was available, it was possible to assign school children to their

village of residence rather than aggregated to the school and continuous survey data from spe-

cific health and demographic surveillance sites. In addition, DHS and MIS data were matched

to the EA and the centroid calculated. This enabled the identification of repeatedly sampled

clusters over time as part of national household survey rounds and matched to surveys under-

taken within sub-national areas by research groups. If a survey location was sampled by more

than one group within a three-month time window the largest sample was selected. Where

more than one sample cluster was sampled during the same survey within a single village or

EA, these were combined as one time-survey location. This revised approach to the spatial

aggregation of individual-level data improved the temporal and spatial congruence of survey

sampling locations across the three countries.

Data extracted from each survey report included the name of the study location, survey

dates (month and year), the upper and lower age of those included in the school/village/cluster

sample, the number examined for malaria infection, the number positive, and the methods

used to assess malaria infection (microscopy, Rapid Diagnostic Tests (RDTs) or combina-

tions). Where multiple methods of diagnosis had been used, preference was given to micros-

copy where these were undertaken by research groups, or quality assured laboratories during

national school/household surveys.

Given that there was a diversity in the age ranges of sampled populations between studies, it

was necessary to standardise the variation in sampled ages to allow for comparison of Plasmo-
dium falciparum parasite prevalence rate (PfPR) in space and time. Algorithms based on cata-

lytic conversion models were used to standardize the ages for each survey to 2–10 years

assuming a modelled relationship between the upper and lower age of the sampled population,

henceforth referred to as PfPR2-10 [62, 63]. Parasite prevalence in children aged 2–10 years

(PfPR2-10) is predictive of other parameters of malaria transmission intensity such as the Ento-

mological Inoculation Rate (EIR) and the Basic Reproduction Rate of Infection (R0) [64]. As

such values of PfPR2-10 are widely used to model malaria control transmission reduction and

the appropriate combinations of available interventions. They have also been used as a variable

to predict probability of elimination [65]. Additionally, surveys varied in diagnostic methods

to detect infection; either the visual presence of parasites in red cells or antigenaemia resulting

from recent infections [66]. The aim was to standardise to microscopy and therefore RDT-

only derived PfPR measurements were converted to microscopy using a functional Bayesian

probit regression relationship between RDT and microscopy [67].
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Covariates associated with PfPR2-10

Covariates aid in predicting infection prevalence at fine spatial scales [68, 69], but can also be

used for explanatory modelling [70, 71]. For predictive modelling, the accuracy is guided by

the quantity of the empirical data, the measurement error in the covariates and model specifi-

cation. Some previous approaches have excluded covariates due to concerns related to the mis-

specification of the regression relationship between covariates and PfPR2-10, resulting in

invalid inferences in areas where empirical data are sparse or absent leading to PfPR2-10 that is

entirely driven by the covariates [12, 16, 34]. The inclusion of covariates can reduce the mea-

sure of prediction error without distorting the fidelity of regression relationships [71]. There-

fore a parsimonious, minimal set of biologically plausible covariates for predictive modelling

of PfPR2-10 were selected from candidate lists of covariates guided by previous malaria infec-

tion prevalence modelling in Africa [69, 72, 73]. These included: precipitation, the Enhanced

Vegetation Index (EVI), Temperature Suitability Index (TSI), night-time light (NTL), and

aridity (S2 Text). TSI has also been used independently to define areas where low ambient tem-

perature does not allow the parasite to survive long enough in the mosquito vector to support

transmission (unsuitable/non-receptive/malaria-free areas) [74].

The age-adjusted and microscopy-adjusted survey data series were matched to the long-

term climatic and ecological covariates and a selection procedure was implemented to select a

parsimonious set of covariates that were important predictors of prevalence. This was com-

puted using non-spatial generalised linear regression models implemented in the bestglm
package in R [75] (S2 Text). Precipitation, TSI and NTL proved to be the set of covariates with

the highest independent predictive power for PfPR2–10 (S2 Text).

Bayesian hierarchical geostatistical model for PfPR210

Bayesian MBG approaches were used to interpolate survey data points at known space-time loca-

tions to provide posterior predictions based on parsimonious set of covariates for each period at

unsampled locations with associated uncertainty. Since the three East Africa countries share

national boundaries, the space-time data analysis was conducted jointly across the three countries

using age-adjusted, microscopy-converted data collected between 2010 and 2020. The Bayesian

hierarchical space-time model was implemented through a stochastic partial differential equations

(SPDE) approach and using the Integrated Nested Laplace Approximations in R (R-INLA) [76,

77], to produce continuous maps of PfPR2–10 for the year 2019. A Binomial likelihood was used

with spatial effects introducing a measure of spatial autocorrelation. The spatial and temporal

interaction was implemented using a space-time separable Matérn covariance function. The SPDE

approach has a computation advantages over traditional Markov Chain Monte Carlo (MCMC) as

the continuous domain Gaussian Field (GF) is represented as Gaussian-Markov Random Fields

(GMRF) [78–80]. For complete hierarchical Bayesian model specification, more recent develop-

ments in R-INLA SPDE methodology allow for the selection of priors through model spatial range

(the spatial distance at which the spatial correlation is small, often less than 0.01) and the field stan-

dard deviation [81, 82]. The selection of other prior information of the parameters (intercept,

covariate distribution and residual error) followed the standard fixed prior specifications [68, 83].

Computation used the full spatial and temporal range of the data and aimed at estimating the con-

tinuous posterior mean of PfPR2–10 and the 95% Bayesian credible intervals at 1 × 1 km spatial res-

olutions for 2019. Details of the Bayesian model specification are provided in S3 Text.

Model validation

A 20% spatially and temporally representative validation set of PfPR2-10 survey data were

selected randomly based on equal selection probability. Prediction statistics computed from
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the validation set included the mean square error, the correlation between the predicted and

observed vector densities, and the root mean square error (RMSE). The correlation coefficient

provides a simple measure of linear association between the data and prediction sets, and

RMSE is a measure of the average accuracy of individual predictions.

Prediction resolutions adjusted for population density

Population and malaria risk are not evenly, or congruently, distributed in space. Thus, popula-

tion density and PfPR2-10 were combined to provide a population-weighted parasite prevalence

(PAPfPR2-10). Pixels, where a zero value of TSI was regarded as zero probability of infection

and zero population would not be included in risk attribution. The population density was

assembled from the WorldPop gridded data that uses random-forest modelled disaggregation

of latest census data projected to 2019 [84–87]. The gridded population data are available for at

100 m x 100 m spatial resolution and raster data were resampled to a matching grid of 1 x 1

km corresponding to the PfPR2-10 surface.

The predicted PAPfPR2-10 was classified into 6 endemicity strata corresponding to classes

used currently in Tanzania [50]: areas which were unsuitable for transmission (malaria-free,

TSI = 0), areas of very low risk where PAPfPR2–10 <1%; low risk 1% to<5% (low-risk strata

1); 5% to<10% (low-risk strata 2); moderate risk PAPfPR2–10 10% to<30%; and the high

endemicity areas of PAPfPR2–10�30% (high risk). The samples from posterior predictive dis-

tributions, weighted for the population were aggregated to the 2019 spatial units representing

health decision-making units used for sub-national stratification: 47 counties in Kenya, 184

councils in Tanzania, and 135 districts in Uganda. Within each administrative polygon, the

aggregated means were summed to provide a risk class for each health unit using strata defined

earlier.

