
 

S1 Text: Additional Details and Analyses  

“Predicting resistance to fluoroquinolones among patients with rifampicin-resistant tuberculosis 

using machine learning methods” 

S1 Data cleaning and preprocessing  

S1.1 Determining susceptibility and resistance to RIF and FLQs  

Susceptibility or resistance to rifampicin (RIF) was determined based on the results of Xpert MTB/RIF test, which 

could be obtained at the point-of-care.   

Susceptibility or resistance to fluoroquinolones (FLQs) was determined based on the susceptibility or resistance to 

ofloxacin, levofloxacin, and/or moxifloxacin. The susceptibility or resistance to these three drugs were 

determined based on LJ- and MGIT- based drug susceptibility tests. If either or both tests detected resistance to 

one of three drugs, such as ofloxacin, we classified the patient’s M tuberculosis strain as resistant to ofloxacin. If 

both tests were negative or if one was negative and the other was missing, we classified the patient’s M. 

tuberculosis strain as susceptible. If none of these conditions are met, we coded the resistance status as “missing.” 

If resistance to at least one of the three drugs was determined, we classified the patient’s M. tuberculosis strain as 

FLQ-resistant. If susceptibility to all these drugs was determined, we classified the patient’s M. tuberculosis stain 

as susceptible to FLQs. If none of these conditions are satisfied, we coded the resistance status as “missing”. 

S1.2 Preprocessing 

We coded entities with no or unrealistic values as “missing.” For each feature, the percentage of entities with 

missing values are provided in Table 1. As the occurrence of these “missing” values may not be completely 

random, we kept all records with “missing” values in our analysis to allow the development of predictive models 

that can work with missing observations. We used one-hot encoding to incorporate nominal categorical features 

(e.g., occupation, education, TB type). We standardized the only continuous feature in our dataset (i.e., age). For 

the feature ‘number of household contacts’ we grouped entities with values ≥ 11 into a single stratum and treated 

these features as ordinal categorical predictors (i.e., replacing its values with 0, 1, 2, …). For feature ‘number of 

household contacts 18 or younger’, we grouped entities with values ≥ 8 into a single stratum. We extrapolated the 

missing entries for ‘number of household contacts’ and ‘number of household contacts 18 or younger’ by 

replacing them with the mean values of each column. For the feature ‘residing in a district with low, median, or 

high prevalence of resistance to FLQs’ we replaced low, medium, and high values with 0, 1, 2. 

S2 Machine learning and feature selection algorithms 

We used the scikit-learn package to train logistic regression, neural network, and random forest models [1]. We 

set the class weight of the logistic regression models to be “balanced”. Neural network models were trained using 



 

the lbfgs solver with tanh activation functions and one hidden layer containing as many nodes as the number of 

features + 2. For the random forest models, we set the number of trees to be 100 and the minimal number of 

samples required to be at a leaf node to be 5.  

To identify features with important predictive power and to remove features that would diminish the model’s 

accuracy, we used recursive feature elimination (RFE) [2], L1 regularization (L1) [3], and permutation importance 

(PI) [4] as feature selection methods for different classifiers. We used RFE, L1 and PI for logistic regression 

models, RFE and PI for random forest models, and PI for neural network model [1]. For L1, we set the 

regularization parameter to 0.2 and for PI, we set number of times a feature is randomly shuffled to 10. 

To determine the optimal number of features for each model, we checked how the optimism-corrected estimates 

of AUC-ROC (calculated using the algorithm described below in §S4) varied by the number of features included 

(Figure A and Figure B). We chose the smallest number of features after which the optimism-corrected estimate 

of AUC-ROC became stable. To characterize the importance of each feature, we recorded the number of times 

each feature was identified as important within the iterations of the bootstrap algorithm describe below. 

S3 Performance criteria 

To evaluate the performance of the predictive models developed here, besides AUC-ROC, we also estimated the 

model’s sensitivity and specificity, and its impact on the proportion of individuals with RR-TB who receive 

appropriate regimen and who unnecessarily receive DLM. These performance criteria are defined below (we use 

𝜇𝐹𝐿𝑄-𝑅 to denote the prevalence of resistance to FLQs among individuals with RR-TB): 

Sensitivity (𝜶):  

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Specificity (𝜷):  

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Proportion of individuals with RR-TB receiving a treatment regimen that matches the susceptibility of 

their M. tuberculosis strain to FLQ (𝒒): 

𝛼 × 𝜇𝐹𝐿𝑄-𝑅 + (1 − 𝜇𝐹𝐿𝑄-𝑅) 

Proportion of individuals with RR-TB unnecessarily receiving DLM instead of a FLQ (𝒄):  

(1 − 𝛽) × (1 − 𝜇𝐹𝐿𝑄-𝑅) 

S4 Bootstrap Validation 

To conduct the internal validation of each model developed here, we followed the bootstrap validation procedure 

recommended by The TRIPOD Statement [5], as described below: 



 

1. Develop the predictive model using the entire study population (𝑛 = 540) and calculate the apparent 

performance of interest (𝑃), such as AUC-ROC, sensitivity, specificity, 𝑞, or 𝑐, as defined above. The 

apparent performance of a model refers to the performance of the model directly calculated using dataset 

that is used to train the model. 