Ethics statement

The study involved the assembly of aggregated secondary data, previously published or part of

national anonymised surveys. Ethical approvals for all specific survey data assembled was pre-

sumed sought by national investigators.

Results

Survey data assembly

Since the release of survey data from Kenya, Tanzania and Uganda in 2017, a total of 14,170

(74.8%) new time-space survey data were identified. One data point was excluded because it

was not possible to find a reasonable geo-position, one survey location was excluded because it

represented an area>10 km2. The final age-standardised and microscopy-converted data rep-

resented 18,940 time-space surveys between January 2010 and June 2020 at 6,866 unique spa-

tial locations (Fig 1; Fig 2A). 7122, 4342 and 7476 surveys were from Kenya, mainland

Tanzania and Uganda respectively (Fig 2A). 11,642 (61.5%) surveys were undertaken among

samples�10 individuals; 4729 (25.0%) were a result of school surveys, 2366 (12.5%) from

MIS, 4259 (22.5%) among sub-national MIS, and 682 (3.6%) from malaria modules within

DHS (Fig 2B).

Malaria parasite prevalence in 2019

Based on the 20% subset data, the mean error in the prediction of PfPR2-10 for 2019 for the

covariate-adjusted model revealed low bias with a slight tendency to underpredict by -0.007

(mean prediction error). The average error associated with predictions (absolute error) was
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0.02 suggesting a good model precision. The correlation between the actual and predicted val-

ues for the hold-out set was 0.88 indicating a strong linear agreement between observed values

and predictions.

The continuous maps of PAPfPR2–10 for 2019 is shown in Fig 3A and by each of the six

endemicity strata in Fig 3B. At a national level, the PAPfPR2-10 was 4.7% (95% Bayesian Credi-

ble Interval 2.6–36.9) in Kenya, 10.6% (3.4–39.2) in Tanzania, and 9.5% (4.0–48.3) in Uganda.

For all three countries, spatial heterogeneity in parasite prevalence is evident, ranging from

unsuitable for transmission to the highest predictions above 77% (Fig 3A). Malaria prevalence

was higher around the Lake Victoria basin, North-Western Tanzania, Northern Uganda and

the southern coastal tip of Kenya (Fig 3A). A large swathe of Kenya and Tanzania running

Fig 1. Assembled parasite rate surveys. (A) Distribution of all assembled survey data (n = 18940) between 2010–2020; (B) the distribution of age-corrected and

microscopy-standard parasite prevalence (PfPR2-10) estimates among samples�10 individuals with the highest values on top when multiple surveys conducted at the

same location. Base shapefiles used in all figures downloaded from: Kenya– https://data.humdata.org/dataset/ken-administrative-boundaries; Uganda– https://data.

humdata.org/dataset/uganda-administrative-boundaries-admin-1-admin-3 and Tanzania–https://data.humdata.org/dataset/tanzania-administrative-boundaries-level-

1-to-3-regions-districts-and-wards-with-2012-population https://gadm.org/.

https://doi.org/10.1371/journal.pgph.0000014.g001

PLOS GLOBAL PUBLIC HEALTH Malaria prevalence in East Africa

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0000014 December 7, 2021 7 / 21

https://data.humdata.org/dataset/ken-administrative-boundaries
https://data.humdata.org/dataset/uganda-administrative-boundaries-admin-1-admin-3
https://data.humdata.org/dataset/uganda-administrative-boundaries-admin-1-admin-3
https://data.humdata.org/dataset/tanzania-administrative-boundaries-level-1-to-3-regions-districts-and-wards-with-2012-population
https://data.humdata.org/dataset/tanzania-administrative-boundaries-level-1-to-3-regions-districts-and-wards-with-2012-population
https://gadm.org/
https://doi.org/10.1371/journal.pgph.0000014.g001
https://doi.org/10.1371/journal.pgph.0000014


from North Eastern Kenya to Lake Malawi in southern Tanzania predicted to have very low

malaria transmission (Fig 3A and 3B). In 2019, more than 12.7 million people resided in com-

munities where parasite prevalence was predicted to be� 30%, including 6.4%, 12.1% and

6.3% of Kenya, mainland Tanzania and Uganda population, respectively (Fig 3B; Table 1).

Conversely, areas that supported very low parasite prevalence (<1%) but were suitable for

transmission (TSI>0), consisted of approximately 46.2 million people across the sub-region,

or 52.2%, 26.7% and 10.4% of Kenya, mainland Tanzania and Uganda populations respectively

(Fig 3B; Table 1).

The mean PAPfPR2-10 per decentralised health administrative unit in Kenya (47 counties),

mainland Tanzania (184 councils) and Uganda (135 districts) are shown in Fig 4, representing

the class of parasite prevalence predicted for each unit in 2019 (S1 Table). Overall, 25 health

administration units had mean PAPfPR2-10�30%, these high transmission settings were

uncommon across the entire sub-region in 2019: two counties in Kenya (Busia and Siaya),

seven districts in Uganda (Apac, Busia, Namayingo, Luuka, Jinja, Oyam and Kwania); and six-

teen councils in mainland Tanzania (Chato, Biharamulo, Bukombe, Nanyamba, Tarime, Ush-

etu, Kasulu, Buchosa, Tarime TC, Geita TC, Ukerewe, Geita, Tandahimba, Mbogwe,

Nyangwale and Mtwara Rural). None of the health administrative units could be classified as

entirely unsuitable for malaria transmission. However, in Kenya Nairobi county was classified

as having a mean PAPfPR2-10 of 0.1% in 2019, this urban extent, with high levels of mobility

could not be classified uniquely as very low transmission but was regarded as malaria-free

Fig 2. Assembled surveys by year and data source. (A) Temporal distribution of surveys 2010–2020 by country (B) Temporal distribution of surveys 2010–2020

according to the data source

https://doi.org/10.1371/journal.pgph.0000014.g002
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[88]. 28 (59.6%), 51 (27.7%) and 17 (12.6%) health units in Kenya, mainland Tanzania and

Uganda, respectively, were predicted to be of very low risk (PAPfPR2-10 < 1%) in 2019. For

health policy planning purposes, it is notable that across all countries, 244 (66.7%) of the health

administrative units were defined as<10% PAPfPR2-10 in 2019. The numbers of health units

allocated to each of the five, suitable endemicity classifications, and populations in these aver-

aged risk units are provided in Table 1.

Discussion

Over 18,000 space-time empirical parasite survey data observations on community-based

malaria prevalence were assembled from multiple sources since 2010. This represented an

important data resource, where new information was identified since malaria prevalence maps

were previously developed in Kenya, mainland Tanzania and Uganda. This large dataset

Fig 3. Predicted mean PAPfPR2-10 at 1 × 1 km spatial resolution maps in 2019. (A) mean prevalence (continuous stretched scale), and (B) Classified mean of the

endemicity. The white represents the climatic unsuitability for transmission (TSI = 0). PAPfPR2–10 predictions are shown for areas within the stable limits of

transmission.

https://doi.org/10.1371/journal.pgph.0000014.g003
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reflects the importance of data sharing at national levels and harnesses considerable informa-

tion beyond single national, periodic household surveys. Over 80% of the data included here

were generously provided by research groups located in each country (S1 Text).

Combining data across the three countries allows information to be shared for modelling

malaria risk across borders. Understanding cross-border risk become increasingly significant

as countries aim for sub-national elimination [89]. Border communities represent an impor-

tant migrant population, for example, nomadic pastoralist groups that transect the low trans-

mission borders of Kenya and Tanzania (Fig 3A) and the communities that share high

transmission in all three countries bordering Lake Victoria (Fig 3A).

Using the available data since 2010 within a time-space MBG framework predicted that

only 8.5% of East Africa’s population lived in areas that support high transmission (PAPfPR2-

10� 30%) in 2019. This varied between Kenya (6.4%), Tanzania (12.1%) and Uganda (6.3%)

(Fig 3A, 3B; Table 1). These high parasite prevalence areas were described during more recent

parasite prevalence risk mapping [12, 34, 52] and covered 2 counties, 16 councils, 7 districts in

Kenya, mainland Tanzania and Uganda, respectively (Fig 4; Table 1; S1 Table). These areas

represent the most vulnerable populations to high disease burdens and intensive malaria con-

trol efforts are required to reduce transmission using available vector control, drug based-pre-

vention strategies, and malaria vaccines once approved for wide-scale use. Despite decades of

promoting universal LLIN and intermittent presumptive treatment among pregnant women

(IPTp) coverage nationally, there is a need to re-design distribution that targets the higher

prevalence areas. This was initiated in Kenya in 2010, restricting routine and mass campaigns

to high-risk counties in Western and Coastal Kenya [48] and has become part of a revised

national strategic planning in Tanzania [50].

The very low transmission belt represented 28 counties, 51 councils, and 17 districts in

Kenya, Tanzania and Uganda, respectively (Fig 4; Table 1; S1 Table) covered a population of

over 46.2 million people. In an average year, most children and pregnant women may not

encounter infections and overall disease burdens will continue to be of low prevalence. New

vaccines or presumptive use of drugs to reduce disease burdens in these areas would not be

cost-effective. These areas of very low infection prevalence represent sub-national regions for

Table 1. The estimated population at risk (percentage) for all-ages in each malaria endemicity class in 2019.

The population at risk 2019 per endemicity class

Population from the Continuous surface (Fig 3B) Number and Population in the Health units (Fig 4)

Endemicity Classes Kenya Tanzania Uganda Kenya (Counties) Tanzania (Councils) Uganda (Districts)

Malaria Free 7,225,608 (14.0) 1,837,735 (3.3) 1,604,742 (3.7) 0 (0.0) 0 (0.0) 0 (0.0)

0 (0.0) 0 (0.0) 0 (0.0)

Very low (<1%) 26,876,619 (52.2) 14,788,527 (26.7) 4,578,961 (10.4) 28 (59.6) 51 (27.7) 17 (12.6)

30,700,484 (59.6) 13,978,579 (25.3) 3,795,512 (8.7)

Low 1 (1%—<5%) 7,019,389 (13.6) 12,488,093 (22.6) 16,068,838 (36.7) 9 (19.1) 29 (15.8) 44 (32.6)

9,463,322 (18.4) 12,549,065 (22.7) 17,384,567 (39.7)

Low 2 (5%—<10%) 3,399,312 (6.6) 7,383,339 (13.3) 6,653,000 (15.2) 3 (6.4) 34 (18.5) 29 (21.5)

2,576,949 (5.0) 8,780,939 (15.9) 8,028,560 (18.3)

Moderate (10%—<30%) 3,693,499 (7.2) 12,130,029 (21.9) 12,149,932 (27.7) 5 (10.6) 54 (29.3) 38 (28.1)

6,838,613 (13.3) 14,542,473 (26.3) 12,148,512 (27.7)

High (> = 30%) 3,304,422 (6.4) 6,689,688 (12.1) 2,772,542 (6.3) 2 (4.3) 16 (8.7) 7 (5.2)

1,939,482 (3.8) 5,466,361 (9.9) 2,470,861 (5.6)

Total 51,518,850 (100) 55,317,472 (100) 43,828,014 (100) 47 (100) 184 (100) 135 (100)

51,518,850 (100) 55,317,417 (100) 43,828,012 (100)

https://doi.org/10.1371/journal.pgph.0000014.t001
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Fig 4. East Africa PfPR2-10 stratification. Stratification of health decision-making units based on the level of PAPfPR2-10 (aggregated

mean) for 2020. These comprised 47 counties in Kenya, 184 councils in mainland Tanzania, and 135 districts in Uganda (see S1 Table).

https://doi.org/10.1371/journal.pgph.0000014.g004
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pre-elimination [90, 91]. In Tanzania [50] and Kenya [55], the most recent national malaria

strategies have identified these areas of each country as an immediate plan for a pathway to

elimination. This will require additional resources to mount early case detection, foci detec-

tion, mapping risk at a fine spatial resolution, requiring a robust and reactive health informa-

tion system [92]. However, currently, routine case detection in these countries is inadequate to

serve as either an intervention or a means to characterise transmission in very low-risk areas.

Recent data from Kenya [93] and Uganda [94] suggest a poor performance in the test-track-

treat policy in areas of low-malaria risk compared to more stable, endemic areas, affecting

both case management and reliability of routine data.

Considering sub-national elimination, however, requires confidence in the stratification

predictions. The MBG approaches come with statistical uncertainty, which might arise from

inadequate survey input data (suggesting further sampling needs) and/or inherent variability

in small area prediction. In previous work in Kenya and Somalia [12, 16], a 90% certainty in

the predictions of PAPfPR2-10 being<1% (Non-Exceedance Probability, NEP) have been used

for statistical confidence in the MBG predictions for programmatic certainty. Applying this

approach to the 2019 PAPfPR2-10 predictions across East Africa there is a high congruence

with predicted and 90% NEP certainty (Fig 5). Among the 96 health administrative units pre-

dicted to be<1% in 2019, 70 had more than 90% of the population living in areas where there

was a 90% certainty that PAPfPR2-10 was <1% (S1 Table and population map in S1 Fig).

In the absence of reliable routine data, current sampling strategies for parasite prevalence

are poorly suited to characterise areas of very low parasite prevalence and require larger sam-

pling effort to increase precision [95]. Both Microscopy and RDTs are routinely used to assess

malaria infection but RDTs in particular could underestimate level of infection in low trans-

mission setting [96]. Reducing the uncertainty and improving confidence in stratification of

very low-risk areas should be encouraged and may require only one-off large-scale community

and/or school surveys including PCR and serology [97] and could be restricted to areas of

highest existing statistical uncertainty.

Importantly, areas that migrate to very low risk from low or moderate risk should be han-

dled carefully in reverting immediately to a different mix of intervention and avoid risk of

malaria rebounding, remaining cognisant of recent receptive risks [15, 17]. In Uganda, Apac

district achieved a rapid reduction in parasite prevalence through indoor residual house-spray-

ing, which after stopping resulted in an immediate rebound [98]. A more cautious use of

PAPfPR2-10 < 1% to transition intervention is to remain in this class for a fixed number of

years pre-transition to a different intervention-mix class, an enhanced case-detection is estab-

lished, of proven fidelity and used to constantly review for a potential resurgence.