2. For 𝑖 = 1 to 200: 

a. Create a bootstrap sample by sampling 𝑛 = 540 individuals (from the original dataset) with 

replacement.  

b. Develop a bootstrap predictive model based on this bootstrap sample and calculate the apparent 

performance (𝑃𝑖,𝑠𝑎𝑚𝑝𝑙𝑒), using the same feature selection and classification algorithms used in 

Step 1.  

c. Calculate the performance of the constructed bootstrap predictive model on the original sample 

(𝑃𝑖,𝑡𝑒𝑠𝑡). 

d. Calculated the optimism (𝑂𝑖) by subtracting the test performance from the bootstrap performance: 

𝑂𝑖 = 𝑃𝑖,𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑃𝑖,𝑡𝑒𝑠𝑡. 

3. Calculate the average optimism: 𝑂̅ = ∑ 𝑂𝑖
200
𝑖=1 /200. 

4. Calculate the optimism-corrected performance as 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑃 − 𝑂̅ with the (1 − 𝛼)100% bootstrap 

confidence interval of [𝑃 − 𝛿𝛼/2, 𝑃 − 𝛿1−𝛼/2], where 𝛿𝛼/2 is the (1 − 𝛼/2)100th percentile of 

{𝑂1, 𝑂2, … , 𝑂200}. 

S5 Cross Validation   

Per RIPOD’s recommendations, we use optimism-corrected performance measures (e.g., optimism-corrected 

AUC-ROC, optimism-corrected sensitivity, and optimism-corrected specificity) to evaluate the performance of 

different models (see §S4). Nonetheless, to evaluate if the estimates for AUC-ROC would change if a different 

validation algorithm were used, we also provide estimate of AUC-ROC calculated using 5-fold cross-validation 

(Table A). We, however, note that given the small size of our dataset and imbalance classes, we were not able to 

perform higher-fold cross validation to estimate AUC-ROC; hence, these estimates should be interpreted with 

caution.  



 

 

Table A. The estimated area under the receiver operating characteristic curve (AUC-ROC) calculated using 5-fold cross-

validation, for predictive models developed by different machine learning algorithms and feature selection methods.  

Machine learning 

model Logistic Regression 

Neural 

Network 

Random 

Forest 

Feature selection 

method 

Recursive 

Feature 

Elimination 

L1 

Regularization 

Permutation 

Importance 

Permutation 

Importance 

Recursive 

Feature 

Elimination 

Permutation 

Importance 

Model without 

information on local 

prevalence of 

resistance to FLQs 

0.61  

(0.55, 0.70) 

0.57  

(0.49, 0.62) 

0.59  

(0.46, 0.78) 

0.59  

(0.56, 0.65) 

0.54  

(0.43, 0.67) 

0.57  

(0.48, 0.66) 

Model with 

information on local 

prevalence of 

resistance to FLQs 

0.68  

(0.61, 0.74) 

0.65  

(0.59, 0.70) 

0.65  

(0.59, 0.72) 

0.66  

(0.59, 0.74) 

0.63  

(0.55, 0.69) 

0.61  

(0.44, 0.69) 

 

S6 Impact on the selection of antibiotics  

To evaluate whether the use of the predictive models developed here could improve the selection of antibiotics for 

patients with RR-TB, we estimated the net benefit of each model, which is defined as  

𝑈(𝜆, 𝑝) = 𝜆𝑞(𝑝) − 𝑐(𝑝), 

where:  

- 𝑝 is the classification threshold (𝑝 = 0 is equivalent to sensitivity 0% and specificity 100%, and 𝑝 = 1 is 

equivalent to sensitivity 100% and specificity 0%),  

- 𝑞(𝑝) is the expected proportion of individuals with RR-TB who receive effective treatment (i.e., a 

regiment that is consistent with susceptibility of their M. tuberculosis strain to FLQs) if the classification 

threshold is set to 𝑝,  

- 𝑐(𝑝) is the expected proportion of individuals with RR-TB who unnecessarily receive DLM (instead of an 

FLQ) if the classification threshold is set to 𝑝; and 

- 𝜆 is a trade-off threshold that represent the policymaker’s willingness to accept an increase in the 

proportion of individuals who unnecessarily receive DLM (i.e., 𝑐(𝑝)) in order to increase the proportion 

of individuals who receive effective treatment (i.e., 𝑞(𝑝)).  

Following the WHO-recommended standardized regimen [6] corresponds to the scenario where all patients with 

RR-TB are assumed to be infected with a M. tuberculosis strain that is susceptible to FLQs. This strategy results 

in the net benefit of: 

𝑈0(𝜆) = 𝜆(1 − 𝜇𝐹𝐿𝑄-𝑅). 