In between the two extremes of very low and high parasite prevalence people lived in pre-

dominantly low malaria prevalence areas (PAPfPR2-10 1%-<10%; 52.8 million people) and

areas of moderate transmission (PAPfPR2-10 10%-<29%; 28.0 million people), covering 17,

117 and 90 health administrative units in Kenya, Tanzania and Uganda respectively (Fig 4;

Table 1; S1 Table). Whether combinations of available interventions should be tailored across

these 3 risk strata remains uncertain, except for maintaining prompt effective diagnosis, treat-

ment, and referral, which must remain constant across all strata. It is important to recognise

that the classification of strata based solely on parasite prevalence is arbitrary, there will be

overlapping risks based on statistical confidence in the prediction [16]. A more conservative

priority setting would be to include these counties, councils or districts in the accelerated,

intensive efforts to reduce parasite burdens. Having multiple risk strata, however, allows a

national control programme to review progress in moving decentralised health units down a

continuum of risk, to set milestones for progress and constantly assess areas of intractable high

prevalence and the possible resurgence of risk.
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Fig 5. Non-exceedance probability (NEP) maps for 2019. PAPfPR2-10 predictions are 90% certain to be< 1%, shown in green. Derived

from the fitted spatiotemporal model, formally expressed as: NEP = (Prob PAPfPR2–10 (x, t)< l|Data); where l is the prevalence
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The modelled data presented here included very little data post-2019 (Fig 2A). Predicting beyond

2019 would have been inappropriate in the absence of data. However, using parasite prevalence as

one layer in malaria stratification is a dynamic process, repeated every 2–3 years. Data from the

November 2020 MIS in Kenya was not available by June-2021 and nationwide school surveys are

planned for 2022 in Kenya and mainland Tanzania accompanying a further MIS in 2021. In Uganda

an MIS has been planned for 2023 and national research partners continue to maintain surveillance

in specific areas of each country. The exercise of parasite prevalence data assembly and modelling

would ideally be repeated in 2023. Future mapping can be improved by including more temporally

varying covariate layers rather than static covariates such as TSI. Here only long-term means were

considered to resolve risk to the year of prediction. Malaria risk could however vary inter and intra

annually requiring additional sampling to characterise seasonality in parasite prevalence.

The use of parasite prevalence has both disadvantages and advantages as a component of

risk stratification. Sampled community or school populations represents an infection preva-

lence estimate on one day. National household surveys (DHS, MIS) are not powered to provide

sub-national, health unit precision, are expensive and data are often only available to the

national malaria control programmes 12–24 months after completion owing to survey agency

and national statistical office agreements, beyond the control of the NMCP. School surveys

offer a much cheaper alternative to DHS/MIS approaches to sampling parasite prevalence [19,

59, 60] and NMCPs have more direct control over data collection and access. School surveys

have become increasingly important in recent years, over 25% of the point estimates included

in the present analysis came from school-based surveys (Fig 2B). Routine data are available

365 days a year, and far more powerful to estimate seasonal intra- and inter annual variations

in malaria risk. However, they represent risks among those who seek care, depend on the diag-

nostic capacities of health facilities and pre-existing acquired immunity, as such these data are

not directly comparable to the risks of infection among community members. Both are impor-

tant, and more work is required in understanding the relationships between community infec-

tion and infection among those who seek care [99] and how these might be jointly modelled

(hybrid mapping) rather than treated as separate entities [100, 101].

Parasite prevalence is only one metric in the stratification process. To increasing its utility

in decision making, it should be combined with routine data alongside other aspects of popula-

tion vulnerability including the possibilities for urban control. Other data have been less well

used in stratification, for example layering information on decentralised, health unit estima-

tions of malaria mortality burdens, vector composition, insecticide resistance and bionomics,

access to curative services and unmet needs based on existing vector control coverage. There is

a need to build data acquisition processes and capacities within national malaria control pro-

grammes and the statistical handling of this information within a multi-layered data platform

to make more effective decisions on malaria control efficiencies. National data repositories,

improved data sharing and increased use of data nationally is paramount. These data must be

country-owned and their use country-driven [102, 103].
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31. Diboulo E, Sié A, Vounatsou P. Assessing the effects of malaria interventions on the geographical dis-

tribution of parasitaemia risk in Burkina Faso. Malaria journal. 2016; 15(1):1–14. https://doi.org/10.

1186/s12936-016-1282-x PMID: 27098853

32. Noor AM, ElMardi KA, Abdelgader TM, Patil AP, Amine AAA, Bakhiet S, et al. Malaria risk mapping for

control in the republic of Sudan. The American journal of tropical medicine and hygiene. 2012; 87

(6):1012–21. https://doi.org/10.4269/ajtmh.2012.12-0390 PMID: 23033400

33. Gosoniu L, Msengwa A, Lengeler C, Vounatsou P. Spatially Explicit Burden Estimates of Malaria in

Tanzania: Bayesian Geostatistical Modeling of the Malaria Indicator Survey Data. PLoS One. 2012; 7

(5):e23966. https://doi.org/10.1371/journal.pone.0023966 PMID: 22649486

34. Runge M, Snow RW, Molteni F, Thawer S, Mohamed A, Mandike R, et al. Simulating the council-spe-

cific impact of anti-malaria interventions: A tool to support malaria strategic planning in Tanzania.

PLoS One. 2020; 15(2):e0228469. Epub 2020/02/20. https://doi.org/10.1371/journal.pone.0228469

PMID: 32074112; PubMed Central PMCID: PMC7029840.

35. Thawer SG, Chacky F, Runge M, Reaves E, Mandike R, Lazaro S, et al. Sub-national stratification of

malaria risk in mainland Tanzania: a simplified assembly of survey and routine data. Malaria Journal.

2020; 19(1):177. https://doi.org/10.1186/s12936-020-03250-4 PMID: 32384923

36. Alegana VA, Atkinson PM, Wright JA, Kamwi R, Uusiku P, Katokele S, et al. Estimation of malaria inci-

dence in northern Namibia in 2009 using Bayesian conditional-autoregressive spatial–temporal mod-

els. Spatial and spatio-temporal epidemiology. 2013; 7:25–36. https://doi.org/10.1016/j.sste.2013.09.

001 PMID: 24238079

37. Bennett A, Yukich J, Miller JM, Vounatsou P, Hamainza B, Ingwe MM, et al. A methodological frame-

work for the improved use of routine health system data to evaluate national malaria control programs:

evidence from Zambia. Population health metrics. 2014; 12(1):1–11. https://doi.org/10.1186/1478-

7954-12-1 PMID: 24479861

PLOS GLOBAL PUBLIC HEALTH Malaria prevalence in East Africa

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0000014 December 7, 2021 17 / 21

https://doi.org/10.1186/1475-2875-11-160
https://doi.org/10.1186/1475-2875-11-160
http://www.ncbi.nlm.nih.gov/pubmed/22571469
https://doi.org/10.1186/s13071-016-1775-z
http://www.ncbi.nlm.nih.gov/pubmed/27604807
https://doi.org/10.4269/ajtmh.13-0028
http://www.ncbi.nlm.nih.gov/pubmed/24062477
https://doi.org/10.12688/wellcomeopenres.15007.1
http://www.ncbi.nlm.nih.gov/pubmed/30801036
https://doi.org/10.1186/1476-072X-5-41
http://www.ncbi.nlm.nih.gov/pubmed/16987415
https://doi.org/10.1371/journal.pone.0009322
http://www.ncbi.nlm.nih.gov/pubmed/20351775
https://doi.org/10.1186/s12916-018-1060-4
https://doi.org/10.1186/s12916-018-1060-4
http://www.ncbi.nlm.nih.gov/pubmed/29788968
https://doi.org/10.1186/s12936-019-2709-y
https://doi.org/10.1186/s12936-019-2709-y
http://www.ncbi.nlm.nih.gov/pubmed/30871551
https://doi.org/10.1371/journal.pone.0238504
http://www.ncbi.nlm.nih.gov/pubmed/32911503
https://doi.org/10.1186/s12889-021-10305-x
http://www.ncbi.nlm.nih.gov/pubmed/33596876
https://doi.org/10.4081/gh.2015.333
https://doi.org/10.4081/gh.2015.333
http://www.ncbi.nlm.nih.gov/pubmed/26618310
https://doi.org/10.1371/journal.pone.0241680
http://www.ncbi.nlm.nih.gov/pubmed/33166322
https://doi.org/10.1186/s12936-016-1282-x
https://doi.org/10.1186/s12936-016-1282-x
http://www.ncbi.nlm.nih.gov/pubmed/27098853
https://doi.org/10.4269/ajtmh.2012.12-0390
http://www.ncbi.nlm.nih.gov/pubmed/23033400
https://doi.org/10.1371/journal.pone.0023966
http://www.ncbi.nlm.nih.gov/pubmed/22649486
https://doi.org/10.1371/journal.pone.0228469
http://www.ncbi.nlm.nih.gov/pubmed/32074112
https://doi.org/10.1186/s12936-020-03250-4
http://www.ncbi.nlm.nih.gov/pubmed/32384923
https://doi.org/10.1016/j.sste.2013.09.001
https://doi.org/10.1016/j.sste.2013.09.001
http://www.ncbi.nlm.nih.gov/pubmed/24238079
https://doi.org/10.1186/1478-7954-12-1
https://doi.org/10.1186/1478-7954-12-1
http://www.ncbi.nlm.nih.gov/pubmed/24479861
https://doi.org/10.1371/journal.pgph.0000014


38. Chirombo J, Ceccato P, Lowe R, Terlouw DJ, Thomson MC, Gumbo A, et al. Childhood malaria case

incidence in Malawi between 2004 and 2017: spatio-temporal modelling of climate and non-climate

factors. Malaria journal. 2020; 19(1):1–13. https://doi.org/10.1186/s12936-019-3075-5 PMID:

31898492

39. Runge M, Molteni F, Mandike R, Snow RW, Lengeler C, Mohamed A, et al. Applied mathematical

modelling to inform national malaria policies, strategies and operations in Tanzania. Malaria Journal.

2020; 19(1):101. https://doi.org/10.1186/s12936-020-03173-0 PMID: 32122342

40. Ihantamalala FA, Rakotoarimanana FM, Ramiadantsoa T, Rakotondramanga JM, Pennober G, Rako-

tomanana F, et al. Spatial and temporal dynamics of malaria in Madagascar. Malaria journal. 2018; 17

(1):1–13. https://doi.org/10.1186/s12936-017-2149-5 PMID: 29291736

41. Nguyen M, Howes RE, Lucas TCD, Battle KE, Cameron E, Gibson HS, et al. Mapping malaria season-

ality in Madagascar using health facility data. BMC Medicine. 2020; 18(1):26. https://doi.org/10.1186/

s12916-019-1486-3 PMID: 32036785

42. Arambepola R, Keddie SH, Collins EL, Twohig KA, Amratia P, Bertozzi-Villa A, et al. Spatiotemporal

mapping of malaria prevalence in Madagascar using routine surveillance and health survey data. Sci-

entific reports. 2020; 10(1):1–14. https://doi.org/10.1038/s41598-019-56847-4 PMID: 31913322

43. Gwitira I, Mukonoweshuro M, Mapako G, Shekede MD, Chirenda J, Mberikunashe J. Spatial and spa-

tio-temporal analysis of malaria cases in Zimbabwe. Infectious Diseases of Poverty. 2020; 9(1):1–14.

https://doi.org/10.1186/s40249-019-0617-6 PMID: 31996251

44. Awine T, Malm K, Peprah NY, Silal SP. Spatio-temporal heterogeneity of malaria morbidity in Ghana:

Analysis of routine health facility data. PLOS ONE. 2018; 13(1):e0191707. https://doi.org/10.1371/

journal.pone.0191707 PMID: 29377908

45. Rouamba T, Samadoulougou S, Tinto H, Alegana VA, Kirakoya-Samadoulougou F. Bayesian Spatio-

temporal Modeling of Routinely Collected Data to Assess the Effect of Health Programs in Malaria Inci-

dence During Pregnancy in Burkina Faso. Scientific Reports. 2020; 10(1):2618. https://doi.org/10.

1038/s41598-020-58899-3 PMID: 32060297

46. Kigozi SP, Kigozi RN, Sebuguzi CM, Cano J, Rutazaana D, Opigo J, et al. Spatial-temporal patterns of

malaria incidence in Uganda using HMIS data from 2015 to 2019. BMC public health. 2020; 20(1):1–

14. https://doi.org/10.1186/s12889-019-7969-5 PMID: 31898494

47. Ssempiira J, Kissa J, Nambuusi B, Kyozira C, Rutazaana D, Mukooyo E, et al. The effect of case man-

agement and vector-control interventions on space–time patterns of malaria incidence in Uganda.

Malaria Journal. 2018; 17(1):162. https://doi.org/10.1186/s12936-018-2312-7 PMID: 29650005

48. Division of Malaria Control. National Malaria Policy. Nairobi, Kenya: Ministry of Health and Public

Sanitation, 2010

49. National Malaria Control Program. The Uganda Malaria reduction strategic plan 2014–2020. Acceler-

ated nationwide scale up to achieve universal coverage of cost effective malaria prevention and treat-

ment interventions. Kampala, Uganda: Ministry of Health., 2014. Available from: http://library.health.

go.ug/sites/default/files/resources/The%20Uganda%20Malaria%20Reduction%20Strategic%20Plan

%202014-2020.pdf

50. National Malaria Control Program. National Malaria strategic plan: 2021–2025. Dodoma, Tanzania:

2021. Available from: https://www.out.ac.tz/wp-content/uploads/2019/10/Malaria-Strategic-Plan-

2015-2020-1.pdf

51. Snow RW, Gouws E, Omumbo J, Rapuoda B, Craig MH, Tanser FC, et al. Models to predict the inten-

sity of Plasmodium falciparum transmission: applications to the burden of disease in Kenya. Transac-

tions of The Royal Society of Tropical Medicine and Hygiene. 1998; 92(6):601–6. https://doi.org/10.