A predictive model with sensitivity 𝛼(𝑝) and specificity 𝛽(𝑝) as the function of the classification threshold 𝑝 

results in the net benefit of: 

 



 

𝑈(𝜆, 𝑝) = 𝜆𝑞(𝑝) − 𝑐(𝑝) 

= 𝜆[𝛼(𝑝) ×  𝜇𝐹𝐿𝑄-𝑅 + (1 − 𝜇𝐹𝐿𝑄-𝑅)] − (1 − 𝛽(𝑝)) × (1 − 𝜇𝐹𝐿𝑄-𝑅). 

To evaluate whether a predictive model would improve the selection of antibiotics for patients with RR-TB, we 

measured the utility of each model using the incremental net benefit, defined as: 

Δ𝑈(𝜆, 𝑝) = 𝑈(𝜆, 𝑝) − 𝑈0(𝜆) 

= 𝜆[𝛼(𝑝) ×  𝜇𝐹𝐿𝑄-𝑅] − (1 − 𝛽(𝑝)) × (1 − 𝜇𝐹𝐿𝑄-𝑅). 

For a given trade-off threshold 𝜆, we chose a classification threshold 𝑝∗ that maximizes Δ𝑈(𝜆, 𝑝) as defined 

above. Figure 4 displays the optimism-corrected Δ𝑈(𝜆, 𝑝∗(𝜆)), using the bootstrap validation algorithm of §S4, 

for varying values of 𝜆. 

S7 Interpreting results of the random forest model with features identified by 

recursive feature elimination 

The random forest model with features identified by recursive feature elimination has the second-best OC-AUC-

ROC among all feature selection and classifier combinations. The top five most frequently selected features for 

the random forest model identified by recursive feature elimination include: age, number of household contacts 18 

or younger, high district prevalence of FLQ-resistance, number of household contacts, and satisfactory living 

condition (Figure C). The top four features were consistent between random forest model with recursive feature 

elimination and neural network model with permutation importance. 

Similar to the neural network model reported in the main manuscript, lowering the classification threshold of 

classifier increases the sensitivity of the model but decreases its specificity (Figure D, Panel A). Therefore, the 

tradeoff also exists between the proportion of patients with RR-TB who receive appropriate treatment regimen 

and the proportion of patients who may be unnecessarily treated with DLM (Figure D, Panel B). Depending on 

the policymaker’s willingness to this tradeoff, Figure E displays the classification thresholds that maximizes the 

net benefit of random forest models for different values of trade-off threshold λ. The random forest model had 

statistically higher net benefit than the current strategy of using the standardized treatment regimen for all patients 

with RR-TB for trade-off thresholds 𝜆 ≥ 2.0.  

  



 

S8 Figures 

 

 

Figure A. The estimated area under the ROC curves (AUC-ROC) of predictive models that did not account for the 

local prevalence of resistance to FLQs, identified by different feature selection methods.  



 

  

Figure B. The estimated area under the ROC curves (AUC-ROC) of predictive models that accounted for the local 

prevalence of resistance to FLQs, identified by different feature selection methods.  

 

 



 

 

Figure C. The frequency of features identified as important using recursive feature elimination algorithm and random 

forest classifier among 200 bootstrap iterations (see §S4 in Supplement). 

 



 

 

Figure D. Evaluating the performance of the random forest model that accounts for the local prevalence of resistance 

to FLQs using features identified by recursive feature elimination for varying classification threshold. The impact of 

the classification threshold on the optimism-corrected sensitivity and specificity is displayed in Panels A; the impact of the 

classification threshold on the optimism-corrected proportion of individuals receiving an appropriate treatment regimen (i.e., 

a regiment that is consistent with susceptibility of a patient’s M. tuberculosis strain to FLQ) and on the optimism-corrected 

proportion of individuals who are unnecessarily treated with delamanid (DLM) is displayed in Panels B. The regions 

represent 95% bootstrap confidence intervals. 

 

Figure E. The optimal choice of the classification threshold for varying values of the policymaker’s trade-off threshold 

and the optimism-corrected utility of the random forest model to determine whether FLQs should be included or 

replaced with DLM for a patient with RR-TB. The model’s utility is measured as the change in net benefit with respect to 

the strategy that uses the standardized treatment regimens for all patients with RR-TB. The trade-off threshold λ represents 

the percentage point increase in the proportion of individuals unnecessarily treated with DLM that the policymaker is willing 

to tolerate to increase the proportion of individuals who receive appropriate treatment by 1 percentage point. The regions 

represent 95% bootstrap confidence intervals. 

  



 

 

Figure F. The estimates F1 and Matthews correlation coefficient (MCC) scores for varying classification threshold for 

our final model (neural network classifier and permutation importance algorithm).  
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