1016/s0035-9203(98)90781-7 PMID: 10326100

52. Ssempiira J, Nambuusi B, Kissa J, Agaba B, Makumbi F, Kasasa S, et al. Geostatistical modelling of

malaria indicator survey data to assess the effects of interventions on the geographical distribution of

malaria prevalence in children less than 5 years in Uganda. PLOS ONE. 2017; 12(4):e0174948.

https://doi.org/10.1371/journal.pone.0174948 PMID: 28376112

53. INFORM. Information for malaria (INFORM). 2015.

54. INFORM. Kenya Profile - http://www.inform-malaria.org/wp-content/uploads/2019/06/Kenya-

INFORM-Epi-Profile-2016.pdf. 2015.

55. National Malaria Control Program. Towards a malaria free Kenya: Kenya malaria strategy 2019–2023.

Nairobi, Kenya: 2019. Available from: http://fountainafrica.org/wp-content/uploads/2020/01/Kenya-

Malaria-Strategy-2019-2023.pdf

56. INFORM. Tanzania Profile - http://inform-malaria.org/wp-content/uploads/2019/06/Tanzania-

INFORM-Epi-Profile-2013.pdf. 2015.

PLOS GLOBAL PUBLIC HEALTH Malaria prevalence in East Africa

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0000014 December 7, 2021 18 / 21

https://doi.org/10.1186/s12936-019-3075-5
http://www.ncbi.nlm.nih.gov/pubmed/31898492
https://doi.org/10.1186/s12936-020-03173-0
http://www.ncbi.nlm.nih.gov/pubmed/32122342
https://doi.org/10.1186/s12936-017-2149-5
http://www.ncbi.nlm.nih.gov/pubmed/29291736
https://doi.org/10.1186/s12916-019-1486-3
https://doi.org/10.1186/s12916-019-1486-3
http://www.ncbi.nlm.nih.gov/pubmed/32036785
https://doi.org/10.1038/s41598-019-56847-4
http://www.ncbi.nlm.nih.gov/pubmed/31913322
https://doi.org/10.1186/s40249-019-0617-6
http://www.ncbi.nlm.nih.gov/pubmed/31996251
https://doi.org/10.1371/journal.pone.0191707
https://doi.org/10.1371/journal.pone.0191707
http://www.ncbi.nlm.nih.gov/pubmed/29377908
https://doi.org/10.1038/s41598-020-58899-3
https://doi.org/10.1038/s41598-020-58899-3
http://www.ncbi.nlm.nih.gov/pubmed/32060297
https://doi.org/10.1186/s12889-019-7969-5
http://www.ncbi.nlm.nih.gov/pubmed/31898494
https://doi.org/10.1186/s12936-018-2312-7
http://www.ncbi.nlm.nih.gov/pubmed/29650005
http://library.health.go.ug/sites/default/files/resources/The%20Uganda%20Malaria%20Reduction%20Strategic%20Plan%202014-2020.pdf
http://library.health.go.ug/sites/default/files/resources/The%20Uganda%20Malaria%20Reduction%20Strategic%20Plan%202014-2020.pdf
http://library.health.go.ug/sites/default/files/resources/The%20Uganda%20Malaria%20Reduction%20Strategic%20Plan%202014-2020.pdf
https://www.out.ac.tz/wp-content/uploads/2019/10/Malaria-Strategic-Plan-2015-2020-1.pdf
https://www.out.ac.tz/wp-content/uploads/2019/10/Malaria-Strategic-Plan-2015-2020-1.pdf
https://doi.org/10.1016/s0035-9203%2898%2990781-7
https://doi.org/10.1016/s0035-9203%2898%2990781-7
http://www.ncbi.nlm.nih.gov/pubmed/10326100
https://doi.org/10.1371/journal.pone.0174948
http://www.ncbi.nlm.nih.gov/pubmed/28376112
http://www.inform-malaria.org/wp-content/uploads/2019/06/Kenya-INFORM-Epi-Profile-2016.pdf
http://www.inform-malaria.org/wp-content/uploads/2019/06/Kenya-INFORM-Epi-Profile-2016.pdf
http://fountainafrica.org/wp-content/uploads/2020/01/Kenya-Malaria-Strategy-2019-2023.pdf
http://fountainafrica.org/wp-content/uploads/2020/01/Kenya-Malaria-Strategy-2019-2023.pdf
http://inform-malaria.org/wp-content/uploads/2019/06/Tanzania-INFORM-Epi-Profile-2013.pdf
http://inform-malaria.org/wp-content/uploads/2019/06/Tanzania-INFORM-Epi-Profile-2013.pdf
https://doi.org/10.1371/journal.pgph.0000014


57. INFORM. Uganda Profile - http://inform-malaria.org/wp-content/uploads/2019/06/Uganda-INFORM-

Epi-Profile-2013-1.pdf. 2015.

58. The prevalence of Plasmodium falciparum in sub Saharan Africa since 1900. Harvard Dataverse.

2017. Available from: https://doi.org/10.7910/DVN/Z29FR0.

59. Gitonga CW, Karanja PN, Kihara J, Mwanje M, Juma E, Snow RW, et al. Implementing school malaria

surveys in Kenya: towards a national surveillance system. Malaria Journal. 2010; 9:306. https://doi.

org/10.1186/1475-2875-9-306 PMID: 21034492

60. Chacky F, Runge M, Rumisha SF, Machafuko P, Chaki P, Massaga JJ, et al. Nationwide school

malaria parasitaemia survey in public primary schools, the United Republic of Tanzania. Malaria Jour-

nal. 2018; 17(1):452. https://doi.org/10.1186/s12936-018-2601-1 PMID: 30518365

61. Staedke SG, Gonahasa S, Dorsey G, Kamya MR, Maiteki-Sebuguzi C, Lynd A, et al. Effect of long-

lasting insecticidal nets with and without piperonyl butoxide on malaria indicators in Uganda (LLI-

NEUP): a pragmatic, cluster-randomised trial embedded in a national LLIN distribution campaign. The

Lancet. 2020; 395(10232):1292–303. https://doi.org/10.1016/S0140-6736(20)30214-2 PMID:

32305094

62. Smith DL, Golding N. https://github.com/SEEG-Oxford/ageStand. 2014.

63. Smith DL, Guerra CA, Snow RW, Hay SI. Standardizing estimates of the Plasmodium falciparum para-

site rate. Malaria Journal. 2007; 6(1):131. https://doi.org/10.1186/1475-2875-6-131 PMID: 17894879

64. Gething P, Battle K, Bhatt S, Smith D, Eisele T, Cibulskis R, et al. Declining malaria in Africa: improving

the measurement of progress. Malaria Journal. 2014; 13(1):39. https://doi.org/10.1186/1475-2875-13-

39 PMID: 24479555

65. Cohen J, Moonen B, Snow R, Smith D. How absolute is zero? An evaluation of historical and current

definitions of malaria elimination. Malaria Journal. 2010; 9(1):213. https://doi.org/10.1186/1475-2875-

9-213 PMID: 20649972

66. Ugah UI, Alo MN, Owolabi JO, Okata-Nwali OD, Ekejindu IM, Ibeh N, et al. Evaluation of the utility

value of three diagnostic methods in the detection of malaria parasites in endemic area. Malaria Jour-

nal. 2017; 16(1):189. https://doi.org/10.1186/s12936-017-1838-4 PMID: 28477621

67. Mappin B, Cameron E, Dalrymple U, Weiss DJ, Bisanzio D, Bhatt S, et al. Standardizing Plasmodium

falciparum infection prevalence measured via microscopy versus rapid diagnostic test. Malaria Jour-

nal. 2015; 14(1):460. https://doi.org/10.1186/s12936-015-0984-9 PMID: 26577805

68. Illian JB, Martino S, Sørbye SH, Gallego-Fernández JB, Zunzunegui M, Esquivias MP, et al. Fitting

complex ecological point process models with integrated nested Laplace approximation. Methods in

Ecology and Evolution. 2013; 4(4):305–15.

69. Weiss DJ, Mappin B, Dalrymple U, Bhatt S, Cameron E, Hay SI, et al. Re-examining environmental

correlates of Plasmodium falciparum malaria endemicity: a data-intensive variable selection approach.

Malaria Journal. 2015; 14(1):68. https://doi.org/10.1186/s12936-015-0574-x PMID: 25890035

70. Shmueli G. To Explain or to Predict? Statistical Science. 2010; 25(3):289–310.

71. Giorgi E, FronterrèC, Macharia PM, Alegana VA, Snow RW, Diggle PJ. Model building and assess-

ment of the impact of covariates for disease prevalence mapping in low-resource settings: to explain

and to predict. Journal of The Royal Society Interface. 2021; 18(179):20210104. https://doi.org/10.

1098/rsif.2021.0104 PMID: 34062104

72. Noor AM, Kinyoki DK, Mundia CW, Kabaria CW, Mutua JW, Alegana VA, et al. The changing risk of

Plasmodium falciparum malaria infection in Africa: 2000–2013;10: a spatial and temporal analysis of

transmission intensity. The Lancet. 2014; 383(9930):1739–47. https://doi.org/10.1016/S0140-6736

(13)62566-0 PMID: 24559537

73. Dlamini SN, Beloconi A, Mabaso S, Vounatsou P, Impouma B, Fall IS. Review of remotely sensed

data products for disease mapping and epidemiology. Remote Sensing Applications: Society and

Environment. 2019; 14:108–18. https://doi.org/10.1016/j.rsase.2019.02.005.

74. Gething PW, Van Boeckel TP, Smith DL, Guerra CA, Patil AP, Snow RW, et al. Modelling the global

constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasites & vec-

tors. 2011; 4(1):1–11. https://doi.org/10.1186/1756-3305-4-92 PMID: 21615906

75. McLeod A, Xu C. bestglm: Best subset GLM. R-package: CRAN; 2010.

76. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using

integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B (Statisti-

cal Methodology). 2009; 71(2):319–92. https://doi.org/10.1111/j.1467-9868.2008.00700.x

77. Martins TG, Simpson D, Lindgren F, Rue H. Bayesian computing with INLA: New features. Computa-

tional Statistics & Data Analysis. 2013; 67:68–83. https://doi.org/10.1016/j.csda.2013.04.014

78. Rue H, Held L. Gaussian Markov random fields: theory and applications: CRC press; 2005.

PLOS GLOBAL PUBLIC HEALTH Malaria prevalence in East Africa

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0000014 December 7, 2021 19 / 21

http://inform-malaria.org/wp-content/uploads/2019/06/Uganda-INFORM-Epi-Profile-2013-1.pdf
http://inform-malaria.org/wp-content/uploads/2019/06/Uganda-INFORM-Epi-Profile-2013-1.pdf
https://doi.org/10.7910/DVN/Z29FR0
https://doi.org/10.1186/1475-2875-9-306
https://doi.org/10.1186/1475-2875-9-306
http://www.ncbi.nlm.nih.gov/pubmed/21034492
https://doi.org/10.1186/s12936-018-2601-1
http://www.ncbi.nlm.nih.gov/pubmed/30518365
https://doi.org/10.1016/S0140-6736%2820%2930214-2
http://www.ncbi.nlm.nih.gov/pubmed/32305094
https://github.com/SEEG-Oxford/ageStand
https://doi.org/10.1186/1475-2875-6-131
http://www.ncbi.nlm.nih.gov/pubmed/17894879
https://doi.org/10.1186/1475-2875-13-39
https://doi.org/10.1186/1475-2875-13-39
http://www.ncbi.nlm.nih.gov/pubmed/24479555
https://doi.org/10.1186/1475-2875-9-213
https://doi.org/10.1186/1475-2875-9-213
http://www.ncbi.nlm.nih.gov/pubmed/20649972
https://doi.org/10.1186/s12936-017-1838-4
http://www.ncbi.nlm.nih.gov/pubmed/28477621
https://doi.org/10.1186/s12936-015-0984-9
http://www.ncbi.nlm.nih.gov/pubmed/26577805
https://doi.org/10.1186/s12936-015-0574-x
http://www.ncbi.nlm.nih.gov/pubmed/25890035
https://doi.org/10.1098/rsif.2021.0104
https://doi.org/10.1098/rsif.2021.0104
http://www.ncbi.nlm.nih.gov/pubmed/34062104
https://doi.org/10.1016/S0140-6736%2813%2962566-0
https://doi.org/10.1016/S0140-6736%2813%2962566-0
http://www.ncbi.nlm.nih.gov/pubmed/24559537
https://doi.org/10.1016/j.rsase.2019.02.005
https://doi.org/10.1186/1756-3305-4-92
http://www.ncbi.nlm.nih.gov/pubmed/21615906
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1016/j.csda.2013.04.014
https://doi.org/10.1371/journal.pgph.0000014


79. Lindgren F, Rue H, Lindström J. An explicit link between Gaussian fields and Gaussian Markov ran-

dom fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Soci-

ety: Series B (Statistical Methodology). 2011; 73(4):423–98. https://doi.org/10.1111/j.1467-9868.

2011.00777.x.

80. Ingebrigtsen R, Lindgren F, Steinsland I. Spatial models with explanatory variables in the dependence

structure. Spatial Statistics. 2014; 8:20–38. https://doi.org/10.1016/j.spasta.2013.06.002

81. Gasparrini A, Scheipl F, Armstrong B, Kenward MG. A penalized framework for distributed lag non-lin-

ear models. Biometrics. 2017; 73(3):938–48. https://doi.org/10.1111/biom.12645 PMID: 28134978

82. Fuglstad G-A, Simpson D, Lindgren F, Rue H. Constructing priors that penalize the complexity of

Gaussian random fields. Journal of the American Statistical Association. 2019; 114(525):445–52.

83. Fuglstad G-A, Simpson D, Lindgren F, Rue H. Does non-stationary spatial data always require non-

stationary random fields? Spatial Statistics. 2015; 14, Part C:505–31. http://dx.doi.org/10.1016/j.

spasta.2015.10.001.

84. WorldPop. What is Worldpop? 2018.

85. Tatem AJ, Campiz N, Gething PW, Snow RW, Linard C. The effects of spatial population dataset

choice on estimates of population at risk of disease. Population Health Metrics. 2011; 9(1):4. https://

doi.org/10.1186/1478-7954-9-4 PMID: 21299885

86. Bondarenko M, Nieves J, Sorichetta A, Stevens FR, Gaughan AE, Tatem A. wpgpRFPMS: WorldPop

Random Forests population modelling R scripts, version 0.1. 0. 2018.

87. Stevens FR, Gaughan AE, Linard C, Tatem AJ. Disaggregating census data for population mapping

using random forests with remotely-sensed and ancillary data. PloS one. 2015; 10(2):e0107042.

https://doi.org/10.1371/journal.pone.0107042 PMID: 25689585

88. Mudhune SA, Okiro EA, Noor AM, Zurovac D, Juma E, Ochola SA, et al. The clinical burden of malaria

in Nairobi: a historical review and contemporary audit. Malaria Journal. 2011; 10(1):138. https://doi.

org/10.1186/1475-2875-10-138 PMID: 21599931

89. Wangdi K, Gatton ML, Kelly GC, Clements AC. Cross-border malaria: a major obstacle for malaria

elimination. Advances in parasitology. 2015; 89:79–107. Epub 2015/05/25. https://doi.org/10.1016/bs.

apar.2015.04.002 PMID: 26003036.

90. Interventions mRCPoC, Modelling. malERA: An updated research agenda for combination interven-

tions and modelling in malaria elimination and eradication. PLoS medicine. 2017; 14(11):e1002453.

https://doi.org/10.1371/journal.pmed.1002453 PMID: 29190295

91. Lindblade KA, Kachur SP. Opportunities for Subnational Malaria Elimination in High-Burden Coun-

tries. The American Journal of Tropical Medicine and Hygiene. 2020; 103(6):2153. https://doi.org/10.

4269/ajtmh.20-1342 PMID: 33124536

92. Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, Mosha F, et al. Identification of hot spots of

malaria transmission for targeted malaria control. The Journal of infectious diseases. 2010; 201

(11):1764–74. https://doi.org/10.1086/652456 PMID: 20415536

93. Amboko B, Stepniewska K, Macharia PM, Machini B, Bejon P, Snow RW, et al. Trends in health work-

ers’ compliance with outpatient malaria case-management guidelines across malaria epidemiological

zones in Kenya, 2010–2016. Malaria Journal. 2020; 19(1):1–14. https://doi.org/10.1186/s12936-019-

3075-5 PMID: 31898492

94. Atukunda A, Deogratius MA, Arinaitwe E, Orishaba P, Kamya MR, Nankabirwa JI. Do clinicians in

areas of declining malaria transmission adhere to malaria diagnosis guidelines? A cross-sectional

study from Kampala, Uganda. Malaria Journal. 2021; 20(1):1–8. https://doi.org/10.1186/s12936-020-

03550-9 PMID: 33386070

95. Sturrock HJW, Bennett AF, Midekisa A, Gosling RD, Gething PW, Greenhouse B. Mapping Malaria

Risk in Low Transmission Settings: Challenges and Opportunities. Trends in Parasitology. 2016.

http://dx.doi.org/10.1016/j.pt.2016.05.001. https://doi.org/10.1016/j.pt.2016.05.001 PMID: 27238200

96. Laban NM, Kobayashi T, Hamapumbu H, Sullivan D, Mharakurwa S, Thuma PE, et al. Comparison of

a PfHRP2-based rapid diagnostic test and PCR for malaria in a low prevalence setting in rural southern

Zambia: implications for elimination. Malaria Journal. 2015; 14(1):25. https://doi.org/10.1186/s12936-

015-0544-3 PMID: 25888818

97. Assefa A, Ahmed AA, Deressa W, Sime H, Mohammed H, Kebede A, et al. Multiplex serology demon-

strate cumulative prevalence and spatial distribution of malaria in Ethiopia. Malaria journal. 2019; 18

(1):1–14. https://doi.org/10.1186/s12936-018-2635-4 PMID: 30602373

98. Namuganga JF, Epstein A, Nankabirwa JI, Mpimbaza A, Kiggundu M, Sserwanga A, et al. The impact

of stopping and starting indoor residual spraying on malaria burden in Uganda. Nature Communica-

tions. 2021; 12(1):2635. https://doi.org/10.1038/s41467-021-22896-5 PMID: 33976132

PLOS GLOBAL PUBLIC HEALTH Malaria prevalence in East Africa

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0000014 December 7, 2021 20 / 21

https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1016/j.spasta.2013.06.002
https://doi.org/10.1111/biom.12645
http://www.ncbi.nlm.nih.gov/pubmed/28134978
http://dx.doi.org/10.1016/j.spasta.2015.10.001
http://dx.doi.org/10.1016/j.spasta.2015.10.001
https://doi.org/10.1186/1478-7954-9-4
https://doi.org/10.1186/1478-7954-9-4
http://www.ncbi.nlm.nih.gov/pubmed/21299885
https://doi.org/10.1371/journal.pone.0107042
http://www.ncbi.nlm.nih.gov/pubmed/25689585
https://doi.org/10.1186/1475-2875-10-138
https://doi.org/10.1186/1475-2875-10-138
http://www.ncbi.nlm.nih.gov/pubmed/21599931
https://doi.org/10.1016/bs.apar.2015.04.002
https://doi.org/10.1016/bs.apar.2015.04.002
http://www.ncbi.nlm.nih.gov/pubmed/26003036
https://doi.org/10.1371/journal.pmed.1002453
http://www.ncbi.nlm.nih.gov/pubmed/29190295
https://doi.org/10.4269/ajtmh.20-1342
https://doi.org/10.4269/ajtmh.20-1342
http://www.ncbi.nlm.nih.gov/pubmed/33124536
https://doi.org/10.1086/652456
http://www.ncbi.nlm.nih.gov/pubmed/20415536
https://doi.org/10.1186/s12936-019-3075-5
https://doi.org/10.1186/s12936-019-3075-5
http://www.ncbi.nlm.nih.gov/pubmed/31898492
https://doi.org/10.1186/s12936-020-03550-9
https://doi.org/10.1186/s12936-020-03550-9
http://www.ncbi.nlm.nih.gov/pubmed/33386070
http://dx.doi.org/10.1016/j.pt.2016.05.001
https://doi.org/10.1016/j.pt.2016.05.001
http://www.ncbi.nlm.nih.gov/pubmed/27238200
https://doi.org/10.1186/s12936-015-0544-3
https://doi.org/10.1186/s12936-015-0544-3
http://www.ncbi.nlm.nih.gov/pubmed/25888818
https://doi.org/10.1186/s12936-018-2635-4
http://www.ncbi.nlm.nih.gov/pubmed/30602373
https://doi.org/10.1038/s41467-021-22896-5
http://www.ncbi.nlm.nih.gov/pubmed/33976132
https://doi.org/10.1371/journal.pgph.0000014


99. Kamau A, Mtanje G, Mataza C, Malla L, Bejon P, Snow RW. The relationship between facility-based

malaria test positivity rate and community-based parasite prevalence. PLOS ONE. 2020; 15(10):

e0240058. https://doi.org/10.1371/journal.pone.0240058 PMID: 33027313
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